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Abstract—The increasing demand for massive connectivity
and high data rates has made the efficient use of existing
spectrum resources an increasingly challenging problem. Non-
orthogonal multiple access (NOMA) is a potential solution for
future heterogeneous networks (HetNets) due to its high capacity
and spectrum efficiency. In this study, we analyze an uplink
NOMA-enabled vehicular-aided HetNet, where multiple vehic-
ular user equipment (VUEs) share the access link spectrum, and
a high-altitude platform (HAP) communicates with roadside units
(RSUs) through a backhaul communication link. We propose an
improved algorithm for user association that selects VUEs for
HAPs based on channel coefficient ratios and terrestrial VUEs
based on a caching-state backhaul communication link. The joint
optimization problems aim to maximize a utility function that
considers VUE transmission rates and cross-tier interference
while meeting the constraints of backhaul transmission rates and
QoS requirements of each VUE. The joint resource allocation
optimization problem consists of three sub-problems: bandwidth
allocation, user association, and transmission power allocation.
We derive a closed-form solution for bandwidth allocation and
solve the transmission power allocation sub-problem iteratively
using Taylor expansion to transform a non-convex term into a
convex one. Our proposed three-stage iterative algorithm for
resource allocation integrates all three sub-problems and is
shown to be effective through simulation results. Specifically,
the results demonstrate that our solution achieves performance
improvements over existing approaches.

Index Terms—Non-orthogonal multiple access (NOMA) Het-
erogeneous networks (HetNets) Vehicular user equipment (VUE)
High altitude platform (HAP) roadside units (RSUs).
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I. INTRODUCTION

Integrated terrestrial non-terrestrial networks refer to
telecommunications systems that effectively merge terrestrial
and non-terrestrial communication infrastructure, hence offer-
ing complete and robust connectivity [1]. Integrating terrestrial
networks, which possess advantageous characteristics such as
high capacity and low latency, with non-terrestrial networks
like satellite constellations and high-altitude platforms (HAPS)
presents a versatile solution for addressing global commu-
nication requirements [2]. This solution proves particularly
beneficial in areas with limited terrestrial coverage, as well
as in scenarios involving disaster recovery, Internet of Things
(IoT) applications, aerospace, aviation, military operations,
and emergency response [3]. By combining the strengths
of both types of networks, this integrated approach ensures
redundancy, high-speed data transmission, and dependable
connectivity across diverse environments. With the increas-
ing demand for connected devices and autonomous systems,
future communication systems will rely heavily on integrating
terrestrial and non-terrestrial networks to facilitate the deliv-
ery of cutting-edge services [4]. Together, they can provide
more comprehensive and reliable communications, offering
improved coverage, high spectrum efficiency, cost savings,
and better use of resources [5]. Therefore, the convergence
of terrestrial networks and satellites has garnered significant
attention among researchers and professionals worldwide [6].

HAPs have received significant attention due to their abil-
ity to stay aloft at high altitudes for extended periods and
provide various services such as communication, surveillance,
and remote sensing [7]. HAPs are unmanned aerial vehicles
(UAVs) operating at high altitudes ranging from 12 to 22
kilometers (7.5 to 14 miles), above most weather patterns and
commercial air traffic [8]. HAPs have developed for several
decades, but recent advances in materials, propulsion, and
communication technologies have renewed interest in their
potential applications. Additionally, HAPs can be deployed
quickly and at a lower cost than satellites, making them an
attractive alternative for certain applications [9].

Heterogeneous networks (also called HetNets), which com-
bine terrestrial base stations (BSs) and non-terrestrial, i.e.,
UAVs, HAPs, and satellites networks, offer a range of benefits,
including high-speed links for UEs provided by terrestrial BSs,
global coverage and ample backhaul capacity by the non-
terrestrial network [10]. In terrestrial non-terrestrial HetNets,
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the challenges posed by the limited spectrum resource and the
growing number of users who generate more interference must
be addressed to ensure efficient transmission [11]. Despite
its ability to mitigate interference, orthogonal multiple access
technology is subject to certain limitations, including restricted
improvements in the utilization of spectrum and enhanced
capacity because only one user is capable of connecting over
a resource block (orthogonal) in a unit of time [12].

Moreover, integrating NOMA technologies [13] can sig-
nificantly enhance the effective utilization of communication
network spectrum resources [14]. Researchers widely recog-
nize NOMA as a promising approach to allocate spectrum
resources effectively and utilize them rationally in next-
generation multiple access technologies [15]. NOMA facili-
tates the sharing of the same spectrum of resources among
multiple users, leading to improved performance, particularly
in non-terrestrial communication with extensive coverage [16].
Similarly, by incorporating NOMA into terrestrial satellite
HetNets is gaining prominence as a promising approach to
boost communication performance and optimize spectrum
resource utilization [17].

A. Resent Academic Advances
Numerous research efforts have aimed to enhance NOMA

system performance, covering areas such as interference man-
agement, sum rate optimization, energy efficiency maximiza-
tion, power and bandwidth allocation, and distributed cluster
allocation. For example, in [18] and [19], authors proposed
optimization algorithms to tackle the challenge of interference
management in NOMA-based communication systems. In
[20], researchers explored a scheme for optimizing power
and bandwidth distribution in NOMA-based downlink het-
erogeneous networks, where each base station organizes into
clusters and independently manages power and bandwidth
allocation. Additionally, in reference [21], the authors delved
into maximizing energy efficiency in NOMA-assisted net-
works through bandwidth and power allocation. Furthermore,
they derived a mathematical closed-form equation and an
optimization algorithm for power and bandwidth using the
generalized Dinkelbach method. Several other research works
have also investigated optimization problems in NOMA-
assisted wireless networks [22]–[24]. In recent years, integrat-
ing NOMA with satellite communication systems has attracted
considerable attention from researchers aiming to leverage the
unique advantages of these technologies for optimal resource
utilization. This trend has led to many studies, including those
presented in [12], [25], exploring various optimization tech-
niques for NOMA-assisted satellite networks. For example, in
[12], a novel iterative method for User equipment association,
subchannel allocation, and power allocation was proposed,
resulting in improved system throughput compared to existing
methods. In [26], researchers focused on beamforming opti-
mization in NOMA non-terrestrial IoT networks with a multi-
beam architecture. Recent literature highlights the growing
interest of researchers in optimizing resource utilization by
integrating HAP communication systems with NOMA.

Similarly, the authors of the referenced works [27], [28]
concentrate on designing beamforming vectors and efficient

resource allocation in NOMA terrestrial and non-terrestrial
systems, respectively. Additionally, in [28], authors addressed
user association and power optimization by presenting a math-
ematical closed-form expression to find the power solution,
which was then incorporated into user association schemes
to achieve globally optimal results. Furthermore, reference
[25] tackled the optimal allocation of resources in IoT-based
NOMA-enabled terrestrial networks integrated with satellite
communications. The authors proposed a heuristic algorithm,
such as particle swarm optimization, for both power and
bandwidth optimization, utilizing a Lyapunov framework to
find the optimal solutions. This work underscores the potential
of integrating NOMA with non-terrestrial networks to enhance
communication performance in IoT terrestrial networks.

The integration of wireless caching and NOMA has gar-
nered substantial attention in recent years as researchers aim
to enhance the performance and efficiency of wireless com-
munication systems [18], [29]- [30]. Wireless caching, storing
frequently accessed content at edge nodes in the network,
can alleviate network congestion and enhance low-latency
communication performance [31], [32]. This technology can
also enhance the performance of terrestrial non-terrestrial
HetNets by reducing the demand on the backhaul link [33],
[34]. Numerous studies have explored the integration of wire-
less caching and NOMA, examining various aspects of the
technology and its potential advantages. In [29], researchers
delved into optimizing energy-efficient resource allocation
in NOMA networks incorporating terahertz communication
and caching, intending to improve energy efficiency by judi-
ciously utilizing resources in NOMA networks. Additionally,
in [35] and [36], researchers investigated the application of
deep learning algorithms for optimizing resource allocation in
NOMA networks incorporating caching. In [37], two NOMA-
based caching strategies were presented to mitigate latency
in content delivery. The challenge of user association and
power allocation in NOMA networks incorporating caching
was addressed in [18] and [30], with the authors proposing
joint algorithms to optimize these aspects. In conclusion, the
integration of wireless caching and NOMA continues to be a
subject of ongoing research and investigation.

Recently, some researchers have also considered terrestrial-
HAPS networks and evaluate various aspects of system perfor-
mance. Alidadi et al. [38] have investigated a fairness problem
in terrestrial-HAPS network to maximize the minimum spec-
tral efficiency by optimizing the system resources. Ren et al.
[2] have provided an adaptive delay minimization problem and
optimized task splitting, power control, spectrum assignment,
and computational resource allocation. Moreover, the authors
of [39] have proposed a cell-switching methods in terrestrial-
HAPS integrated networks to improve the energy consumption
of the system. Alfattani et al. [40] have proposed a new
optimization framework to enhance the users connectivity
and minimize the energy consumption in terrestrial-HAPS
networks. Further, Zheng et al. [41] have studied the posi-
tioning performance of terrestrial-HAPS integrated networks
to improve 3D positioning accuracy, the horizontal dilution of
precision, and the vertical dilution of precision. Besides the
above studies, Erdogan et al. [42] have proposed different
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use-cases of terrestrial-HAPS network and investigated the
physical layer security of the system. In addition, Shafie et
al. [43] have optimized the power allocation in terrestrial-
HAPS network to maximize the spectral efficiency under spe-
cial correlation of channel gain and imperfect NOMA signal
decoding. Then, the work in [44] has provided user association
and codebook design scheme for the spectral efficiency of
terrestrial-HAPS integrated networks. Of late, authors have
also studied interference issues [45], mobile edge computing
based task offloading [46], and terahertz communication in
terrestrial-HAPS networks [47].

B. Recent Industry Advances

The process of standardization for terrestrial non-terrestrial
networks within the 3rd Generation Partnership Project (3GPP)
commenced in the year 2017 [48]. The standardization en-
deavor can be classified into two main domains: improve-
ments for networks operating in non-terrestrial environments
and enhancements for networks operating in terrestrial en-
vironments. The primary objective of this initiative is to
develop a universally accepted benchmark for non-terrestrial
communications, hence fostering substantial expansion within
the satellite, HAPS, and UAV industry. The activities in the
aforementioned domain have a twofold objective, which is to
guarantee that mobile standards are in line with the connection
needs for secure functioning on platforms that are not on Earth.
Table II provides a comprehensive summary of the objectives
and results achieved by 3GPP in its endeavors encompassing
Rel-15 to Rel-17, together with the ongoing investigations for
Rel-18.

In the context of 3GPP, terrestrial non-terrestrial networks
pertain to the application of satellites or HAPS to provide
connectivity services, specifically in geographically isolated
regions where conventional cellular coverage is insufficient.
The core set of features added by 3GPP in Rel-17 aims
to enable next-generation spectrum operation over terrestrial-
satellite networks within the frequency range of FR1, encom-
passing frequencies up to 7.125 GHz. The forthcoming Rel-18
of the 3GPP is focused on advancing the capabilities of next-
generation operations inside terrestrial-satellite environments.
The proposed enhancement aims to enhance the coverage
of handheld devices, investigate the feasibility of deploying
networks in frequency bands above 10 GHz, tackle challenges
related to mobility, ensure uninterrupted service transition be-
tween terrestrial and non-terrestrial networks, and evaluate the
regulatory obligations associated with verifying user locations
within the network [49].

The inclusion of non-terrestrial platforms in the preceding
network generation was initially included in 3GPP’s Rel-
15. This involved the incorporation of signaling protocols to
identify extraterrestrial users using subscription-based tech-
niques. Furthermore, protocols were implemented to facilitate
the reporting of essential characteristics pertaining to non-
terrestrial platforms, including height, position, speed, and
flight trajectory. In order to efficiently address non-terrestrial
interference, especially in situations where there is a specific
concentration of low-altitude non-terrestrial platforms, novel

measurement reports have been implemented for effective
management.

In following iterations, the 3GPP expanded its scope to cater
to the requirements of linked non-terrestrial systems at the
application layer, with a significant emphasis on security con-
siderations. These releases have also established the ground-
work for establishing the protocols by which non-terrestrial
platforms engage with the Traffic Management system, facil-
itating synchronized and secure operations of non-terrestrial
platforms inside the network. The upcoming release of 3GPP’s
Rel-18 aims to provide specialized next-generation spectrum
support that is specifically designed for devices running on
aerial vehicles. This development is in response to the evolving
use cases of next-generation technologies. According to [49],
the forthcoming progress will encompass the investigation of
supplementary factors that can initiate conditional handover.
Additionally, it will incorporate the utilization of base station
uptilting approaches to increase communication, as well as the
integration of signaling mechanisms to indicate the beamform-
ing capabilities of non-terrestrial platforms, alongside various
other improvements.

C. Motivation and Contributions

Resource allocation in wireless networks has been a topic
of significant research interest. The focus has been improving
the performance and efficiency of wireless caching networks,
NOMA networks, and terrestrial-HAPs networks. Despite
these efforts, most studies have only considered one network
type in isolation rather than an integrated approach. Currently,
there is a gap in the literature that addresses the comprehensive
problem of efficient allocation of resources in caching-based
NOMA for HAPs-terrestrial communication networks, partic-
ularly concerning bandwidth, power, and user association. The
complexities of resource allocation in these networks arise
from the requirement for reliable wireless backhaul access
networks and the added challenge of interference in multi-cell
NOMA terrestrial-satellite heterogeneous networks.

The objective of this study is to address the challenges
presented by NOMA-enabled vehicular-aided HetNet, which
involves RSU and HAPs VUEs sharing the same radio re-
source. The HAPs are responsible for back-haul commu-
nication links to the terrestrial RSU. To achieve this, the
study begins by formulating a joint optimization problem
considering the achievable rate for cellular VUEs and the
interference from RSU-HAPs. An optimization problem is
developed to consider factors such as user association, back-
haul link limitations, and QoS requirements for each VUE. To
further enhance the system performance, the joint optimization
formulation is broken down into sub-problems, including user
association, efficient allocation of bandwidth, and transmission
power. Subsequently, algorithms are proposed to optimize the
system performance. This paper provides a comprehensive
analysis of the resource allocation process, including a time
complexity analysis of the proposed optimization algorithms.
The effectiveness of the proposed scheme is demonstrated
through simulation results. The main contributions of this
study include:
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TABLE I: 3GPP standardization works on integrated terrestrial non-terrestrial networks. [48], [49]

Release Advance in integrated terrestrial non-terrestrial networks

Rel-15

The focus of Rel-15 is on New Radio (NR), a technology proposed for the purpose of supporting terrestrial non-terrestrial networks
as outlined in the technical report [TR 38.811]. Additionally, this study provides pertinent use case possibilities for integrating
terrestrial non-terrestrial networks and spectrum, explicitly focusing on the S-band and Ka-band frequencies. In addition, it delineates
the dimensions of the footprint, the angle of assessment, the configuration of the beam, and the design of the antenna. Additionally,
this release provides specific details regarding the channel propagation model as outlined in the technical report [TR 38.901].

Rel-16

The present release presents potential resolutions for the integration of new technologies inside terrestrial non-terrestrial integrated
networks, as outlined in the technical report [TR 38.821]. The primary emphasis is placed on utilizing FR1 bands inside terrestrial
non-terrestrial networks to facilitate the seamless integration and functioning of the Internet of Things. Additionally, this approach
facilitates the identification of necessary modifications in the physical layer and other layers, considering the assumptions made
during system-level simulations. In addition to this, the present study also examines the influence of resource optimization on the
performance of terrestrial non-terrestrial networks. Moreover, it integrates the utilization of terrestrial non-terrestrial networks in the
context of next-generation communications, as indicated in the technical report [TR 22.822], to facilitate the provision of diverse
services.

Rel-17

The topic of Rel-17 pertains to the inclusion of narrowband IoT and machine-type communication in integrated terrestrial non-
terrestrial scenarios, as referenced in the technical report [TR 36.763]. The technology is primarily designed to meet the unique
requirements of IoT applications. Considerable focus has been devoted to the architectural concerns for satellite access within the
framework of 6G, as outlined in the technical report [TR 23.737]. This endeavor involves improvements in various aspects, such
as advances in radio frequency and physical layer characteristics, optimizations in protocols, and more efficient management of
radio resources. In addition, this process entails the selection of a suitable architectural framework, addressing challenges related
to integrated terrestrial non-terrestrial roaming, and enhancing conditional handover procedures.

Rel-18

The advancements pertaining to terrestrial non-terrestrial communication will investigate the extent of system coverage for handheld
devices in practical scenarios, as well as explore access capabilities beyond the 10 GHz frequency range for both stationary and
mobile platforms. The study aims to investigate the necessary conditions for the network-validated user location and address
challenges pertaining to user mobility and the uninterrupted provision of services during transitions between terrestrial and satellite
networks, as well as various non-terrestrial networks.

1) In this study, we present an up-link communication
scenario in the HetNet model incorporating caching
strategies for spectrum sharing between RSU and HAPs
VUEs is presented. To ensure optimal system perfor-
mance, the interplay of inter-cell, cross-tier, as well as
intra-cell interference is analyzed. The optimal decoding
order for successive interference cancellation (SIC) is
then calculated. To assess system performance, a utility
function is created that considers the achievable rate of
cellular UEs and the cross-tier interference generated
by RSUs towards the satellite. The resource allocation
problem is then posed as a system utility maximization
problem, with joint user associations, back-haul con-
straints, and VUE QoS requirements all considered.

2) The resource allocation optimization problem in this
system model is highly non-linear and computation-
ally complex, with Non-deterministic Polynomial (NP)
complexity. To tackle this challenge, the problem is
decomposed into three sub-problems, which are solved
independently. The first sub-problem focuses on the
VUE-AP association and proposes an advanced prefer-
ence relation, caching, and swapping-based algorithm.
The algorithm’s implementation involves prioritizing
satellite VUEs based on the channel coefficient ratios
and considering the caching state and availability of the
back-haul communication link in the association of ter-
restrial VUEs. The second sub-problem yields a closed-
form expression for bandwidth allocation. In contrast,
the third sub-problem involves transforming the non-
convex objective function optimization into a convex
form through successive convex approximation, which
is then solved iteratively through a power allocation
algorithm.

3) To optimize the resource allocation in the system, a
three-stage iterative algorithm is proposed. The proposed

approach for resolving the optimal allocation of re-
sources in the up-link up-link communication scenario in
HetNet communication involves the iterative solution of
three sub-problems, specifically user association, band-
width allocation, and power allocation. A detailed anal-
ysis of the time complexity of the proposed algorithms
is carried out to evaluate their computational efficiency.
The validity of the algorithms’ efficacy in optimizing
resource allocation is established through simulation
results, which also demonstrate the convergence of the
proposed algorithms.

II. NETWORK MODEL & MATHEMATICAL FORMULATION

This section presents the caching-based NOMA-enabled
vehicular-aided HetNet, which aims to enhance communica-
tion network performance by efficiently using network re-
sources. To achieve this goal, a utility function is constructed,
and an optimization problem is formulated, considering three
essential elements of the network: bandwidth assignment for
front-haul and back-haul communication, user association, and
power allocation. This approach leverages the advantages of
NOMA as compared to OMA, such as improved spectrum
efficiency and flexible interference management, to optimize
resource allocation in the context of vehicular-aided HetNets
[50], [51].

A. Network Model

As shown in Figure 1, this study focuses on the up-link
communication scenario in HetNet, which consists of M
roadside units (RSUs) and one high altitude platform (HAP)
denoted by l, serving N vehicular user equipment (VUEs).
RSUs play a crucial role in the network by providing a
communication infrastructure for vehicles, enabling efficient
communication between vehicles and the HAP. Without RSUs,
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HAPSVUE to RSU link

RSU to HAPS link

Inter-cell interference

Cross-tier interference

VUE to HAPS link

RSU

VUE

VUE

VUE

VUE

RSU

RSU

Fig. 1: System Model

the vehicles would have to rely solely on their own com-
munication capabilities, leading to potential communication
breakdowns and degraded network performance. The total
system bandwidth, B, is divided into front-haul and back-haul
links, with (1 − η)B allocated to front-haul communication
between vehicles and RSUs, and ηB allocated to back-haul
communication between RSUs and the HAP. The system
incorporates wireless caching technology for data offloading in
RSUs to meet network requirements. The NOMA technology
enables multi-user transmission in this system, while com-
munication between RSU-HAP links occurs over the C-band.
The system model also considers several types of co-channel
interference, including cross-tier HAPs interference, inter-cell
interference, and intra-cell interference caused by NOMA.
A comprehensive analysis of the system model is presented
in subsequent sections, highlighting the importance of the
proposed system design for efficient utilization of network
resources and improved network performance.

1) Terrestrial Communication Model: In a terrestrial com-
munication network, NOMA technology allows an RSU to
serve multiple VUEs [52]. The set of VUEs served by a
particular RSU, denoted as m, determines the signal received
by these VUEs at their associated RSU. Mathematically, this
can be represented as:

yn,m =
√
pn,mhn,msn,m +Φ̂I1

n,m +Φ̂I2
n,m + Φ̂I3

n,m + ςn (1)

Following that, the equation (1) describes the impact of
different types of co-channel interference, including intra and
inter-cell interference as well as cross-tier interference denoted
by Φ̂I1

n,m, Φ̂I2
n,m, and Φ̂I3

n,m, respectively. These sources of

interference are mathematically represented as follows:

Φ̂I1
n,m =

∑
n′ ̸=n∈Lm

√
pn′,mhn,msn′,m. (2a)

Φ̂I2
n,m =

∑
j∈M/m

∑
i∈Lj

√
pi,jhi,msi,j . (2b)

Φ̂I3
n,m =

∑
i∈Ll

√
pi,lhi,msi,l. (2c)

In a NOMA-enabled HetNet, the transmission power from the
nth VUEs towards the mth RSU and the HAPs is represented
as pn,m and pn,l, respectively. The channel coefficients be-
tween the nth VUE and mth RSU are denoted as hn,m, while
the signal transmitted from the nth VUE to the mth RSU
and from the jth VUE to the HAPs are represented by sn,m
and sj,l, respectively. The channel between VUE-RSU/HAPs
is modelled as additive white Gaussian noise (AWGN) and
assumed to follow a complex Gaussian distribution, ς ∼
CN(0, σ2), where σ2 is the variance. Given these conditions,
the signal-to-interference-plus-noise ratio (SINR) between the
nth VUE and mth RSU can be calculated as follows:

Γn,m =
|hn,m|2 pn,m

ΦI1
n,m +ΦI2

n,m +ΦI3
n,m + σ2

, (3)

Where the intra, inter-cell, as well as cross-tier interference,
are represented by

ΦI1
n,m =

∑
n′ ̸=n∈Lm

pn′,m |hn,m|2 . (4a)

ΦI2
n,m =

∑
j∈M/m

∑
i∈Lj

pi,j |hi,m|2 (4b)

ΦI3
n,m =

∑
i∈Ll

pi,l |hi,m|2 . (4c)

respectively.
Following that, the allocation coefficient, η, determines the

portion of bandwidth allocated to the backhaul network. The
user association between VUEs, RSUs, and HAP is denoted by
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the matrix U [un,m]N×M+l. This binary matrix indicates the
connection between VUEs and RSU/HAPs, where un,m = 1
if VUE n is associated with RSU/HAPs, and 0 otherwise. By
utilizing the user association information and the allocation
coefficient, the transmission rate from VUE n to RSU m
can be calculated based on the available bandwidth, channel
quality, and other relevant factors. This rate represents the
amount of data that can be transmitted over a certain period.

Rn,m = (1− η)B log2 (1 + Γn,m) , (5)

Meanwhile, the overall achievable rate at the mth RSU can
be expressed as follows:

Rm =
∑
n∈N

un,mRn,m. (6)

2) VUE-HAPs Communication: The signal received at the
HAPs from the nth VUE, denoted by yn,l, can be expressed
mathematically as:

yn,l =
√
pn,lhn,lsn,l +Φ̂I1

n,l +Φ̂I2
n,l + ςl (7)

In this expression, Φ̂I1
n,l and Φ̂I2

n,l represent the intra-cell
interference and the interference from other RSUs at the HAP,
respectively. Mathematically, can be expressed as:

Φ̂I1
n,l =

∑
n′∈Ll/n

√
pn′,lhn,lsn′,l (8a)

Φ̂I2
n,l =

∑
j∈M

∑
i∈Lj

√
pi,jhi,lsi,l (8b)

Similarly, the channel coefficient between a VUE and the HAP
is denoted by hu,l. The SINR that the HAP receives from the
VUE can be expressed as a function of this coefficient as
follows:

Γn,l =
|hn,l|2 pn,l

ΦI1
n,l +ΦI2

n,l + σ2
(9)

Where,

ΦI1
n,l =

∑
n′∈Ll/n

pn′,l |hn,l|2 (10a)

ΦI2
n,l =

∑
j∈M

∑
i∈Lj

pi,j |hi,l|2 . (10b)

respectively.
Similarly, VUEs associated with HAPs are subject to both

intra-HAPs and RSU-originated interference, which can im-
pact their SINR. Furthermore, since the transmission power
of HAPs’ VUEs is constant, the SINR at the HAPs is also
affected by cross-tier interference from RSUs’ VUEs.

3) Caching Model: Local caching is a popular feature
implemented in RSUs to reduce network traffic and alleviate
backhaul pressure by storing frequently requested data at the
network’s edge. This allows VUEs to access content directly
from the local storage of RSUs instead of relying on the
limited capacity of backhaul links. The effectiveness of the
caching strategy is influenced by the power allocation values.
The caching index, denoted as X [xn,m]N ×M , reflects the
success of caching UE n’s content at RSU m during the
caching phase, where xn,m = 1 indicates successful caching

and xn,m = 0 indicates otherwise. It is worth noting that
each VUE’s content can only be cached at a single RSU, and
all RSUs must have the same buffer capacity. The constraints
enforced by this approach can be expressed as

∑
m xn,m ≤ 1

and
∑

i∈{Lm} xi,m ≤ xmax.
4) Back-haul Link Capacity Model: In the proposed sys-

tem, as illustrated in Figure 1, VUEs access content via HAPs,
and front-haul communication is constrained by the back-
haul communication link between the RSUs and the HAPs.
Caching (xn,m = 1) allows BSs to serve cached content to
VUEs, reducing the back-haul burden and link overhead. The
Orthogonal Frequency Division Multiple Access (OFDMA)
technique is used for communication between RSUs and
HAPs, as reported in [53]. The system also specifies the
Signal-to-Interference-plus-Noise Ratio (SINR) of the back-
haul link from RSUs m to the HAPs.

Γm,l =
pm,l |hm,l|2∑

m′∈M\m pm′,l |hm,l|2 + σ2
. (11)

In addition, the rate equation for the backhaul communication
link from the mth RSU to the HAPs can be expressed as:

Rm,l = Ψm log2 (1 + Γm,l) , (12)

where Ψm =
|Lm|−

∑
i∈Lm

xi,m

|Lm|
ηB
M and |Lm| =

∑
i∈c ui,l. The

achievable back-haul transmission rate is

Rl =
∑
m∈M

Rm,l. (13)

5) Mechanism of SIC Decoding: The proposed system
utilizes the NOMA technique to address the challenges of
multiplexing multiple signals in the same frequency band
[54]. The technique relies on the SIC approach to prioritize
the decoding process based on the received signal strength,
with the user receiving the strongest signal being decoded
first. This method is employed for both uplink and downlink
transmissions, with the user with the best channel conditions
receiving the highest priority for decoding in an uplink NOMA
scenario with equal transmitter capabilities [52]. This approach
enables the system to allocate resources more efficiently,
leading to improved communication performance. In the pro-
posed system model, various factors such as the inter-cell
interference ΦI1

n,m, interference from outside the cell ΦI2
n,m,

and interference from the HAPs to RSU ΦI3
n,m are considered

in determining the channel state. The system’s approach is
formalized in a theorem presented in the paper as follows.

Theorem I: For NOMA networks featuring VUE-RSU
uplink and multiple cells, it is necessary for the channel
coefficients of users n1 and n2 in cell m (where m ∈ M)
to meet a specific requirement in order for the SIC technique
to be applied successfully and eliminate n1’s signal from n2’s
signal.

|hn1,l|
2 ≥ |hn2,m|

2
. (14)

Proof: The power received by RSU m from VUES n1 and n2

are as follows:

nr
1 = |hn1,m|

2
(pn1,l + pn2,m) + ΦI2

n1,m +ΦI3
n1,m + σ2

nr
2 = |hn2,m|

2
(pn2,m + pn2,m) + ΦI2

n2,m +ΦI3
n2,m + σ2

(15)
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The condition for successful implementation of the SIC tech-
nique in uplink RSU-HAPs multiple-cell NOMA networks,
used to decode and eliminate user n1’s signal from user n2’s
signal, can be expressed as follows: ΦI2

n1,m = ΦI2
n2,m =∑

j∈M/m

∑
i∈Lj

pi,j |hi,m|2 and ΦI3
n1,m = ΦI3

n2,m ==∑
i∈Ll

pi,l |hi,m|2. Analysis shows that for user n1’s signal
to be decoded successfully, its received signal must be greater
than or equal to that of user n2, i.e., |hn1,m|

2 ≥ |hn2,m|
2.

This completes the proof. Arranging the channel coefficients
of the VUEs connected to the RSU m in ascending order
facilitates the systematic implementation of the SIC technique.
By decoding the signal from the VUEs with the superior
channel condition first, communication performance can be
improved.

W (Lm) ≜ |h1,m|2 ≥ |h2,m|2 ≥ · · · ≥ |hN,k|2 ,∀m. (16)

Therefore, based on the above assumption, the SINR of RSU
from VUEs n can be expressed as Jn, where Jn represents
the set {1, 2, · · · , n}.

Γn,m =
|hn,m|2 pn,m∑

i∈Lm\Jn
pi,m +ΦI2

n,m +ΦI3
n,m + σ2

(17)

B. Problem Formulation

In a NOMA-enabled vehicular-aided HetNet, the primary
objective is to achieve high transmission rates while limiting
the impact of cross-tier interference on the QoS requirements
of VUEs connected to a HAP. NOMA technology enables
multiple users to share the same frequency and time resources
using power-domain multiplexing, but cross-tier interference
can still occur and affect the QoS of VUEs. To address this
challenge, the utility function for VUEs must consider both
the achievable transmission rate and the impact of cross-
tier interference while taking into account the specific QoS
requirements of the VUEs and the methods used to calculate
the utility function. Therefore to address this, We formulate a
weighted sum of the achievable transmission rate and a penalty
function for the interference level. By adjusting the weight
factors, the system can balance the two objectives based on
the system’s priorities. This balance is critical for providing
reliable and efficient communication services in vehicular
networks, as demonstrated mathematically as follows.

Fn,m =
∑

n∈Lm

(
Rn,m − Ω |hn,l|2 pn,m

)
, (18)

The interference pricing factor Ω plays a crucial role in
balancing the trade-off between transmission rate and cross-
tier interference. While a higher transmission rate increases
the utility, cross-tier interference can significantly reduce it.
In our simulations, we adopt a dynamic approach for setting
the parameter Ω to adapt to real-time network conditions and
user requirements. Therefore, the total utility of the system is
the sum of the utilities of each RSU, represented by Fm.

Fm =
∑

n∈Lm

Fn,m. (19)

The problem of resource allocation in the uplink NOMA-
enabled vehicular-aided HetNet can be mathematically for-
mulated as an optimization problem. The objective is to
maximize the system utility, subject to constraints such as
power budget, QoS requirements of users, and interference
limits. Specifically, let Fm denote the utility of the RSU, the
problem can be expressed as:

max
{U,η,P}

∑
n∈Lm

(
Rn,m − Ωt |hn,l|2 pn,m

)
(20a)

C1 : Rn,m > Rn, ∀m ∈M,∀n ∈ N, (20b)

C2 :
∑

n′∈Lm

(1− gn′,m)Rn′,m < Rm,l,∀m ∈M. (20c)

C3 : W (Lm) ,∀m ∈M+ l, (20d)
C4 : un,m ∈ {0, 1},∀m ∈M+ 1,∀n ∈ N, (20e)

C5 :
∑M+l

j=1
un,j = 1, ∀n ∈ N, (20f)

C6 : pn,m ∈ [0, Pmax] ,∀n ∈ N,∀m ∈M+ l, (20g)
C7 : η ∈ (0, 1), (20h)

The resource allocation problem in the uplink NOMA-enabled
vehicular-aided HetNet network is a complex optimization
task that aims to jointly optimize the allocation of resources,
including the VUE-RSU/HAPs association variable U, the
indicator for bandwidth assignment η, and the transmission
power vector P. The problem is subject to a set of constraints
that must be satisfied to ensure optimal resource allocation.

1) Constraint (20b) is imposed to guarantee that each VUEs
quality of service (QoS) requirement is met.

2) Constraint (20c) is imposed to ensure that the total rate
achieved by each cell m does not exceed its available
backhaul link rate.

3) Constraint (20d) ensures that the decoding order of users
in each cell m is maintained through the use of the
access point-user association matrix U [un,m]N × l.

4) Constraint (20e) restricts each VUEs only to be associ-
ated with one access point, either an RSU m or HAPs
l, with un,m = 1 indicating association and un,m = 0
indicating no association.

5) Constraint (20f) enforces that each VUE can only be
served by one AP at a time.

6) The power constraint is defined in (20g).
7) Constraint (20h) represented the bounds for the back-

haul bandwidth allocation factor.
These constraints ensure that the optimal allocation of re-
sources in the up-link NOMA-enabled vehicular-aided HetNet
network is optimized and meets the necessary requirements.

The optimization problem described in equation (20)
presents a challenging mixed-integer nonlinear programming
problem that is difficult to solve and optimize. The problem
is characterized by non-convexity and NP-hard complexity,
making it challenging to obtain a globally optimal solution.
Additionally, the user association strategy dynamically affects
the channel conditions, further complicating the optimization
problem. To overcome these challenges, the joint optimization
problem is decomposed into several distinct subproblems, re-
sulting in improved solution efficiency. This approach enables
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the optimization of each subproblem separately, leading to bet-
ter convergence and reducing the computational complexity of
the overall problem. By breaking down the joint optimization
problem, it becomes possible to solve for the optimal resource
allocation with reduced computational resources and time.

III. FRAMEWORK FOR OPTIMAL ALLOCATION OF
RESOURCES

The optimization problem specified in equation (20) is
a challenging mixed-integer nonlinear programming issue
with computational difficulties and difficulties in optimizing
the solution. Due to non-convexity and NP-hard complexity,
obtaining a globally optimal solution is challenging. Addi-
tionally, the user association strategy dynamically influences
channel conditions, adding further complexities. To address
these issues, the joint optimization problem is divided into
three sub-problems to improve solution efficiency. The first
sub-problem develops a methodology for UE association based
on the current caching state and user preferences with fixed
power-to-bandwidth ratios. The second sub-problem focuses
on bandwidth allocation. Finally, the third sub-problem deals
with power allocation. An iterative algorithm is proposed to
find the optimal power allocation, using information from
previous sub-problems on UE association and allocation of
bandwidth. The methodology for each sub-problem is detailed
in the following section.

A. User Association Method

The sub-problem for UE association can be expressed as
follows:

max
{U}

∑
n∈Lm

(
Rn,m − Ω |hn,l|2 pn,m

)
(21a)

C1 : W (Lm) ,∀m ∈M+ l, (21b)
C2 : un,m ∈ {0, 1},∀m ∈M+ 1,∀n ∈ N, (21c)

C3 :
∑M+l

j=1
un,j = 1, ∀n ∈ N, (21d)

To address the UE association optimization sub-problem stated
in equation (21), an algorithm is utilized that considers
caching, preference relations, and swapping. Notably, the algo-
rithm doesn’t account for the QoS requirements of the UE and
the back-haul link, which provides a broader user swapping
range and facilitates obtaining globally optimal solutions.

1) Preparation process: In the proposed resource alloca-
tion method for the NOMA-enabled vehicular-aided HetNet
network, the selection of VUEs connected to the HAPS is
based on the ratio of channel coefficients, κn =

|hn,l|2

|hn,m|2 . This
ratio is computed for each VUE and sorted in descending
order. The top Ll VUEs with the highest κn values are then
designated as the HAP users, while the remaining VUEs
connect to the RSUs. The selection of the RSU is determined
by the VUEs’ preference list, which is sorted according to
the channel coefficients, with the position of RSU m in the
preference list indicated by lm,n. The proposed method pro-
vides a systematic approach to allocate resources in vehicular-
aided HetNet networks while considering VUE preferences
and channel conditions. This approach can help optimize the

performance of the network while ensuring fair allocation of
resources among the VUEs.

2) Sense and Action: The VUEs connected to the RSU
transmit request signals in accordance with their preference
list. The decision rule for any m1,m2 ∈M where m1 ̸= m2

is stated as follows:

Lm1,n ≻ Lm2

⇔ NB
n,m2

({Lm1 , Lm2})
< Nn,m1

({Lk1
∪ {n}, Lm−2\{n}}) .

(22)

Equation (22) presents the preference of VUE n between RSU
m1 and m2, which is based on the RSU that can offer higher
utility. To make the best use of caching resources, VUEs prefer
to connect to RSUs that have their desired content cached.
However, the long communication distance can lead to a high
path loss and reduce the benefits of caching. To address this,
the utility function is weighted by a factor α. Thus, when
xn,m = 1, the evaluation function can be expressed as:

ωn,v =
xn,m (1 + Γn,m)

α(1−η)

Ξv
,∀v ∈ V (23a)

Ξv =

(
(1 + Γn,v)

α(1−η)

(1 + Γv,l)
(1−α)∥
Lz/m

)
(23b)

The proposed method in this study involves assigning a
weighting factor, denoted by α, to the front-haul link. The
set V consists of all RSUs that are closer to VUE n than RSU
m. The decision of VUE n to connect to a particular RSU
depends on the value of ωn,v . If the value of ωn,v is greater
than or equal to 1 for all RSUs in V, it implies that the revenue
generated by caching compensates for the increased path loss
due to long-distance communication, and VUE n connects to
RSU v. On the other hand, if the value of ωn,v lies between 0
and 1 for some RSUs in V, VUE n selects the RSU with the
lowest ωn,v as it generates more revenue than RSU m. The
action of VUE n is denoted by Λn, and the above conditions
can be expressed as follows:

Λn =


un,m = 1, Case 1,∑

v∈V un,v = 1, Case 2,
judge and swap by (19), Case 3.

(24)

Similarly, the cased can be represented as follows

Case 1: if xn,m = 1, ωn,v ≥ 1,∀v ∈ V,∀m ∈M
Case 2: if xn,m = 1, 0 < ωn,v < 1,∃v ∈ V,∀m ∈M
Case 3: if xn,m = 0,∀m ∈M

(25)

3) Swap Matching process: For any pair of RSU m1,m2 ∈
M, where m1 ̸= m2, and any pair of VUEs n1, n2 ∈ N, where
n1 ̸= n2 such that un1,m1 = 1 and un2,m2 = 1, the swapping
matching process is explained as follows..

{L}n2
n1

= {L}\ {Lm1
, Lm2

}
∪ {Lm1

\{n1} ∪ {n2}}
∪ {Lm2

\{n2} ∪ {n1}} .
(26)
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Similarly, the rules for the swapping can be expressed as
follows:

{L}u,2u1(n1,n2)
≻ {L}

⇔
∑
m∈M

Fm({L}) <
∑
k∈M

Fm

(
{L}n2

n1

)
. (27)

In Equation 27, the system utility function Fm is defined as
the sum of the revenue generated by all VUEs connected to
RSU m, subtracted by the product of the channel coefficient
and transmit power of each VUE. The matching L is only
updated to Ln2

n1
if the new matching results in a higher system

utility compared to the previous matching.
4) End of the Algorithm: The algorithm consists of two

processes: the sense and action process and the swap matching
process. The sense and action process involves continuously
optimizing the VUE association matrix by calculating the user
utility using Equation (22) and making changes until no VUE
wants to switch access points. In the swap matching process,
two VUEs are randomly selected, and the utility function
is evaluated using Equation (26) to find the optimal AP-
UE association. This process continues until convergence is
reached.

B. Bandwidth Assignment

Decoupling the original optimization problem (20) into a
sub-problem for bandwidth allocation yields the following
mathematical expression:

max
{η}

∑
m∈M

∑
n∈Lm

(
Rn,m − Ω |hn,l|2 pn,m

)
(28a)

C1 :
∑

n′∈Lm

(1− gn′,m)Rn′,m < Rm,l,∀m ∈M. (28b)

C2 : W (L∗
m) ,∀m ∈M+ l, (28c)

C3 : η ∈ (0, 1), (28d)

The term W (L∗
m) in the equation refers to the decoding

sequence of cell m with the optimal VUE association U[u∗
n,m].

Using this, the closed-form solution for optimizing the band-
width as given in Equation (28) can be obtained. The solution
involves maximizing the system throughput by allocating
bandwidth to each cell based on the optimal VUE association.
The optimization problem is decoupled into a sub-problem
for bandwidth allocation, and the solution is obtained by
iteratively adjusting the bandwidth allocations until the optimal
solution is achieved. The mathematical details of this solution
are provided below.

Definition 1: In the optimization sub-problem (28) for
bandwidth allocation, the optimal value of η can be found
by maximizing JBm over all m ∈ M. The expression for
JBm is given as follows:

JBm=

∑
i∈L∗

m
x′
i,m log2 (1 + Γi,m)

ΨmΘm+
∑

i∈L∗
m
x′
i,m log2 (1+Γi,m)

,∀m∈M. (29)

Where, Ψm =
|L∗

m|−
∑

i∈L∗
m

xi,m

|L∗
m|

1
M , x′

i,m = 1 − xi,m and
Θm = log2 (1 + Γo

m). Similarly,∑
i∈L∗

m

x′
i,m(1−η)Blog2 (1+Γi,m)≤ΨmηB log2 (1+Γk,s)

⇒η≥
∑

i∈L∗
m
x′
i,m log2 (1 + Γi,m)

Ψmlog2 (1 + Γm,l) +
∑

i∈L∗
m
x′
i,m log2 (1 + Γi,m)

= JBm ⇒ η ≥ max
m

JBm.

(30)

Proof: In the optimization subproblem represented by equation
(28), the optimal value of the allocation parameter η can be
obtained as the maximum of JBm for all m ∈M. For each cell
m ∈M, the value of JBm is defined based on the conditions
(28c) and (28d). Using condition (28d), the expression in
equation (30) can be derived for each m ∈M. Consequently,
the optimization subproblem (28) can be transformed and
formulated based on the derived expression in equation (30)
as follows.

max
{η}

∑
m∈M

∑
n∈Lm

(
Rn,m − Ω |hn,l|2 pn,m

)
s.t. max

m
JBm ≤ η < 1, ∀n ∈ N,m ∈M.

(31)

The solution to the bandwidth allocation optimization sub-
problem, represented by equation (31), can be obtained by
computing the optimal value of η∗ that corresponds to the
lower bound of the monotonically decreasing utility function.
This can be achieved using bisection search or other efficient
numerical optimization techniques. Once the optimal value
of η∗ is obtained, the optimal bandwidth allocation can be
obtained using equation (30).

C. Power Allocation

The mathematical expression for the sub-problem to find
the transmission power is as follows:

max
{P}

∑
m∈M

∑
n∈Lm

(
Rn,m − Ω |hn,l|2 pn,m

)
(32a)

C1 : Rn,m > Rn, ∀m ∈M,∀n ∈ N, (32b)
C2 : W (L∗

m) ,∀m ∈M+ l, , (32c)
C3 : pn,m ∈ [0, Pmax] ,∀n ∈ N,∀m ∈M+ l. (32d)

The objective function of the optimization prob-
lem is non-convex and can be represented as∑

m∈M
∑

n∈Lm

(
Rn,m − ω |hn,l|2 pn,m

)
with respect to

pn,m. To address this issue, the objective function is
reformulated as follows:

max
{P}

(1− η∗)B
∑
m∈M

∑
n∈L∗

m

log2
(
Υ1

n,m

)
− (1− η∗)B

∑
m∈M

∑
n∈L∗

m

log2
(
Υ2

n,m

)
−ω

∑
n∈M

∑
n∈L∗

m

|hn,l|2 pn,m

 .

(33)

Where, Υ1
n,m = |hn,m|2 pn,m +

∣∣hB
n,m

∣∣2∑
i∈L∗

m\Jn
pi,m +

ΦI2
n,m + ΦI3

n,m + σ2 =
∣∣hB

n,m

∣∣2∑
i∈L∗

m\Jn
pi,m + ΦI2

n,m +
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ΦI3
n,m + σ2 Subsequently, the second term of the objective

function, denoted as (33), exhibits non-convexity and requires
transformation into a convex form. This non-convex problem
can be effectively addressed using the successive convex ap-
proximation approach, which has been shown to converge well
and adhere to the Karush-Kuhn-Tucker (KKT) condition [29],
[55]. The inequality mentioned above can be approximated
to the upper bound of the logarithmic function [56], which
converges to ti = ti0.

−γ =−
∑
m∈M

∑
n∈L∗

m

log2

|hn,m|2
∑

i∈Lm\Jn

pi,m +ΦI2
n,m

++ΦI3
n,m + σ2

)
.

(34)

We define it as follows.
Definition 2: Lower bounds at −γ̄ can be obtained via the
non-convex term −γ of (34), which converges at the local
pointpn,m = pn,m[t].

γ̃ =
∑

n∈L∗
m

log2

(
ΦI1

n,m[t] +ΦI2
n,m +ΦI3

n,m + σ2
)

+
∑

j∈M\{m}

∑
i∈L∗

j

log2

(
ΦI1

j,i +ΦI2
j,i[t] + ΦI3

j,i + σ2
)

+
1

ln 2

∑
n∈L

∑
i∈Jn−1

|hi,m|2 (pn,m − pn,m[t])

ΦI1
i,m[t] +ΦI2

i,m +ΦI3
i,m + σ2

+
1

ln 2

∑
n∈L∗

k

∑
j∈\{m}

∑
i∈M∗

j

|hn,j |2 (pn,m − pn,m[t]]
)

ΦI2
n,m[t] + ΦI3

n,m + σ2
.

(35)

As described by (35), the non-convex and non-linear optimiza-
tion problem (32) transformed effectively and expressed in the
more trackable form (36) as indicated below. Subsequently, a
method to find the optimal best solution for (36) is proposed
through an iterative power allocation scheme.

max
{P}

(1− η∗)B
∑
m∈M

∑
n∈L∗

m

log2
(
Υ1

n,m

)
(36a)

− (1− η∗)Bγ̃ −ω
∑
n∈M

∑
n∈L∗

m

|hn,l|2 pn,m

 . (36b)

C1 : Rn,m > Rn, ∀m ∈M,∀n ∈ N, (36c)
C2 : W (L∗

m) ,∀m ∈M+ l, , (36d)
C3 : pn,m ∈ [0, Pmax] ,∀n ∈ N,∀m ∈M+ l. (36e)

The optimization problem (36) is solved through an iterative
power allocation scheme. In each iteration, an initial power
value pn,m[l] is specified, whereas the solution for the trans-
mission power is calculated using the standard optimization
toolbox e.g. interior point method. The computed power at the
current iteration is then treated as the initial power value for the
next iteration, pn,m[t+1]. The algorithm is executed repeatedly
until convergence is achieved. The successive convex approxi-
mation approach used in this iterative power allocation scheme
has been proven to provide a good convergence, satisfying the
KKT conditions and yielding an effective solution for the non-
convex optimization problem (36).

Algorithm 1: Framework for UE Association
1 input: N ← UEs, M ← Base Station, l← satellite,

B ← Bandwidth ;
2 Initialization: W (Lm)← decoding order and UE

priority list. ;
3 Execution: ;
4 while Until Converge do
5 Ll ← Calculate {κn,

′ Descend′} / Satellite UEs. ;
6 Update the UE association matrix U ;
7 while Until Converge do
8 foreach n ∈ {1, · · · , N ′} do
9 if xn,m = 1 then

10 Find(V)→ claulate→ Ω ;
11 end
12 Update U← calculate (24);
13 Update W (Lm) ← by U calculated in step

12;
14 end
15 end
16 while Until Converge do
17 [n1, n2]← Randomly selected users such that

nm
1 ̸= nm

2 ;
18 {M}n2

n1
← solve (26) U← solve (27)

19 end
20 end

Algorithm 2: Dynamic Transmission Power Alloca-
tion with Ω Selection

1 Initialization: Po ← Transmission Power, tmax , Fo,
Ω← Initial Value ;

2 Execution: ;
3 while t ≤ tmaxorerror ≤ ϵ do
4 foreach n ∈ {1, · · · , N ′} do
5 if xn,m = 1 then
6 pn,m ← Calculate the power using (36) ;
7 end
8 end
9 Update Power pn,m[t+ l]← pn,m[t], ;

10 Select Ω dynamically based on real-time network
conditions and user requirements;

11 if Network is congested then
12 Ω← Ω+ δ ;
13 end
14 else if Network interference is high then
15 Ω← Ω− δ ;
16 end
17 else
18 Ω remains unchanged;
19 end
20 F[t] = solve the Utility Function with the current Ω ;
21 error = F[t] - F[t-1] ;
22 end

IV. ALGORITHM DESIGN FOR RESOURCE ALLOCATION

To solve the optimization problem, the proposed algorithm
adopts a two-stage approach. The first stage optimizes the user
association, bandwidth allocation, and transmission power,
while the second stage further improves the solution obtained
in the first stage by performing AP switching. The algorithm
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Fig. 2: Convergence of Algorithm 1

is designed to iteratively perform the two stages until conver-
gence is achieved.

The first stage of the algorithm is implemented using the
alternating optimization technique, where each variable is
optimized sequentially while keeping the others fixed. The user
association and bandwidth allocation are optimized jointly,
while the transmission power is optimized separately. The user
association and bandwidth allocation optimization problem is
solved using the subgradient method, while the transmission
power optimization problem is solved using the successive
convex approximation approach.

The second stage of the algorithm involves randomly se-
lecting a VUE and evaluating the potential utility gain of
switching to another AP. If the utility gain is positive, the VUE
is switched to the new AP, and the optimization problem is
solved again to update the user association and transmission
power. This process continues until no further AP switching
results in a positive utility gain.

A. Complexity Analysis

The computational complexity of the proposed algorithm
depends on the number of VUEs and APs, as well as
the convergence criteria. The user association and band-
width allocation optimization subproblem have a complexity
of O (NUENAP), while the transmission power optimiza-
tion subproblem has a complexity of O

(
NUENAP log 1

ϵ

)
,

where ϵ is the accuracy of the solution. The complex-
ity of the AP switching process is O

(
N2

UENAP

)
. There-

fore, the overall complexity of the proposed algorithm is
O
(
T
(
NUENAP +NUENAP log 1

ϵ +N2
UENAP

))
, where T is

the number of iterations required to achieve convergence.

V. RESULT AND DISCUSSION

This section presents the simulation results that demonstrate
the effectiveness of our proposed algorithms in mitigating
interference and maximizing the sum rate in a NOMA-enabled
vehicular-aided HetNet. Mitigating interference is crucial for
improving the performance of wireless communication net-
works, and the proposed algorithms aim to optimize resource
allocation and interference management to achieve this goal.

Fig. 3: Convergence of Algorithm 2

Fig. 4: Comparison of Proposed With Others Benchmarks Schemes

Fig. 5: Utility Function value across the number of BSs.

To mimic real-world conditions, we carefully chose the pa-
rameters used in the experiments. The HAP’s altitude is fixed
at 1000 km, and the radius of each RSU is set to 50 m. Each
user device and RSU has a maximum transmission power
capacity of 23 dBm and 43 dBm, respectively. The HetNet
has a total system bandwidth of 20 MHz and an additive white
Gaussian noise power of −174 dBm/Hz. The weight factor in
the proposed UE association approach is 0.99, and there are 50
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Fig. 6: Utility Function value across the number of users

Fig. 7: Utility Function value across users density

Fig. 8: Utility Function value across Power Values

VUEs and 5 RSUs in the network. The Rayleigh and Rician
fading models are used to model the terrestrial and satellite
links, respectively.

The results show that our proposed algorithms effectively
mitigate interference and maximize the sum rate of the HetNet.
Figure 2 compares the performance of the proposed scheme
with fixed user association algorithms by plotting their con-
vergence. Each VUE’s power is set to 23 dBm, and the weight
factor is set to 0.99. The VUE association algorithm and

Fig. 9: Utility Function value across Power Spectral Density

the fixed association algorithm begin with rapid increases in
their utility curves, as shown in the figure. However, the rate
of increase slows as iterations continue until convergence.
The proposed algorithm achieves convergence in 500 to 600
iterations, which is faster than the random swapping algorithm,
which takes around 1000 iterations. This indicates that our
proposed UE association algorithm has low computational
complexity and can effectively mitigate interference in the
network, leading to a higher sum rate.

The convergence of Algorithm 2 is evaluated with respect to
various VUE association schemes, as shown in Figure 3. The
results demonstrate that the utility function value stabilizes,
indicating that the transmission power allocation using the suc-
cessive convex approximation-based algorithm has converged.
Furthermore, the proposed algorithm outperforms the others by
considering the utility function value as a performance metric.

Simulation results in Figure 4 show the impact of VUE’s
on the utility function for various schemes. Similarly, the
proposed scheme is compared to three other schemes: ideal
backhaul, random power allocation, and random power allo-
cation with ideal backhaul. The results demonstrate that as the
number of VUE’s increases, so does the utility function for all
four schemes. At the same time, the proposed scheme provides
the same epsilon results as the ideal backhaul approach. When
combined with ideal backhaul schemes, it outperforms ran-
dom power allocation and random power allocation schemes.
With the Ideal Backhaul scheme, the optimization problem’s
tractable region is expanded, which improves the system’s
value in hybrid networks that combine HAPS and ground
infrastructure.

Figure 5 depicts the relationship between the performance
of the utility function and the VUE’s for different RSU config-
urations. The graph reveals a positive correlation between the
number of RSUs and the utility function performance. This
can be attributed to the increased availability of candidate
RSUs for each VUE when the number of VUE’s is constant.
The improved selection of candidate RSUs results in an
enhancement in the overall system performance, as indicated
by the utility metric.

Similarly, the results in Figure 6 analyze cross-tier in-
terference impact on satellite networks. The proposed algo-
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rithm’s performance is compared to the Random Power Al-
location approach, which utilizes the UE association scheme.
Moreover, the results demonstrate that the system’s overall
performance improves with the UE increase. The proposed
algorithm outperforms the random Power Allocation scheme
by effectively reducing the cross-tier interference from BSs
in the satellite network. In comparison, the same effect is
achieved by considering the negative impact of cross-tier
interference and regulating UE transmission power, ensuring
optimal quality of service for satellite UEs.

Similarly, to reveal the effectiveness of the proposed
schemes, results are compared with the Random Power Al-
location algorithm through an examination of the utility as a
function of the UE density per RSU, as shown in Figure 7. The
graph is based on a fixed number of 5 RSUs. The results show
that as the UE density per RSU increases, the utility function
increases, thanks to the higher transmission power of UEs.
Furthermore, the proposed algorithm achieves a significantly
larger system utility value than the Random Power Allocation
approach. This difference becomes more apparent with more
UEs.

Similarly, results in Figure 8 show the relationship between
the number of terrestrial RSUs and the efficiency of the system
analyzed. The graph is based on an environment with 50
UEs and varying maximum transmission power levels per
UE: [10, 25, 20] dBm. Results demonstrate that a rise in the
number of RSUs leads to improved system efficiency, aligning
with the trend seen when evaluating the UE density per RSU.
Furthermore, elevating the maximum allowable transmission
power for each UE enhances system efficiency by extending
the feasible range of the power optimization problem.

Figure 9 depicts the effect of the AWGN power spectral
density on system efficiency. This graph shows the impact
of different levels of AWGN on system performance for cases
with 10 and 6 terrestrial RSUs and a fixed number of 100 UEs.
The graph shows that increasing the AWGN power spectral
density reduces system efficiency. When the AWGN power
spectral density is constant, the graph shows that increasing
terrestrial RSUs improves system efficiency. This demonstrates
the significant impact of the number of terrestrial RSUs on
system efficiency in the presence of AWGN.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed a three-stage iterative resource
optimization algorithm for a NOMA-based uplink caching
heterogeneous network with an RSU-HAPs configuration. The
proposed algorithm optimizes the resource allocation to im-
prove the utility performance of the network while considering
the QoS constraints of terrestrial VUEs and the backhaul
constraints of backhaul HAPS. In the first stage of the al-
gorithm, we developed an improved caching and swapping
algorithm that incorporated preference relations to optimize
the RSU-VUE association sub-problem. In the second stage,
we derived a closed-form expression for the bandwidth allo-
cation coefficient. Finally, the third stage utilized the succes-
sive convex approximation method to solve the non-convex
power allocation sub-problem iteratively. The simulation re-
sults demonstrated that the proposed algorithm significantly

improved the network’s utility performance. The results also
showed that increasing the number of terrestrial RSUs and the
maximum allowable transmission power for each VUE led to
improved system efficiency. Moreover, increasing the number
of RSUs and decreasing the AWGN power spectral density
improved system efficiency in the presence of AWGN. Overall,
our proposed algorithm successfully optimized resource allo-
cation and enhanced system efficiency while considering the
constraints of a NOMA-based uplink caching heterogeneous
network with an RSU-HAPs configuration.

For future research, we intend to expand this study to
include more complex networks and explore other optimiza-
tion aspects of such networks. Specifically, our focus will
extend to areas such as minimizing latency and optimizing
energy consumption. We aim to contribute to the ongoing
development of advanced communication networks for smart
cities and vehicular applications by addressing these vital
aspects in our future work.
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