
Online Network Traffic Classification Based on External Attention and
Convolution by IP Packet Header⋆
Yahui Hua, Ziqian Zenga,∗, Junping Songb,∗, Luyang Xub and Xu Zhoub

aChina University of Mining and Technology (Beijing), Beijing 100083, China
bComputer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China

A R T I C L E I N F O
Keywords:
IP Packet header
External attention
Network traffic classification
Online classification

A B S T R A C T
Network traffic classification is an important part of network monitoring and network management.
Three traditional methods for network traffic classification are flow-based, session-based, and packet-
based, while flow-based and session-based methods cannot meet the real-time requirements and
existing packet-based methods will violate user’s privacy. To solve the above problems, we propose a
network traffic classification method only by the IP packet header, which satisfies the requirements of
both the user’s privacy protection and online classification performances. Through statistical analyses,
we find that IP packet header information is effective on the network traffic classification tasks and
this conclusion is also demonstrated by experiments. Furthermore, we propose a novel external
attention and convolution mixed (ECM) model for online network traffic classification. This model
adopts both low-computational complexity external attention and convolution to respectively extract
the byte-level and packet-level characteristics for traffic classification. Therefore, it can achieve high
classification accuracy and low time consumption. The experiments show that ECM can achieve the
highest classification accuracy and the lowest delay, compared with other state-of-art models. The
accuracy can respectively achieve 98.39% and 95.57% on two datasets and the classification time is
shorten to meet the real-time requirements.

1. Introduction
Network traffic classification is of great significance to

network operation management. How to improve the classi-
fication accuracy and real-time performance has been always
a key issue in the field of network traffic classification. At the
same time, with the excellent performance of deep learning
in machine vision and other fields, its application to network
traffic classification has become a hot research topic in recent
years [1–3].

From the perspective of the granularity of the network
traffic data to be mined, there are mainly three kinds of
related works: 1) the packet-level traffic identification [4–8],
i.e., the traffic category of each packet in the network traffic
is identified separately; 2) the flow-level traffic identification
[9–13], i.e., identifying the upstream or downstream traffic in
the typical "client-server" or "browser-server" model com-
munication process; 3) the session-level traffic identification
[9, 14], i.e., the entire upstream and downstream traffic of the
client or browser and server communication is considered
as a whole, and the identification is conducted based on the
session. Among them, session-level and flow-level identifi-
cations require waiting for sufficient traffic packets to obtain
meaningful time series and statistical features. They cannot
meet the high real-time requirements of the online network
traffic classification tasks [1, 15]. In contrast, each packet’s
waiting time is much shorter, and thus, packet-level identifi-
cations are more suitable for online traffic classification.

⋆This work was supported by the National Natural Science Foundation
of China (Grant No.U1909204), the Youth Innovation Promotion Associa-
tion of Chinese Academy of Sciences (2021168).

∗Corresponding author

Unfortunately, most of the current packet-level online
traffic classification methods need to exploit payload data
and inevitably violate the user’s privacy protection require-
ments [1, 4–7, 16]. Therefore, it is necessary to study
whether network traffic can be classified only using packet
headers instead of data payloads in order to meet the two-
tier requirements of classification performance and user’s
privacy protection. So far as we know, the shortest data
packet length used for network traffic classification is 40
bytes in all the previous works [8, 17]. It actually does
not involve payload data when the application transmission
protocol is TCP/IP. However, it does not work when the
service transmission protocol is UDP/IP since the packet
header length is less than 40 bytes, and the payload data
is inevitably used as one part of raw data. In summary, no
research work is clearly proposed to devote to the problem
of network traffic classification with only packet headers.
In general, it may be believed that IP packet headers do
not carry service content information and the feasibility of
classifying network traffic only by packet header is doubtful.
To solve this problem, we propose the idea of network traffic
classification only based on the IP packet header and do
some works to demonstrate its feasibility in this paper.

Firstly, we conduct statistical analyses on the IP packet
header information. Two fields of source and destination IP
addresses are eliminated, which have little relation with the
traffic types. The other remaining fields are constituted by
12 bytes and the value of each byte is treated as a random
variable. The joint distribution of these random variables
are studied by statistics and the statistical characteristics of
some bytes differ among different network traffic types, more
details about the statistical outcomes can be found in section
3. The results show that IP packet header can be used as

First Author et al.: Preprint submitted to Elsevier Page 1 of 13

ar
X

iv
:2

30
9.

09
44

0v
2

 [
cs

.N
I]

 2
6

Ja
n

20
24

Short Title of the Article

traffic characteristics for classification. However, it should
not be ignored that the service type information contained
in the 12 bytes of the IP packet header is far less rich than
that contained in the 40/50 bytes composed of the packet
header and payload. Therefore, how to effectively mine IP
header information without reducing classification accuracy
and meet the low-delay requirements of online classification
is a major challenge. To address this challenge, we design
a novel external attention and convolution mixed (ECM)
model to further improve the classification accuracy and
model inference speed, which are the most critical perfor-
mance indicators for classification tasks.

The proposed ECM model consists of five modules, i.e.,
data preprocessing, the embedding layer, the external atten-
tion layer, the convolutional layer, and the linear layer. Data
processing and embedding layer are responsible for convert-
ing the raw IP packet files to high-dimensional feature data
of IP packet header. Then, the feature data is put into the
learning part, including external attention layer, convolution
layer and linear layer. The external attention layer is applied
to deal with the intra-byte data and extracting helpful byte-
level information for traffic classification. Compared with
self-attention, the external attention mechanism can achieve
better performance with lower computational complexity for
visual tasks [18]. In this paper, we exploit this merit to
improve the classification accuracy and speed. Furthermore,
the convolution layer is designed to capture the inter-byte
information and obtain packet-level semantics, which can
further improve the classification accuracy. Finally, the lin-
ear layer makes the decision for the corresponding network
traffic category.

In summary, the main contributions of this paper are as
follows.

• We conduct a statistical analyses of the byte informa-
tion within the IP packet headers. The outcomes show
that distributions of the byte information are actually
different among network traffic. Therefore, using only
IP packet headers for network traffic classification is
proposed to meet online classification requirements
and avoid the privacy problems caused by using pay-
load information.

• An external attention and convolution mixed (ECM)
model for network traffic classification is proposed.
It sufficiently extracts semantic information at both
the byte-level and packet-level from the 12-byte input
length of IP packet header through external attention
and CNN respectively.

• Experiments are made on two different datasets, i.e.
the public ISCX and our private dataset. The average
accuracy is respectively 98.39% and 95.57%, and the
classification time is about 0.36ms per packet. Fur-
thermore, baselines comparison experiment shows the
ECM model almost outperforms state-of-art solutions
both on the classification accuracy and real-time per-
formance.

The rest of this paper is organized as follows. We review
recent network traffic classification studies in Section 2. In
Section 3, we conduct a statistical analysis of the value
distribution within the IP packet header. Section 4 illustrates
the details of the model we proposed. We discuss the results
of our experiments in Section 5, and finally, in Section 6, we
summarize and prospect our work.

2. Related Work
Compared with machine learning algorithms, deep learn-

ing algorithms have the advantage of exploiting the deeper
and higher semantic features of the input network traffic
data and are more suitable for diverse network traffic clas-
sification scenarios. Especially in recent years, with the
successful application of deep learning models in natural
language processing and computer vision, researchers have
also applied them to network traffic classification scenarios.
Approaches based on deep learning can be further divided
into session-based, flow-based, and packet-based ones.

The input data of session-based and flow-based deep
learning approaches are usually statistical features or raw
byte data. Wang et al. [9] utilize the first 784 bytes of
a service flow and transform the byte data into a square
grayscale image. Then, a one-dimensional convolutional
neural network for network traffic classification is adopted to
achieve over 90% accuracy on the UNB ISCX VPN-nonVPN
dataset. Based on the sequence features of packets, Liu et al.
[10] combine recurrent neural networks with auto-encoder,
eventually achieving an average classification accuracy of
99% on 18 services, such as Alipay, QQ, Weibo, and Taobao.
Two features of a flow, i.e., packet arrival interval time
and packet size, are constructed into the FlowPic, which is
the input of LeNet-5 neural network [11]. And it achieves
an average accuracy of 93% and 97% on Non-VPN and
VPN flows. The first 4 packets of each session and the
first 120 bytes of each packet are used as the input data,
and the combined model of CNN, LSTM, and attention
mechanism are proposed in [14] to automatically extract
spatio-temporal features to perform the classification task.
The recall and accuracy performance are respectively 98%
and 97% on six classes of encrypted traffic from the UNB
ISCX VPN-nonVPN dataset. Zhao et al. [12] apply random
forest algorithm to select 84 important statistical features
of a flow and then use the Transformer model to classify
each flow, which can achieve 86% and 95.2% accuracy on
ten services of SJTU-AN21 and seven services of UNB
ISCX VPN-nonVPN. In [13], the number of packets of
bidirectional data flow and the byte size of the packets are
exploited to construct the flow’s "fingerprint information"
and put the fingerprint information into the Transformer
model for classification, which respectively achieves 97%
and 95% F1-score for video-based services (Netflix, Youtube
and five other categories) and meeting applications (Zoom,
Microsoft Teams and five other categories). Lin et al. [19]
propose a network structure that combines CNN and Bi-
GRU and selects the first five packets of a session and the

First Author et al.: Preprint submitted to Elsevier Page 2 of 13

Short Title of the Article

Table 1
Summary of network traffic classification using deep learning methods

Paper TC object Input Data Classifier Experimental Results Year

Wang et al.[9] Flow/Session ALL/L7 Layers[784 B] 1D-CNN 86.6% acc.(12 classes) 2017

Liu et al.[10] Flow Packet Length Sequences GRU 99.14% TPR,0.05% FPR,0.9906 FTF(18 apps) 2019

Shapira et al.[11] Flow IP Packet Size&Time of Arrival LeNet-5 93.76%/97.59% acc.(Non-VPN/VPN 5 classes) 2021

Yang et all.[14] Session 4 Packets[120 B]in per Session CNN+BiLSTM+Attention 98% rec. & 97% pre.(6 classes) 2021

Zhao et all.[12] Flow 84 Statistical Features Transfomer 86%/95.2% acc. (10 classes/7 classes) 2021

Babaria et all.[13] Flow Up/Down Packets/Bytes Transfomer 97% f1.(5 apps),95% f1.(4 videos/4 conferences) 2021

Lin et all.[19] Session 5 Packets[512 B]in per session CNN+Bi-GRU 93.1% acc. 93.7% rec. 93.6& f1.(12 classes) 2022

Wang et all.[20] Session 8 Packets[1024 B]in per session 3D-CNN 97.89% acc.(20 apps) 2022

Yang et all.[21] Flow packets’ length sequence+packets bytes GRU+SAE more than 91% acc. on four datasets 2023

Lotfollahi et al.[4] Packet Header+Payload[1500 B] SAE,1D-CNN 98%/94% recall.(17 / 12 classes) 2019

Zeng et all.[5] Packet Header+Payload[900 B] CNN+LSTM 99.98% acc.(8 classes) 2019

Xu et all.[6] Packet Header+Payload[784 B] 1D-CNN,2D-CNN,LSTM 96.38 acc.(6 classes) 2019

Ren et all.[7] Packet Header+Payload[784 B] TREE-RNN 98.98 acc.(6 classes) 2021

Xie et all.[8] Packet Header+Payload[50 B] Attention+CNN 94%/92%/90% acc.(6 types of traffic for protocol/application/traffic type classification) 2021

first 512 bytes of each packet as input. Finally, the model
has a classification accuracy of 93.1%, with a recall rate
of 93.7% and an F1-score of 93.6% on the public dataset
UNB ISCX VPN-nonVPN. Wang et al. [20] propose a deep
learning method based on 3D-CNN to capture the temporal
characteristics of network traffic. By using the first eight
packets of a session and the first 1024 bytes to construct
"SessionVideo", they can achieve an accuracy of 97.89%
and a weighted average precision of 97.96% on a traffic
dataset of 20 applications. Yang et al. [21] use both packets’
length sequence and packet bytes as model input and diverge
into two paths to analyze the dual-model features of hybrid
neural networks. The experiments show that the accuracy of
this method exceeded 91% across four datasets. The above
existing session-based and flow-based classification meth-
ods obtain outstanding classification performance in terms
of accuracy. However, the time consumption of obtaining a
sufficient number of packets in a flow/session and collecting
statistical information about these packets is usually too high
to meet the needs of online traffic classification. In paper
[15], the author calculates the execution time of different
methods, including FE (Feature Extraction) time and infer-
ence time. It can be seen that flow-level or session-level
based methods consume a higher amount of FE time, ranging
from a few milliseconds or tens of milliseconds to over 100
milliseconds. Therefore, some researchers focus on directly
exploiting the raw byte data of each individual packet.

Lotfollahi et al. [4] propose to extract the first 1500
bytes of a packet and adopt a combined model of a one-
dimensional convolutional neural network (1D-CNN) and
a stacked auto-encoder (SAE) for a classification task. The
average recalls are 98% on a 17-class coarse-grained appli-
cation classification task and 94% on a 12-class fine-grained
service classification task. In [16], packets are firstly split
into segments of every eight bytes. The encoded segments
are input into the Gated Recurrent Unit (GRU) and attention
models for protocol classification. Experiments demonstrate
the average F1-score is about 95.82% on five protocols, i.e.,
QQ and the other four protocols. Zeng et al. [5] propose to
use the first 900 bytes of a packet and a combined CNN
and LSTM structure to extract service-related temporal and
spatial features, and it is able to achieve 99.98% accuracy

on the combined dataset of UNB ISCX VPN-nonVPN and
USTC-TFC2016. Xu et al. [6] choose to make use of the
first 784 bytes of a single packet and integrated learning
models to elect the classification result from the outcomes of
one-dimensional CNN, two-dimensional CNN, and LSTM
classifiers. Finally, it achieves over 96% accuracy on the
UNB ISCX VPN-nonVPN dataset. Ren et al. [7] also use the
first 784 bytes of a packet as the classification raw data and
propose a TREE-RNN model for classification, achieving
98% accuracy on the UNB ISCX VPN-nonVPN dataset.
Furthermore, it is claimed as an online approach for its high
classifying speed of 5.4 packets per ms.

Although the above packet-based classification methods
can achieve relatively satisfactory accuracy, the amount of
data used is usually up to hundreds or thousands of bytes,
which involves the load part of the application layer and can-
not meet the user privacy protection requirements. Because
of this, the model SAM built by Xie et al. [8, 17] using the
self-attention mechanism, which, unlike other researchers,
uses the first 50 bytes of a packet and takes the raw bytes
of the packet header as model input has a high F1-score on
the UNB ISCX VPN-nonVPN dataset for protocol classifi-
cation (98.62%) and application classification (98.93%). For
the method employing the first 50 bytes of packet header,
network traffic packets using TCP protocol do not involve
application layer data. However, this method still violates
users’ information data for UDP network traffic packets.

It is summarized in Table 1 that the above classification
methods, the comparative analyses in terms of TC object,
input data, classifier, experimental results, and years of
publication, where TC denotes Traffic Classification, acc.
denotes accuracy, rec. denotes recall and f1. denotes f1-
score. From Table 1, it is obvious that almost all existing net-
work traffic classification methods involved the payload, and
therefore, they cannot meet the demand of protecting user
privacy. Therefore, it is necessary to explore the possibility
of classifying network traffic only on the IP packet header.
Another conclusion is that the deep learning models used
for network traffic classification have been optimized with
the self-development of deep learning, and the latest results
are mainly self-attention-based models. Therefore, it is also
necessary to design an effective network traffic classification

First Author et al.: Preprint submitted to Elsevier Page 3 of 13

Short Title of the Article

model based on the latest deep learning technologies to
further improve the online classification performance, such
as accuracy and speed.

3. Statistical Feature Analyses Of IP Packet
Header

Figure 1: IPV4 Network Layer Header Structure

The network layer packet header in the IPV4 network
generally contains a fixed length of 20 bytes, whose structure
is shown in Fig. 1. And the IP Packet header is further
divided into the following 12 fields, i.e., Version, Header
Length, Priority&Type of Service, Total Length, Identifica-
tion, Flags, Fragment Offset, Time to Live, Protocol, Header
Checksum, Source IP Address and Destination IP Address.
In particular, some fields, such as source/destination IP ad-
dress, are closely related to the local network configuration
and have little relation with the traffic types [8, 22, 23].
Therefore, they are redundant information and would affect
the generalization ability of the model and the results of clas-
sification from the viewpoint of network traffic classification
task. As a result, in many traffic classification schemes, the
source/destination IP address are usually masked with zeros
in the raw data preprocessing.

In our scheme, we choose to directly remove the 8-byte
length source and destination IP addresses from the network
layer IP packet header, further reducing the amount of data
input into the neural network to shorten the inference time.
For the remaining 12 bytes, they correspond to different
fields within the IP packet header that serve various roles
and functionalities: Byte 1 represents Version and Header
Length, Byte 2 represents Priority&Type of Service, Bytes
3 and 4 represent Total Length, Bytes 5 and 6 represent
Identification, Byte 7 represents a portion of Flags and
Fragment Offset, Byte 8 represents the remaining portion of
Fragment Offset, Byte 9 represents Time to Live, Byte 10
represents Protocol, and Bytes 11 and 12 represent Header
Checksum.

In the following, we choose the open UNB ISCX VPN-
nonVPN dataset [24] to perform statistical analyses on the
byte information of IP packet headers for different categories
of network traffic samples. The open UNB ISCX VPN-
nonVPN dataset contains both regular traffic and VPN traf-
fic. There are six categories of network traffic data generated
by different applications, i.e., Chat, Email, File Transfer,
P2P, Streaming, and VoIP (seven in the official description
document, but only six in the actual downloaded files). The

Table 2
ISCX Dataset categories and numbers of samples

Traffic Type Content Quantity

Chat

AIM_Chat

50000
facebook_chat
hangouts_chat

ICQ_chat
Skype_Chat

Email
Email

50000Gmail

File Transfer

FTPS

50000
SCP
SFTP

Skype_File

P2P Torrent 50000

Streaming

Netflix

50000
Spotify
Vimeo

Youtube

VoIP

Facebook_audio

50000
Hangouts_audio

Skype_audio
Voipbuster

open UNB ISCX VPN-nonVPN dataset is unbalanced. In
order to avoid the impact of an unbalanced dataset on the
experimental results, we construct a balanced dataset with
50000 samples for each traffic category. Details of the ISCX
dataset are shown in Table 2 and is called ISCX dataset in
this paper for simplicity.

For the original Pcap files of each application, we em-
ploy the Dpkt Library in Python for data preprocessing.
Based on the experimental requirements of this paper, we
extract a total of 20 bytes of IP layer header data for each
packet and remove the IP address. Table 3 shows IP header
values for some samples in the ISCX dataset. Here, the
label field represents the category of network traffic, 0-
5 respectively represents Chat, Email, File Transfer, P2P,
Streaming, and VoIP, and we mark the corresponding traffic
category for each sample.

As shown in Table 3, we can get all the values of each
field and the corresponding traffic category for every sample.
The raw data of network traffic can be divided into bytes,
which can be transformed into decimal numbers within
the range of 0-255. Therefore, we first normalized the 12-
byte packet header data by dividing each byte by 255. This
ensures that the values of each byte are within the range of
0 to 1. Next, we divided the range of 0 to 1 into 20 intervals,
with a distance of 0.05 between each interval. Except for
the last interval, which is closed, the other 19 intervals are
left-closed and right-open. For each byte, we map the values
of 50,000 samples in the dataset to the 20 intervals and
subsequently count the number of samples in each interval.
This process allows us to obtain the value distribution of
the 12-byte packet header information for different types of
traffic in the dataset.

Based on the statistical results, we plotted a three-
dimensional bar chart, as shown in Fig. 2. Due to the varying
lengths of different fields within the IP packet header, being

First Author et al.: Preprint submitted to Elsevier Page 4 of 13

Short Title of the Article

(a) Chat (b) Email

(c) File Transfer (d) P2P

(e) Streaming (f) VoIP

Figure 2: The statistical distribution of IP packet header byte information on ISCX dataset.

separated by bytes allows better control of numerical varia-
tions within a specific range (0-255), facilitating subsequent
data processing. For a fair comparison of performance, it is
necessary to consistent the input data with previous works.
So far as we know, most of previous works of packet-based

network traffic classification separated the IP packet by
different bytes [4–9, 14, 19–21]. Therefore, it is reasonable
to separate the IP packet header by bytes in this paper. In
Fig. 2, the X-axis (Byte) represents the first to twelfth bytes,
the Y-axis (Value) represents 20 intervals ranging from 0 to 1

First Author et al.: Preprint submitted to Elsevier Page 5 of 13

Short Title of the Article

Table 3
Samples of IP Packet header byte values and label for six traffic types on ISCX dataset

Traffic Type Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8 Byte9 Byte10 Byte11 Byte12 Label

Chat 69 0 4 143 108 209 64 0 128 6 3 94 0
Email 69 0 5 220 90 160 64 0 32 6 101 46 1

File Transfer 69 0 0 72 75 84 64 0 34 6 46 146 2
P2P 69 0 0 40 100 20 64 0 128 6 25 118 3

Streaming 69 0 0 52 129 17 64 0 64 6 145 40 4
VoIP 69 0 0 211 172 169 64 0 76 6 251 65 5

with an interval of 0.05, and the Z-axis (Quantity) represents
the number of occurrences of IP packet header values within
each of the corresponding intervals. Different colors are used
to represent byte information at different positions.

This dataset consists of only IPV4 network traffic and the
network layer header length of a single packet is a fixed 20
bytes. Therefore, Byte 1 is not discriminative for any type
of network traffic on this dataset, and the data distribution is
the same. For Byte 2, which represents the Priority&Type of
Service, all samples have a preset priority of 000 (Routine)
in network transmission. As a result, it also cannot help
distinguish different types of network traffic. In the same
situation, there is Byte 8, and it can be observed that the
values of the Fragment Offset on this dataset are all 0.

For the byte information of other parts, the data distribu-
tion will change with the category of network traffic. Bytes 3
and 4 will change with the Total Length of the packet. Byte 7
represents whether different network traffic will be split into
fragments during transmission. Similarly, Byte 9 represents
Time to Live and Byte 10 represents Protocol, which will
also differ. The data distributions of Byte 6 and Byte 12 are
relatively wide, with values ranging from 0 to 1, and there
is not much difference in the six types of network traffic.
However, Byte 6 and Byte 5 are together form Identification,
while Byte 12 and Byte 11 are together form Header Check-
sum. The data distributions of Byte 5 and Byte 11 vary in
different categories of network traffic, so overall, they still
have a certain degree of differentiation. Among these, the
Total Length and Protocol can directly reflect the packet’s
intrinsic characteristics, as packets generated by different
applications/protocols typically have different lengths and
use different transport protocols. The effect of Total Length
on network traffic classification is also demonstrated in some
flow-based works [10, 11, 13, 21].

In summary, the statistical characteristics of numerical
distributions reveal that the IP packet header does possess
some discriminative features for different traffic types. How-
ever, these features are low-dimensional, so, it’s necessary
to employ deep learning methods to further explore high-
dimensional features within the packet header information
that aid in distinguishing different traffic types and achieving
more precise classification. Due to space limitations, this
section only analyzes the statistical distribution of IP packet
header features on the ISCX dataset. In addition, we conduct
experimental validation of the effectiveness of the network
traffic classification scheme based on the IP packet header
using a merged dataset in chapter 5. The experimental results

show that this scheme can achieve a classification accuracy
of over 95%. For more details, please refer to Section 5.4.

4. Methodology
In this paper, we propose a mixed model for online

network traffic classification based on external attention and
convolution. As shown in Fig. 3, it consists of five modules,
i.e., data preprocessing, the embedding layer, the external
attention layer, the convolutional layer, and the linear layer.
According to the above scheme based on IP packet header,
data preprocessing is responsible for converting the raw data
from the Pcap files to byte data, which is then put into the
embedding layer. The embedding layer serves two purposes.
On the one hand, it adds the field position information
into its mathematical value to distinguish different fields
with the same values. On the other hand, it maps the low-
dimensional byte data into the higher one for digging more
complex classification information. The high-dimensional
data is then put into the deep learning part, including the
external attention layer, convolution layer, and linear layer.
The purpose of the external attention mechanism is to further
enhance the helpful information and weaken interference
for network traffic classification, which are contained in the
high-dimensional outputs of the embedding layer. In other
words, it is to further strengthen the important features of the
classification task. The high-dimensional features are then
further learned by the convolution layer to capture the sig-
nificant byte and packet-level semantics. Finally, the linear
layer is applied to make the decision for the corresponding
network traffic category.
4.1. Data Preprocessing

The IP packets captured from networks are usually saved
in hexadecimal format in the Pcap file. First, we extract
IP packet header data from the Pcap files. And then, the
source and destination IP addresses are eliminated and the
12-byte IP packet header data is achieved by the IP header
compression module. Based on the analyses in Section 3, the
12-byte IP packet header is taken as a sample and assigned
a label value of its corresponding network traffic category.
Finally, the hexadecimal header data is converted to decimal
in bytes, and each byte corresponds to a number in [0, 255]
through the byte vector generation module. After the above
preprocessing, each packet forms a sequence of numbers
which is the input vector x ∈ ℝ𝑁×1 (𝑁 = 12) of the deep
learning model.

First Author et al.: Preprint submitted to Elsevier Page 6 of 13

Short Title of the Article

Figure 3: An external attention and convolution mixed model by IP packet header for network traffic classification, mainly including
data preprocessing, embedding layer, external attention layer, convolutional layer, and linear layer.

4.2. Embedding layer
The bytes in different positions of the IP packet header

represent different fields. In other words, the bytes in dif-
ferent fields have different physical meanings and may cor-
respond to different traffic categories, although they have
the same value. Therefore, the position information of each
byte needs to be integrated on the basis of the input vector
x. Here, we use the value 0 to 𝑁 − 1 to represent the
position information from the first byte to the 𝑁 th byte.
And hence, the position information can be described by
a vector p, where p=[0,1,2,...,𝑁 − 1]. In this paper, we
choose the embedding layer to map the one-dimensional
input vector x and its position information p to higher dimen-
sions. In order to minimize the computational complexity,
this paper selects a classical method, i.e., Word2Vec [25–
27], to make embedding. For 𝑁 bytes of the input vector
of x = (𝑥1,⋯ , 𝑥𝑛,⋯ , 𝑥𝑁), each byte is first mapped in a
high-dimensional way using One-Hot encoding. Since the
decimal number of each byte is in the range [0, 255], the
One-Hot encoding has a dictionary size of 256. Thus, the
input data 𝑥𝑛 is mapped into a vector h𝐵,𝑛 = (0,⋯ , 1,⋯ , 0).
Here, h𝐵,𝑛 is a 1 × 256 vector with only the 𝑥𝑛𝑡ℎ element
taking 1 and the rest elements taking 0. Thus, after One-
Hot encoding, the input data x is mapped to a matrix of
H𝐵 , where H𝐵 = (h𝐵,1,⋯ ,h𝐵,𝑛,⋯ ,h𝐵,𝑁)𝑇 . The matrix
H𝐵 is then passed through a fully-connected neural network
layer, and the final output embedding matrix is denoted as
X𝐸 ∈ ℝ𝑁×𝐷, where 𝐷 is a hyperparameter representing the
predefined output dimension of the word embedding layer.
Thus, the mathematical expression of X𝐸 is given by

X𝐸 = H𝐵 × W𝐵 , (1)
where W𝐵 ∈ ℝ256×𝐷 is the weight matrix of the fully-
connected layer.

For the position vector p = (𝑝1,⋯ , 𝑝𝑛,⋯ , 𝑝𝑁), the One-
Hot encoding for the 𝑁 th byte is represented as h𝑃 ,𝑛 =
(0,⋯ , 1,⋯ , 0), where h𝑃 ,𝑛 is a 1 × 12 vector with only the
𝑝𝑛𝑡ℎ element taking 1 and the rest elements taking 0. Then,

the position vector p is mapped to a matrix of H𝑃 , where
H𝑃 = (h𝑃 ,1,⋯ ,h𝑃 ,𝑛,⋯ ,h𝑃 ,𝑁)𝑇 . The same embedding
operation as the input vector x is used to obtain the position
Embedding matrix P𝐸 ∈ ℝ𝑁×𝐷 and

P𝐸 = H𝑃 × W𝑃 , (2)
where W𝑃 ∈ ℝ12×𝐷 is another weight matrix of the fully-
connected layer.

Finally, the high-dimensional byte information and its
position information are added to obtain the output matrix of
embedding layer. And the output Y𝐸 of data preprocessing
is described as,

Y𝐸 = X𝐸 + P𝐸 , (3)
where Y𝐸 ∈ ℝ𝑁×𝐷.
4.3. External Attention

In this paper, we adopt a novel external attention-based
mechanism in [18] to further enhance the classification
features. Instead of each input sample corresponding to
a different key matrix and value matrix in the traditional
self-attention, all samples in the dataset share the same
key matrix and value matrix, which are called the external
memory units in external attention. Therefore, the operations
of three linear layers in the self-attention mechanism are
eliminated, which are used to generate the query matrix,
key matrix, and value matrix for each sample. Thus, the
temporal computational complexity of external attention can
be reduced. In addition, since the two external memory
units are the optimalities on a statistical average of the
whole dataset, it can learn the most discriminative features
and capture the most informative part for all samples, as
well as play a certain role in regularization and have better
generalization.

In this paper, the two external memory units in external
attention are denoted as M𝐾 and M𝑉 , where they are both
𝑆×𝐷 matrixes.𝑆 and𝐷 are the predefined hyperparameters,

First Author et al.: Preprint submitted to Elsevier Page 7 of 13

Short Title of the Article

and 𝐷 is consistent with the embedding dimension in the
embedding layer. In the first step, we obtain the attention
score matrix by the following equations, multiplying the
embedding data Y𝐸 with the transpose of the matrix M𝐾to obtain the matrix Ã ∈ ℝ𝑁×𝑆 ,

Ã = (�̃�𝑖,𝑗)𝑁×𝑆 = Y𝐸 × M𝑇
𝐾 . (4)

Then, the softmax operation is done by the following func-
tion,

Â = (�̂�𝑖,𝑗)𝑁×𝑆 = (sof tmax(�̃�𝑖,𝑗))𝑁×𝑆 . (5)
Next, normalization is done to obtain the attention score
matrix as follows,

A = (𝑎𝑖,𝑗)𝑁×𝑆 =

(

�̂�𝑖,𝑗

/ 𝑆
∑

𝑗=1
�̂�𝑖,𝑗

)

𝑁×𝑆

. (6)

Finally, the attention score matrix A is multiplied with the
matrix M𝑉 to obtain the output matrix Y𝐴 ∈ ℝ𝑁×𝐷 of the
external attention layer according to Eq. (7),

Y𝐴 =

⎛

⎜

⎜

⎜

⎜

⎝

𝑦(𝐴)1,1 𝑦(𝐴)1,2 ⋯ 𝑦(𝐴)1,𝐷
𝑦(𝐴)2,1 𝑦(𝐴)2,2 ⋯ 𝑦(𝐴)2,𝐷
⋮ ⋮ ⋱ ⋮

𝑦(𝐴)𝑁,1 𝑦(𝐴)𝑁,2 ⋯ 𝑦(𝐴)𝑁,𝐷

⎞

⎟

⎟

⎟

⎟

⎠

= (y(𝐴)1 ,⋯ , y(𝐴)𝑛 ,⋯ , y(𝐴)𝑁)𝑇 = A × M𝑉 .

(7)

Here, it is worth noting that the process of achieving the
attention scores and output matrix Y𝐴 mainly based on each
byte data. Therefore, the external attention mechanism can
be seen as the enhancement of the high-dimensional byte-
level features to describe more important information in the
task of classifying network service traffic.
4.4. Convolutional Layer

After the external attention layer, we use the convolu-
tional layer to capture the high-dimensional features of the
packet headers that contain significant byte and packet-level
semantics. Just as the achievements in section 4.2, both the
value of each byte and their relationships are meaningful for
network traffic classification tasks, which is similar to the
phenomenon that both each word’s meaning and their order
are important for the sentence semantics in the natural lan-
guage domain. Therefore, as shown in Fig. 4, the convolution
should be made in the byte length direction to capture their
relationships.

In addition, the sparse interaction and parameter-sharing
properties of convolutional operations can be utilized to
compress the dimensionality of the data and finally save time
for later operations of the model, which is also important for
online tasks. Compared with high-dimensional convolution,
one-dimensional convolution can also reduce computational

Figure 4: One-dimensional valid convolution and concatenation
operation

complexity and is more suitable for online service traffic
classification scenarios. Considering the above two factors,
we adopt the most basic valid one-dimensional convolution
to convolve the input matrix Y𝐴 in the byte direction.

Since the features extracted by different convolution
kernels are different, this paper uses multiple convolution
kernels K𝑙 ∈ ℝ𝑄×𝐷(𝑙 = 1, 2,⋯ , 𝐿) at the same time
to achieve feature maps. On each convolution kernel, we
perform a one-dimensional valid convolution operation in
the dimension of bytes, and the specific operation of con-
volution is shown in Figure 4. Thus, the convolution result
c𝑙 ∈ ℝ(𝑁−𝑄+1)×1 can be derived from Eqs. (8)-(10),

C̃𝑙,𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑐(𝑙,𝑢)1,1 𝑐(𝑙,𝑢)1,2 ⋯ 𝑐(𝑙,𝑢)1,𝑄

𝑐(𝑙,𝑢)2,1 𝑐(𝑙,𝑢)2,2 ⋯ 𝑐(𝑙,𝑢)2,𝑄

⋮ ⋮ ⋱ ⋮

𝑐(𝑙,𝑢)𝐷,1 𝑐(𝑙,𝑢)𝐷,2 ⋯ 𝑐(𝑙,𝑢)𝐷,𝑄

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= Y𝑇
𝐴(∶, 𝑢 ∶ 𝑢 +𝑄 − 1) ∗ K𝑙, 𝑢 ∈ [1, 𝑁 −𝑄 + 1],

(8)

𝑐𝑙,𝑢 =
𝐷
∑

𝑖=1

𝑄
∑

𝑗=1
𝑐(𝑙,𝑢)𝑖,𝑗 , (9)

c𝑙 = [𝑐𝑙,1,⋯ , 𝑐𝑙,𝑢,⋯ , 𝑐𝑙,𝑁−𝑄+1]𝑇 . (10)
In order to increase the nonlinear expression ability of

the convolution layer, the Relu function is chosen in this
paper to make nonlinear changes to the above convolution
result c𝑙 and obtain the transformed feature map ĉ𝑙, which is
mathematically described as follows,

ĉ𝑙 = [𝑐𝑙,1,⋯ , 𝑐𝑙,𝑢,⋯ , 𝑐𝑙,𝑁−𝑄+1]𝑇 = Relu(c𝑙). (11)
First Author et al.: Preprint submitted to Elsevier Page 8 of 13

Short Title of the Article

Then, the max-pooling is employed to extract the maximum
value from the feature map ĉ𝑙. The feature map extracted
from the 𝑙th channel is down-sampled to obtain the unique
value 𝑓𝑙 with the most important feature. The mathematical
formula is as follows,

𝑓𝑙 = max(ĉ𝑙)
= max(𝑐𝑙,1,⋯ , 𝑐𝑙,𝑢,⋯ , 𝑐𝑙,𝑁−𝑄+1), 𝑙 = 1, 2,⋯𝐿. (12)

Finally, the results on each convolution kernel are con-
catenated together to form a one-dimensional convolutional
eigenvector y𝑐 ∈ ℝ𝐿×1, where y𝑐 = [𝑓1,⋯ , 𝑓𝑙,⋯ , 𝑓𝐿]𝑇 .
4.5. Linear Layer and Output

After the data passes through the convolution layer, we
need to map the convoluted low-dimensional features to the
specific network traffic category as the final output of the
model. Assuming that the total number of traffic categories
is 𝑇 . Firstly, a full connection layer is applied to match the
dimension of y𝑐 to 𝑇 and get a 𝑇 × 1 vector y according to
the following equation,

y = [𝑦1,⋯ , 𝑦𝑡,⋯ , 𝑦𝑇] = W′ × y𝑐 . (13)
Where W′ ∈ ℝ𝑇×𝐿 is the weight matrix of the linear
layer. Then, the probability distribution of the current input
sample belonging to category 𝑡 is calculated by the softmax
activation function as follows,

𝑝𝑦𝑡 = sof tmax(𝑦𝑡) =
𝑒𝑦𝑡
𝑇
∑

𝑡=1
𝑒𝑦𝑡

, 𝑡 = 1, 2,… 𝑇 . (14)

Therefore, the probability distribution that the current input
sample belongs to each category can be expressed as p𝑦 =
[𝑝𝑦1 ,⋯ , 𝑝𝑦𝑡 ,⋯ 𝑝𝑦𝑇]

𝑇 .
After obtaining the final predicted category, we compare

it with the true category probability of the current sample
p𝑥 = [𝑝𝑥1 ,⋯ , 𝑝𝑥𝑡 ,⋯ 𝑝𝑥𝑇]

𝑇 to calculate the most common
cross-entropy loss function by Eq. (15),

Loss = −
𝑇
∑

𝑡=1
𝑝𝑦𝑡 log𝑝𝑥𝑡 . (15)

Finally, the model is back-propagated based on the cur-
rent overall loss, and the parameters are updated and op-
timized by the gradient descent method until the loss is
minimized or a set threshold is reached.

5. Experiments
5.1. Experimental Environment and Evaluation

Experimental environment: We choose the deep learn-
ing framework Pytorch to conduct our experiments. The
server GPU is NVIDIA GeForce RTX 2080Ti, the Python

version is 3.8.8, and Python libraries such as Dpkt, Numpy,
Pandas, and Scikit-learn are also used.

Performance metrics: The classical performance met-
rics for measuring classification results are mainly accuracy,
precision, recall, and F1-score [8]. Accuracy is defined as
the ratio of the number of samples correctly classified by
the model to the total number of samples and is used to
measure the judgment ability of the model on all samples.
Precision refers to the percentage of real positive samples
among the total predicted positive samples by the model.
Recall is the percentage of the predicted positive samples in
the total correctly predicted samples. The F1-score is used
to comprehensively measure the recall rate and accuracy of
the model. These four metrics are defined as shown in Eqs.
(16)-(19),

Accuracy = TP + TN
TP + TN + FP + FN

, (16)

Precision = TP
TP + FP

, (17)

Recall = TP
TP + FN

, (18)

F1 − score = 2 × Recall × Precision
Recall + Precision

. (19)

Where TP indicates the number of samples that the true
value is a positive class and the predicted value is also a
positive class; FN indicates the number of samples that the
true value is a positive class and the predicted value is a
negative class; FP indicates the number of samples that the
true value is a negative class while the predicted value is a
positive class; TN indicates the number of samples that the
true value is a negative class while the predicted value is
a negative class. Generalized to multiple classifications, the
positive class represents the category to which the sample
truly belongs, while the negative classes represent all other
categories.
5.2. Hyperparameter Selections

In this paper, we set the optimizer to Adam, the learning
rate to 0.001, the probability of Dropout to 0.1, the con-
volutional kernel size to 3, the Batch Size to 128, and the
epochs of training and test to 200. Note that the input data
lengths for all experiments of the method are 12 bytes. As
described in Section 4, 𝑆 and 𝐷 are the hyperparameters
of the embedding and the external attention layers. In this
paper, we evaluate and determine the values of 𝑆 and 𝐷 by
means of experiments.

Regarding the classification accuracy, as shown in Figure
5(a), it can be observed that with the increase of parame-
ter 𝑆, the accuracy demonstrates an overall upward trend.
However, when 𝑆 is increased from 128 to 256, the accuracy

First Author et al.: Preprint submitted to Elsevier Page 9 of 13

Short Title of the Article

Figure 5: Performance comparisons of hypeparameter 𝑆 and 𝐷 with different values on ISCX dataset

improvement stabilizes, gradually converging around 98.4%,
and the increment in accuracy fluctuates within a small
range, indicating no significant improvement. As for the
dimension of the Embedding layer 𝐷, it can be observed that
irrespective of the value of 𝑆, the classification accuracy is
higher when 𝐷 is set to 32 or 64 compared to when it is set
to 128 or 256. This suggests that, in this experiment, a larger
embedding dimension is not necessarily better. Continuous
increment of 𝐷 actually leads to a decrease in accuracy.

In terms of classification speed (i.e., model inference
time), due to hardware limitations, the inference speed may
exhibit minor fluctuations and not remain constant. There-
fore, we consider the average speed under different hy-
perparameters. As illustrated in Figure 5(b), Experimental
results reveal that parameter 𝑆 is primarily associated with
computations related to the external attention layer, thus,
its variations have a relatively minor impact on the final
classification speed. Conversely, the dimension of 𝐷, affects
computations at each layer of the model, leading to slight
variations in classification speed for different 𝐷 values. Fur-
thermore, although increasing the values of hyperparameters
𝑆 and𝐷 may increase the number of model parameters, their
relationship with the model computation is not strictly linear.
The reason may be that there is no direct causal relationship
between the amount of model computation and the speed
of model inference according to the roofline model in [28].
Actual measurement is the most accurate way to evaluate
performance.

In summary, considering both the overall classification
accuracy and the classification speed, we choose the values
of 𝑆 and 𝐷 corresponding to higher accuracy and shorter
time consumption. It is reasonable to select 𝑆 with 128
and 𝐷 with 32. Therefore, in the following experiments, the
hyperparameters 𝑆 and 𝐷 are set as the above conclusion.
5.3. Baselines Comparisons

Baselines: The proposed external attention and convo-
lution mixed (ECM) model is compared with four other
packet-based deep learning methods, i.e., CNN [4], LSTM
[6], CNN+LSTM and SAM [8]. The reasons for choosing

Table 4
Experimental settings

Methods Settings

CNN kernel_size=3, kernels=200

LSTM hidden_layer_size=[64,64,32]

CNN+LSTM the same as CNN & LSTM

SAM embedding_dim=256, kernel_size=[3,4], kernels=256

ECM 𝑆=128, 𝐷= 32, kernel_size=3, kernels=256

Other settings: trainging batch_size = 128, epoch is 200, optimizer is Adam, learning rate is 0.001.

Table 5
Performance comparisons of baselines on ISCX dataset

Acc. Pre. Rec. F1. Speed(ms/packet)

CNN 97.75 97.76 97.75 97.76 0.38

LSTM 96.42 96.45 96.42 96.43 0.35

CNN+LSTM 97.60 97.60 97.60 97.60 0.69

SAM 97.07 97.09 97.07 97.08 0.68

ECM 98.39 98.39 98.39 98.39 0.36

them are as follows. As the detailed descriptions in section
2, CNN and LSTM are classical methods for network traffic
classification, and CNN+LSTM is the fusion of these two
models. SAM adopts the self-attention mechanism for net-
work traffic classification tasks, which is the most similar to
ours.

In this subsection, we make some performance compar-
isons of the proposed ECM model with some baselines. As
for the settings of hyperparameters for the specific model
structure (such as the size of convolution kernels and the
dimension of hidden layers), we keep consistent with the
original works. The experimental settings for each method
in the baselines are shown in Table 4.

As shown in Table 5, based on the average accuracy
from ten-fold cross validation, ECM achieves the highest ac-
curacy, precision, recall, and F1-score (all exceeding 98%).
Moreover, ECM achieves an inference time of milliseconds
per individual data packet, making it suitable for real-time
classification needs. Even though the LSTM model has the
fastest classification speed, our ECM is only approximately

First Author et al.: Preprint submitted to Elsevier Page 10 of 13

Short Title of the Article

Table 6
BUPD Dataset categories and numbers of samples

Traffic Type Content Quantity

Chat
QQ

50000Wechat

Email
Outlook

50000Mymail

File Transfer SMB 50000

P2P
Bitcomet

50000Thunder
Bittorrent

Streaming

IQIYI

50000

NeteaseClouodMusic
QQmusic

TencentVideo
Youku
Bilibili

HuyaLive
KugouMusic
MangoTV

PPTV
SouhuVideo

TikTok

Game

CrossFire

50000

LeagueOfLegends
MineCraft

WorldOfWarcraft
DOTA

Hepingjingying
Huangyexingdong
Huoyingrenzhe
Juediqiusheng

Meeting
Voovmeeting

50000TencentMeeeting

Web

AmazonWithChrome

50000

DoubanWithChrome
TaobaoWithChrome

SinaWeibo
Hongxiutianxiang
QidianCNWeb

Xiaoxiangshuyan

0.01 milliseconds slower than LSTM for the classification
of individual data packets, while the classification speed of
other methods is slower than that of ECM. The difference
is within the speed fluctuation range (0.05ms-0.1ms). And
in the other dataset as described in the following subsection
5.4, the speeds of both these two methods are both 0.35ms.
Furthermore, compared with the previous works for online
network traffic classification [7, 8, 17], ECM achieves the
same level of performance, i.e., millisecond-level classifi-
cation speed. Therefore, in a comprehensive manner, our
proposed ECM model based on the IP packet header has an
excellent performance in terms of accuracy and speed.
5.4. Verification of IP Packet Header Method on

Another Dataset
To further validate the efficacy of our proposed ECM

model, which exclusively utilizes the network layer IP packet
header for network traffic classification, we conduct experi-
ments in this section using an additional dataset. Through-
out these experiments, we maintain consistent experimental
settings in section 5.1 and 5.3, as well as the hyperparameter
settings in section 5.2. This merged dataset is a combination
of multiple datasets, including open-source dataset (Beijing

Table 7
Performance comparisons of baselines on BUPD dataset

Acc. Pre. Rec. F1. Speed

CNN 92.54 92.98 92.55 92.76 0.38

LSTM 90.74 92.44 90.75 91.59 0.35

CNN+LSTM 92.91 93.25 92.92 93.08 0.69

SAM 92.76 92.94 92.76 92.85 0.68

ECM 95.57 95.62 95.57 95.59 0.35

Table 8
Performance comparisons of ECM with different input lengths
on ISCX dataset

12Bytes 50Bytes 784Bytes

Accuracy(%) 98.39 99.58 99.61

Speed(ms/packet) 0.36 0.39 0.62

University of Aeronautics and Astronautics, BUAA) [20]
and (University of Science and Technology of China, USTC)
[29], as well as some Private Data collected by ourselves (we
call this merged dataset BUPD in this paper). It contains 38
different applications/protocols, as detailed in Table 6. We
have categorized them into 8 major network traffic types:
Chat, Email, File Transfer, P2P, Streaming, Game, Meeting,
and Web. Similar to the ISCX dataset, we select 50,000
samples for each traffic type to maintain dataset balance.

As shown in Table 5 and 7, it can be observed that the
performances on BUPD data is worse than that in ISCX.
The reason may be the number of traffic types and the
applications/protocols on BUPD is more than that on ISCX,
which are respectively shown in Table 2 and Table 6. That
is to say as the number of traffic types and the applica-
tions/protocols increase, the overall classification accuracy
tends to decrease. However, our proposed ECM still achieves
the highest accuracy, precision, recall, and F1-score (all
exceeding 95%) on BUPD dataset. Furthermore, with the
increasing diversity of traffic and application categories, the
gap between ECM and other models continues to widen,
which means that the classification ability of our proposed
ECM is better than baselines. The results on both two
datasets demonstrate the utility of using only the network
layer IP header information for distinguishing network traffic
and highlight the strong performance of our proposed ECM
in terms of both classification accuracy and classification
speed.
5.5. Performance Comparisons of ECM with

Different Input Lengths
In this section, to further analyze the performance of our

ECM model using 12 bytes as input, we select longer byte
lengths for comparison, including 50 bytes as used in paper
[8] and 784 bytes as used in paper [6, 7]. Apart from the input
length, all other experimental settings remain unchanged.
The specific accuracy and classification speed results are
shown in Table 8. It can be observed that using 50 bytes/784
bytes as input on the ISCX dataset results in a limited
improvement in accuracy compared to using only 12 bytes

First Author et al.: Preprint submitted to Elsevier Page 11 of 13

Short Title of the Article

as input. However, even with 50 bytes as input, the accuracy
already exceeds 99%, and further increasing it to 784 bytes
did not show significant improvement, as the model reaches
its upper limit. However, whether using 50 bytes or 784
bytes, both involve application layer payload and violate
user’s privacy. As for inference time, increasing the input
length leads to an increase in the model’s inference speed.
When the input length increases from 12 bytes to 50 bytes,
the inference time increases by 0.03 milliseconds. However,
when using 784 bytes as input, the inference time increases
significantly. Therefore, it can be concluded that for traffic-
type-level classification granularity, using a smaller amount
of packet header information can achieve good classifica-
tion accuracy, effectively reducing classification latency and
avoiding involvement with the application layer payload.

6. Conclusion and Outlook
In this paper, we propose a novel external attention and

convolution mixed (ECM) model for online network traffic
classification tasks. Different from the previous works, we
only use the IP packet header to extract the features of
network traffic, and no application layer payload information
is involved, which can effectively protect privacy. Further-
more, it achieves high classification accuracy using only the
12-byte packet header information, which is further verified
by experiments in this paper. The external attention mech-
anism retains the advantages of interpreting the byte-level
semantics of packet headers in the self-attention mechanism
but simplifies the internal structure of the self-attention
mechanism. And, CNN is also introduced to further capture
the packet-level semantics. In other words, the combined of
external attention and CNN can exploit both intra-byte and
inter-byte information, which is comprehensive for network
traffic classification. Therefore, ECM reduces the compu-
tational complexity and further improves the classification
speed while satisfying the classification accuracy. Exper-
imental analyses show that ECM model with 12-byte IP
packet header information has an average speed of about
0.36ms for a single packet with an overall classification
accuracy higher than 94.57%. Compared with the latest
works based on the self-attention mechanism, it improves in
both accuracy and speed.

However, due to the limitation of the current network
public dataset, the network services covered are limited and
do not include some new services, such as AR/VR, Internet
of Vehicles, etc. Therefore, the future deep learning network
traffic classification method based on IP packet headers can
target newer service types and use more advanced deep
learning model architectures to improve accuracy. For the
current six categories of classification tasks, ECM only uses
the first 12 bytes to show good performance, but for finer-
grained classification tasks, such as application-level classi-
fication, whether using only part of the IP header information
can also achieve better classification results requires further
study.

References
[1] KG Yue Gu and D Li. Research on network traffic classification based

on machine learning and deep learning. Telecommun. Sci., 37(3):105–
113, 2021.

[2] Shahbaz Rezaei and Xin Liu. Deep learning for encrypted traffic clas-
sification: An overview. IEEE communications magazine, 57(5):76–
81, 2019.

[3] Pan Wang, Xuejiao Chen, Feng Ye, and Zhixin Sun. A survey of
techniques for mobile service encrypted traffic classification using
deep learning. IEEE Access, 7:54024–54033, 2019.

[4] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hos-
sein Zade, and Mohammdsadegh Saberian. Deep packet: A novel
approach for encrypted traffic classification using deep learning. Soft
Computing, 24(3):1999–2012, 2020.

[5] Yi Zeng, Zihao Qi, Wencheng Chen, and Yanzhe Huang. Test: an
end-to-end network traffic classification system with spatio-temporal
features extraction. In 2019 IEEE International Conference on Smart
Cloud (SmartCloud), pages 131–136. IEEE, 2019.

[6] Luyang Xu, Xu Zhou, Yongmao Ren, and Yifang Qin. A traffic
classification method based on packet transport layer payload by
ensemble learning. In 2019 IEEE Symposium on Computers and
Communications (ISCC), pages 1–6. IEEE, 2019.

[7] Xinming Ren, Huaxi Gu, and Wenting Wei. Tree-rnn: Tree structural
recurrent neural network for network traffic classification. Expert
Systems with Applications, 167:114363, 2021.

[8] Guorui Xie, Qing Li, and Yong Jiang. Self-attentive deep learning
method for online traffic classification and its interpretability. Com-
puter Networks, 196:108267, 2021.

[9] Wei Wang, Ming Zhu, Jinlin Wang, Xuewen Zeng, and Zhongzhen
Yang. End-to-end encrypted traffic classification with one-
dimensional convolution neural networks. In 2017 IEEE international
conference on intelligence and security informatics (ISI), pages 43–
48. IEEE, 2017.

[10] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. Fs-
net: A flow sequence network for encrypted traffic classification. In
IEEE INFOCOM 2019-IEEE Conference On Computer Communica-
tions, pages 1171–1179. IEEE, 2019.

[11] Tal Shapira and Yuval Shavitt. Flowpic: A generic representation for
encrypted traffic classification and applications identification. IEEE
Transactions on Network and Service Management, 18(2):1218–
1232, 2021.

[12] Ruijie Zhao, Yiteng Huang, Xianwen Deng, Zhi Xue, Jiabin Li, Zijing
Huang, and Yijun Wang. Flow transformer: A novel anonymity
network traffic classifier with attention mechanism. In 2021 17th In-
ternational Conference on Mobility, Sensing and Networking (MSN),
pages 223–230. IEEE, 2021.

[13] Rushi Babaria, Sharat Chandra Madanapalli, Himal Kumar, and Vijay
Sivaraman. Flowformers: Transformer-based models for real-time
network flow classification. In 2021 17th International Conference
on Mobility, Sensing and Networking (MSN), pages 231–238. IEEE,
2021.

[14] Jingru Yang and Yuanbo Guo. Aefeta: Encrypted traffic classification
framework based on self-learning of feature. In 2021 6th International
Conference on Intelligent Computing and Signal Processing (ICSP),
pages 876–880. IEEE, 2021.

[15] Zheng Wu, Yu-ning Dong, Xiaohui Qiu, and Jiong Jin. Online
multimedia traffic classification from the qos perspective using deep
learning. Computer Networks, 204:108716, 2022.

[16] Rui Li, Xi Xiao, Shiguang Ni, Haitao Zheng, and Shutao Xia. Byte
segment neural network for network traffic classification. In 2018
IEEE/ACM 26th International Symposium on Quality of Service
(IWQoS), pages 1–10. IEEE, 2018.

[17] Guorui Xie, Qing Li, Yong Jiang, Tao Dai, Gengbiao Shen, Rui Li,
Richard Sinnott, and Shutao Xia. Sam: self-attention based deep
learning method for online traffic classification. In Proceedings of
the Workshop on Network Meets AI & ML, pages 14–20, 2020.

[18] Meng-Hao Guo, Zheng-Ning Liu, Tai-Jiang Mu, and Shi-Min Hu.
Beyond self-attention: External attention using two linear layers for

First Author et al.: Preprint submitted to Elsevier Page 12 of 13

Short Title of the Article

visual tasks. arXiv preprint arXiv:2105.02358, 2021.
[19] Cheng Yuan Lin, BaiHua Chen, and WeiYao Lan. An efficient ap-

proach for encrypted traffic classification using cnn and bidirectional
gru. In 2022 2nd International Conference on Consumer Electronics
and Computer Engineering (ICCECE), pages 368–373. IEEE, 2022.

[20] Haiyang Wang, Tongge Xu, Jian Yang, Lijin Wu, and Liqun Yang.
Sessionvideo: A novel approach for encrypted traffic classification via
3d-cnn model. In 2022 23rd Asia-Pacific Network Operations and
Management Symposium (APNOMS), pages 1–6. IEEE, 2022.

[21] Yang Yang, Yu Yan, Zhipeng Gao, Lanlan Rui, Rui Lyu, Bowen
Gao, and Peng Yu. A network traffic classification method based
on dual-mode feature extraction and hybrid neural networks. IEEE
Transactions on Network and Service Management, 2023.

[22] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Toward effective mobile encrypted traffic classification
through deep learning. Neurocomputing, 409:306–315, 2020.

[23] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio
Pescapé. Distiller: Encrypted traffic classification via multimodal
multitask deep learning. Journal of Network and Computer Appli-
cations, 183:102985, 2021.

[24] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam
Mamun, and Ali A Ghorbani. Characterization of encrypted and vpn

traffic using time-related. In Proceedings of the 2nd international
conference on information systems security and privacy (ICISSP),
pages 407–414, 2016.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[26] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation. In Proceedings
of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532–1543, 2014.

[27] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas
Mikolov. Bag of tricks for efficient text classification. arXiv preprint
arXiv:1607.01759, 2016.

[28] Nan Ding and Samuel Williams. An instruction roofline model for
gpus. IEEE, 2019.

[29] Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yiqiang
Sheng. Malware traffic classification using convolutional neural
network for representation learning. In 2017 International conference
on information networking (ICOIN), pages 712–717. IEEE, 2017.

First Author et al.: Preprint submitted to Elsevier Page 13 of 13

