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1ETSI Aeronáutica y del Espacio and ETSI Telecomunicación - Universidad Politécnica de Madrid, 28040 Madrid, Spain
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Abstract

In this work, we study in detail the performance of Higher
Order Dynamic Mode Decomposition (HODMD) technique
when applied to echocardiography images. HODMD is a
data-driven method generally used in fluid dynamics and in
the analysis of complex non-linear dynamical systems mod-
eling several complex industrial applications. In this paper
we apply HODMD, for the first time to the authors knowl-
edge, for patterns recognition in echocardiography, specif-
ically, echocardiography data taken from several mice, ei-
ther in healthy conditions or afflicted by different cardiac
diseases. We exploit the HODMD advantageous properties
in dynamics identification and noise cleaning to identify
the relevant frequencies and coherent patterns for each one
of the diseases. The echocardiography datasets consist of
video loops taken with respect to a long axis view (LAX)
and a short axis view (SAX), where each video loop cov-
ers at least three cardiac cycles, formed by (at most) 300
frames each (called snapshots). The proposed algorithm,
using only a maximum quantity of 200 snapshots, was able
to capture two branches of frequencies, representing the
heart rate and respiratory rate. Additionally, the algorithm
provided a number of modes, which represent the dominant
features and patterns in the different echocardiography im-
ages, also related to the heart and the lung. Six datasets
were analyzed: one echocardiography taken from a healthy
subject and five different sets of echocardiography taken
from subjects with either Diabetic Cardiomyopathy, Obe-
sity, SFSR4 Hypertrophy, TAC Hypertrophy or Myocardial
Infarction. The results show that HODMD is robust and
a suitable tool to identify characteristic patterns able to
classify the different pathologies studied.

Keywords— Data-driven methods, medical imaging,
HODMD, echocardiography.

1 Introduction

Data analysis is a rapidly evolving field that allows us to
discover useful information from raw data and support
decision-making in different domains such as market-

ing [1], [2], cyber-security [3], [4], [5], sports [6], [7], [8],
health care [9], [10], [11] etc. In health-care in particular,
medical imaging plays a crucial role, as it enables medical
practitioners to identify diseases in its early stages, to
provide accurate diagnoses and to plan and guide the
optimal treatment for every situation. Medical imaging
field is being profoundly affected by the technological
revolution brought forward by increasingly sophisticated
electronic devices and the continuous growth of computing
power. As a consequence, medical imaging has become a
data intensive field: optimized tools grounded in the data
science discipline are necessary to reap the full potential
of the wealth of data available. Data analysis methods,
such as model decomposition or neural networks, are
being approached more and more because of the fact that
they are purely data-driven and they do not require any
knowledge of the underlying equations, which make it
easier for biologists, medical scientists and engineers to
collaborate to obtain accurate results.
In different fields, large data matrices will be produced by
complex systems [12]. For example, an experiment will
result in a matrix where the columns include the mea-
surements obtained at different time instants; similarly,
a number of images can be reshaped into vectors and
arranged in matrix form, where each column will represent
a shot (snapshot) of a video. When it comes the medical
field, medical imaging occupies a large percentage of med-
ical data. Usually in medicine a large number of images
need to be examined but only a few will be expected
to show abnormalities, so data science or data analysis
methods can be considered as an assistant to a radiologist
to detect lesions and make smart decisions. Furthermore,
the increasing in the numbers of sophisticated electronic
devices, the new acquisition and the storage of medical
images containing relevant information, reveals the need
of finding new tools for data analysis capable to extract
relevant information from these databases.
Generally, when it comes to medical imaging, machine
learning (ML) and Artificial intelligence (AI) have been
highly used. In the health care industry, heart diseases
are the number 1 cause of death globally. According to
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the American Heart Association, in 2017, 17.8 million
deaths were attributed to cardiovascular diseases [13] and
it is considered the single largest cause of death in the
world taking more than a third of all deaths according
to The Global Burden Of Disease in 2004 [14]. These
numbers are putting a lot of pressure on health care
systems all around the world. In parallel with the increase
in the number of patients, the associated data is also
growing, and it is very difficult for traditional methods to
keep up with the fast growth of data. This begs for the
intervention of data science techniques to help the medical
field to overcome some of the obstacles they face. Many
researchers have used ML and AI to help in the diagnosis
of heart diseases. For example, Lelieveldt et al. [15] did
an impressive work while trying to extend the 2D time
Active Appearance Motion Model (AAMM), establishing a
time-continuous segmentation of cardiac image sequences.
They tested the approach on short-axis cardiac magnetic
resonance imaging (MRI) with total of 1200 image frames
from 25 subjects, 15 normal subjects and 10 myocardial
infarction patients and four-chamber echocardiographic
image sequences from 129 unselected patients. Although
their method performed slightly more accurately for
MRI than for echo-cardiograms it still generates a nearly
perfect time-continuous segmentation results, which are
consistent with cardiac dynamics. Arsanjan et al. [16]
used logistic regression to improve a combination of
classifiers in order to diagnose obstructive coronary artery
disease (CAD) using single-photon emission computerized
tomography (SPECT) images. Berikol et al. [17] also has
shown that ML, in particular, support vector machines
were extremely successful in predicting acute coronary
syndrome for 228 patients. Xulei Qin et al. [18] proposed
an extraction technique to automatically detect the car-
diac myofiber orientations from high frequency ultrasound
images. This method was tested on both phantom and
pig hearts and showed satisfying results in both cases (see
also [19], [20], [21], [22]).
Furthermore, starting from a certain point in the mid
2000s, approaches based on matrix decomposition and
data-driven methods began to gain recognition in medical
analysis field. Veltri et al. [23] used proper orthogonal
decomposition (POD) to help the diagnosis of kidney
diseases. When analyzing six datasets, four belong to
patients affected by renal pathologies and two for healthy
patients, POD was able to underline the regions of the
organ interested by the troubles allowing to analyze them
independently (see also [24], [25]). Meanwhile, Nika
et al.( [26], [27]) merged principal component analysis
(PCA) in their algorithm named EigenBlockCD, to detect
changes in serial MR images of the brain. The main
idea of their algorithm was to perform a local image
registration to identify important structural changes
ignoring unimportant changes related to misalignment,
noise and acquisition-related artifacts, supported with
PCA as a feature extraction tool (by emphasizing most

significant features within the images) and a dimensional
reduction tool (to reduce the dimensionality of the dic-
tionary and hence increase the computational efficiency).
Also with a different approach, PCA combined with the
least absolute shrinkage and selection operator (LASSO),
Klyuzhin et al. [28] came up with data-driven, voxel-
based analysis of brain positron emission tomography
(PET) images, where they worked on identifying voxel
covariance patterns using PCA and then using LASSO
to combine several patterns to construct models that
predict clinical disease metrics from imaging data (see
also [29], [30], [31]). Moreover, dynamic mode decomposi-
tion (DMD), originally used as a tool to identify patterns
in fluid dynamics (see e.g. [32], [33], [34], [35]), was reused
in the medical field. Tirunagari et al. [36] incorporated
different extensions of DMD to develop a novel automated,
registration-free movement correction approach for kidney
dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI). Their method was tested on ten different
datasets, while comparing the images produced by their
approach with the original dataset, the results showed
the elimination of 99% of mean motion magnitude. Fua
et al. [37] exploited DMD for the diagnose of Parkinson’s
disease. Specifically, they applied the DMD algorithm
to extract spatio-temporal patterns of neurotransmitter
changes due to neurodegeneration. The proposed method
was able to decompose the progressive dopaminergic
changes in the putamen into two orthogonal temporal pro-
gression curves associated with distinct spatial patterns.
This can be leveraged to assist in uncovering different
mechanisms underlying the disease progression and disease
initiation, or the sub-regions involved at different disease
stages. Xi et al. [38] investigated the use of four different
eigenmode algorithms: POD, PCA, DMD and DMD with
control (DMDC) as feature extracting techniques with the
intention of enhancing the performance of a classifier to
diagnose obstructive lung diseases using exhaled aerosol
images. Their framework consisted of 3 phases. First,
the researchers generated a database consisting of 405
exhaled aerosol images with physiology-based modeling
and simulations. Second, feature extraction from the
aerosol images was realized using the four mentioned
algorithms. Finally, the extracted features were utilized
by two classification techniques. Comparing the results,
it was concluded that dynamic feature extractions (DMD
and DMDC) significantly outperformed static algorithms
(POD and PCA) achieving 94.8% classification accuracy
(see also [39]).

In this work, we explore a new method that, to the
authors knowledge has not yet been used in the field
of medical imaging before: the Higher Order Dynamic
Mode Decomposition (HODMD) technique [40]. As has
been demonstrated in ( [41], [42], [43], [44]), the HODMD
method is a more robust and accurate version of classical
DMD, suitable for the analysis of complex signals and non-
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linear dynamical systems. The enhanced performance of
HODMD, solidly grounded on mathematics and computer
science principles, justifies our interest in its application
for the analysis of medical images. The method indeed has
sound foundations on the Koopman operator theory [45]
and can be formulated as a fully data-driven technique.
The HODMD method excels at identifying complex dy-
namics while presenting robust noise filtration properties.
In this paper, HODMD was applied to the analysis of
echocardiography images as a feature detection technique,
with the aim at identifying and classifying cardiac diseases.
More specifically, six echocaerdiography datasets were
analyzed, including one echocardiography taken from a
healthy individual and five taken from individuals that
have been diagnosed with different cardiac diseases. The
excellent capabilities of HODMD to identify and classify
patterns in the medical images analyzed, introduces this
technique as an automatic, robust and efficient tool,
suitable for pathologies detection.

The remainder of the paper will be organized as follows:
in S (2) we will present the HODMD algorithm and its
extension, the multidimensional HODMD, which are the
algorithms used on this work. In S (3) we present the data
analyzed, together with a short explanation of the cardiac
diseases investigated in this paper. S (4) shows the results
derived from the application of HODMD on the different
datasets. Finally, S (5) gathers the conclusions attained
and discusses possible avenues to extend this work.

2 Methodology

In this section we present Higher Order Dynamic Mode
Decomposition (HODMD) [40], which is the method intro-
duced in this work. Figure 1 presents a sketch describing
the methodology of HODMD applied to analyze the medi-
cal images. Details about the algorithm are presented be-
low.

HODMD is an extension of the well known technique,
in the field of fluid dynamics, dynamic mode decomposi-
tion (DMD) [34], generally used for the analysis of complex
data modeling non-linear dynamical systems, solving dif-
ferent applications (e.g, [42], [43], [44]). Similarly to DMD,
HODMD decomposes spatio-temporal data into a number
of modes, each mode related to a frequency, growth rate
and amplitude, as presented in the following DMD expan-
sion

v(t) '
M∑
m=1

amume
(δm+iωm)(t−t1) for t1 ≤ t ≤ t1 + T, (1)

where M is the number of DMD modes, t is the time and
T is the sampled timespan, um are the normalized spatial
modes, am are the (real) amplitudes, and ωm and δm are
the associated frequencies and growth rates, respectively.
The modes um represent the main patterns describing the
data analyzed. Furthermore, one of the strong points of

this algorithm is that the method also cleans noisy data
and get rid of the frequencies with small amplitude, which
represent irrelevant patterns, or simply noisy artifacts.

Before going into the details of the algorithm, we will
briefly introduce the singular value decomposition, the
higher order singular value decomposition algorithms and
the Koopman operator, since they are used as part of the
methodology in the HODMD algorithm. The Matlab codes
of these algorithms and details about their multiple appli-
cations can be found in [45].

2.1 Preliminaries

The following methods that we are introducing below are
fully data-driven. For simplicity, the data is organized in
matrix form in the following snapshot matrix :

V K
1 = [v1,v2, . . . ,vK ], (2)

where vk is a snapshot collected at time tk , with k =
1, . . . ,K. In the present article, each snapshot is a vector
that contains the pixels of the image analyzed, hence V K

1 ∈
RJ×K (with J = number of pixels in X× number of pixels
in Y ) .
The data can also be organized in tensor form, defined in
discrete form as

Ti1,i2,k for i1 = 1, . . . , I1; i2 = 1, . . . , I2 and k = 1, . . . ,K, (3)

where i1 and i2 represent the position of each pixel in the
plane containing the image, and K is the number of snap-
shots.

2.1.1 Singular value decomposition

Singular value decomposition (SVD) ( [46], [47]) is a very
powerful matrix decomposition tool and it is considered
as one of the most important algorithms from the past
decades.
Starting from the snapshot matrix eq. (2) the SVD will
allow us to represent the matrix V K

1 as a product of three
other matrices as follows:

V K
1 'WΣT T , (4)

where W ∈ CJ×J and T ∈ CK×K are unitary matrices
and J is number of SVD modes. The columns of W are
called left singular vectors of V K

1 (related to spatial prop-
erties and orthogonal), the columns of T are called right
singular vectors of V K

1 (related to temporal properties and
orthogonal) and Σ ∈ RJ×K is a matrix with real, non neg-
ative entries on the diagonal and zeros off the diagonal,
the elements of Σ are the singular values corresponding to
the left and right singular vectors of V K

1 (see more details
about the SVD algorithm in [48]).
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Figure 1: Schematic diagram for the higher order dynamic mode decomposition (HODMD) analysis pipeline. The first
step is data preparation: each frame (snapshot) extracted from the video loop is cropped (removing the parts with the
medical information), then reshaped into column vectors and arranged in a tensor, which is then used as the HODMD
input. In the following steps, HODMD decomposes the reshaped data into a set of DMD modes, each associated with
its own frequency, growth rate and amplitude.

2.1.2 Higher order singular value decomposition
(HOSVD)

Higher order singular value decomposition (HOSVD) is a
very robust extension of the SVD. It was originally intro-
duced in 1966 by Tucker [49] and it resurfaced and extended
in the use of several applications after the work presented
by Lathauwer et al. [50]. This method was developed to
treat multidimensional databases called as Tensors.
HOSVD decomposes the tensor T , eq. (3), as follows:

Ti1,i2,...,iN =
r′1∑

n1=1

r′2∑
n2=1

...
r′N∑

nN=1
Sn1n2...nN

U1
i1n1

U2
i2n2

...UN
iNnN

, (5)

such that, i1 = 1, 2 . . . , I1 ; i2 = 1, 2, . . . , I2 ; . . . ; and
in = 1, 2, . . . IN . Denoting r1, r2, . . . rN the ranks of
the fibers of the tensor along the different dimensions,
as presented in Fig. 2. Thus r′1, . . . r

′
N are such that

Figure 2: Visualization of a third order tensor and its fibers.

r′1 ≥ max{r1, I1}, . . . , r′N ≥ max{rN , IN}. The elements

of the matrices U1,U2, ...,UN of sizes I1 × r′1 , I2 × r′2
, . . . IN × r′N , respectively, are called mode matrices and
Sn1n2...nN

are the components of a Nth order tensor S of
size r′1 × r′2 × · · · × r′N , known as the core tensor. Fur-
thermore, since the right side of the previous expression
is considered as a tensor product (denoted as tprod below)
of the core tensor and the mode matrices, this could be
written as follows:

T = tprod(S,U1,U2, . . . ,UN ). (6)

2.1.3 The Koopman operator

The Koopman operator is a linear, infinite-dimensional op-
erator that was introduced by Koopman in 1931 [51]. It
represents the action of a nonlinear dynamical system on
the Hilbert space of measurement functions of the state.
Mathematically, for a measurement function g : D −→ R
of the state x, where D is an n−dimensional manifold. The
action of Koopman operator is equal to the composition of
the function g with the flow map F as

Kg = g ◦ F (7)

⇒ Kg(xk) = g(F (xk)) = g(xk+1), (8)

So basically the Koopman operator advances the measure-
ments one time step into the future and remeasures the
system at that next time step. DMD algorithm uses the
Koopman operator in the discrete space, assuming that
g(x) is the identity.
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2.2 Higher order dynamic mode decompo-
sition

As we stated before, HODMD is an extension of DMD,
which relies on following Koopman assumption:

vk+1 = Rvk, for k = 1, ...,K − 1, (9)

where vk are our spatio-temporal data (the images from the
ecocardiography) organized in K equispaced J-dimensional
snapshots and R is the Koopman operator .
Meanwhile, HODMD relies on a higher order Koopman as-
sumption:

vk+d = R1vk + R2vk+1 + ..+ Rdvk+d−1 for k = 1, ..,K − d,
(10)

which relates d subsequent snapshots. Note that when
d = 1, HODMD is equivalent to DMD.
Similarly to DMD this algorithm represents the spatio-
temporal data vk as an expansion of M modes um, each
mode has his own amplitude am , frequency ωm and growth
rate δm as follows :

v(t) '
M∑
m=1

amume
(δm+iωm)(t−t1) for t1 ≤ t ≤ t1 + T.

(11)
HODMD algorithm can be summarized in three main steps.
1- Dimensionality reduction by applying the SVD (as in eq.
(4)) to the full snapshot matrix eq. (2) as

V K
1 'WΣT T , (12)

where the number of retained modes N , is defined as
σN+1/σ1 6 εSV D, where σ1, . . . , σN are the singular values
and the threshold εSV D is selected according to the level
of noise in the data.
The previous equation can be written as :

V K
1 'WV̂ K

1 , where V̂ K
1 = ΣT T , (13)

V̂ K
1 will be called the reduced snapshot matrix.

2- In the second step, we use the higher order Koopman
assumption defined in eq. (10) to the reduced snapshot
matrix as

V̂ K
d+1 ' R̂1V̂

K−d
1 + R̂2V̂

K−d+1
2 + · · ·+ R̂dV̂

K−1
d , (14)

where R̂k = W TRkW .
This equation can be represented using the reduced snap-
shot matrix and the modified Koopman matrix R̃ as follows

Ṽ K−d+1
2 = R̃Ṽ K−d

1 , (15)

where

Ṽ K−d
1 =


V̂ K−d

1

V̂ K−d+1
2

. . .

V̂ K−1
d

 , Ṽ K−d+1
2 =


V̂ K−d+1

2

. . .

V̂ K−1
d

V̂ K
d+1

 ,

R̃ =


0 I 0 . . . 0 0
0 0 I . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . I 0

R̂1 R̂2 R̂3 . . . R̂d−1 R̂d

 .
A second dimensionality reduction is carried out to the
matrix containing the reduced snapshots using SVD and
the tolerance εSV D as σ̃N ′+1/σ̃1 < εSV D, where N ′ is
the number of retained SVD modes and σ̃i are the singular
values. This truncation yields

Ṽ K−d+1
1 ' ŨΣ̃T̃ T ' ŨT

K−d+1

1 ,with T
K−d+1

1 = Σ̃T̃ T ,

(16)
this step is completed through pre-multiplying eq. (15) by
ŨT , and invoking eq. (16) it gives :

T
K−d+1

2 = R̄T
K−d
1 , (17)

such that R ∈ N ′ × N ′ is the new Koopman matrix de-
fined as R = ŨT R̃Ũ , but we are not computing R with
this expression, instead we use the methodology presented
in the next step.
3- The third step is computing the DMD modes, frequen-
cies and growth rates, in order to do that, R must be com-
puted first, which is simply done by applying SVD on the

matrix T
K−d
1

T
K−d
1 = UΛV T , (18)

and then we substitute eq. (18) in eq. (17) and multiply
the result by V Λ−1UT to obtain :

R = T
K−d+1

2 V Λ−1UT , (19)

once the matrix R has been calculated, the reduced DMD
expansion for the reduced snapshots eq. (13) can be com-
puted as follows

v̂k =
M∑
m=1

âmûme
(δm+iωm)tk , for k = 1, . . . ,K, (20)

the reduced DMD modes ûm were calculated by keeping
the first M elements of the vector q̂m = Ũ q̄m , where q̄m
represents the eigenvectors of R and the associated eigen-
values µm provides the frequencies ωm and growth rates
δm by the following expression:

δm + iωm = log(µm)/∆t. (21)

4- The fourth and final step is computing the amplitudes
am via least-square fitting of eq. (20). Finally, the DMD
modes are ordered with respect to there amplitudes in a
decreasing order. It is possible to determine the number of
M modes to retrain in the DMD expansion eq. (11) using
a different tolerance εDMD such as aM+1/a1 6 εDMD

and finally computing the DMD expansion for the original
snapshots.
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The error of the HODMD reconstruction eq. (11) is mea-
sured using the relative root mean square error (RRMSE)
as follows

RRMSE =

√√√√∑K
k=1‖vk − vDMD

k ‖22∑K
k=1‖vk‖22

, (22)

where vk are the original snapshots, vDMD
k are their re-

construction using the HODMD algorithm and ‖.‖2 is the
Euclidean norm.

2.3 Multidimensional higher order dy-
namic mode decomposition

Multi-dimensional iterative HODMD is an extension of
HODMD, introduced in [41] for the analysis and pattern
identification in complex experimental data, highly noisy
and non-linear dynamics. This algorithm organizes the
data in tensor form as in eq. (3) and replaces the SVD
algorithm by the HOSVD algorithm in HODMD. In this
way, it is possible to better clean the data, since HOSVD
applies SVD along each spatial direction. The iterative
algorithm simply applies the multi-dimensional HODMD
iteratively. In other words, HODMD obtains the extension
eq. (11), then the method is applied iteratively over this
data reconstruction until the number of HOSVD modes is
the same between two consecutive iterations. The algo-
rithm has been validated and successfully tested in several
applications (see [42], [43], [44]). More details about the
algorithm can be found in [41].
Unlike standard HODMD where the data is organized in a
snapshot matrix, in this case the data matrix is substituted
by a multidimensional snapshot tensor and the expansion
eq. (11) in discrete and tensorial form is defined as follows

Tj1j2k '
M∑
m=1

amUj1j2me
(δm+iωm)(k−1)∆t, for k = 1, . . . ,K,

(23)
where j1 = 1, . . . , J1; j2 = 1, . . . , J2 ( Jk is the size of the
vector Tj1j2k ).
This algorithm has two main steps, the first one is a dimen-
sionality reduction, but instead of using SVD, HOSVD will
be applied to the snapshot tensor, which yields the follow-
ing decomposition :

Tj1j2k '
P1∑
p1=1

P2∑
p2=1

N∑
n=1

Sp1p2nW
(1)
j1p1

W
(2)
j2p2

Tkn, (24)

where S is the core tensor, the columns of W (1),W (2)

are called the spatial modes, and the columns of T are
called the temporal modes of the decomposition.
With respect to a spatial tolerance and a temporal toler-
ance we determine the number of modes to retrain from
each one of the modes. And finally steps from 2 to 4 of the
standard HODMD are applied to the temporal modes T.

3 Datasets description: the
echocardiography images

This section introduces the datasets analyzed, which con-
sist of several medical images from an ecocardiography.
The database includes images associated to the following
cardiac pathologies in the heart:

• Diabetic cardiomyopathy, which is a disorder charac-
terized by structural remodeling in the myocardium in
people with diabetes mellitus. It can lead to inability
of the heart to circulate blood through the body ef-
fectively. Due to various possible causes, blood moves
through the heart and body at a slower rate, and pres-
sure in cardiac chambers in the heart increases.

• Obesity, it is a complex disease involving an exces-
sive amount of body fat, the more fat on the body,
the greater the strain on the heart. Obesity forces the
heart to pump harder to distribute the blood through-
out the body. This in turn increases the chance of
developing rapid heart rate.

• Cardiac hypertrophy (TAC hypertrophy, SFSR4),
which is the abnormal enlargement, or thickening of
the heart muscle. Thickened heart muscle, can cause
changes in cardiac motion, the heart’s electrical sys-
tem, resulting in fast or irregular heartbeats. Causes
of this disease can be physiological – for example, the
amount of exercise performed by an athlete – or patho-
logical – for example, as a result of hypertension or
valvular disease.

• Myocardial infarction, commonly known as a heart at-
tack. It occurs when blood flow decreases or stops
to a part of the heart, causing damage to the heart
muscle. The usual cause of sudden blockage in a coro-
nary artery is the formation of a blood clot (thrombus)
causing the heart muscle to becomes ”starved” for oxy-
gen, and consequently, causing a permanent damage.

3.1 Material

All the images have been obtained from previous mouse
model of cardiac diseases performed in accordance with
protocols approved by the Centro Nacional de Investi-
gaciones Cardiovasculares (CNIC) Institutional Animal
Care and Research Advisory Committee of the Ethics
Committee of the Regional Government of Madrid
(PROEX177/17).

Echocardiography images acquisition
Transthoracic echocardiography was performed under
isoflurane anesthesia by an expert operator using a high-
frequency ultrasound system (Vevo 2100, Visualsonics
Inc, Canada) with a 40-MHz linear probe. Isoflurane was
administered in 100% oxygen and the dose was adjusted
to maintain podal reflex (light anesthesia plane). Mice

6



were placed in supine position using a heating platform
and warmed ultrasound gel was provided to preserve nor-
mothermia. A base apex electrocardiogram was used for
heart rate and rhythm continuous monitoring. Standard
bidimensional (2D) parasternal long and short axis views
(LAX and SAX, respectively) of the left ventricle (LV)
were obtained as previously described [52].
Offline, LAX and SAX video loops from different mouse
model of cardiac diseases (diabetes, obesity, hypertrophy
and infarction) and from healthy mice were exported as
DICOM format, including at least 3 cardiac cycles.

Mouse model diseases
Hearts from healthy C57BL/6 10-weeks-old mice were used
as control (CTL). Diabetes was induced in mice by inject-
ing streptozotocin (STZ, 50mg/kg, 0.05mol/L in citrate
buffer, pH 4.5, Sigma, St. Louis, USA) i.p for five consec-
utive days [52] and images were assessed 16 weeks post-
induction. Obesity was induced feeding mice with Western
diet [45 kcal% (24 g%) palm oil-based fat, 35 kcal% (41 g%)
carbohydrate, 20 kcal% (24 g%) protein; based on Open-
Source Diets No. D12451, Research Diet Services, Wijk bij
Duurstede, The Netherlands] and images were assessed 88
weeks post-induction. Cardiac hypertrophy images were
obtained from mutant mice previously described (SFSR4
KO [53]) and images were assessed 24 weeks of age. An-
other model of hypertrophy was induced using the aorta
constriction surgery [54] and images were assessed 4 weeks
post-induction. Lastly, a model of myocardial infarction
was used from mice subjected to left anterior descending
coronary artery permanent ligation ( [54], [55]) and images
were assessed 4 weeks post-induction.

4 Results

In this section, we detail how HODMD was used to analyze
the medical images. As mentioned before, we initially an-
alyzed six echocardiography datasets, where each dataset
encompasses two video loops taken from LAX view and
SAX view, with 200 to 300 snapshot per video.
All the datasets went through the same procedure into the
Matlab code in order to be analyzed using the HODMD
algorithm. The data, which was in DICOM format was
imported. All the frames from each video were first ex-
tracted and then cropped, parts of the image that contain
medical details were removed, focusing only on the heart
area in the image (see Fig. 3). The resulted images were
converted to grayscale images, reshaped into vectors and
arranged in a tensor (see Fig. 1).
HODMD requires the selection of several tunable param-

eters:

• The number of snapshots K is first chosen, this selec-
tion is not critical and could be done approximately
by trying to capture some of the full cardiac cycles.

• Two thresholds, εSV D for the the dimension-reduction

Figure 3: The figure shows the original images on the left
(pre-cropping), and on the right the images after remov-
ing the parts containing the medical information (post-
cropping).

steps and εDMD for amplitude truncation. εSV D
should be somewhat larger than the noise level, mean-
while, decreasing εDMD increases the number of the
identified frequencies.

• The time step or the time between the snapshots ∆t
is estimated to be 4 milliseconds and the timespan T .

• Finally, the index d, has been selected in a calibra-
tion process, starting from d ' K/10 and increasing
or decreasing its value until we minimize the relative
RRMSE (eq. (22)).

After some calibration, setting the correct parameters to
minimize the RRMS error (see details in [45]), HODMD
was applied using the following parameters: the number of
snapshots K was set to 100 snapshot in all of the cases ex-
cept for healthy LAX data, diabetic cardiomyopathy (both
LAX and SAX) and obesity (SAX), such that, in these
cases K was set to 200 snapshots, where the noise level
in these datasets obligated us to analyze a larger number
of snapshots, such that, they cover a sufficient number of
cardiac cycles allowing us to capture the relative frequen-
cies in two parallel lines. The thresholds were fixed to be
εSV D = εDMD = 5 × 10−4 for all the datasets. The time
step is given by ∆t = 4× 10−3 , meanwhile, the timespan
T ∈ [1,K] is scaled with the time step ∆t in the cases where
K = 100 and with 2∆t in the cases whereK = 200. Finally,
the the index d varies between (30 to 35) when K = 100
and between (60 to 70) in the cases where K = 200, in good
agreement with the calibration process described in [40] (d
scales with the number of snapshots).
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4.1 Healthy data

The first dataset that was analyzed by our algorithm was
the healthy data. As it is shown in Fig. 4, HODMD was
able to capture two groups of signals representing two par-
allel lines, each one composed of a different group of fre-
quencies. These two groups of signals, which are periodic
and regular, are related to the heart rate (upper branch)
and the respiratory rate (lower branch). The dominant fre-
quency in the upper branch is 633 beat per minute (BPM)
and in the lower branch is 208 breath per minute (BPM)
in the LAX results, and 644/BPM in the upper branch and
203/BPM in the lower branch in the SAX results (the val-
ues of the frequencies from the upper and lower branches
can be found in Table 1 in Appendix). Six and nine har-
monics of these frequencies are identified in the upper and
lower branches, respectively, for the LAX data. Meanwhile,
ten and eight harmonics are identified in the upper and
lower branches, respectively, for the SAX data. The DMD
modes support these results, as seen in the bottom part
of Fig. 4. The modes from the upper branch present their
highest intensity in the area representing the heart, and the
ones from the lower branch present their higher intensity
in the area of the image representing the lungs.

4.2 Unhealthy data

By applying HODMD to the unhealthy echocardiography
images, as it is seen in ( Figures 5, 6, 7, 8) we still capture
the two lines of frequencies in each case. Although, the
frequencies might have some changes when compared
to the healthy data, this fact is not necessarily related
to the disease since all the mice go through anesthesia
to try to keep the heart rate stable. Also we note that
there is a difference between the frequencies obtained
from the LAX and the ones obtained from the SAX
because in the case of SAX view, the mice are receiving
a higher doze of anesthesia. Nevertheless, the different
patterns identified in the DMD modes, reveal the type of
pathology studied. These modes are strong representers
of the shape of the heart in certain unhealthy conditions
or representers of certain features that are related to
a certain disease. The results obtained from analyzing
the pathological heart datasets can be sorted into two
main categories: myocardial infarction model (represented
in the results obtained from the myocardial infarction
datasets) and hypertrophy models (represented in the re-
sults obtained from obesity, TAC hypertrophy and SFSR4
hypertrophy datasets ). Regarding the results from the
Diabetic cardiomyopathy, the DMD modes did not cap-
ture any abnormalities or features representing the disease.

4.2.1 Case 01: Diabetic Cardiomyopathy

In the case of the Diabetic Cardiomyopathy presented
in Fig. 5, no abnormalities were captured. Although
the echocardiography was taken from mice with diabetic
cardiomyopathy, the echo does not capture any changes in
the shape of the heart compared to the healthy dataset
analyzed, as expected in this type of pathology. In this
case it is worth to mention that there is a noticeable
change in the heart rate and the respiratory rate (in SAX)
compared to the frequencies identified in the healthy case
(see Table 2 in Appendix). This change in the respiratory
rate could be related to the effect of anesthesia. However,
the frequency has noticeably decreased, which is something
expected in the case of the present pathology (diabetic
cardiomyopathy is related to a slow heart rate). HODMD
reveals this change in the frequency, while the shape of the
DMD is similar as the DMD modes in the healthy case,
also as expected in this pathology.

4.2.2 Case 02: Hypertension models

In the cases of Obesity, TAC Hypertrophy and SFSR4
Hypertrophy, as seen in Fig. 6, all the DMD modes
show hypertrophy, as they show increased wall thickness
compared to the healthy case. This change in thickness
is evidenced in the circular shape of the heart and in the
left ventricle, which is not as long and thin as in a healthy
heart, but instead it is thick and rounded. Regarding
the frequencies of the DMD modes presented in Fig. 7,
they are similar as in the healthy case studied (see all the
frequencies in Table 3, Table 4, Table 5 in Appendix).

4.2.3 Case 03: Myocardial Infarction model

Finally, the Myocardial Infarction is presented in Fig. 8.
From the LAX view, we can clearly see the change in the
shape of the heart, as we can notice that the left ventri-
cle does not show the normal shape of a heart, instead it
shows a myocardial wall deformation called aneurysm (an
outward bulging, likened to a bubble or balloon, caused by
a blood vessel obstruction and tissue). Furthermore, the
posterior wall is inconspicuous, and it is undetectable be-
cause the myocardial thickness is lost due to the infarction.
In the SAX view, we can not clearly see the aneurysm, but
in both cases the noticeable matter is how the anterior wall
is thinner and almost invisible. Thus, we can conclude that
the DMD modes for both LAX and SAX data, are clearly
capturing all the patterns and features that highly repre-
sent this particular cardiac disease. Regarding the frequen-
cies, they are similar as in the healthy case for the LAX
data, but they show a slight decrease in the SAX data,
which may be explain by a higher impact of the anesthesia
in mice with the disease. (see Table 6 in Appendix).
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Healthy heart results

(a) Frequency obtained from the LAX view (b) Frequency obtained from the SAX view

(c) Original LAX view (d) Original SAX view

(e) Upper branch mode (f) Upper branch mode

(g) Lower branch mode (h) Lower branch mode

Figure 4: The frequencies captured from analyzing the data of the healthy heart (LAX on the left and SAX on the right)
and the dominant modes related to each branch of frequency. The data are normalized with their maximum value. The
color-scale correspond to -1 (black), 0 (grey), 1 (white). the values of the frequencies from the upper and lower branches
can be found in Table 1 in Appendix.
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Case 01-Diabetic Cardiomyopathy

(a) Frequency of the heart with Diabetic Cardiomyopathy
(LAX)

(b) Frequency of the heart with Diabetic Cardiomyopathy
(SAX)

(c) Original LAX view (d) Original SAX view

(e) Upper branch mode (f) Upper branch mode

(g) Lower branch mode (h) Lower branch mode

Figure 5: The frequencies captured from analyzing the data of the hearts with Diabetic Cardiomyopathy and the
dominant modes related to each branch of frequency. The data are normalized with their maximum value. The color-
scale correspond to -1 (black), 0 (grey), 1 (white). The values of the frequencies from the upper and lower branches can
be found in Table 2 in Appendix.
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Case 02- Hypertension models:

01- DMD modes:

LAX DMD modes SAX DMD modes

H
e
a
lt

h
y

(a) Upper branch (b) Lower branch (c) Upper branch (d) Lower branch

O
b

e
si

ty

(e) Upper branch (f) Lower branch (g) Upper branch (h) Lower branch

T
A

C
H

y
p

e
rt

ro
p

h
y

(i) Upper branch (j) Lower branch (k) Upper branch (l) Lower branch

S
F

S
R

4
H

y
p

e
rt

ro
p

h
y

(m) Upper branch (n) Lower branch (o) Upper branch (p) Lower branch

Figure 6: A comparison between the DMD modes obtained from the healthy data set and the DMD modes obtained
from analyzing the datasets of the hypertrophic hearts.
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02- Frequencies:

(a) Frequency of the heart with Obesity (LAX) (b) Frequency of the heart with Obesity (SAX)

(c) Frequency of the heart with TAC Hypertrophy (LAX) (d) Frequency of the heart with TAC Hypertrophy (SAX)

(e) Frequency of the heart with SFSR4 Hypertrophy (LAX) (f) Frequency of the heart with SFSR4 Hypertrophy (SAX)

Figure 7: The frequencies captured from analyzing the data of the hypertrophic hearts. The values of the frequencies
from the upper and lower branches can be found in Table 3, Table 4, Table 5 in Appendix.
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Case 03- Myocardial Infarction (Myocardial Infarction model)

(a) Frequency of the heart with Myocardial Infarction (LAX) (b) Frequency of the heart with Myocardial Infarction (SAX)

(c) Original LAX view (d) Original SAX view

(e) Upper branch mode (f) Upper branch mode

(g) Lower branch mode (h) Lower branch mode

Figure 8: The frequencies captured from analyzing the data of the hearts suffering from Myocardial Infarction and the
dominant modes related to each branch of frequency. The data are normalized with their maximum value. The color-
scale correspond to -1 (black), 0 (grey), 1 (white). The values of the frequencies from the upper and lower branches can
be found in Table 6 in Appendix.
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4.3 Robustness of the methodology used
to identify patterns in medical image

In addition to the the previous datasets, two extra datasets
from each cardiac disease (expect for the SFSR4 hypertro-
phy) were analyzed. The additional datasets, which are
also echocardiography taken from a LAX and SAX view,
are composed with a number of snapshots varying between
80 and 135 snapshots. Despite the low number of snap-
shots, the proposed method is still able to properly iden-
tify the main patterns related to each pathology. In each
one of the cases, HODMD captures the two parallel line of
frequencies, representing both the heart rate and the respi-
ratory rate. Furthermore, when comparing the frequencies
obtained from analyzing data sets belonging to the same
cardiac disease, no abnormal differences were noticed, as all
the frequencies are varying in a reasonable interval. The re-
sulted DMD modes (not shown for the sake of brevity, but
with similar shape as their corresponding previous cases an-
alyzed), as expected, prove the robustness of the HODMD
algorithm. The method also captures the aneurysm and
the thin appearance of the anterior wall for the myocardial
infarction datasets. They show the rounded shape of the
heart and thickness of the left ventricle for the hyperten-
sion models (Obesity and TAC hypertrophy). As for the
DMD modes obtained from the diabetic cardiomyopathy
datasets, they are almost identical and they show the same
shape and patterns.

5 Conclusion

In this work we have investigated, for the first time to the
authors knowledge, the use of HODMD for the analysis
of medical imaging, in particular, echocardiography im-
ages taken from several mice individuals. HODMD, which
was originally developed as a fluid dynamic tool, has been
leveraged as a feature extraction technique. The proposed
method was initially applied to six different echocardio-
graphy datasets, one belonging to a healthy subject and
five belonging to subjects afflicted by different cardiac dis-
eases. Each dataset consisted of two video loops, a LAX
view and a SAX view, each one composed with a maximum
of 300 snapshots, covering at least three cardiac cycles.
HODMD was first used to analyze the echocardiography
taken from the healthy mouse. To test the limits of appli-
cability of this tool, we have used only 200 snapshots for

LAX data and 100 snapshots for SAX data. HODMD has
been systematically capable of capturing two parallel lines
of frequencies, an upper branch of frequency representing
the heart rate and a lower branch representing the respi-
ratory rate. All the frequencies were harmonics, revealing
that the solution was periodic, as expected. The DMD
modes that belong to the upper branch exhibit the area
representing the heart, and the modes that belong to the
lower branch exhibit the area representing the lungs. The
echocardiography datasets taken from five different mice
with cardiac diseases (Diabetic Cardiomyopathy, Obesity,
SFSR4, TAC Hypertrophy or myocardial infarction) are
analyzed next. As expected, the algorithm still captures
the two parallel lines of frequency in every case. The num-
ber of modes identified may differ, as well as the frequen-
cies, but this changes are reasonable, since the level of noise
in the data, the characteristics of the disease as well as the
anesthesia have an impact on the results. The modes ob-
tained represent the dominant features and patterns in each
disease, which can be sorted into two categories: (i) the
modes obtained from the myocardial infarction echocardio-
graphy represent the patterns characterizing the myocar-
dial infarction, which reflect the presence of a myocardial
wall deformation (aneurysm) in the left ventricle of the
heart, and the invisibility of the anterior wall because of
the loss of the myocardial thickness. Meanwhile, (ii) the
modes obtained from analyzing obesity, TAC hypertrophy
and SFSR4 hypertrophy echocardiography datasets repre-
sent patterns that characterize different types of hypertro-
phy, which are the thickness of the wall and the rounded
shape of the heart. Nevertheless, as expected, the DMD
modes resulted from analyzing the diabetic cardiomyopa-
thy echocardiography did not show any abnormalities com-
pared to the healthy dataset, and the patterns captured did
not display any unusual features that might represent the
disease. However, while analyzing this dataset, a clear de-
crease in the frequencies was noticed (in SAX), which is
expected in this disease in particular. Several Additional
echocardiography datasets for each disease were later ana-
lyzed in order to assess the robustness of our conclusions.
The DMD modes obtained were indeed robust and accu-
rate, proving once again the ability of this algorithm to
capture spatio-temporal patterns from different, limited,
noisy data, in particular to classify cardiac diseases and
highlights the usefulness of the HODMD algorithm in other
fields besides fluid mechanics.
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Frequencies
Healthy

LAX SAX

ω1 0 0

ω2 208.6 203.8

ω3 425.4 419.0

ω4 633.4 644.1

ω5 859.2 856.2

ω6 1074.2 1063.9

ω7 1273.2 1289.2

ω8 1502.4 1505.0

ω9 1720.6 1716.4

ω10 1916.9 1934.4

ω11 2144.6 2203.4

ω12 2365.7 2582.6

ω13 2560.7 2735.8

ω14 2786.9 3230.1

ω15 3009.0 3889.9

ω16 3203.3 4526.7

ω17 3428.3 5186.9

ω18 3652.0 5725.5

ω19 7499.9

Table 1: Frequency of the healthy data set.

Frequencies
Diabetic Car-
diomyopathy

LAX SAX

ω1 0 0

ω2 213.4 196.7

ω3 493.2 353.8

ω4 747.4 494.7

ω5 984.3 703.2

ω6 1240.6 819.7

ω7 1489.9 997.7

ω8 1707.0 1284.6

ω9 1999.6 1500.8

ω10 2227.1 1902.9

ω11 2475.5 1995.4

ω12 3003.2 2505.0

ω13 3506.5 3003.3

ω14 3750 3505.1

ω15 3984.0

ω16 4493.7

Table 2: Frequency of the Diabetic Cardiomyopathy data
set.

Frequencies
Obesity

LAX SAX

ω1 0 0

ω2 185.5 132.0

ω3 425.9 279.6

ω4 656.5 457.7

ω5 867.5 615.1

ω6 1099.5 770.0

ω7 1313.2 1052.8

ω8 1612.2 1226.1

ω9 1972.8 1371.9

ω10 2234.4 1690.5

ω11 2632.0 1846.8

ω12 3275.6 2006.9

ω13 3545.7 2269.2

ω14 3959.5 2451.2

ω15 4572.2 3012.9

ω16 3464.0

ω17 3637.3

Table 3: Frequency of the Obesity data set.18



Frequencies
Myocardial
Infarction

LAX SAX

ω1 0 0

ω2 277.3 239.9

ω3 473.6 490.2

ω4 585.0 741.9

ω5 870.4 989.2

ω6 1173.0 1239.5

ω7 1460.8 1490.6

ω8 1759.1 1741.6

ω9 2057.4 1990.7

ω10 2350.3 2239.5

ω11 2648.2 2490.6

ω12 2940.3 2739.0

ω13 3238.9 2993.5

ω14 3528.7 3241.4

ω15 3528.7 3241.4

ω16 3828.4 3493.7

ω17 4117.9 3741.8

ω18 4414.8 4008.5

ω19 4707.8 4228.9

ω20 5003.1 4688.1

ω21 5296.6

ω22 5591.7

ω23 5883.5

ω24 6177.9

ω25 6469.7

ω26 6765.7

ω27 7058.6

ω28 7352.9

Table 6: Frequency of the Myocardial Infarction data set.

Frequencies
TAC

Hypertrophy

LAX SAX

ω1 0 0

ω2 208.4 190.8

ω3 456.7 410.7

ω4 671.9 612.0

ω5 908.9 839.0

ω6 1138.5 1033.7

ω7 1371.0 1306.1

ω8 1598.5 1737.9

ω9 1835.3

ω10 2045.0

ω11 2317.5

ω12 2772.3

ω13 3514.4

ω14 4011.9

ω15 4637.4

ω16 5665.3

Table 4: Frequency of the TAC Hypertrophy data set.

Frequencies
SFSR4

Hypertrophy

LAX SAX

ω1 0 0

ω2 163.1 233.6

ω3 366.3 538.9

ω4 545.5 806.5

ω5 727.7 934.8

ω6 934.8 1327.3

ω7 1086.3 2445.8

ω8 1319.4 2977.2

ω9 1624.0 3180.4

ω10 2163.9 4171.9

ω11 2934.6 4710.8

ω12 3439.2 5554.8

Table 5: Frequency of the SFSR4 Hypertrophy data set.
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Frequencies ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10 ω11 ω12 ω13 ω14 ω15 ω16 ω17 ω18 ω19 ω20

Healthy
LAX 0 208.6 425.4 633.4 859.2 1074.2 1273.2 1502.4 1720.6 1916.9 2144.6 2365.7 2560.7 2786.9 3009.0 3203.3 3428.3 3652.0

SAX 0 203.8 419.0 644.1 856.2 1063.9 1289.2 1505.0 1716.4 1934.4 2203.4 2582.6 2735.8 3230.1 3889.9 4526.7 5186.9 5725.5 7499.9

Diabetic
LAX 0 213.4 493.2 747.4 984.3 1240.6 1489.9 1707.0 1999.6 2227.1 2475.5 3003.2 3506.5 3750

Cardiomyopathy SAX 0 196.7 353.8 494.7 703.2 819.7 997.7 1284.6 1500.8 1500.8 1902.9 1995.4 2505.0 3003.3 3505.1 3984.0 4493.7

Obesity
LAX 0 185.5 425.9 656.5 867.5 1099.5 1313.2 1612.2 1972.8 2234.4 2632.0 3275.6 3545.7 3959.5 4572.2

SAX 0 132.0 279.6 457.7 615.1 770.0 1052.8 1226.1 1371.9 1690.5 1846.8 2006.9 2269.2 2451.2 3012.9 3464.0 3637.3

TAC
LAX 0 208.4 456.7 671.9 908.9 1138.5 1371.0 1598.5 1835.3 2045.0 2317.5 2772.3 3514.4 4011.9 4637.4 5665.3

Hypertrophy SAX 0 190.8 410.7 612.0 839.0 1033.7 1306.1 1737.9

SFSR4
LAX 0 163.1 366.3 545.5 727.7 934.8 1086.3 1319.4 1624.0 2163.9 2934.6 3439.2

Hypertrophy SAX 0 233.6 538.9 806.5 1327.3 2445.8 2977.2 3180.4 4171.9 4710.8 5554.8

Myocardial
LAX 0 277.3 473.6 585.0 870.4 1173.0 1460.8 1759.1 2057.4 2350.3 2648.2 2940.3 3238.9 3528.7 3828.4 4117.9 4414.8 4707.8 5003.1 5296.6

Infarction SAX 0 239.9 490.2 741.9 989.2 1239.5 1490.6 1741.6 1990.7 2239.5 2490.6 2739.0 2993.5 3241.4 3493.7 3741.8 4008.5 4228.9 4688.1

Table 7: Frequency of the DMD modes.
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