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Abstract
This paper presents a novel approach to define deformation invariant attribute vector (DIAV) for
each voxel in 3D brain image for the purpose of anatomic correspondence detection. The DIAV
method is validated by using synthesized deformation in 3D brain MRI images. Both theoretic
analysis and experimental studies demonstrate that the proposed DIAV is invariant to general
nonlinear deformation. Moreover, our experimental results show that the DIAV is able to capture
rich anatomic information around the voxels and exhibit strong discriminative ability. The DIAV
has been integrated into a deformable registration algorithm for longitudinal brain MR images, and
the results on both simulated and real brain images are provided to demonstrate the good performance
of the proposed registration algorithm based on matching of DIAVs.

1. Introduction
Deformable registration of 3D brain images has been an important research area in the field of
neuroimaging, and a variety of methods have been developed over the past two decades [1,3,
4,6,7,9,10,12,14,26,28,34,35,41,42]. Based on registered brain images, one can perform group
or individual analysis of neuroanatomic structures to assess differences in terms of age, gender,
genetic background, and handedness, etc., [2,6,24,37], to define disease-specific signatures
and detect individual cortical atrophy [36,39], to automatically label and visualize cortical
structure [18], to map brain function [38,39,40], or to perform neurosurgical planning [15].

In general, 3D brain image registration methods fall into the following two broad categories:
similarity-based methods and feature-based methods. In similarity-based methods, the
registration is achieved by seeking to maximize the similarity between the template image and
the reference image via a deformation model, which can be based on elastic, biomechanical,
fluid, or parametric approach [12,26,42]. The general similarity measures for deformable image
registration could be intensity [13], mutual information [16,23,32,41], or local frequency
representation [45]. In feature-based methods, anatomical feature such as surface, landmark
points, or ridge are first detected in two brain images [28,43], and then a spatial transformation
is used to map correspondence features.

One central issue in deformable brain image registration algorithms is to develop
morphological features for the detection of anatomic correspondences between the model
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image and the subject image. Recently, several methods for defining the attribute vector with
rich geometric information have been proposed, such as moment-based method [28], wavelet-
based method [43], and local spatial intensity histogram-based method [29]. In moment-based
attribute vector method [28], MR brain images are first segmented into GM, WM, and CSF,
and then the attribute vector of each voxel is extracted by computing the rotationally invariant
moment feature in a spherical region for each tissue class. Since the moment-based attribute
vector can be used to capture distinctive local anatomical information, it has been successfully
applied to deformable volumetric MR brain image registration [28]. In the wavelet-based
attribute vector method [43], the attribute vector is calculated from wavelet high-pass sub-
images by applying the radial profiling method. The wavelet-based attribute vector then serves
as the morphological signature for each voxel in deformable registration [43]. In the local
spatial intensity histogram based method [29], local spatial intensity histograms are first
computed in a spherical region in each level of multi-resolution images and the attribute vector
is then defined by calculating regular moment features. The local spatial intensity histogram
is rotationally invariant and captures spatial information by integrating multi-resolution local
histograms.

Although these above attribute vectors are translationally and rotationally invariant, the
deformation between two longitudinal volumetric images is typically nonlinear. To address
this problem, we propose a novel attribute vector that reflects the underlying anatomy and
geometric information, while being deformation invariant. Deformation invariance means that
the attribute vectors are the same, or very close, with the continuing homeomorphic
deformation of 3D volumetric image. The deformation invariant attribute vector (DIAV) is
very desirable in deformable registration of longitudinal brain images because: 1) the DIAV
embodies rich geometric and intensity information of the voxel; 2) the similarity between
DIAVs is a good indicator of anatomic correspondences, especially in longitudinal or time-
series brain image data, as the corresponding anatomic landmarks will have similar
morphological profiles; and 3) the DIAV represents the morphological signature of a specific
voxel throughout the deformation procedure and thus reduces the ambiguity in anatomic
correspondence detection.

Our work was particularly inspired by Ling and Jacob’s method [20] for 2D image matching
using geodesic intensity histogram (GIH), which is the intensity histogram of pixels extracted
within a geodesic distance as deformation invariant local descriptor. We extended this work
to the deformation invariant attribute vector in 3D brain images [19] and validated the method
using synthesized deformations of 3D brain MR images. Our experimental studies show that
the proposed DIAV achieves good deformation invariance. In addition, the DIAV embodies
rich geometric and intensity information, and is quite distinctive to reduce the ambiguity in
anatomic correspondence detection. Based on the matching of DIAV, a deformable registration
algorithm has been developed for registration of longitudinal brain MR images. Experimental
results on both simulated and real brain images are provided to demonstrate the performance
of the proposed registration algorithm.

2. Method: Deformation Invariant Attribute Vector
2.1 Deformation invariant attribute for 2D images

This section briefly presents the basic idea of the method introduced by Ling and Jacobs for
deformation invariant 2D image matching (please refer to [20] for more details). Motivated by
the Beltrami framework [31], Ling and Jacobs treated a 2D intensity image as a surface
embedded in 3D space, by assigning an aspect weight α to the intensity value as the third
coordinate, and weighting the first two coordinates (x and y) by 1−α. As α increases, the image
deformation has less influence on the geodesic distance, which is the distance of the shortest
path between two points on the embedded surface. By taking the limit of α to 1, the geodesic
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distance becomes deformation invariant. In [20], the fast marching algorithm [27] is used to
compute the geodesic distance on the embedded surface. The authors also did sampling in the
geodesic distance support region (within certain geodesic level curves) to obtain deformation
invariant neighborhood samples for interest points and then used a geodesic intensity histogram
as deformation invariant local descriptors for 2D image matching by the χ2 distance. This
method is sound in theory and achieves promising matching results in practice.

2.2 Deformation invariant attribute for 3D images
In this subsection, we first extend the framework of deformation invariance in 2D space to 3D.
Then, we design the deformation invariant attribute vector in 3D image using the geodesic
intensity histogram.

2.2.1 3D image embedded in 4D space—We treat a volumetric image as a 3D surface
embedded in 4D space. Let G (x, y, z) be a volumetric image defined as G:R3 → [0,1]. We
consider the deformation as a homeomorphism between images [20], meaning that the mapping
is one-to-one. Denote the embedding of an image G (x, y, z) with aspect weight α as σ(G;α) =
(x′ = (1−α)x, y′ = (1−α) y, z′ = (1−α)z, g′ = αG(x, y, z)). Let γ be a regular curve on σ, and
parameter p ∈ [p1, p2] (p1and p2are the boundary points). Then we have:

(1)

The length of curve γ is computed as:

(2)

Take the limit of α to 1:

(3)

In the above formulas, the subscript p denotes partial derivative, e.g., xp = dx/dp, Gp = dG/dp.
From Eq. (2), it is apparent that when α is large (e.g., approaching 1), it is the intensity change
(represented by Gp) that dominates the length (s) of the curve γ. When taking the limit of α to
1, it is obvious that the curve length only relies on the intensity of volumetric image G, which
indicates that the curve length (s) achieves deformation invariance when α → 1.

2.2.2 Geodesic distance in 3D image—As shown above, the geodesic distance between
two points, which is the shortest path between them on the embedded surface, is deformation
invariant when α approaches 1. Given an interest point p(x, y, z) in 3D image, the geodesic
distance from it to the other points on the embedded surface σ(I;α) can be computed using the
fast marching algorithm [27]. The fast marching method was developed to effectively solve
the problem of front propagation, involving computing a new position of an initial curve when
a force F is applied. A function T denotes the time when the curve reaches a position, and the
Eikonal equation governs the curve propagation:
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(4)

where ∇T is the gradient of T. In our application, we use the extended fast marching method
in 3D image in [8]. To compute the geodesic distance, the parameter T in the Eq. (4) is set as
the geodesic distance, and the marching speed F is set to:

(5)

where the subscripts (x, y and z) denote partial derivatives. Figure 1 shows a color-coded
geodesic distance map from a selected voxel (marked with a red cross) to other voxels in a
volumetric MR brain image. Here, the red color indicates small geodesic distance, while blue
color indicates large geodesic distance. For convenient visual inspection, we only show
selected 2D orthogonal slices. In the example, α is set to be 0.98. Evidentally, the geodesic
distance in 3D image can be used to capture the geometry of image intensities.

2.2.3 Deformation invariant attribute vector—As both the geodesic distance (when α
→ 1) and intensity are deformation invariant, we can use geodesic distance histogram to define
deformation invariant attribute vector (DIAV). Given an interest voxel p, along with
neighboring voxels in the geodesic distance support region, the geodesic intensity histogram
(GIH) is calculated as follows. We divide the intensity and geodesic distance space into
K×M bins. Let {xi}i=1…n be the voxel locations in the geodesic distance region. The function
v : R3 → {1…K} maps the voxel at location xi to the index v(xi) of its bin in the quantized
intensity space. The function g:R3 → {1…M} maps the voxel at location xi to the index g(xi)
of its bin in the quantized geodesic distance space. The GIH at k = 1…, m = 1…M is computed
as:

(6)

where δ is the Kronecker delta function. After computing the GIH, we normalize each column
of Hp at the same geodesic distance, and then normalize the whole Hp. It should be noted that,
when computing GIH, we do not need to compute the geodesic distances from a study voxel
to all of the others, but rather compute geodesic distances from the voxel to those voxels within
a geodesic threshold, all of which define the support region.

Figure 2 shows an example of geodesic distance support region for calculating geodesic
intensity histogram from a voxel indicated by a red cross in volumetric MR brain image. Here,
the color-coded geodesic distance support region is overlaid on the axial, coronal and sagittal
slices respectively. The 3D volume rendering of the support region is also displayed in three
views. The support region for the calculation of GIH is clearly an irregular and complicated
volume. This complicated support region helps the GIH capture rich geometric and anatomic
information, which renders distinctiveness of the GIH to reduce the ambiguity in
correspondence detection.

With the geodesic intensity histogram in 3D image, we define a deformation invariant attribute
vector (DIAV) H(x) for each voxel by concatenating every column (in the same geodesic
distance bin) in the geodesic intensity histograms as:
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(7)

As the geodesic intensity histogram is deformation invariant, the DIAV is deformation
invariant. To compare DIAVs, we define the similarity of two DIAVs (H(x) and H(y)) of two
voxels (x and y) as follows:

(8)

where Hx(i) is the i-th element in H(x).

3. Method: Deformable Registration based on DIAV Matching
3.1 Formulation

The deformable registration algorithm is formulated as an energy minimization problem [33].
Specifically, the external energy is to maximize the similarity of the DIAVs of voxels in the
model and that in the subject respectively. The internal energy function term serves as a
smoothness constraint on the displacement fields, similar to those in [21] and [28]. The energy
function is defined as follows:

(9)

where  and  are external and internal energy terms, defined for the voxel v in
the model image. wExt and wInt are weighting parameters. The goal of registration is to deform
the model image VMdl to the subject image VSub, using the DIAV matching method. That is,
for each model voxel v in the volume VMdl, we seek its correspondence in the subject image
VSub. If the correspondence is successfully determined, the volume neighborhood N(v) around
the model voxel v will be deformed to the subject image by a local transformation Tv. Therefore,
the transformation h in the registration is decomposed into a number of local transformations
{Tv}, i.e., h = Tv}.

The external energy term  measures the DIAV similarity of the voxel in the model and
that in the subject image, respectively. It requires that the DIAV of the neighboring voxel vj in
the volume neighborhood N(v) be similar to that of its counterpart in the subject volume, and
vice versa. The mathematical definition is given as:

(10)

where p(.) denotes the projection of a point to the closest voxel in the volume, since the
transformed point Tv(vj)or  is not necessary on the volume voxel.  is the reverse
transformation of Tv (.). The definition of similarity m(.) is referred to Eq. (8). ϖT and ϖR are
weighting terms for forward and reverse transformation.

The internal energy term  designed to preserve the smoothness of the deformation field:
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(11)

where Uvj is the coordinate of voxel vj. We use a greedy deformation algorithm [21,28] to
minimize the energy function stated in Eq. (9). We deform the voxels within a small
neighborhood around each model voxel, rather than deforming only the model voxel. This
decreases the probability of being trapped in local minima. Notably, before the registration
procedure, both model and subject images are pre-processed using the tools described in [21]
and [22].

3.2 Hierarchical energy minimization
It has been shown that performing voxel-wise feature matching for the whole volume is time-
consuming and has a high risk of being trapped in a local minimum [21,28]. A desirable solution
thus is to select the most important voxels to drive the registration hierarchically. The idea is
that, initially, the volume deformation is driven by a small fraction of selected voxels, which
usually have more distinctive attribute vectors, and are less prone to the risk of being trapped
in local minimum. In the following deformation, the dimensionality of the energy function is
increased by involving more hierarchically selected voxels. In this paper, we used a similar
hierarchical driving voxels selection scheme as introduced in [28]. Figure 3 provides an
example of the hierarchical driving voxel selection procedure.

3.3 Adaptive deformation
There might be structure changes in volumetric time-series images, thus resulting in
fundamental morphological differences between the template and the subject. In such cases,
the registration algorithm relaxes the matching forces when no good matching is found, and
the deformations on such structures will be driven primarily by the deformations of the voxels
in the neighboring structures with higher confidence. This adaptive deformation scheme based
on the confidence level is akin to those in [5] and [21], which emphasizes the importance of
measuring the degree, regional variation, and confidence in the correspondences established
by image registration. Here, the DIAV similarity map is used as the confidence map to guide
the adaptive deformation scheme.

3.4 Consistent transformation
The concept of consistent image registration was introduced in [11], meaning that the
registration gives the same mapping between two images no matter which one is treated as the
template. The constraint of consistent transformation in the registration algorithm renders more
robustness to local minima as demonstrated by a variety of publications in the literature [28].
In this paper, we use the symmetric external energy function term in Eq. (10) to implement the
constraint of inverse consistent transformation.

4. Experimental Results
A series of experiments are conducted to evaluate the DIAV and the proposed registration
algorithm. Both synthesized brain images and real brain images are used to demonstrate the
performance of the proposed algorithms.

4.1 Experimental results on DIAV
Evaluation studies are performed to examine the performance of DIAV. In the first experiment,
we demonstrate the deformation invariance of DIAV by using synthesized volumetric image
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deformation. In the second experiment, we demonstrate the discriminative ability of DIAV. In
the third experiment, we compare the DIAV with the wavelet-based attribute vector [43] and
local spatial intensity histogram [29]. Finally, we investigate the relationship between the
deformation invariance and geodesic distance threshold, and the computational cost in
calculating DIAV. In all these experiments, we used twelve 3D T1 SPGR images of normal
human brains. Before computing DIAV, we have normalized the intensities of all the images
to the range of [0, 1]. In order to convert anisotropic images to isotropic ones, we interpolate
the images bilinearly and re-sample the images. The re-sampled voxel size is 0.94 mm in three
directions, and the re-sampled image size is 256×256×198.

4.1.1 Examination of the deformation invariance of DIAV
4.1.1.1 Examination via synthesized inter-subject deformation: We have shown in theory
that the DIAV is deformation invariant in Section 2.2. Here, we demonstrate that the DIAV is
deformation invariant by using synthesized brain image deformation. To obtain synthesized
3D inter-subject image deformation, we manually painted major sulci on the model and
individuals, and used them as constraints to warp the model into individuals using an elastic
warping algorithm [7]. Additional details of the procedure are referred to [21,28]. With the
synthesized 3D brain image deformation, we know the exact correspondence of the voxels in
the original image and the deformed one. For a pair of corresponding voxels in these two
images, we calculate their DIAVs and compare their similarity as defined in Eq. (8). To visually
illustrate the deformation invariance of the GIH, Figure 4 shows an example of geodesic
intensity histograms of a pair of correspondence voxels in the original MR brain image and
the synthesized deformed image. The two geodesic intensity histograms are quite similar to
each other, with the similarity of 0.93, although the deformation around the voxel is large and
nonlinear.

As an example, we randomly selected one pair of the original image and the deformed one. In
the original image, we randomly picked fifty voxels in the same slice for the convenience of
visualization, as shown in Figure 5a. Then we compare the similarities of the DIAVs of the
voxels in the original image and those in the deformed one. Figure 5b shows the DIAV
similarities for the selected fifty voxels. The highest DIAV similarity is 0.99, and the lowest
DIAV similarity is 0.91. The average DIAV similarity over the fifty cases is 0.95, and the
standard deviation is 0.025. These high similarities indicate that the DIAV has good
performance of being deformation invariant, considering that the average length of the
deformation vectors of the fifty voxels is 7.1 mm. The lengths of the deformation vectors of
the 50 voxels are shown in Figure 5c. The data in Figure 5 show that no matter how large the
deformation is (ranging from 3.3 mm to 12.6 mm), the DIAV similarities are constantly over
0.9. We have performed similar experiments in the other eleven pairs of original images and
deformed images, and achieved similar results. The average similarity of the DIAVs of the
voxels in the twelve original image pairs and the deformed ones is 0.95. These results further
demonstrate that the proposed DIAV is deformation invariant.

To examine DIAV more extensively, we computed the similarities between the voxels in the
selected slice shown in Figure 5 and their corresponding voxels in synthesized deformed image.
Figure 6a displays the distribution of the DIAV similarities of all the voxels in the slice, with
the average similarity of 0.929, given that the average length of deformation vectors is 6.50
mm. Figure 6b shows the deformation vector length histogram for all the voxels in the slice.
The results in Figure 6 apparently demonstrate that the DIAV is deformation invariant for
synthesized inter-subject deformation.

Notably, image voxels closer to tissue boundaries have relatively lower DIAV similarities.
This is because these voxels are more sensitive to the interpolation errors in image warping
and the digital errors in calculation of geodesic distance. Both of these errors are inevitable in
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practical implementations of the DIAV algorithms. To compare the difference of DIAV
performance in gray matter and white matter regions, we compute the average similarity of
DIAVs of all the voxels in a randomly selected slice. The average similarity for GM and WM
regions are 0.90 and 0.95 respectively.

4.1.1.2 Examination via simulated intra-subject deformation: We used a biomechanical
model to simulate the mass effect caused by a growing tumor, which is akin to the method in
[17]. The tumor growth is driven by the boundaries of a manually placed brain tumor seeds,
which expand spherically. The deformation of the surrounding tissue is estimated using a
nonlinear elastic model of soft tissue [17,25]. Figure 7a and 7b show the original brain image
with manually placed tumor seeds and the deformed image after tumor growth. Then the
simulated intra-subject deformation is used as ground truth to evaluate the DIAVs in the
original and deformed images.

For visual inspection, we randomly selected fifteen points in the vicinity of the simulated brain
tumor image (shown in Figure 7a), and compute the similarities between the DIAVs of those
points in the original and deformed images. Figure 7c is the DIAV similarity result of the fifteen
points. The average similarity over the fifteen cases is 0.935, given that the average length of
the deformation vectors of the fifteen voxels is 3.4 mm. The lengths of the deformation vectors
of the fifteen voxels are in Figure 7d. These results indicate that DIAV has good performance
of being deformation invariant given nonlinear intra-subject deformation.

To examine the DIAVs for intra-subject deformation more extensively, we select all the voxels
located between two spheres around the tumor seed region, as shown in Figure 8a. The radii
of the two spheres are 8 mm and 13 mm respectively, thus totally involving 6,101 voxels in
the ring region. Then we compute the similarities of the DIAVs of the voxels in the original
image and the corresponding voxels in the deformed image. Figure 8b shows the distribution
of the DIAV similarities of all the voxels in the ring region, with the average similarity of
0.934, given that the average length of deformation vectors is 3.02 mm. Figure 8c shows the
deformation vector length histogram for all the voxels in the ring region. The results in Figure
8b and Figure 8c clearly demonstrate that the DIAV is deformation invariant for intra-subject
deformation, and has wide potential applications in the registration of longitudinal brain
images.

4.1.2 Examination of the discriminative ability of DIAV—A key objective in designing
the attribute vector for brain image registration is that the attribute should represent the
morphological information of a voxel as rich as possible and should discriminate fine, local
anatomic structures [21,28]. In this experiment, we evaluate the discriminative ability of DIAV.
If the DIAV, representing the morphological signature of a voxel throughout the deformation
procedure, can be used to capture rich image content in distinguishing one voxel from the
others, then it can be used for effective detection of anatomical correspondences in deformable
registration of 3D brain images.

One means to evaluate the morphological richness of an attribute is to compare the attribute
of a voxel with those of its neighbors. If the attribute vector can distinguish the voxel from the
others, it is considered morphologically rich [21,28]. Our experiments show that the proposed
DIAV is quite distinctive in discriminating the voxel of interest from the other voxels. As an
example, Figure 9a and 9b show the DIAV similarities between a randomly selected voxel A
with its neighbors. To better visualize the result, the vicinity region of the voxel is zoomed.
The dark red peak around the interest voxel apparently demonstrates the distinctiveness of the
DIAV of voxels. To examine the discriminative ability of DIAV in correspondence detection,
a voxel located in white matter area is randomly selected (B in Figure 9c). Its correspondence
voxel B′ in the synthesized image is shown Figure 9d. Figure 9e presents the DIAV similarity
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map between B and all the voxels in Figure 9d. The dark red area around the voxel B′ apparently
demonstrates the good distinctiveness of the DIAV. Figure 9f shows the DIAV similarity map
between voxel B′ and all of the voxels in the image of Figure 9d. The dark red area around
voxel B′ in Figure 9f demonstrates the discriminative ability of DIAV for voxels that share a
similar anatomical environment.

To analyze the discriminative ability quantitatively, we compute the average of the DIAV
similarity between a voxel and other voxels in a series of ring regions centered on the voxel.
The thickness of each ring is set to be one voxel, with the radius ranging from 1 to 10 voxels.
Nine different geodesic distance thresholds are used, ranging from 0.2 to 1.0 with an interval
of 0.1. Figure 9g shows the similarity curve along the radius of ring for each geodesic distance
threshold averaged over multiple randomly selected voxels. Here, the similarity decreases
rapidly with the increasing of the radius of ring regions.

4.1.3 Comparison of DIAV with SIH and WAV—To demonstrate the advantage of the
deformation invariant attribute vector, we compare the DIAV with the local spatial intensity
histogram (SIH) [29] and the wavelet-based attribute vector (WAV) [43] in terms of their
deformation invariance properties.

4.1.3.1 Calculation of SIH and WAV: For SIH, we first down sample the original image by
a sampling factor of two, resulting in three resolution level images. Then we compute the local
intensities histogram in a spherical region of each point in each resolution image. We set the
radius of the spherical regions to 8 mm, 4 mm, and 4 mm in the three resolution levels. As a
result, we have three local histograms for each voxel in the original image. Finally, we calculate
the moment features for each local histogram respectively, which is akin to [29]. More details
of SIH are referred to [29]. Similar definition of attribute vector similarities as in Eq. (8) is
used for SIH. Notably, before calculating the similarity between two SIHs, we normalize each
element of attribute vector between 0 and 1. For WAV, three resolution levels of images are
used. The sliding window size is set to 8 mm for the lowest level, 4 mm for the middle and the
highest resolution. Two-level DWT decomposition is performed to calculate the wavelet sub-
images at each resolution level. The length-1 Daubechies wavelet is used to calculate the DWT
sub-images, see [43] for more details of WAV. Similarly, each element of the attribute vector
is normalized between 0 and 1, and a similar definition of attribute vector similarities as in Eq.
(8) is used for WAV.

4.1.3.2 Comparison of deformation invariance and distinctiveness: To evaluate the
deformation invariance properties of SIH and WAV, Figure 10a shows the attribute similarities
between the randomly selected fifty voxels in Figure 5a and their corresponding voxels in the
deformed image for SIH and WAV. The details of the deformation simulation are referred to
Subsection 4.1.1. The average similarity of SIH and WAV are 0.59 and 0.76, which are much
lower than that for DIAV (0.95). This is expected as the SIH and WAV are defined in a spherical
region, which is only invariant to rotation. To compare the SIH and WAV with the DIAV more
extensively, Figure 10b displays the distribution of the SIH and WAV similarities of all the
voxels in the slice in Figure 5a. The average similarities of SIH and WAV are 0.83 and 0.73,
which are much lower than that for DIAV (0.929), as shown in Figure 6a.

To analyze the discriminative ability of SIH and WAV quantitatively, we compute the average
of the DIAV similarity between a voxel and other voxels in a series of ring regions centered
on the considered voxel. Figure 10c shows the similarity curve along the radius of ring averaged
over the multiple randomly selected voxels. Although the similarity decreases with the
increasing of the radius of ring regions, its discriminative ability is not as good as that of DIAV,
as shown in Figure 10c.
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4.1.4 Deformation invariance and geodesic distance threshold—The geodesic
distance threshold, which determines the support region for DIAV calculation, has direct
influence on the performance of DIAV’s deformation invariance. In order to analyze the
relationship between geodesic distance threshold and the DIAV’s deformation invariance, we
set ten different geodesic distance thresholds, ranging from 0.1 to 1.0 with interval of 0.1, to
calculate DIAVs. We use the same selected voxels from twelve volumetric brain MRI images
as in Subsection 4.1.1. For each geodesic distance setting, we compute the average similarity
of the DIAVs of these voxels in the original image and the deformed one. Figure 11 displays
the average similarity of DIAVs with varying geodesic distance thresholds. There exists a
similarity peak of 0.97 when the geodesic distance threshold is 0.2. The average similarity of
DIAVs descends slowly with the geodesic distance threshold increasing from 0.3 to 1.0. The
average similarity, however, is still very high, consistently larger than 0.91. Our explanation
to this phenomenon is that the larger geodesic distance threshold is, the more image voxels are
involved and the more computational and digital errors exist in the calculation of DIAV. On
the contrary, when the geodesic distance is less than 0.2, it is too small to capture sufficient
number of voxels to keep the calculation of DIAV stable, resulting in lower average similarity
of DIAVs.

4.1.5 Computational cost and geodesic distance threshold—As seen in Section 2,
the computation time of deformation invariant attribute vector rely on the size of the selected
geodesic distance support region. The larger of the support region is, the more geodesic
distances from the selected voxel to the other voxels need to be computed and the more
computation time is consumed. The bottleneck of calculating DIAV is the step of computing
geodesic distance via fast marching method. To investigate the running time, we set ten
different geodesic distance thresholds, ranging from 0.1 to 1.0, for calculating DIAVs. We
tested hundreds of voxel selected from 12 volumetric brain MRI images. All of the experiments
are carried out on a standard PC (Intel Pentium IV 2.4 Ghz) using C/C++ implementation.
Figure 12 shows the average time of calculating DIAV for one voxel with varying geodesic
distance thresholds. The running time grows rapidly as the geodesic region threshold increases,
e.g., when the geodesic distance threshold approaches 1.0, the running time is around 12 ms
for calculating one DIAV. That means it is impractical to compute the DIAVs for all of the
voxels in the whole volumetric image when geodesic distance threshold is set to be large (close
to 1.0) with our current DIAV implementation.

4.2 Result of registration algorithm on synthesized brain images
We use the same thirteen synthesized brain images obtained by the method in Subsection 4.1.1
to evaluate the performance of the registration method. For the synthesized images, we know
the exact correspondence between the voxels in the template and subject images. In this way,
we can directly compare the registration errors that occur in the registration method. As shown
in Figure 13, we use the histogram of registration errors to display the registration performance.
For these two cases, the average registration errors are 0.91 and 0.92, and the maximum
registration errors are 4.53 and 3.61 respectively. Table 1 shows the average and maximum
registration errors for these thirteen cases.

For visual inspection of the registration error, Figure 14b presents the color-coded registration
error for one slice in the first case, most areas of the slice have quite low registration errors
(blue). Figure 14c compares the average image of the thirteen synthesized images warping onto
the model image with the original model image. The average image is apparently clear,
indicating the registration for all of the thirteen images is quite accurate.
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4.3 Result of registration algorithm on real brain images
This experiment shows the results of quantifying the deformation induced by the growth of a
tumor, captured by serial intra-patient images as shown in Figure 15. These serial images were
scanned with the same T1 SPGR imaging protocol of the same patient with brain glioma tumor
at approximately half-year intervals. In order to estimate the tumor deformation from time
point 1 to time point 5, we used the proposed registration method to directly register the images
of time points 1 to 5.

To quantitatively evaluate the proposed algorithm in registering serial scans, we measured the
registration errors on manual landmarks defined by two human raters in the images of time-
points 1 and 5. Two representative pairs of corresponding landmarks are shown in Figures 15.
Since the two images of time-points 1 and 5 have been rigidly aligned before placing manual
landmarks, the distance between each manual landmark in the image of time-point 1 and its
corresponding landmark in the image of time-point 5 indicates the displacement or deformation
at that location, measured by manual raters, due to the mass effect of the growing tumor. Figure
16a shows the displacement on each landmark obtained by two raters for one case. The average
displacement over the twenty landmarks is 5.43 mm, which indicates quite a large deformation
induced by tumor growth, particularly since the deformation was significantly larger very close
to the tumor.

We measured the displacement estimation error of our algorithm on these twenty landmarks.
As shown in Figure 16a, the average estimation error compared with the first rater is 1.21 mm.
As for the evaluation results by the second rater, the average registration error is 1.21 mm.
These results demonstrate that the displacements/deformation due to tumor growth can be
captured by the proposed registration algorithm with relatively good accuracy, compared to
the average inter-rater difference of 1.22 mm. For the purpose of comparison, we performed
direct correspondence voxel detection in the time-point 5 image, given the manually-labeled
landmarks in the time-point 1 image. Their correspondence voxels in the time-point 5 image
are defined as the voxels that have the most similar DIAVs. The direct correspondence
detection result is reasonably good, as shown in Figure 16b, though it is less accurate than the
registration result in Figure 16a by around 34%.

Figure 17 presents the result for the second case of serial intra-patient images. In this case, the
average displacement of twenty landmarks is 4.26 mm, the average registration errors
compared with two raters are 1.13 mm and 1.24 mm respectively, and the inter-rater difference
is 1.08 mm (Figure 17a). These results further demonstrate that the proposed registration
algorithm has good accuracy compared to expert raters. In comparison, the direct
correspondence detection by the maximization of DIAV similarity is less accurate than the
registration algorithm by about 23% for the 20 landmarks (Figure 17b).

5. Discussion and Conclusion
5.1 Selection of alpha

Alpha, which controls the aspect weight, is a critical parameter for obtaining the geodesic
support regions. When alpha is close to 1, the DIAV feature should be deformation invariant
in theory. On the other hand, when alpha is close to 0, the feature should be only rotation
invariant instead of being deformation invariant. Here, we select several sampling discrete
values of alpha between 0 and 1, and evaluate how alpha influences the deformation invariance
of DIAV, which is measured by the similarity of corresponding DIAVs in synthesized brain
MR images in section 4.1. Figure 18 shows the curve of average similarities varying with alpha.

As shown in Figure 18, when alpha is set to be 0, the average similarity of DIAVs is around
0.85. As alpha increases from to 0.98, the average similarity becomes to be around 0.93. There
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is no obvious change between alphas setting to be 0.98 and 0.99. Our explanations to the
phenomenon are: when alpha is 0, DIAVs are only rotation invariant. This level of average
similarity (0.85) is close to that of SIH in Section 4.1.3. As alpha increases to 0.98, DIAVs
tend to be invariant to general nonlinear deformations. This is the reason that we select the
value of alpha as 0.98 in all of the registration experiments. Notably, smaller alpha might be
good enough for some regions with smaller nonlinear deformations. Currently, we do not know
which areas have relatively small nonlinear deformations and which areas have relatively large
nonlinear deformations. In the future, we intend to adopt machine learning based method (e.g.,
in [44]) to learn the prior knowledge of the distribution map of deformation magnitude. Then
we can assign appropriate alpha in different regions. In addition, we could gradually change
the value of alpha along with the iterations of the registration procedure. At the initial stage of
registration, the nonlinear deformation between two volume images is larger, so relatively
larger alpha should be chosen in order to deal with larger nonlinear deformations. Whereas
along with the iterations of registration, the nonlinear deformation magnitude is reduced
gradually, therefore smaller alpha should be enough to cope with small nonlinear deformation.

5.2 Sensitivity to noise and intensity inhomogeneity
Noise and intensity inhomogeneity are inevitable in the acquisition of brain MR image. To
reduce the influence of noise and intensity inhomogeneity on the registration result, several
steps are performed as follows. Firstly, brain MR images are smoothed to reduce noises. Then,
in order to deal with the intensity inhomogeneities, the N3 method [30] is used to correct the
intensity inhomogeneities in each image. Finally, to make the distributions of the two intensity
histograms globally similar, then the histogram of one image is linearly transformed to match
the histogram of the other, which is similar to the method employed in [29] for intensity based
elastic registration. To examine the ability of above steps in dealing with the noise and intensity
inhomogeneities, we added multiplicative biased field and additive Gaussian white noise to
the synthesized brain images, as shown in Figure 19a as an example. Then, we compare the
registration result by the proposed methods with the ground-truth. The average registration
difference is: 0.03 mm. The relatively small difference indicates that the proposed registration
method is not sensitive to noise and intensity inhomogeneities. In the future, we plan to adopt
the histogram similarity measure as described in [20], which is based on the fact that the
diffusion distance is more robust to intensity change and noise in histogram-based local
descriptors. This new definition of DIAV similarity using diffusion distance between
histograms might be able to further improve the robustness of DIAV to noises.

5.3 Computational time
Our current implementation of the registration algorithm takes about 2.7 hours (Intel Pentium
IV 2.4 Ghz and 2 GB memory), including 1.5 hours for DIAV computing and 1.2 hours for
deformable registration. The computational time is comparable to existing nonlinear
registration methods (e.g., [28]). Our future work will optimize the implementation for both
DIAV computing and deformable registration to speed up the system. In addition, the
calculation of each DIAV does not rely on other DIAVs, meaning that the procedure of DIAV
computing can be accelerated in parallel in the future.

5.4 Conclusion
This work contributes a novel method that defines deformation invariant attribute vector for
3D brain images to achieve automatic correspondence determination. Extensive experiment
results reported in this paper have shown that the proposed DIAV achieves good deformation
invariance. Furthermore, the DIAV, which represents the morphological signature of a voxel
throughout the deformation procedure, has good discriminative capability and thus can reduce
the ambiguity in the determination of anatomic correspondences. These advantages motivated
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us to integrate the DIAV into a deformable registration algorithm for longitudinal brain MR
image studies. Experimental results on both synthesized and real brain images have
demonstrated the reasonably good performance of the registration algorithm based on DIAV
matching.

The proposed registration algorithm for longitudinal volumetric images has potential
applications in: 1) quantification of chronic disease progression for computer aided diagnosis
and prognosis, e.g., serial measurements of regional brain morphology via MRI in
neurodegenerative and other neurological disease; and 2) quantification of patient response to
therapy via computer aided follow-up, e.g., measurement of tumor morphology using MRI to
evaluate the effect of stereotactic radiosurgery and measurement of tumor size and metabolism
to evaluation tumor progression or response following chemotherapy. Our future work plans
to apply this registration algorithm in clinical applications of measuring longitudinal changes
of neuroanatomic structures in brain diseases.
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Figure 1.
The color-coded geodesic distance map in 3D image. (a) The marked start point shown in 2D
slice. (b) The geodesic distance map computed from the start point. The red color indicates
small geodesic distance, while the blue color indicates large geodesic distance. The parameter
α is set to be 0.98.
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Figure 2.
The geodesic distance support region for the calculation of GIH of a voxel marked with red
cross is overlaid on the original image. (a), (b) and (c) are axial, coronal and sagittal view.
Bright colors indicate small geodesic distance, and dark colors indicate large geodesic distance.
(d), (e) and (f) are axial, coronal and sagittal view of volume rendering of the support region.
For visualization purpose, the geodesic distance threshold is set as 0.8, and α = 0.98 here.

Li et al. Page 17

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Illustration of driving voxel selection. The order of selected driving voxels is: red color voxels,
green color voxels, and blue color voxels. Here, three hierarchies are used as an example.
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Figure 4.
Geodesic intensity histograms of a pair of correspondence voxels in the original volumetric
MR brain image and the deformed image. Here, α = 0.98, K = 12, M = 8. (a) and (b) are
histograms for voxels in the original image and the deformed image respectively. To present
a complete perspective, two separate views are shown for each histogram.

Li et al. Page 19

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Li et al. Page 20

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Deformation invariance of DIAV examined via synthesized inter-subject deformation. (a)
Randomly selected 50 voxels for DIAV validation. (b) DIAV similarities of the 50 voxels in
(a). (c) Length of the deformation vectors of the 50 voxels in (a).
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Figure 6.
Deformation invariance of DIAV examined via synthesized inter-subject deformation. (a) The
similarity histogram of DIAVs of all of the voxels in the slice. The histogram bins with
similarities less than 0.85 are added to the bin of 0.85. The average similarity is 0.929. (b) The
deformation vector length histogram of all the voxels in the slice. The average length is 6.50
mm.
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Figure 7.
Deformation invariance of DIAV examined via simulated brain deformation by using a
biomechanical tumor growth model. (a) Original image with manually placed tumor seed. 15
randomly selected points are marked with red dots for validation of DIAV. (b) Deformed image
via simulated tumor growth. (c) DIAV similarities of the 15 voxels in (a). (d) Length of the
deformation vectors of the 15 voxels in (a).
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Figure 8.
Deformation invariance of DIAV examined via simulated brain deformation by applying a
biomechanical tumor growth model. (a) All of the voxels in the ring region are selected for
examination of DIAV. (b) The similarity histogram of DIAVs of all the voxels in the ring
region. The histogram bins with similarities less than 0.85 are added to the bin of 0.85. The
average similarity is 0.934. (c) The deformation vector length histogram of all the voxels in
the ring region. The average length is 3.02 mm.
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Figure 9.
Discriminative ability of DIAV. (a)–(b): the color-coded DIAV similarity map between voxel
A and other voxels in the same volumetric image. Here, the similarity ranges from 0 to 1, with
red color indicating high similarity and blue color indicating low similarity. The color bar is
on the right. (a) The marked voxel A is shown in 2D slice. (b) The global view of the similarity
map, with zoomed view at the right bottom. The similarity decreases gradually from very high
(dark), to high (red), to moderate (yellow), and to low (blue). The red blob represents the small
area with high similarity. (c) The marked voxel B is shown in 2D slice. (d) The correspondence
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voxel B′ in the synthesized image. (e) The similarity map between voxel B and all the voxels
in image (d). (f) The similarity map between voxel B′ and all of the voxels in image (d). (g)
The average similarity between the voxel and other voxels in a series of rings centered on the
voxel. Here, the Th is the geodesic distance threshold for defining support region.
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Figure 10.
Comparison of SIH and WAV with DIAV. (a) SIH and WAV similarities of the 50 voxels in
Figure 5a. (b) SIH and WAV similarities of all of the voxels in the slice in Figure 5a. (c) The
average similarity between a voxel and other voxels in a series of rings centered on the voxel
of WAV and SIH.
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Figure 11.
The relationship between the deformation invariance and geodesic distance threshold.
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Figure 12.
The computation time of calculating DIAV with varying geodesic distance thresholds.
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Figure 13.
Histograms of registration errors. Registration errors larger than 2mm are combined to the bins
of 2mm in the histograms. (a) Case 1. (b) Case 2.
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Figure 14.
Evaluation of registration algorithm via synthesized brain images. (a) A slice of case 1. (b)
Color-coded registration errors. The color bar is on the right. (c) Left column: the average
image of warping 13 synthesized images onto the model image. Right column: the model
image.
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Figure 15.
Two manual landmarks shown in the axial, sagittal, and coronal views. (a) The first time-point
image for first landmark. (b) The fifth time-point image for first landmark. (c) The first time-
point image for second landmark. (d) The fifth time-point image for second landmark.
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Figure 16.
Results for serial human scans. (a) Tissue deformation estimated by manually-tracked
landmarks, and the registration error of our registration algorithm in estimating deformation
on these landmarks. The average landmark displacement is 5.43 mm, which is represented by
the orange bars. Compared with the landmarks by the first rater, the average registration error
is 1.21 mm. As for the second rater, the average registration error between the algorithm and
the rater is 1.21 mm. The yellow bars show the inter-rater differences. The average inter-rater
difference is 1.22 mm. (b) Tissue deformation estimated by direct correspondence detection
based on maximization of DIAV similarities for the same manually-tracked landmarks in (a).
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Compared with the landmarks by the first rater, the average detection error is 1.62 mm. As for
the second rater, the average registration error between the algorithm and the rater is 1.67 mm.

Li et al. Page 37

Comput Med Imaging Graph. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 17.
Results for serial human scans. (a) Tissue deformation estimated by manually-tracked
landmarks, and the registration error of our registration algorithm in estimating deformation
on these landmarks. The average landmark displacement is 4.26 mm. Compared with the
landmarks by the first rater, the average registration error is 1.13 mm. As for the second rater,
the average registration error between the algorithm and the rater is 1.24 mm. The yellow bars
show the inter-rater differences. The average inter-rater difference is 1.08 mm. (b) Tissue
deformation estimated by direct correspondence detection based on maximization of DIAV
similarities for the same manually-tracked landmarks in (a). Compared with the landmarks by
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the first rater, the average detection error is 1.52 mm. As for the second rater, the average
registration error between the algorithm and the rater is 1.38 mm.
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Figure 18.
The average similarity of DIAVs varying with alpha.
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Figure 19.
(a) Simulated biased field. (b) The histograms of registration errors on synthesized images with
and without biased field and noise.
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