
HoloGen: An open-source toolbox for high-speed hologram

generation

Peter J. Christophera,∗, Andrew Kadis, George S. D. Gordon, Timothy D.
Wilkinson

aCentre of Molecular Materials, Photonics and Electronics, University of Cambridge

Abstract

The rise of virtual and augmented reality systems has prompted an increase in inter-
est in the fields of 2D and 3D computer-generated holography (CGH). The numerical
processing required to generate a hologram is high and requires significant domain
expertise. This has historically slowed the adoption of CGH in emerging fields.

In this paper we introduce HoloGen, an open-source Cuda C and C++ framework
for computer-generated holography. HoloGen unites, for the first time, a wide array
of existing hologram generation algorithms with state of the art performance while
attempting to remain intuitive and easy to use. This is enabled by a C# and Windows
Presentation Framework (WPF) graphical user interface (GUI). A novel reflection
based parameter hierarchy is used to ensure ease of modification. Extensive use
of C++ templates based on the Standard Template Library (STL), compile time
flexibility is preserved while maintaining runtime performance.

The current release of HoloGen unites implementations of well known generation
algorithms including Gerchberg-Saxton (GS), Liu-Taghizadeh (LT), direct search
(DS), simulated annealing (SA) and one-step phase-retrieval (OSPR) with less known
specialist variants including weighted GS and Adaptive OSPR.

Benchmarking results are presented for several key algorithms. The software is
freely available under an MIT license.

Keywords: Computer-Generated Holography, Optics, Iterative Fourier Transform
Algorithm, Gerchberg-Saxton, Liu-Taghizadeh, Direct Search, Simulated
Annealing, Holographic Search, One-Step Phase-Retrieval

∗Corresponding author
Email address: pjc209@cam.ac.uk (Peter J. Christopher)
URL: www.peterjchristopher.me.uk (Peter J. Christopher)

Preprint submitted to Computer Physics Communications September 28, 2021

ar
X

iv
:2

00
8.

12
21

4v
2

 [
ee

ss
.I

V
]

 2
7

Se
p

20
21

PROGRAM SUMMARY
Program Title: HoloGen v2.2.1.17177

Licensing provisions: MIT

Programming language: Cuda, C/C++, C#

Program obtainable from: https://gitlab.com/CMMPEOpenAccess/HoloGen

Maintainers: Peter J. Christopher, the Centre of Molecular Materials, Photonics and Elec-

tronics, University of Cambridge

No. of lines in distributed program: 76,295

Distribution format: ClickOnce installer, GitLab repository

Computer: Variable, Nvidia graphics card required

Operating System: Windows 10 or later

External packages: Cuda, ManagedCuda, MathNet, Newtonsoft.Json, NUnit, AForge, Ac-

cord, ClosedXML, CefSharp, PdfiumViewer, Xceed, NHotkey, SharpDX, MaterialSkin,

Xamarin.forms, HelixToolkit, Dragablz, LiveCharts, MahApps

Nature of problem: Hologram generation for two-dimensional Fourier and Fresnel holo-

grams displayed on amplitude or phase modulating spatial light modulators with binary

or multi-level control

Solution method: Algorithmic variants including Gerchberg-Saxton, Liu-Taghizadeh, Di-

rect Search, Simulated Annealing and One-Step Phase-Retrieval. Includes real-time re-

porting, batch processing and complex field manipulation

Restrictions: Graphical user interface only exposes access to two-dimensional hologram

generation

Unusual features: Includes a novel reflection based parameter hierarchy for ease of modifi-

cation

1. Introduction

Computer-generated holography (CGH) has been anticipated since the middle
of the 1960s [1, 2]. It took until the 1980s for computers to offer the required
performance and computer-generated holography (CGH) to see practical use [3].
CGH is widely used today in fields including fibre and wavelength multiplexing, image
correction, image recognition, optical tweezing and video projection [4, 5, 6, 7, 8, 9].

The ability to use CGH has, however, remained the domain of optics experts. In
this work we present HoloGen, a new open-source package for CGH. To the authors’
knowledge, there is no open-source package capable of generating holograms using
the wide array of modern algorithms, modulation schemes and interfaces available.

We start by introducing the reader to the physics of optical holography, refer-
ring them to companion materials where necessary. We then continue to cover the

2

https://gitlab.com/CMMPEOpenAccess/HoloGen

common classes of algorithms used and to discuss the limitations and constraints of
each. We then discuss the architecture, algorithm implementation, templatisation
and reflection parameter hierarchy used within HoloGen. Finally, we demonstrate
HoloGen in a real-world system and draw conclusions.

2. Background

A spatial light modulator (SLM) with 100% fill factor pixels illuminated by planar
waves produces a hologram in the far-field given by a two-dimensional discrete Fourier
transform (DFT) [10]. This is shown in Figure 1 (left).

Fu,v = F{fx,y} =
1√
NxNy

Nx−1∑

x=0

Ny−1∑

y=0

fxye
−2πi

(
ux
Nx

+ vy
Ny

)
(1)

fx,y = F−1{Fu,v} =
1√
NxNy

Nx−1∑

u=0

Ny−1∑

v=0

Fuve
2πi

(
ux
Nx

+ vy
Ny

)
, (2)

where u and v represent the spatial frequencies and x and y represent the source
coordinates. The fast Fourier transform (FFT) algorithm allows generation per-
formance of O(NxNy logNxNy) where the x/u and y/v respective resolutions are
given by Nx and Ny [11]. Practically this means that in order to find a given
far-field hologram, we must find a discrete aperture function where f(x, y) where
F (u, v) = F{f(x, y)}.

Fresnel or mid-field holograms are similar to their Fraunhofer or far-field coun-
terparts save that they add an additional quadratic phase term.

Real-world SLMs are capable of modulation in only a limited number of states,
typically either phase or amplitude in either a binary or multi-level manner, Figure 1.
The choice between amplitude and phase modulating devices is often decided by the
application and the number of modulation levels of the liquid crystal and backplane
used [12].

The number of modulation levels is dependent on the technology used. Faster
switching ferroelectric devices are typically binary whereas nematic devices often
allow for multi-level control at the expense of switching speed.

Error metrics also vary greatly by application. The phase of the replay field
is unimportant in holographic projection whereas amplitude can be unimportant
in applications such as optical tweezing. For human eye applications, variance is
the primary concern whereas mean square error is more important in lithography.
Many applications are only concerned with a portion of the replay field. Adjusting

3

Im

Re

Im

Re

1/N

Im

Re

Im

Re

2π/N

x

Spatial Light
Modulator

y

u

v

z

Projected
Hologram

x

Spatial Light
Modulator

y

u

v

z

Projected
Hologram

Figure 1: Coordinate systems used in describing a hologram (left) and common spatial light mod-
ulator modulation schemes including binary amplitude (centre top), binary phase (centre bottom),
multi-level amplitude (right top) and multi-level phase (right bottom)

4

error metrics to only include these regions provides additional problem freedom for
improved convergence and algorithm behaviour.

3. Algorithms

A number of algorithms are commonly used in holography. As a far-field hologram
can be considered as a two-dimensional FFT, the inverse FFT (IFFT) of the target
image gives the ideal SLM aperture function as a field of complex values. Real-
world SLMs are capable of modulating light in only phase or amplitude, so hologram
generation becomes a task of adapting the idealised aperture function to meet real-
world constraints [13]. This process of adapting the aperture function to the real-
world modulation constraints is known as quantisation.

Traditional Fourier transforms have a complexity of O(N4) for a square field of
dimension N . An FFT of a square SLM has complexity O(N2 logN) [14]. CGH al-
gorithms exacerbate this, often being O(N2) themselves. For example, running simu-
lated annealing on every pixel of a field with no further optimisations is O(N4 logN).
Moving from a ’hd’ 1080×1920 to ’4k’ 2160×3840 display results in a computational
complexity 21 times higher while only containing 4 times the number of elements.

The achievable quality of a hologram generation process is dependent on the three
freedoms : amplitude, phase and scale. In many applications, only part of the replay
field is controlled, giving amplitude freedom in the other areas. Phase freedom is
often available in projection systems due to the phase insensitivity of the eye and scale
freedom is available when efficiency is less important than fidelity. Exact solutions
to the problem are normally impossible and compromises must be made on these
three constraints in order to produce high quality holograms [15].

3.1. Error Metrics

Perhaps the most common error metric used is mean squared error (MSE). The
MSE EMSE(T,R) is given as a relationship between generated replay field R to target
image T .

EMSE(T,R) =
1

NxNy

x=Nx−1∑

x=0

y=Ny−1∑

y=0

[|T (x, y)| − |R(x, y)|]2 (3)

When perception by the human eye is the primary goal, the structural similarity
index (SSIM) often provides a more useful metric [16]

ESSIM(R,Rn) =
(2µTµR + c1) (2σTR + c2)

(µ2
T + µ2

R + c1) (σ2
T + σ2

R + c2)
(4)

5

where σR and σT are the replay and target variances; µR and µT are the replay
and target means; σTR is the covariance of the two images; c1 and c2 are functions
of pixel dynamic range, L, where c1 = (k1L)2 and c2 = (k2L)2. k1 and k2 are
respectively usually taken as 0.01 and 0.03. HoloGen incorporate MSE and SSIM
variants for both the phase sensitive and phase insensitive case.

3.2. Iterative Fourier Transform Algorithms

Perhaps the most common algorithm is the Gerchberg-Saxton (GS) algorithm
shown in Figure 2 (left). Originally developed in 1972, GS was designed for phase-
retrieval problems before being applied to holography [17]. GS is part of the iterative
Fourier transform algorithm family (IFTAs) and performs best for multi-level phase
SLMs where convergence can occur in only a few iterations. [18]. A number of
variants on GS exist which focus on target modifications, phase randomisation and
weighting to improve convergence.[19]. Perhaps the most common of these is Liu-
Taghizadeh (LT) shown in Figure 2 (right) where only a portion of the replay field
is initially targeted and then expanded with each iteration [20].

Start

EndFourier Transform
R = F {H ′}

Apply Target Intensity
R′u,v = |Tu,v|∠Ru,v

Inverse Fourier Transform
H = F−1 {R′}

Apply SLM Modulation Constraints
H ′x,y = Quantize (Hx,y)

R

R′H

H ′

Start

EndFourier Transform
R = F {H ′}

Apply Target Intensity
R′u,v = |Tu,v|∠Ru,v

Inverse Fourier Transform
H = F−1 {R′}

Apply SLM Modulation Constraints
only in the Region of Interest

H ′x,y =

{
Hx,y + β∆Hx,y, x, y ∈W,
Hx,y, otherwise.

Expand Region
of Interest W

R

R′
H

H ′

Figure 2: Selection of iterative Fourier transform algorithms including Gerchberg-Saxton (left) and
Liu-Taghizadeh (right).

3.3. Holographic Search Algorithms

Many SLMs offer only piecewise modulation. In these cases, approaches that rely
on smooth movements such as the family of IFTA algorithms in Section 3.2 often
fail to converge to an optimal solution and holographic search algorithms (HSAs)
are used instead. HSAs operate by taking an initial guess at a solution and then
iteratively trialling modifications to the guess. This reduces the impact of local
minima.

Perhaps most common is direct search (DS), Figure 3 (left) [21]. DS operates
greedily, using a given error function Error(T,R) to determine whether a given
change has improved or worsened the error [22].

6

Start EndUpdate Fourier Transform

∆Ru,v = 1
NxNy

∆Hx,ye

[
−2πi

(
ux
Nx

+ vy
Ny

)]

Calculate Error
E′ = Error(T,R)

Check Error

Modify Random Pixel
H ′

Reset Pixel
H ← H ′

E ← E′

R

E′

E′ 6 E
E′ > E

H ′

Start EndUpdate Fourier Transform

∆Ru,v = 1
NxNy

∆Hx,ye

[
−2πi

(
ux
Nx

+ vy
Ny

)]

Calculate Error
E′ = Error(T,R)

Update Temperature
t = tcoeffe

−t0 n
NCheck Error

Modify Random Pixel
H ′

Reset Pixel
H ← H ′

E ← E′

R

E′

t, E′

e
E′n−En

t > Rand[0, 1]
e

E′n−En
t < Rand[0, 1]

H ′

Figure 3: Selection of holographic search algorithms including Direct Search (left) and Simulated
Annealing (right).

Simulated annealing (SA) as shown in Figure 3 (right), operates similarly with
the addition of a temperature based probabilistic function that sometimes allows the
acceptance of a worse solution [23]. This improves final image quality at the expense
of longer run times [24].

3.4. Time-Averaged Algorithms

For low-latency or real-time display applications, a third family of techniques
exists. The most well known of these is one-step phase-retrieval (OSPR), Figure 3
(left). The time averaging effects of the human eye allow for high frame-rate SLMs to
show a sequence of sub-frames in quick succession [25]. The MSE of the rolling time-
average of the images follows a reciprocal relationship with the number of sub-frames
N .

MSEospr =
1√
N

x=N∑

n=1

MSEn (5)

The most common variant of OSPR is adaptive OSPR which uses a feedback
loop to compensate for cumulative error [16].

3.5. Algorithm Choice

The choice between the three categories of algorithms is a non-trivial decision
requiring detailed knowledge of the application and SLM used. The primary consid-
erations include the SLM modulation capabilities, the form of the target images and
whether the target is phase insensitive. Figure 5 shows a simple decision flow chart.

4. Implementation and Structure

HoloGen, Figure 6, is built on a MVVMA architecture. This is a standard model-
view-viewmodel (MVVM) framework commonly used in C# Windows Presentation

7

StartEndOutput Sub-frame H ′

Randomise Target Phase
R′u,v = |Tu,v|∠Rand[0, 2π]

Inverse Fourier Transform
H = F−1 {R′}

Apply SLM Modulation Constraints
H ′x,y = Quantize (Hx,y)

R′H

H ′
StartEndOutput Sub-frame H ′

Randomise Target Phase
R′u,v = |Tu,v|∠Rand[0, 2π]

Inverse Fourier Transform
H = F−1 {R′}

Apply SLM Modulation Constraints
H ′x,y = Quantize (Hx,y)

Update Light Field and Target
F ← F + F {H ′} , T ← T + nT−F

N−n

R′
H

H ′

Figure 4: Selection of time-averaging algorithms including One-Step Phase-Retrieval (left) and
Adaptive One-Step Phase-Retrieval (right).

Use a Gerchberg-Saxton
algorithm or variant

Start

Do you have a
choice of SLM?

Is image quality or
generation speed more

important?

no

quality

Can you use a multi-
level phase SLM?

yes

yes

Use a Simulated Annealing
algorithm or variant

Use a One-Step Phase-Retrieval
algorithm or variant

speed

no

Is image quality or
generation speed more

important?

speed

quality
Is your SLM a multi-
level phase device?

Use a Gerchberg-Saxton
algorithm or variant

yes

Is your SLM binary?

no

yes

Try a Gerchberg-Saxton or
Simulated Annealing algorithm

no

Figure 5: Basic decision process for algorithm choice when designing a holographic system.

8

Framework (WPF) applications with an additional algorithms level written in a
more traditional procedural/functional style on top of an Nvidia Cuda architecture
interfaced in C++. While the application has targeted traditional structure for ease
of extension, a number of structural and implementation features deserve mention
and additional detail is packaged with the source code.

Figure 6: Screenshot of the HoloGen application showing the target image (red) overlaid by the
generated binary amplitude hologram (grey)

4.1. Graphical User Interface

The Graphical User Interface (GUI) is based on the Windows presentation frame-
work (WPF). WPF in turn uses the extensible application markup language (XAML)
to define the user interface components. Like many modern GUI packages, WPF
encourages binding where elements in the view layer are bound to properties and
collections in the ViewModel layer. This approach allows for two way data flow
and removes much of the filler code found in older primarily event driven architec-
tures such as WinForms. This approach also allows for easy runtime injection and
extension, meaning that GUI portions are only loaded when required.

4.2. Reflection Parameter Hierarchy

HoloGen uses a reflection based parameter and command system. This is in con-
trast to the XML parameter sheet systems widely used by comparable applications.

9

Instead of the parameter types and interactions being defined in parameter sheets
which are parsed at runtime, the parameter system is coded into the C# directly.
This significantly reduces the runtime overhead as well as improves the error check-
ing available at compile time. The downside is an increased architecture exposure of
the parameter hierarchy.

4.3. Interop

For fast and easy transfer of large images to the C++ subsystem, a three-level
architecture is used. The use of managed C++ increases the structural complexity
but allows the C# application layer to be ignorant of the dynamic link library (DLL)
interface. The use of the native C++ layer allows the use of Nvidia Thrust tools as
class members.

4.4. Fast Fourier Transforms

The majority processing factor in any holographic system is the two-dimensional
Fourier transform. Our tests found that the FFT calculation or update step took
over 98% of the runtime for all algorithms on our system when input and output
operations were excluded. As a result, any implementation is heavily dependent on
the FFT library used.

HoloGen currently uses cuFFT, Nvidia’s FFT implementation for their graphical
processing units (GPUs), due to its high reliability and performance [26]. A graph
of the performance of cuFFT against resolution is shown in Figure 7 along with the
idealised O(N2 logN) trend line.

4.5. Floating Points

The IEEE standards define 32-bit and 64-bit floating point numbers, represented
in C++ by single and double values [27]. Less widely used is the 16-bit floating

point [28]. 16-bit numbers are ideal for GPU based computation and in particular
holography where error is less likely to be cumulative. Real-world image formats are
typically 8-bit per colour meaning that a 16-bit floating point, when scaled correctly,
can more than accommodate the necessary information while significantly calculation
improving performance. The scaling element is key for 16-bit operations where care
must be taken to normalise all FFT operations to reduce unexpected errors and
overflows.

HoloGen is capable of being compiled in 16-, 32- and 64- bit versions with the
application performance being approximately proportional to the reciprocal of the
number of data bits. HoloGen also automatically scales every image in order to
increase accuracy for low numbers of bits.

10

28 29 210 211 212
0

2

4

6

8

10

12

14

16

Image resolution in pixels

It
er
a
ti
o
n
ti
m
e
in

m
s

fftshift ◦ fft2 ◦ fftshift

Fit to C + O(N2log(N)2)

Figure 7: Performance of cuFFT for differing square image resolutions. Error bars show the 2σ
confidence interval measured from 100 independent runs of 1000 pairs of FFTs and IFFTs

4.6. Templatisation

The standard version of HoloGen tracks properties such as the illumination fields
that are not necessary in some applications. By making significant use of the C++
template syntax, this can be tuned at compile time. This allows compile time flexi-
bility in the required algorithm portions while still offering runtime performance.

This is combined with the Nvidia runtime compilation (NVRTC) which allows
users the ability to modify algorithms at runtime. This is not currently exposed
in the GUI for HoloGen but is available in the application programming interface
(API).

4.7. Example

The code listing in Figure 8 demonstrates a number of these principles in ac-
tion. The struct shown, quantiseDiscretePhase , exposes the () operator.
The Thrust library is used to call this as shown in Figure 9 where Thrust handles
the memory management of calling the quantiseDiscretePhase operator on its

arguments. Properties such as FloatType and IntType allow for changing the

numerical representation at runtime while use of the if constexpr syntax from
C++17 allows for unwanted execution pathways to by ignored. Modern C++ allows
for significant flexibility between runtime (const) and compile time (constexpr)

11

1 template<boo l F u l l C i r c l e , typename FloatType , typename IntType>
2 s t r u c t q u a n t i s eD i s c r e t ePha s e {
3 p r i v a t e :
4 c on s t e xp r f l o a t p i =3.14159265359; c on s t e xp r f l o a t p i 2 =6.28318530718;
5 i n l i n e c on s t e xp r con s t F loatType ConstrainSLM (cons t F loatType& d i f fA r g , c on s t e xp r F loatType i l l umArg ,
6 c on s t e xp r F loatType i l l umAbs) {
7 i f c o n s t e xp r (! F u l l C i r c l e) {
8 wh i l e ((d i f fA r g− maxSLMArg)> p i 2) d i f f A r g−= p i 2 ;
9 wh i l e ((d i f fA r g− minSLMArg)<− p i 2) d i f f A r g+= p i 2 ;

10 i f (d i f f A r g > maxSLMArg)
11 r e t u r n t h r u s t : : po l a r<FloatType>(i l l umAbs ,
12 i l l umArg+(d i f fA r g< wrapMaxSLMArg? maxSLMArg : minSLMArg)) ;
13 i f (d i f f A r g< minSLMArg)
14 r e t u r n t h r u s t : : po l a r<FloatType>(i l l umAbs ,
15 i l l umArg+(d i f f A r g > wrapMinSLMArg? minSLMArg : maxSLMArg)) ;
16 }
17 r e t u r n d i f f A r g ;
18 }
19 con s t F loatType minSLMArg ; con s t F loatType maxSLMArg ;
20 con s t IntType l e v e l s ; c on s t F loatType spac ;
21 con s t F loatType wrapMinSLMArg ; con s t F loatType wrapMaxSLMArg ;
22 p u b l i c :
23 qu an t i s eD i s c r e t ePh a s e (con s t F loatType minSLMArg , con s t F loatType maxSLMArg , con s t IntType l e v e l s) :
24 minSLMArg (minSLMArg) , maxSLMArg (maxSLMArg) , l e v e l s (l e v e l s) , s pa c ((maxSLMArg− minSLMArg)/ (l e v e l s −1)) ,
25 wrapMinSLMArg (maxSLMArg+fmod ((maxSLMArg−minSLMArg) , p i 2) / 2 . 0) ,
26 wrapMaxSLMArg (minSLMArg−fmod ((maxSLMArg−minSLMArg) , p i 2) / 2 . 0) {};
27 d e v i c e c on s t e xp r con s t t h r u s t : : complex<FloatType> op e r a t o r () (con s t t h r u s t : : complex<FloatType>& inpu t) {
28 con s t auto inputArg=G l ob a l s : : Arg (i n pu t . r e a l () , i n pu t . imag ()) ;
29 con s t auto d i f f A r g=ConstrainSLM (fmod (inputArg , p i 2) , 0 , 1) ;
30 con s t auto d i s cA rg= minSLMArg+ spac∗ r ound f ((d i f fA r g− minSLMArg)/ spac) ;
31 r e t u r n t h r u s t : : po l a r<FloatType >(1 , d i s cA rg) ;
32 }
33 } ;

Figure 8: HoloGen quantisation operator for nearest-neighbour quantisation for a discrete phase
level SLM.

1 t h r u s t : : t r an s f o rm (De r i v e dPo l i c y , i n pu t . beg i n () , i n pu t . end () ,
2 t h r u s t : : m a k e z i p i t e r a t o r (t h r u s t : : make tup l e (I l l um i n a t i o nPha s e s−>beg in () , I l l um i n a t i o nMagn i t ud e s−>beg in ())) ,
3 i n pu t . beg i n () , q u an t i s eD i s c r e t ePha s e<F u l l C i r c l e , F loatType , IntType>(MinSLMValue , MaxSLMValue , L e v e l s)) ;

Figure 9: Calling a operator using Thrust.

constness. By changing the DerivedPolicy , it is possible to compile the application
for CPU or for GPU operation.

4.8. Technical Documentation

A number of technical documents are available for more information. A detailed
overview of the packages, libraries and main classes can be found on the arXiv.
[29] A guide to building, deployment and source code editing can be found in the
README.md file in the repository1. A Doxygen compilation of in package documen-
tation can also be found in the repository2.

1https://gitlab.com/CMMPEOpenAccess/HoloGen/README.md
2https://gitlab.com/CMMPEOpenAccess/HoloGen/Documentation/refman.pdf

12

https://gitlab.com/CMMPEOpenAccess/HoloGen/README.md
https://gitlab.com/CMMPEOpenAccess/HoloGen/Documentation/refman.pdf

5. Validation

HoloGen was developed with a research group with significant ongoing research
in holographic algorithms and applications and has been incorporated in a number
of experimental systems [30, 31, 32, 33, 34, 35, 36, 37, 38, 39].

Figure 10 shows a binary-phase OSPR image generated using HoloGen for a
512×512 pixel image showing the generated hologram (left), target image (top right)
and result (bottom right). The poor reproduction quality is due to the limitations
of the optical setup used.

Figure 10: Binary phase hologram generated with HoloGen including target image (top right),
single binary subframe (left) and measured result (bottom right). Captured using a Canon 5D
Mark III with a 24-105mm lens.

6. Conclusion

In this paper we have introduced a novel open-source software package for gen-
erating two-dimensional holograms suitable for fibre and wavelength multiplexing,
image correction, image recognition, optical tweezing and video projection. A brief
introduction to computer-generated holography was presented and the implemented
algorithms introduced. The structure and features of HoloGen were also discussed
before an example of HoloGen in practice was presented.

Acknowledgements

PJC acknowledges funding from the Engineering and Physical Sciences Research
Council (EP/L016567/1, EP/T008369/1 and EP/V055003/1). GSDG acknowledges

13

funding from Cancer Research UK (C47594/A21102, C55962/A24669); and a pump-
priming award from the CRUK Cambridge Centre Early Detection Programme (A20976)

References

[1] J. P. Waters, Holographic image synthesis utilizing theoretical methods, Applied
physics letters 9 (11) (1966) 405–407.

[2] D. Brown, Decentering Distortion of Lenses, Photometric Engineering 32 (3)
(1966) 444–462.

[3] T. Stone, N. George, Hybrid diffractive-refractive lenses and achromats., Ap-
plied optics 27 (14) (1988) 2960–2971. doi:10.1364/AO.27.002960.

[4] W. A. Crossland, I. G. Manolis, M. M. Redmond, K. L. Tan, T. D. Wilkinson,
M. J. Holmes, T. R. Parker, H. H. Chu, J. Croucher, V. A. Handerek, Others,
Holographic optical switching: the, Journal of Lightwave Technology 18 (12)
(2000) 1845.

[5] B. Z. Dong, G. Q. Zhang, G. Z. Yang, B. Y. Gu, S. H. Zheng, D. H. Li, Y. S.
Chen, X. M. Cui, M. L. Chen, H. D. Liu, Design and fabrication of a diffractive
phase element for wavelength demultiplexing and spatial focusing simultane-
ously., Applied optics 35 (35) (1996) 6859–64. doi:46547[pii].
URL http://www.ncbi.nlm.nih.gov/pubmed/21151283

[6] A. Jesacher, S. Fürhapter, S. Bernet, M. Ritsch-Marte, Diffractive optical
tweezers in the Fresnel regime., Optics Express 12 (10) (2004) 2243–2250.
doi:10.1364/OPEX.12.002243.
URL http://www.ncbi.nlm.nih.gov/pubmed/19475060

[7] R. A. Muller, A. Buffington, Real-time correction of atmospherically degraded
telescope images through image sharpening, Journal of the Optical Society of
America 64 (9) (1974) 1200. doi:10.1364/JOSA.64.001200.
URL https://www.osapublishing.org/abstract.cfm?URI=josa-64-9-1200

[8] A. Georgiou, J. Christmas, N. Collings, J. Moore, W. A. Crossland, Aspects of
hologram calculation for video frames, Journal of Optics A: Pure and Applied
Optics 10 (3) (2008) 35302. doi:10.1088/1464-4258/10/3/035302.

[9] A. J. Cable, E. Buckley, P. Mash, N. A. Lawrence, T. D. Wilkinson, W. A.
Crossland, 53 . 1 : Real-time Binary Hologram Generation for High-quality

14

http://dx.doi.org/10.1364/AO.27.002960
http://www.ncbi.nlm.nih.gov/pubmed/21151283
http://www.ncbi.nlm.nih.gov/pubmed/21151283
http://www.ncbi.nlm.nih.gov/pubmed/21151283
http://dx.doi.org/46547 [pii]
http://www.ncbi.nlm.nih.gov/pubmed/21151283
http://www.ncbi.nlm.nih.gov/pubmed/19475060
http://www.ncbi.nlm.nih.gov/pubmed/19475060
http://dx.doi.org/10.1364/OPEX.12.002243
http://www.ncbi.nlm.nih.gov/pubmed/19475060
https://www.osapublishing.org/abstract.cfm?URI=josa-64-9-1200
https://www.osapublishing.org/abstract.cfm?URI=josa-64-9-1200
http://dx.doi.org/10.1364/JOSA.64.001200
https://www.osapublishing.org/abstract.cfm?URI=josa-64-9-1200
http://dx.doi.org/10.1088/1464-4258/10/3/035302

Video Projection Applications, in: SID International Symposium Digest of
Technical Papers, Vol. 35, Wiley Online Library, 2004, pp. 1431–1433. doi:

10.1889/1.1825772.

[10] J. W. Goodman, Introduction to Fourier Optics, Third Edition, Roberts and
Company Publishers, 2004. doi:10.1117/1.601121.

[11] J. Carpenter, Graphics processing unit–accelerated holography by simulated
annealing, Optical Engineering 49 (9) (2010) 095801. doi:10.1117/1.3484950.
URL http://opticalengineering.spiedigitallibrary.org/article.

aspx?doi=10.1117/1.3484950

[12] Y. Huang, E. Liao, R. Chen, S.-T. Wu, Liquid-Crystal-on-Silicon for Aug-
mented Reality Displays, Applied Sciences 8 (12) (2018) 1–17. doi:10.3390/

app8122366.

[13] T. Bendory, R. Beinert, Y. C. Eldar, Fourier phase retrieval: Uniqueness and
algorithms, arXiv preprint arXiv:1705.09590.

[14] J. W. Cooley, J. W. Tukey, An Algorithm for the Machine Calculation of
Complex Fourier Series, Mathematics of Computation 19 (90) (1965) 297.
doi:10.2307/2003354.
URL http://www.jstor.org/stable/2003354?origin=crossref

[15] F. Wyrowski, Diffractive optical elements: iterative calculation of quantized,
blazed phase structures, Journal of the Optical Society of America A 7 (6)
(1990) 961. doi:10.1364/JOSAA.7.000961.

[16] E. Buckley, Real-time error diffusion for signal-to-noise ratio improvement in a
holographic projection system, IEEE/OSA Journal of Display Technology 7 (2)
(2011) 70–76. doi:10.1109/JDT.2010.2094180.

[17] R. W. Gerchberg, W. O. Saxton, A practical algorithm for the determination of
phase from image and diffraction plane pictures, Optik 35 (2) (1972) 237–246.
doi:10.1070/QE2009v039n06ABEH013642.
URL http://ci.nii.ac.jp/naid/10010556614/

[18] J. Fienup, Iterative method applied to image reconstruction and to computer-
generated holograms, in: Applications of Digital Image Processing III, Vol. 207,
International Society for Optics and Photonics, 1979, pp. 2–14.

15

http://dx.doi.org/10.1889/1.1825772
http://dx.doi.org/10.1889/1.1825772
http://dx.doi.org/10.1117/1.601121
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3484950
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3484950
http://dx.doi.org/10.1117/1.3484950
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3484950
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.3484950
http://dx.doi.org/10.3390/app8122366
http://dx.doi.org/10.3390/app8122366
http://www.jstor.org/stable/2003354?origin=crossref
http://www.jstor.org/stable/2003354?origin=crossref
http://dx.doi.org/10.2307/2003354
http://www.jstor.org/stable/2003354?origin=crossref
http://dx.doi.org/10.1364/JOSAA.7.000961
http://dx.doi.org/10.1109/JDT.2010.2094180
http://ci.nii.ac.jp/naid/10010556614/
http://ci.nii.ac.jp/naid/10010556614/
http://dx.doi.org/10.1070/QE2009v039n06ABEH013642
http://ci.nii.ac.jp/naid/10010556614/

[19] J. R. Fienup, Reconstruction of an object from the modulus of its Fourier trans-
form, Optics Letters 3 (1) (1978) 27. arXiv:78, doi:10.1364/OL.3.000027.
URL https://www.osapublishing.org/abstract.cfm?URI=ol-3-1-27

[20] J. S. Liu, M. R. Taghizadeh, Iterative algorithm for the design of diffractive
phase elements for laser beam shaping., Optics letters 27 (16) (2002) 1463–1465.
doi:10.1364/OL.27.001463.

[21] B. K. Jennison, J. P. Allebach, D. W. Sweeney, Direct binary search computer-
generated holograms: an accelerated design technique and measurement of wave-
front quality, in: OE/LASE’89, International Society for Optics and Photonics,
1989, pp. 2–9.

[22] B. B. Chhetri, S. Yang, T. Shimomura, Stochastic Approach in the Efficient
Design of the Direct-Binary-Search Algorithm for Hologram Synthesis, Applied
Optics 39 (32) (2000) 5956. doi:10.1364/AO.39.005956.
URL http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-32-5956

[23] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, et al., Optimization by simulated
annealing, science 220 (4598) (1983) 671–680.

[24] H. Akahori, Spectrum leveling by an iterative algorithm with a dummy area
for synthesizing the kinoform., Applied optics 25 (5) (1986) 802–811. doi:

10.1364/AO.25.000802.

[25] E. Buckley, 70.2: Invited Paper: Holographic Laser Projection Technology, in:
SID Symposium Digest of Technical Papers, Vol. 39, Wiley Online Library, 2008,
p. 1074. doi:10.1889/1.3069321.

[26] P. Steinbach, M. Werner, gearshifft–the fft benchmark suite for heterogeneous
platforms, in: International Supercomputing Conference, Springer, 2017, pp.
199–216.

[27] I. of Electrical, E. Engineers, Lasers and laser-related equipment - Determination
of laser-induced damage threshold of optical surfaces, Standard, Institute of
Electrical and Electronics Engineers (1985).

[28] I. of Electrical, E. Engineers, IEEE Standard for Binary Floating-Point Arith-
metic, Standard, Institute of Electrical and Electronics Engineers (2008).

[29] P. J. Christopher, T. D. Wilkinson, Structure and design of hologen (2020).
arXiv:2006.10509.

16

https://www.osapublishing.org/abstract.cfm?URI=ol-3-1-27
https://www.osapublishing.org/abstract.cfm?URI=ol-3-1-27
http://arxiv.org/abs/78
http://dx.doi.org/10.1364/OL.3.000027
https://www.osapublishing.org/abstract.cfm?URI=ol-3-1-27
http://dx.doi.org/10.1364/OL.27.001463
http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-32-5956
http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-32-5956
http://dx.doi.org/10.1364/AO.39.005956
http://www.opticsinfobase.org/abstract.cfm?URI=ao-39-32-5956
http://dx.doi.org/10.1364/AO.25.000802
http://dx.doi.org/10.1364/AO.25.000802
http://dx.doi.org/10.1889/1.3069321
http://arxiv.org/abs/2006.10509

[30] P. J. Christopher, J. Lake, D. Dong, H. Joyce, T. Wilkinson, Improving holo-
graphic search algorithms using sorted pixel selection 36 (9) (2019) 1456–1462.
doi:https://doi.org/10.1364/JOSAA.36.001456.

[31] P. J. Christopher, Y. Wang, T. D. Wilkinson, Predictive search algorithm for
phase holography, J. Opt. Soc. Am. A 36 (12) (2019) 2068–2075. doi:10.1364/
JOSAA.36.002068.

[32] P. J. Christopher, R. Mouthaan, V. Bheemireddy, T. D. Wilkinson, Improving
performance of single-pass real-time holographic projection, Optics Communi-
cations 457 (2020) 124666. doi:https://doi.org/10.1016/j.optcom.2019.

124666.

[33] P. J. Christopher, T. D. Wilkinson, Relative limitations of increasing the number
of modulation levels in computer generated holography, Optics Communications
462 (2020) 125353. doi:https://doi.org/10.1016/j.optcom.2020.125353.

[34] P. J. Christopher, R. Mouthaan, A. M. Soliman, T. D. Wilkinson, Sympa-
thetic quantisation - a new approach to hologram quantisation, Optics Commu-
nications 473 (2020) 125883. doi:https://doi.org/10.1016/j.optcom.2020.
125883.

[35] P. J. Christopher, R. Mouthaan, G. S. Gordon, T. D. Wilkinson, Holographic
predictive search: Extending the scope, Optics Communications 467 (2020)
125701. doi:https://doi.org/10.1016/j.optcom.2020.125701.

[36] P. J. Christopher, R. Mouthaan, J. P. Freeman, T. D. Wilkinson, Improving
pixel differentiation in holographic images (2019). arXiv:1912.12196.

[37] P. J. Christopher, R. Mouthaan, M. El Guendy, T. D. Wilkinson, Linear-time
algorithm for phase-sensitive holography, Optical Engineering 59 (8) (2020)
085104.

[38] P. J. Christopher, T. D. Wilkinson, Variance and error in one-step phase-
retrieval (2019). arXiv:1911.00045.

[39] A. Kadis, Y. Wang, D. Dong, P. Christopher, R. Mouthaan, T. Wilkinson,
HoloBlade: An open-hardware spatial LightModulator driver platform for Holo-
graphicDisplays, Applied Opticsdoi:10.1364/ao.404345.

17

http://dx.doi.org/https://doi.org/10.1364/JOSAA.36.001456
http://dx.doi.org/10.1364/JOSAA.36.002068
http://dx.doi.org/10.1364/JOSAA.36.002068
http://dx.doi.org/https://doi.org/10.1016/j.optcom.2019.124666
http://dx.doi.org/https://doi.org/10.1016/j.optcom.2019.124666
http://dx.doi.org/https://doi.org/10.1016/j.optcom.2020.125353
http://dx.doi.org/https://doi.org/10.1016/j.optcom.2020.125883
http://dx.doi.org/https://doi.org/10.1016/j.optcom.2020.125883
http://dx.doi.org/https://doi.org/10.1016/j.optcom.2020.125701
http://arxiv.org/abs/1912.12196
http://arxiv.org/abs/1911.00045
http://dx.doi.org/10.1364/ao.404345

	1 Introduction
	2 Background
	3 Algorithms
	3.1 Error Metrics
	3.2 Iterative Fourier Transform Algorithms
	3.3 Holographic Search Algorithms
	3.4 Time-Averaged Algorithms
	3.5 Algorithm Choice

	4 Implementation and Structure
	4.1 Graphical User Interface
	4.2 Reflection Parameter Hierarchy
	4.3 Interop
	4.4 Fast Fourier Transforms
	4.5 Floating Points
	4.6 Templatisation
	4.7 Example
	4.8 Technical Documentation

	5 Validation
	6 Conclusion

