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Abstract
Fourier Amplitude Sensitivity Test (FAST) is one of the most popular uncertainty and sensitivity
analysis techniques. It uses a periodic sampling approach and a Fourier transformation to
decompose the variance of a model output into partial variances contributed by different model
parameters. Until now, the FAST analysis is mainly confined to the estimation of partial variances
contributed by the main effects of model parameters, but does not allow for those contributed by
specific interactions among parameters. In this paper, we theoretically show that FAST analysis
can be used to estimate partial variances contributed by both main effects and interaction effects of
model parameters using different sampling approaches (i.e., traditional search-curve based
sampling, simple random sampling and random balance design sampling). We also analytically
calculate the potential errors and biases in the estimation of partial variances. Hypothesis tests are
constructed to reduce the effect of sampling errors on the estimation of partial variances. Our
results show that compared to simple random sampling and random balance design sampling,
sensitivity indices (ratios of partial variances to variance of a specific model output) estimated by
search-curve based sampling generally have higher precision but larger underestimations.
Compared to simple random sampling, random balance design sampling generally provides higher
estimation precision for partial variances contributed by the main effects of parameters. The
theoretical derivation of partial variances contributed by higher-order interactions and the
calculation of their corresponding estimation errors in different sampling schemes can help us
better understand the FAST method and provide a fundamental basis for FAST applications and
further improvements.
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1. Introduction
Models are popular tools to help us understand and predict potential behaviors of different
systems in physics, chemistry, biology, environmental sciences and social sciences. For a
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better use of the model and a better understanding of modeled systems, it is important that
the model users quantify the overall amount of uncertainty in a model output (referred to as
uncertainty analysis) and the importance of parameters in their contributions to uncertainty
in the model output (referred to as sensitivity analysis). Sensitivity analysis techniques can
be divided into two groups (Saltelli et al., 2000; Borgonovo et al., 2003): local sensitivity
analysis methods and global sensitivity analysis methods. The local sensitivity analysis
techniques examine the response of model output by varying model parameters one at a time
around a local neighborhood of their central values. The global sensitivity techniques
examine the global response (i.e., response averaged over variations of all parameters) of
model output by exploring a finite (or even an infinite) region. The local sensitivity analysis
is easy to implement, but dependent on central values of parameters. In addition, the local
sensitivity analysis is not able to estimate the amount of uncertainty in the model output.
Thus, global sensitivity analysis methods are generally preferred over local sensitivity
analysis.

The global sensitivity analysis generally encompasses two processes: (1) sampling of
parameters values from defined probability density functions for parameters; and (2)
quantification of uncertainties in the model output contributed by different parameters.
Many uncertainty and sensitivity analysis techniques are now available (Saltelli et al., 2000,
2005). They include Fourier Amplitude Sensitivity Test (FAST) (Cukier et al., 1973;
Schaibly and Shuler, 1973; Cukier et al., 1975, 1978); the screening methods (Morris, 1991;
Saltelli et al., 1995; Henderson-Sellers and Henderson-Sellers, 1996; Cryer and Havens,
1999; Beres and Hawkins, 2001; Saltelli et al., 2009); regression-based methods (Helton,
1993; Helton and Davis, 2002, 2003; Helton et al., 2005, 2006); Sobol's method (Sobol,
1993); McKay's one-way ANOVA method (McKay, 1997); and moment independent
approaches (Park and Ahn, 1994; Chun et al., 2000; Borgonovo, 2006, 2007; Borgonovo
and Tarantola, 2008). The global sensitivity analysis techniques differ in their algorithms for
sampling or uncertainty quantifications.

FAST is one of the most popular global sensitivity analysis techniques. It uses a periodic
sampling approach and a Fourier transformation to decompose the variance of a model
output into partial variances contributed by different model parameters. Ratios of partial
variances to model output variance are used to measure the parameters' importance in their
contributions to uncertainty in the model output. The theory of FAST was first proposed by
Cukier et al. (1973, 1975, 1978). The traditional FAST analysis uses a periodic sampling
approach to generate a search curve in the parameter space. The periodic sample of each
parameter is assigned with a characteristic frequency (i.e., a distinct integer), which is used
to determine the parameter's contribution to the variance of a model output based on a
Fourier transformation. Koda et al. (1979) and McRae et al. (1982) provided the
computational codes for the traditional FAST analysis. To reduce the estimation errors in the
sensitivity indices, characteristic frequencies need to be selected based on certain criteria
(see Section 2.2 for details), which could be difficult for models with many parameters. In
view of that, Tarantola et al. (2006) introduced a random balance design sampling method to
avoid the difficulty of selecting characteristic frequencies. FAST analysis is originally
developed for models with independent parameters. In order to extend FAST for models
with dependent parameters, Xu and Gertner (2007, 2008) introduced a random reordering
approach to account for rank correlations among parameters.

FAST is computationally efficient and can be used for nonlinear and non-monotonic models.
Thus, it has been widely applied in the uncertainty and sensitivity analysis of different
models, such as chemical reaction models (Haaker and Verheijen, 2004); atmospheric
models (Collins and Avissar, 1994; Rodriguez-Camino and Avissar, 1998; Kioutsioukis et
al., 2004); nuclear waste disposal models (Lu and Mohanty, 2001); soil erosion models
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(Wang et al., 2001); hydrological models (Francos et al., 2003); matrix population models
(Xu and Gertner, 2009); and forest landscape models (Xu et al., 2009).

Although the FAST method has been widely applied to different models, it is mainly
confined to the estimation of partial variances contributed by the main effects of model
parameters. For the traditional search-curve based sampling, it has been heuristically shown
for simple test models that FAST can be used to estimate partial variances contributed by
parameter interactions using linear combination of characteristic frequencies through the
exploration of Fourier amplitudes at different frequencies (Saltelli et al., 1999). Based on
that, Saltelli et al. (1999) proposed a frequency selection method to estimate the sum of
partial variances contributed by a special type of interactions (i.e., all interactions involving
a parameter of interest) using the traditional search-curve based sampling. However, there is
a lack of theoretical understanding and no proof for the calculation of partial variances
contributed by the interactions among parameters, which may hinder future development of
FAST. Furthermore the heuristic understanding does not allow for the estimation of partial
variances contributed by the interactions among specific parameters due to a lack of
knowledge of potential errors and biases for the estimation of partial variances. Finally, the
heuristic understanding is only based on the traditional search-curve based sampling
approach. It is important that we can also calculate the partial variances contributed by
interactions for new sampling approaches (e.g., the random balance design sampling), in
view that it would be difficult to apply the traditional sampling to modern models with many
parameters (e.g., 50 parameters).

In this paper, we provide a theoretical derivation of FAST for higher-order sensitivity
indices and compare three sampling approaches for FAST (i.e., traditional search-curve
based sampling, simple random sampling, and random balance design sampling). We also
analytically calculate the potential errors and biases in the estimation of partial variances
with different sampling approaches. Finally, we compare the performance of the three
sampling approaches for a simple test model. The theoretical derivation of partial variances
contributed by higher order interactions and the calculation of their corresponding
estimation errors in different sampling schemes can help us better understand the FAST
method and extend FAST to applications where interactions among model parameters are
concerned.

The paper is organized as follows. Section 2.1 introduces the background of FAST and
provides a theoretical derivation of FAST for first-order and higher-order sensitivity indices.
Section 2.2 provides algorithms for calculating partial variances contributed by the main
effects and interaction effects of parameters for the traditional search-curve based sampling.
Section 2.3 proposes a simple random sampling approach and hypothesis tests to reduce
estimation errors and biases for partial variances. Section 2.4 introduces random balance
design sampling and determines potential estimation errors and biases for partial variance
calculations. Section 3 compares the estimation errors and biases in three sampling
approaches and provides a summary of procedures for FAST analysis. Section 4 shows the
results of a comparison of FAST using different sampling approaches based on a simple test
model. Section 5 discusses extensions of the current framework for other potential
improvements. Section 6 provides a summary of the paper.

2. Methods
2.1. Variance decomposition by FAST

Consider a computer model y = g(x1,…, xn), where xi(i = 1,…, n) is a model parameter with
probability density function fi (xi) and n is the total number of parameters of interest. The
parameter space is defined as
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(1)

The original version of the FAST assumes independence among model parameters. The
main idea of FAST is to introduce a signal for each parameter (by generating periodic
samples of model parameters using a periodic sampling approach) and then use a Fourier
transformation to decompose variance of model output y into partial variances contributed
by different model parameters. In order to generate periodic samples for a specific parameter
xi, the FAST method uses a periodic search function (a function to search or explore the
parameter space) as follows,

(2)

where θi is a random variable uniformly distributed between 0 and 2π. For the sampled
values of θi, the G(θi) is a periodic function used to generate the corresponding samples for
parameter xi which will follow the pre-specified probability density function fi(xi). For a
uniformly distributed parameter xi between 0 and 1, G̃ (xi) should be a solution of the
following equation (Cukier et al., 1978),

(3)

with G(0) = 0. Using the solution of Eq. (3), Saltelli et al. (1999) proposed one popular
periodic search function as follows,

(4)

For a non-uniformly distributed function, the periodic search function can be built using the

parameter's inverse cumulative distribution function  and the search function
in Eq. (4) becomes (Lu and Mohanty, 2001),

(5)

Using search functions based on Eq. (5), the parameter space can now be explored by
samples in the θ-space defined as follows,

A main concern in uncertainty and sensitivity analysis is to calculate the variance of model
output y [i.e., V (y)] and the conditional variance of y the expected value of y given a
specific set of parameters (Saltelli and Tarantola, 2002; Saltelli et al., 2010). The conditional
variances are used to measure the importance of parameters in their contributions to
uncertainty in the model output. For example, a relatively large conditional variance for the
expected value of y given xi [i.e., V(E(y | xi))] will indicate that a relatively large proportion
of model output variance is contributed by parameter xi. Similarly, a relatively large
conditional variance of the expected value of y given a specific set of parameters will
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indicate that a relatively large proportion of model output variance is contributed by this set
of parameters. Using the Strong Law of Large Numbers, it can be shown that the conditional
variances for the expected values of y given specific parameters can now be calculated in the
θ-space (see Appendix A in supplementary materials for a proof). Namely,

(6)

where Vx(•) and are Vθ (•) the conditional variances calculated in the parameter space and θ-
space respectively; Ex(•) and Eθ (•) are the expected values calculated in the parameter space
and θ-space respectively; {x1,…, xn} \ xi represents all parameters except xi. For a subset
(xsub) of all parameters {x1,…, xn}, V(xsub) represents partial variance in model output y
resulted from uncertainties in the subset parameters xsub. V(x1,…,xn) represents the variance
of model output y resulted from uncertainties in all model parameters. Namely,

(7)

Following the variance decomposition in analysis of variance (ANOVA) assuming
parameter independence (Saltelli and Tarantola, 2002), we define

(8)

as partial variances of model output contributed by the first-order (or main) effects, the
second-order interaction effects, and so on, until the nth order interaction effects of model
parameters. Summing all the left and right terms in Eq. (8), we get the variance
decomposition as follows,

(9)

This equation suggests that the model output variance resulting from parameter uncertainties
can be decomposed into partial variances contributed by the first-order effects, the second-
order interaction effects, the third-order interaction effects, and so on, until the nth order
interaction effects of model parameters. Dividing both sides of Eq. (9) by V(x1,…,xn), we get

(10)

where
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(11)

represent the first, second, and so on until nth order sensitivity index, respectively.

Using search functions in Eq. (5), the model output y becomes a multiple periodic function
of (θ1,…, θn). Thus, we can apply a multiple Fourier transformation to the model y =
g(G(θ1),…, G(θn)) over (θ1,…, θn). Namely, we have

(12)

where

(13)

Notice that  is the expected value of g(G(θ1),…, G(θn))e−i(r1θ1+…+rnθn) in view that
θ1,…, θn are independently and uniformly distributed in the θ-space. Namely,

(14)

which can be estimated based on N samples of θ1,…, θn as follows,

(15)

where  represents the jth sample for θi· Using the multiple Fourier transformation, we can
also estimate the partial variances in Eq. (8) by the sum of Fourier amplitudes (i.e., |
Cr1,…,rn|2) at different frequencies (see Appendix B in supplementary materials for proof),

(16)

where ri ∈ (−∞,+∞) for i = 1,…, n. Eq. (16) shows that the Fourier amplitudes

, and  are resulted from the main effects, second
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order interaction effects, and nth interaction effects of parameters, respectively. Thus, to
calculate the partial variances, we only need to estimate the Fourier coefficients based on
Eq. (15). Summing all the terms in Eq. (16) based on Eq. (9), it is easy to show that

(17)

We need to point out that Cukier et al. (1978) have provided the same variance
decomposition as we do in Eq. (17). They showed that the first-order Fourier amplitudes in

Eq. (17) (i.e., ) are linked to the main effects of parameters and

suggested that the higher-order Fourier amplitudes (e.g.,  and

) may contain increasingly more detailed information
about the coupling of sensitivity among larger groups of parameters. However, they did not
provide a proof of the linkage between the higher-order Fourier amplitudes and higher-order
interactions among parameters as shown in Eq. (16). Our derivation of this linkage (see
Appendix B in supplementary materials) is based on the relationships between conditional
variances in the parameter space and those in the θ-space [see Eq. (6)].

Notice that there is only one period for the sampled parameter values using the search
functions in Eq. (5). Thus, there are strong signals for parameters in the Fourier amplitudes

(i.e., ) when the fundamental frequency is equal to one (i.e., r1 = 1, or r2 = 1, …, or
rn = 1). The signals decrease at higher harmonics, which are integer multiples (termed the
harmonic orders) of the fundamental frequency (Cukier et al., 1978). Signals in the Fourier
amplitudes become close to zero, if any of r1,…, rn is relatively large (i.e., at a high
harmonic order). The harmonic order at which the Fourier amplitudes become close to zero
is defined as a maximum harmonic order (M), which is commonly four or six in practice,
and could be larger for highly nonlinear models (Xu and Gertner, 2008).

2.2. Sampling based on an auxiliary variable
One intuitive approach to sample in the θ-space is the grid sampling, based on which we can
numerically estimate the Fourier coefficients Cr1…rn using Eq. (15). However, the grid
sampling can be very computationally expensive especially if there are many parameters.
For example, a model with 10 parameters will need N10 samples, where N is the grid sample
size for an individual parameter. Cukier et al. (1973) proposed a simple sampling approach
by using a search curve in the θ-space with a common auxiliary variable (s). Namely,

(18)

where ωi is a distinct integer frequency (or, a characteristic frequency) for parameter xi and s
∈ [0, 2π] is a common auxiliary variable. For the auxiliary variable s, we can generate grid
samples

(19)
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based on which we can draw samples in the θ-space using a search curve with Eq. (18).
Cukier et al. (1978) pointed out that if we select the characteristic frequencies in Eq. (18) to
be free of interferences to an order M (M is generally four) (Cukier et al., 1975),

(20)

then the search curve of Eq. (18) can effectively explore the θ-space. For a theoretical
discussion in this paper, we define a frequency set {ω1,…, ωn} to be strictly free of
interferences to an order M, if

(21)

Notice that the definition for frequencies strictly free of interferences to an order of M in Eq.
(21) has more constraints on the frequency set than the definition for frequencies free of
interferences in Eq. (20). For example, if we have 3ω1 = 2ω2 − ω3 for {ω1 = 3, ω2 = 7, ω3 =
5}, then there are interferences for M = 3 based on the definition in Eq. (21) but no
interferences based on Eq. (20).

Based on the search curve of Eqs. (18) and (5), the model g(G(φ(ω1s)),…, g(G(φ(ωns))))
becomes a periodic function of the auxiliary variable s. Therefore, we can also apply a
Fourier transformation for g (G(φ (ω1s)),…, G(φ (ωns))) over the auxiliary variable s.
Namely,

(22)

Where

(23)

Based on Parseval's theorem, variance of g(G(φ(ω1s)),…, G(φ (ωns))) can be decomposed
over integer frequencies as follows (Cukier et al., 1978),

(24)

Eq. (23) indicates that Ck is the expected value of g(G(φ(ω1s)),…, G(φ(ωns)))e−i(ks) given s
is uniformly distributed in (0, 2π). Namely,

(25)

Thus, the Fourier coefficient  can be estimated based on the sample mean using a sample
of size N,

Xu and Gertner Page 8

Comput Stat Data Anal. Author manuscript; available in PMC 2013 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(26)

where s(j) is the jth sample for the auxiliary variable s. For a grid sample based on Eq. (19),
the sample mean in Eq. (26) is essentially a numerical integral using the rectangle rule with

a rectangle width of  (See Appendix C in supplementary material for details). With an
increasing sample size of N, the estimation error decays at a rate of the square width of the

rectangles, or at a rate of 

For a frequency set {ω1,…, ωn}, the Fourier coefficient over auxiliary variable s at

frequency  [were  and ] can be
estimated by Fourier coefficients in the θ-space as follows (see Appendix D in
supplementary materials for details),

(27)

where  is a vector different from  (i.e., ) with . If the frequency set
{ω1,…, ωn} are strictly free of interferences to an order M as defined in Eq. (21), then

 is negligible (see Appendix D in supplementary materials for details). Thus,

(28)

Based on the partial variance estimation equation for multiple Fourier transformation in the

θ-space [see Eq. (16)], the Fourier amplitude  is resulted from the main effect of

parameter xi. Therefore, based on Eq. (28), the Fourier amplitude  over auxiliary
variable s is also resulted from the main effect of parameter xi. Based on Eqs. (16) and (28),
the partial variances contributed by the main effects of parameters can be estimated as
follows,

(29)

Eq. (29) suggests that the partial variance contributed by the main effect of a specific
parameter can be estimated by the sum of Fourier amplitudes at the characteristic frequency
ωi and its pth (p = 2, 3,…, M) harmonics over the auxiliary variable s. Based on Eqs. (16)
and (28), we can also estimate the partial variances contributed by the second-order
interaction effects, the third-order interaction effects and so on, until the nth order
interaction effects as follows,
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(30)

Eq. (30) suggests that partial variances contributed by higher-order interactions are resulted
from linear combinations of characteristic frequencies. This has been implicitly shown or
realized in the exploration of Fourier amplitudes at different frequencies for simple test
models (Saltelli et al., 1999). However, our proof can corroborate the heuristic results and
provide a better understanding of the FAST analysis. Based on Eq. (11), we can calculate
sensitivity indices by the ratio of estimated partial variances to the sample variance of model
output.

One key assumption for the estimation of partial variances in Eqs. (29) and (30) is that the
selected characteristic frequency set {ω1,…, ωn} are strictly free of interferences to an order
of M. The question is how to select the frequency set. This could be extremely difficult if the
model has many parameters (e.g., 20 parameters). Cukier et al. (1975) provided a procedure
on how to design a frequency set free of interferences to an order of four with Eq. (20). The
designed frequency set free of interferences with Eq. (20) defines the interferences based on
linear combinations of characteristic frequencies for at most (M + 1) parameters, while the
frequency set strictly free of interferences as defined with Eq. (21) does not have that
constraint. If we assume that higher-order interactions are negligible, then the frequency set
selected with Eq. (20) can still provide a good approximation of the partial variances
contributed by the first-order effects using Eq. (29), and can give us a reasonable estimation
of the partial variances contributed by lower-order (<M) interaction effects of parameters
using Eq. (30).

2.3. Simple random sampling
Fourier amplitudes will generally decrease quickly with an increasing harmonic. However,
for highly nonlinear models, Fourier amplitudes can still be high for harmonics larger than
four (i.e., ri > 4) (Xu and Gertner, 2008). In order to estimate Fourier amplitudes at high
harmonics in Eq. (30), we need to design a frequency set free of interferences to an order
more than four. This would be very difficult for models with many parameters and may
require an extremely large sample size (Cukier et al., 1975; Saltelli et al., 1999). Thus, we
propose to estimate the partial variances in Eq. (16) by using simple random samples from

the θ-space. The Fourier coefficients  in Eq. (16) are estimated by the sample
mean using Eq. (15). Since we use a relatively small sample to explore the n-dimensional θ-
space, the major concern is how much error there may be in the estimation of Fourier

amplitudes (i.e.,  in Eq. (16)) by using random samples.

For the Fourier coefficient , we show that the cosine Fourier

coefficient  and sine Fourier coefficient  approximately follow normal
distributions (see Eq. (E12) in Appendix E in supplementary materials for details)
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(31)

where  represents a normal distribution with mean u and variance υ and

(32)

Thus, the estimation errors of cosine and sine Fourier coefficients decay at a rate of 

with an increasing sample size N. The estimated Fourier amplitude  based on Eq.

(15) is a biased estimator for  (see Eq. (E11) in Appendix E in supplementary
materials). Namely,

(33)

where

(34)

The bias δe is mainly dominated by the second moment of model output y, in view that

 is generally much smaller because  is just a proportion of the variance of
model output. In order to reduce the bias induced by sampling errors, we need to increase
the sample size N. Generally, we estimate the partial variances based on the sum of Fourier
amplitudes at a fundamental frequency and its higher harmonics. At higher harmonics, there
will be fewer signals for the contributed partial variances, and thus higher proportion of
noise signal δe. In order to reduce the effect of sampling errors on partial variance
estimation, we also need to limit the Fourier amplitude calculation to a certain maximum
harmonic order (M, generally four or six in practice). Xu and Gertner (2008) proposed a
method to check the Fourier amplitudes and select maximum harmonics where Fourier
amplitudes begin to stabilize. For parameters with lower variance contribution, Xu and
Gertner (2008) recommended using a relatively small maximum harmonic order (e.g., 1 or
2), since they are more subject to random errors.

For a better exploration of the parameter space, it is also desirable to use different forms of
the search function in Eq. (5) for different parameters as long as the search function can
generate samples in the parameter space based on samples in the θ-space. For example, we
can have

(35)

where ωi is a search frequency. The search frequency set {ωi} is not necessarily designed to
be free of interferences since we did not use this to distinguish partial variances contributed
by different parameters. Since the model output y becomes a periodic function of {θi} with
strong signals at the frequencies {ωi}, partial variances contributed by different parameters
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can be estimated by Fourier amplitudes at the frequencies {ωi} and their harmonics.
Namely,

(36)

where M is a maximum harmonic order specified by the user (see text below for
specification of M). Based on Eq. (11), we can calculate the sensitivity indices using the
ratios of estimated partial variances to the sample variance of model output y.

A statistically robust approach for maximum harmonic order (i.e., M) selection is to first set
a relatively large M (e.g., 10 or 20). Then, a statistical test can be constructed to select
cosine and sine Fourier coefficients significantly larger or smaller than zero for the

calculation of Fourier Amplitudes (i.e., ). Under the null

hypothesis that the true cosine Fourier coefficient  and sine Fourier coefficient 

are zeros, a z-score test statistic for  and  can be defined as,

(37)

which follow standard normal distributions in view that  and  follow normal

distributions (assuming a relatively large sample size N) with variances  and

, respectively (see Eq. (31) for details). The sample variance of a random variable

is represented by . Specifically, the sample variance of  and  [i.e., 

and ] can be estimated based on Eq. (32) as follows,

(38)

If |Za| is larger than Zc(α), where Zc(α) is the critical value based on a standard normal
distribution at a significance level α, we reject the null hypothesis that true cosine Fourier

coefficient  is zero. The corresponding alternative hypothesis states that  is

larger than zero if  or  is smaller than zero if . Similarly,
if |Zb | is larger than Zc(α), we reject the null hypothesis that true sine Fourier coefficient
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 is zero. To reduce the effect of sampling error on Fourier amplitudes estimation in
Eq. (16), we calculate the Fourier amplitudes only using the Fourier coefficients
significantly larger or smaller than zero (i.e., |Za| > Zc(α) or |Zb| > Zc(α)).

We have constructed hypothesis tests with Eq. (37) to select cosine and sine Fourier
coefficients significantly larger or smaller than zero for the calculation of Fourier
amplitudes. This relaxes the requirement to select an accurate maximum harmonic order M
in our calculation of partial variances in Eq. (36). Namely, we can select a relatively large M
and use statistical tests to avoid overestimation of sensitivity indices by excluding those
cosine and sine Fourier coefficients not significantly larger or smaller than zero. However,
for the calculation of partial variances contributed by higher-order interactions, we
recommend that the user select a relatively small M (e.g. 3 or 4). For higher-order
interactions, there are too many harmonics with a large maximum harmonic order M. For
example, for the third-order interactions, if we select M = 5, then there are 1000 cosine/sine
Fourier coefficients to be estimated based on Eq. (36) [Note that the cosine and sine Fourier
coefficients at frequency (r1,…, rn) are the same as those at frequency (−r1,…, −rn) except
for sign differences]. This will make it challenging to conduct the hypothesis tests. Let us
assume that there were no third-order interactions in the model. Even if we specify a small
(e.g., 1%) type I error (the error of rejecting the null hypothesis when the null hypothesis is
true), there is still the possibility that 10 out of 1000 cosine and sine Fourier coefficients will
be randomly selected. This could overestimate the partial variances contributed by higher-
order interactions. We recommend that the user limit the number of estimated cosine and
sine Fourier coefficients to be less than 100, so that there is less than one harmonic to be
randomly selected at a significance level of 0.01 given that main effects or interaction
effects of parameters have no contributions to uncertainty in the model output. This suggests
that we need to limit M ≤ 50 for the first-order effects; M ≤ 5 for the second-order
interaction effects; M ≤ 2 for the third-order interaction effects; and M ≤ 1 for the fourth-
order interaction effects.

2.4. Random balance design sampling
Tarantola et al. (2006) introduced a random balance design sampling method so that FAST
does not need a frequency set free of interferences to a user-specified order of M. Although
the original algorithm is proposed by permutation over auxiliary variable s, it is equivalent
that we first draw N grid samples for each {θi},

(39)

where θ0 is randomly drawn from  so that the grid sample for θi can ergodically
explore between 0 and 2π as N → ∞. Then the samples are randomly permuted to form N
samples in the θ-space. In this way, similar to simple random sampling, the random balance
design sampling draws random samples in the high-dimensional θ-space. Thus, estimation
errors for Fourier coefficients in the θ-space using random balance design sampling will be
similar to those based on simple random sampling. However, by using grid samples for each
individual parameter, estimation errors for partial variances contributed by the main effects
can be much smaller than those estimated using simple random sampling (see Appendix F in

supplementary materials). For a Fourier coefficient , the

estimation errors of the cosine Fourier  coefficient and sine Fourier coefficient,
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 approximately follow normal distributions based on the Central Limit Theorem
(see Eq. (F12) in Appendix F in supplementary materials). Namely,

(40)

where

(41)

Based on Eqs. (F7) and (F10), it is shown that the estimation errors for Fourier coefficient

 using random balance design sampling [see Eq. (40)] is much smaller than that
using simple random sampling [see Eq. (31)] (see Appendix F in supplementary materials
for details).

In order to reduce the effect of sampling errors on partial variance estimation in Eq. (36),
test statistics with Eq. (37) can be constructed to select cosine and sine Fourier coefficients
significantly larger or smaller than zero. However, for partial variances contributed by the
first-order effects, the variance of estimated Fourier coefficients can be improved based on
Eq. (40). For the estimation of V (ξ−xi) in Eq. (40), we need to have a preliminary estimation
of V(xi). In this paper, we propose a conservative preliminary estimation of V(xi) as follows,

(42)

where M ̃ is a relatively small harmonic order (e.g., 4), under which the amplitudes have a
relatively small proportion of errors. In order to improve the estimation accuracy of V(xi),
the statistical test in Eq. (37) for simple random sampling can be used to select those cosine
and sine Fourier coefficients significantly larger or smaller than zero for the calculation of
Fourier amplitudes. Based on the preliminary estimation of V(xi), we can calculate the
sample variances of Fourier coefficients in Eq. (37). Namely,

(43)

where Vˆ(xi,…,xn) is the sample variance of model output.

It can also be shown that the estimated Fourier amplitude  based on Eq. (15) is a

biased estimator for (see Eq. (F11) in Appendix F in supplementary materials for
details). Namely,

(44)

Notice that V (ξ−xi) is relatively small for parameters with large variance contributions (i.e.,
larger values of V(xi) in Eq. (41)) and is relatively large for parameters with low variance
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contributions. This suggests that the estimation bias is relatively low for parameters with
large variance contributions and relatively high for parameters with small variance
contributions.

3. Comparison of different sampling schemes
In Section 2, we have introduced different sampling approaches including: (1) search-curve
based sampling using an auxiliary variable s (see Section 2.2); (2) simple random sampling
(see Section 2.3); and (3) random balance design sampling (see Section 2.4). For the simple
random sampling and random balance design sampling approaches, estimation errors for the
partial variances in Eq. (16) are mainly resulted from the Fourier coefficient estimation

errors in Eq. (15). Since estimation errors for Fourier coefficients  using random
balance design sampling is much smaller than that using simple random sampling with a
relatively large sample size (see Appendix F in supplementary materials for details), the
estimation precision for first-order sensitivity indices using random balance sampling should
be much higher. For the simple random sampling, the estimation bias for the Fourier

amplitude  is related to the second moment of model output y (i.e.,

, see Eq. (33) for details). For the random balanced design

sampling, the estimation bias for the Fourier amplitude  is  (see Eq. (44)
for details). Since V(ξ−xi) is only a fraction of E [g(G(θ1),…, G(θn))]2, estimation errors of
partial variances contributed by the main effects using random balance design sampling
should be smaller than those using simple random sampling. For the search-curve based
sampling approach, there are two sources of estimation errors for the partial variance
calculation in Eq. (16): (1) the interference errors in Eq. (27); and (2) the numerical integral
errors for Fourier coefficients in Eq. (26). By using the rectangle rule for an one-

dimensional integral, the Fourier coefficient estimation errors decay at a rate of  with an
increasing sample size N. For a relatively large sample size, the Fourier coefficient
estimation errors are relatively small. Thus, the main sources of estimation errors are due to
the interferences among frequencies. If the frequency set is designed to be strictly free of
interferences to a high order M, then the traditional search-curve sampling should give better
estimation of sensitivity indices compared to simple random sampling and random balance
design sampling.

For the purpose of illustration, we compared the performance of the three sampling
approaches using a simple test model,

(45)

where x1, x2, and x3 are three independent parameters of the model. We assume all
parameters follow standard normal distributions. Although the model is simple, it is
representative since it is nonlinear and non-monotonic. For this simple model, we can
analytically calculate the partial variances in the parameter space as defined in Eq. (6) (see
Appendix G in supplementary materials and Table 1 for details). For each sampling
approach, we compare the mean values of sensitivity indices (used as a measure of bias
when compared to the analytical value) and their standard deviations (used as a measure of
estimation precision) using 20 replicates of samples with different sample sizes (1000, 2000,
5000 and 10,000). For each replicate generated through the traditional search-curve
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sampling, we have a different frequency set free of interferences to an order of four (see
Table S1 in supplementary materials).

Below we provide a summary of the FAST procedures using the different sampling
approaches to better illustrate the FAST analysis.

• FAST procedure for search-curve based sampling

a. Define a set of frequencies free of interferences to an order to M (M = 4 in
this test case);

b. Generate grid samples for an auxiliary variable s using Eq. (19) and the
corresponding sample for parameters using the search curve in Eq. (18)
and search function in Eq. (5);

c. Run the model based on the sampled values of parameters;

d. Calculate the partial variances based on Eq. (30) and the corresponding
sensitivity indices based on Eq. (11). The first-order sensitivity indices are
calculated based on M = 4. In order to reduce the effect of inference error,
the second-order and the third-order sensitivity indices are calculated
based on M = 1.

• FAST procedure using simple random sampling

a. Draw independent random samples in the θ-space

b. Generate corresponding random samples in the parameter space using
search functions in Eq. (5) and the sample in the θ-space;

c. Run the model based on the samples in the parameter space;

d. Calculate the partial variances based on Eq. (36) and the corresponding
sensitivity indices with Eq. (11). Statistical tests in Eq. (37) are used to
select Fourier coefficients significantly larger or smaller than zero for the
estimation of Fourier amplitudes in Eq. (36). In this test case, we select the
maximum harmonic order M = 20 for partial variances contributed by the
first-order interaction effects, M = 5 for the second-order interaction
effects, and M = 2 for the third-order interaction effects. The statistical
tests are based on a significance level of 0.01.

• FAST procedure using random balance design sampling

a. Draw N grid samples for {θi} using Eq. (39), which is then randomly
permuted to form a random sample in the θ-space;

b. Generate a corresponding random sample in the parameter space using
search functions in Eq. (5) and the sample in the θ-space;

c. Run the model based on samples in the parameter space;

d. Calculate the partial variances based on Eq. (36) and the corresponding
sensitivity indices with Eq. (11). Statistical tests in Eq. (37) are used to
select Fourier coefficients significantly larger or smaller than zero for the
estimation of Fourier amplitudes in Eq. (36). For partial variances
contributed by the first-order effects, we calculate sample variances of
Fourier coefficients by Eq. (43) with M̃ = 4. For the partial variances
contributed by higher-order interactions, we calculate sample variances of
Fourier coefficients using Eq. (38). We select the maximum harmonic
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order M = 20 for partial variances contributed by the first-order interaction
effects, M = 5 for the second-order interaction effects, and M = 2 for the
third-order interaction effects. The statistical tests are based on a
significance level of 0.01.

4. Results
Our results based on the simple test model with Eq. (45) show that, estimated sensitivity
indices using the FAST method are close to the analytical results. However, they are
commonly underestimated for all three sampling approaches (Figs. 1(a), (c), (e) and 2 (a),
(c), (e), (g)). The underestimation of sensitivity indices by simple random sampling and
random balanced design sampling are due to the fact that we employ statistical hypothesis
tests to exclude relatively low Fourier amplitudes. It is noteworthy that, even though the
Fourier amplitudes are biased as shown in Eqs. (33) and (44), the bias of estimated
sensitivity indices is small by using statistical hypothesis tests. We did not detect significant
difference in bias between simple random sampling and random balanced design sampling,
because of two reasons. First, the statistical hypothesis tests reduce the bias that occurred in
partial variance estimation by excluding small Fourier Amplitudes. Second, there is not
much difference between the variance (43) and second moment of model output y (～78),
which are relatively small compared to the sample size. The underestimation for the search-
curve based sampling is higher than that for simple random sampling and random balance
design sampling, since the search-curve based sampling limits maximum harmonic order to
four, which is implicitly determined by the specified frequency sets.

The standard deviations of estimated sensitivity indices generally decrease with sample size
(Fig. 1(b), (d), (f) and Fig. 2(b), (d), (f), (h)), which suggests that estimation precision
increases as the sample size increases. The standard deviations are measures of estimation
precision for sensitivity indices. For the search-curve based sampling, standard deviations of
estimated sensitivity indices do not decrease much when the sample size is larger than 2000.
This suggests that the increase in sample size does not greatly improve estimation precision
(or reduce estimation error) when the sample size is relatively large, in view that the
numerical integral error decreases at a rate of squared sample size. If the sample size is less
than 10,000, the standard deviations based on random balance design sampling are generally
lower than those based on simple random sampling for the first-order sensitivity indices
(Fig. 1(b), (d), (f)). This suggests that random balance design sampling can substantially
increase the precision of the first-order sensitivity indices when the sample size is relatively
small. However, for the second-order and third-order sensitivity indices, standard deviations
based on random balance design sampling are close to those based on simple random
sampling. This suggests that random balance design sampling does not improve estimation
precision for higher-order sensitivity indices.

If we combine the bias and precision into a statistic of root mean square error (RMSE:

), we can see that the RMSE for search-curve based sampling can be much
larger than that based on simple random sampling and random balance design sampling
(Fig. S1(b), (c), (f) in Supplementary Materials), due to its large underestimation for
parameters with relatively large sensitivity indices (Figs. 1(c), (e) and 2(e)).

5. Discussion
Our paper shows that FAST can theoretically be used to estimate higher-order sensitivity
indices, although it would be difficult for estimating higher-order sensitivity indices (fourth-
order and higher) due to the larger number of Fourier coefficients to be estimated. It is a
common assumption in experimental design that the higher-order interactions are trivial by

Xu and Gertner Page 17

Comput Stat Data Anal. Author manuscript; available in PMC 2013 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



specifying two levels for each parameter/factor assuming linear effects of factors on model
outputs (Mason et al., 2003, Chapter 7). However, that may not be the case for the FAST
analysis, where parameters have many levels and nonlinear relationships between model
parameters and outputs may exist. If the user does care about fourth-order and higher
interactions, please refer to Saltelli et al. (1999) for calculating a total sensitivity index for a
parameter incorporating all interactions with other parameters.

Our derivation shows that, for partial variances contributed by the main or interaction effects
of parameters in simple random sampling and partial variances contributed by higher-order
interactions in random balance design sampling, the estimation biases for Fourier amplitudes

are related to the second moment of model output, specifically, 
(see Eq. (33) for details). Since the sensitivity index is calculated based on the ratio of sum
of Fourier amplitudes to variance of model output σ2 (see Eq. (11) for details), it is possible

that the calculated sensitivity index is larger than one if  is much
larger than σ2. In order to overcome this potential problem, we recommend that the model
output be centered by the sample mean and/or scaled by the standard deviation of the model

output, so that  is generally smaller than the variance σ2. By using
the centered model outputs, we can also have lower estimation errors for Fourier coefficients
(i.e., smaller standard errors with Eq. (38)) and thus higher accuracy and precision for the
estimated partial variances. Our recommendation to subtract the mean of the model output is
a standard procedure to reduce the error in numerical estimates (e.g. Sobol, 2001).

In our derivation, we assume that models are deterministic. Namely, the output of the model
is only determined by model parameters. However, in real applications, it is common to
have stochastic components in the model to represent natural variability. For readers with
interests in applying FAST to stochastic models, please refer to Appendix H in
supplementary materials for further discussion. In our derivation, we assume that model
parameters are independent. However, the model parameters are commonly correlated. For
readers with interests in applying FAST for models with correlated parameters, please refer
to Appendix I in supplementary materials for further discussion.

6. Conclusion
The FAST analysis is mainly confined to the estimation of partial variances contributed by
the main effects of model parameters. In this paper, we show that the FAST analysis can be
used to estimate partial variances contributed by both main effects and interaction effects of
parameters for different sampling approaches (i.e., the search-curve based sampling, simple
random sampling, and random balance design sampling). We also analytically calculate the
potential errors and biases in the estimation of partial variances. We found that compared to
simple random sampling and random balance design sampling, sensitivity indices estimated
by search-curve based sampling generally have higher precision (i.e., smaller standard
deviations), but larger underestimations, given that frequency sets are selected to be free of
interferences to an order of four. Compared to simple random sampling, random balance
design sampling generally provides higher estimation precision for partial variances
contributed by the main effects of parameters. In view of the potentially large estimation
errors for calculated sensitivity indices resulting from a large mean and a low variance of the
model output, we recommend that the model output be centered by its sample mean to
improve their estimation accuracy. The theoretical derivation of variance decomposition and
calculation of estimation errors and biases of partial variances in this paper can help us
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better understand the FAST method and provide a fundamental basis for FAST applications
(e.g., calculation of higher-order sensitivity indices) and further improvements in the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This study was mainly supported by US Department of Agriculture McIntire-Stennis funds (MS 875-359) and
partially funded by NIH grant R01-AI54954-0IA2. We thank two anonymous reviewers for their very helpful
comments which substantially improved this paper.

References
Beres DL, Hawkins DM. Plackett-Burman techniques for sensitivity analysis of many-parametered

models. Ecol Model. 2001; 141:171–183.

Borgonovo E. Measuring uncertainty importance: investigation and comparison of alternative
approaches. Risk Anal. 2006; 26:1349–1361. [PubMed: 17054536]

Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst Saf. 2007; 92:771–784.

Borgonovo E, Apostolakis GE, Tarantola S, Saltelli A. Comparison of global sensitivity analysis
techniques and importance measures in PSA. Reliab Eng Syst Saf. 2003; 79:175–185.

Borgonovo E, Tarantola S. Moment independent and variance-based sensitivity analysis with
correlations: an application to the stability of a chemical reactor. Int J Chem Kinet. 2008; 40:687–
698.

Chun MH, Han SJ, Tak NI. An uncertainty importance measure using a distance metric for the change
in a cumulative distribution function. Reliab Eng Syst Saf. 2000; 70:313–321.

Collins DC, Avissar R. An evaluation with the Fourier amplitude sensitivity test (FAST) of which
land-surface parameters are of greatest importance in atmospheric modeling. J Clim. 1994; 7:681–
703.

Cryer SA, Havens PL. Regional sensitivity analysis using a fractional factorial method for the USDA
model GLEAMS. Environ Modell Softw. 1999; 14:613–624.

Cukier RI, Fortuin CM, Shuler KE, Petschek AG, Schaibly JH. Study of the sensitivity of coupled
reaction systems to uncertainties in rate coefficients. I Theory J Chem Phys. 1973; 59:3873–3878.

Cukier RI, Levine HB, Shuler KE. Nonlinear sensitivity analysis of multiparameter model systems. J
Comput Phys. 1978; 26:1–42.

Cukier RI, Schaibly JH, Shuler KE. Study of the sensitivity of coupled reaction systems to
uncertainties in rate coefficients. III. Analysis of the approximations. J Chem Phys. 1975;
63:1140–1149.

Francos A, Elorza FJ, Bouraoui F, Bidoglio G, Galbiati L. Sensitivity analysis of distributed
environmental simulation models: understanding the model behaviour in hydrological studies at
the catchment scale. Reliab Eng Syst Saf. 2003; 79:205–218.

Haaker MPR, Verheijen PJT. Local and global sensitivity analysis for a reactor design with parameter
uncertainty. Chem Eng Res Des. 2004; 82:591–598.

Helton JC. Uncertainty and sensitivity analysis techniques for use in performance assessment for
radioactive waste disposal. Reliab Eng Syst Saf. 1993; 42:327–367.

Helton JC, Davis FJ. Illustration of sampling-based methods for uncertainty and sensitivity analysis.
Risk Anal. 2002; 22:591–622. [PubMed: 12088236]

Helton JC, Davis FJ. Latin hypercube sampling and the propagation of uncertainty in analyses of
complex systems. Reliab Eng Syst Saf. 2003; 81:23–69.

Helton JC, Davis FJ, Johnson JD. A comparison of uncertainty and sensitivity analysis results obtained
with random and Latin hypercube sampling. Reliab Eng Syst Saf. 2005; 89:305–330.

Helton JC, Johnson JD, Sallaberry CJ, Storlie CB. Survey of sampling-based methods for uncertainty
and sensitivity analysis. Reliab Eng Syst Saf. 2006; 91:1175–1209.

Xu and Gertner Page 19

Comput Stat Data Anal. Author manuscript; available in PMC 2013 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Henderson-Sellers B, Henderson-Sellers A. Sensitivity evaluation of environmental models using
fractional factorial experimentation. Ecol Model. 1996; 86:291–295.

Kioutsioukis I, Tarantola S, Saltelli A, Gatelli D. Uncertainty and global sensitivity analysis of road
transport emission estimates. Atmos Environ. 2004; 38:6609–6620.

Koda M, McRae GJ, Seinfeld JH. Automatic sensitivity analysis of kinetic mechanisms. Int J Chem
Kinet. 1979; 11:427–444.

Lu Y, Mohanty S. Sensitivity analysis of a complex, proposed geologic waste disposal system using
the Fourier amplitude sensitivity test method. Reliab Eng Syst Saf. 2001; 72:275–291.

Mason, RL.; Gunst, RF.; Hess, JL. Statistical Design and Analysis of Experiments: With Applications
to Engineering and Science. 2nd. J. Wiley; New York: 2003.

McKay MD. Nonparametric variance-based methods of assessing uncertainty importance. Reliab Eng
Syst Saf. 1997; 57:267–279.

McRae GJ, Tilden JW, Seinfeld JH. Global sensitivity analysis–a computational implementation of the
Fourier amplitude sensitivity test (FAST). Comput Chem Eng. 1982; 6:15–25.

Morris MD. Factorial sampling plans for preliminary computational experiments. Technometrics.
1991; 33:161–174.

Park CK, Ahn KI. A new approach for measuring uncertainty importance and distributional sensitivity
in probabilistic safety assessment. Reliab Eng Syst Saf. 1994; 46:253–261.

Rodriguez-Camino E, Avissar R. Comparison of three land-surface schemes with the Fourier
amplitude sensitivity test (FAST). Tellus Ser A. 1998; 50:313–332.

Saltelli A, Andres TH, Homma T. Sensitivity analysis of model output: performance of the iterated
fractional factorial design method. Comput Stat Data Anal. 1995; 20:387–407.

Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S. Variance based sensitivity
analysis of model output. Design and estimator for the total sensitivity index. Comput Phys
Comm. 2010; 181:259–270.

Saltelli A, Campolongo F, Cariboni J. Screening important inputs in models with strong interaction
properties. Reliab Eng Syst Saf. 2009; 94:1149–1155.

Saltelli, A.; Chan, K.; Scott, M. Sensitivity Analysis. John Wiley and Sons; West Sussex: 2000.

Saltelli A, Ratto M, Tarantola S, Campolongo F. Sensitivity analysis for chemical models. Chem Rev.
2005; 105:2811–2826. [PubMed: 16011325]

Saltelli A, Tarantola S. On the relative importance of input factors in mathematical models: safety
assessment for nuclear waste disposal. J Amer Statist Assoc. 2002; 97:702–709.

Saltelli A, Tarantola S, Chan KPS. A quantitative model-independent method for global sensitivity
analysis of model output. Technometrics. 1999; 41:39–56.

Schaibly JH, Shuler KE. Study of the sensitivity of coupled reaction systems to uncertainties in rate
coefficients. II Applications. J Chem Phys. 1973; 59:3879–3888.

Sobol IM. Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp. 1993;
1:407–414.

Sobol IM. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo
estimates. Math Comput Simulation. 2001; 55:271–280.

Tarantola S, Gatelli D, Mara TA. Random balance designs for the estimation of first order global
sensitivity indices. Reliab Eng Syst Saf. 2006; 91:717–727.

Wang G, Fang S, Shinkareva S, Gertner GZ, Anderson A. Uncertainty propagation and error budgets
in spatial prediction of topographical factor for revised universal soil loss equation (RUSLE). Am
Soc Agric Eng. 2001; 45:109–118.

Xu C, Gertner GZ. Extending a global sensitivity analysis technique to models with correlated
parameters. Comput Stat Data Anal. 2007; 51:5579–5590.

Xu C, Gertner GZ. A general first-order global sensitivity analysis method. Reliab Eng Syst Saf. 2008;
93:1060–1071.

Xu C, Gertner GZ. Uncertainty analysis of transient population dynamics. Ecol Model. 2009;
220:283–293.

Xu C, Gertner GZ, Scheller RM. Uncertainties in the response of a forest landscape to global climatic
change. Global Change Biol. 2009; 15:116–131.

Xu and Gertner Page 20

Comput Stat Data Anal. Author manuscript; available in PMC 2013 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
Comparison of different sampling approaches (SGrid = search-curve based sampling using
the auxiliary variables s, TRand = simple random sampling in θ-space; TGrid = random
balance design sampling in the θ-space) for the first-order sensitivity indices with different
sample sizes (1000, 2000, 5000 and 10,000). The panels (a), (c) and (e) represent the sample
mean (based on 20 replicates) of the first-order sensitivity indices for parameters x1, x2 and
x3, respectively. The dotted horizontal reference lines represent the analytical sensitivity
indices in Table 1. The panels (b), (d) and (f) represent the corresponding standard
deviations for the estimated sensitivity indices.
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Fig. 2.
Comparison of different sampling approaches (SGrid=search-curve based sampling using
the auxiliary variable s, TRand=simple random sampling in θ-space, TGrid=random balance
design sampling in the θ-space) for higher-order sensitivity indices with different sample
sizes (1000, 2000, 5000 and 10,000). The panels (a), (c), (e) and (g) represent the sample
mean (based on 10 replicates) of higher-order sensitivity indices for the interactions between
x3 and x2, x1 and x3, x1 and x3, x1, x2 and x3, respectively. The dotted horizontal reference
lines represent the analytical sensitivity indices in Table 1. The panels (b), (d), (f) and (h)
represent the corresponding standard deviations for the calculated sensitivity indices.
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Table 1

Analytical partial variances and sensitivity indices for the test model.

Effects Partial variance Sensitivity

Vx1 2 0.047

Vx2 8 0.186

Vx3 18 0.419

Vx1x2 1 0.023

Vx1x3 9 0.209

Vx2x3 4 0.093

Vx1x2x3 1 0.023
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