
Parallel cross-validation: a scalable fitting method for Gaussian
process models

Florian Gerber · Douglas W. Nychka

December 30, 2019

Abstract Gaussian process (GP) models are widely

used to analyze spatially referenced data and to pre-

dict values at locations without observations. In con-

trast to many algorithmic procedures, GP models are

based on a statistical framework, which enables uncer-

tainty quantification of the model structure and pre-

dictions. Both the evaluation of the likelihood and the

prediction involve solving linear systems. Hence, the

computational costs are large and limit the amount

of data that can be handled. While there are many

approximation strategies that lower the computational

cost of GP models, they often provide only sub-optimal

support for the parallel computing capabilities of cur-

rent (high-performance) computing environments. We

aim at bridging this gap with a parameter estimation

and prediction method that is designed to be paral-

lelizable. More precisely, we divide the spatial domain

into overlapping subsets and use cross-validation (CV)

to estimate the covariance parameters in parallel. We

present simulation studies, which assess the accuracy

of the parameter estimates and predictions. Moreover,

we show that our implementation has good weak and

strong parallel scaling properties. For illustration, we

fit an exponential covariance model to a scientifically

relevant canopy height dataset with 5 million observa-

tions. Using 512 processor cores in parallel brings the

F. Gerber is supported by the Swiss Nation Science Founda-
tion (Fellowships P2ZHP2 174828 and P400P2 186680).

F. Gerber (corresponding author)
Department of Applied Mathematics and Statistics, Colorado
School of Mines, Golden CO, USA
E-mail: gerber@mines.edu, ORCID: 0000-0001-8545-5263

D. W. Nychka
Department of Applied Mathematics and Statistics, Colorado
School of Mines, Golden CO, USA
E-mail: nychka@mines.edu, ORCID: 0000-0003-1387-3356,

evaluation time of one covariance parameter configura-

tion to less than 1.5 minutes. The parallel CV method

can be easily extended to include approximate likeli-

hood methods, multivariate and spatio-temporal data,

as well as non-stationary covariance models.

Keywords Cross-validation · Gaussian random

fields · High-performance computing · Kriging · Spatial

statistics

1 Introduction

An important benefit of the rapid advances in comput-

ing, data storage, and remote sensing is the availability

of large spatial and space-time datasets, which help to

address substantial scientific questions. Such data are
relevant in weather and climate applications, but also

contribute to a better understanding of processes on

the Earths surface (Hmimina et al. 2013). For example,

densely spaced Light Detection and Ranging (LiDAR)

measurements from overflights of forested regions pro-

vide a unique opportunity to study forest ecology and

monitor changes over time (Lefsky et al. 2002). A hall-

mark of many of these datasets is the large numbers

of often irregularly spaced spatial observations, which

poses statistical as well as computational challenges and

motives our study.

It is important to base predictions from large spa-

tial datasets on a sound statistical framework to provide

reliable measures of uncertainty in the predictions and

other model components. This is in contrast to more

algorithmic approaches that just focus on computation-

ally efficient predictions (Gerber et al. 2018; Weiss et al.

2014), A starting point for many statistical models is

assuming an underlying GP for a field that represents

the data directly (Wikle et al. 2019) or a latent field

ar
X

iv
:1

91
2.

13
13

2v
1

 [
st

at
.C

O
]

 3
1

D
ec

 2
01

9

https://orcid.org/0000-0001-8545-5263
https://orcid.org/0000-0003-1387-3356

2 F. Gerber, D. W. Nychka

connected to the data (Banerjee et al. 2014). Although

there exists a mature methodology for such models and

their application to large datasets, the ever-increasing

amount of data remains challenging and motivates cur-

rent research (Liu et al. 2018; Heaton et al. 2018). How-

ever, only a few methods can exploit the capabilities

of current high-performance computing infrastructures,

and this study is an advance in that direction.

Global optimization of the likelihood, a Bayesian

posterior, or a CV based loss function is known to

provide statistically accurate estimates of model pa-

rameters. But a computationally attractive alternative

is to break up the spatial domain into sub-domains

(e. g., tiles) and analyze each sub-domain separately.

This approach reduces the computational workload and

is amenable to parallelization. However, a naive im-

plementation leads to a model that substantially dif-

fers from a global model. Major drawbacks are that

borrowing strength for global statistical parameters is

impossible and predictions near the boundaries of the

sub-domains can be poor. In this work we show that a

subsetting approach featuring overlapping sub-domains

can achieve results that are comparable to those from

the corresponding global model.

We focus on out-of-sample CV for estimating co-

variance parameters (Rasmussen and Williams 2005),

as it is efficient relative to maximum likelihood (ML)

and facilitates the combination of local goodness-of-fit

measures into global ones. Our approach takes advan-

tage of the well-known screening effect in spatial pre-

diction (Stein 2002), whereby conditioning on nearby

observations decreases the statistical value of more dis-

tant ones. Based on this effect a relatively small overlap

of the subsets is sufficient for a good approximation of

the global model. Although both the subsetting and

CV ideas are not new, our combination is a flexible and

scalable fitting method, which can take into account in-

formation from millions of locations and still accurately

approximates the GP models commonly used for spatial

data analysis.

2 Method

2.1 Spatial Gaussian process model

For the spatial location s in the domain D ⊂ R2 the

process Y (s) ∈ R is a GP if all finite dimensional re-

alizations y = (y1, . . . yn)T of Y (s) at the locations

s = (s1, . . . , sn)T follow a multivariate Gaussian dis-

tribution. In the following we assume that a vector of

spatial observations is distributed as

y ∼ N
(
0, σ2Σ(θ) + τI

)
, (1)

where σ2 > 0 is the marginal variance, τ ≥ 0 is the

measurement error (or nugget effect), and θ are pa-

rameters of the n × n covariance matrix Σ(θ) that is

derived from a process covariance function c(s1, s2,θ).

For this model two times the negative log-likelihood of

ξ = (σ2, τ,θT)T given y is

−2l(ξ;y) = n log(2π) + log det
(
σ2Σ(θ) + τI

)
+

y>
(
σ2Σ(θ) + τI

)−1
y ,

(2)

and the corresponding ML estimate ξ̂ML minimizes (2)

with respect to ξ.

The GP model can be used to predict the values of

Y (s) at any location s ∈ D. Given the observations y
and the parameters ξ the best linear unbiased predictor

of Y (s) is also known as the kriging predictor (Stein

1999). To formalize, let sp be a spatial location in D at

which we would like to predict Y (sp). Then the simple

kriging prediction of yp is

ŷP,ξ = σ2Σp(θ)T
(
σ2Σ(θ) + τI

)−1
y

= Σp(θ)T
(
Σ(θ) +

τ

σ2
I
)−1

y ,
(3)

where σ2Σp(θ) is the n× 1 cross-covariance matrix of

y and Y (sp). Note that instead of both σ2 and τ only

the noise-to-signal ratio λ = τ/σ2 is relevant for the

prediction, and we reduce the parameter vector to ζ =

(λ,θT)T and write ŷP,ζ .

Both the evaluation of the likelihood in (2) and the

prediction in (3) require O
(
n3
)

operations and O
(
n2
)

memory. Hence, the exact computations become in-

tractable for large datasets, which motivates more effi-

cient approximate methods.

2.2 CV based covariance parameter estimation

An alternative to ML estimation of the covariance pa-

rameters is CV (Rasmussen and Williams 2005). The

main idea is to divide y into nT ∈ N training data yT

as well as nV ∈ N validation data yV and to assess

the goodness of a parameter configuration, ζ, by how

accurately ŷV predicts yV . Although different metrics

can be used to measure the accuracy of the predic-

tions (Zhang and Wang 2010), we consider the sum of

squared prediction error (SSPE) in this work. Thus, the

resulting loss function is

CV(yT ,yV , ζ) =

nV∑
i=1

(ŷV,ζ[i] − yV [i])
2, (4)

where [i] indicates the i-th element of the vector. The

CV estimate ζ̂CV is found by minimizing CV(·) with

respect to ζ.

Parallel CV 3

This CV estimation is also known as hold-out val-
idation and differs from k-fold and leave-one-out CV
in that only one division into training and validation
data is considered (Arlot and Celisse 2010). In this
study we rely on hold-out validation anticipating the
target dataset sizes to be on the order of 106–107 ob-
servations. Such datasets are often sub-sampled before
the GP model is fitted, e. g., the 5 × 106 observations
considered in Section 4 are a random subset of more
than 2.8× 107 observations (Finley et al. 2019). An al-
ternative approach to handle such large datasets is to
minimize CV(·) from (4) by stochastic gradient-descent
optimization, which considers only a random sample of
the data at each iteration (Ruder 2016). In both cases
it is appropriate to focus on hold-out validation from
a larger sample of the data rather than using k-fold
CV. We note that, if the dataset is small enough, it
is straight forward to turn our parallel CV parameter
estimation method into parallel k-fold CV, but this is
not developed in this work.

Both the CV and ML based estimation of covari-
ance parameters have been studied from a theoretical
perspective (Stein 1990) and using simulation studies
(Sundararajan and Keerthi 2001). An important dis-
tinction is whether the covariance model is misspecified,
where misspecified means that the covariance function
of the data cannot be represented by a parameter con-
figuration of the fitted covariance model. For the case
where the model is correctly specified it is known that
CV has lager asymptotic variance than ML for Brown-
ian motion (Stein 1990). Conversely, in the misspecified
case, CV can lead to smaller squared prediction errors
(Bachoc 2018, 2013). For most applications the true co-
variance model is not known, and hence, a misspecified
covariance model is likely; in this practical situation CV
is an attractive alternative to ML. Moreover, the sim-
ulation results from Section 3.1 suggest that even with
a correctly specified covariance function CV inference
can provide competitive predictions.

2.3 Parallel implementation

To introduce a parallel version of CV(·) in (4) we first
consider the case where the computations are performed
on N = 2 central processing units (CPUs), i. e., at most
two computations are performed in parallel. To that
end, consider a rectangular spatial domain D divided
into two disjoint rectangles D1 and D2. Let y i

T and y i
V

denote the training and validation data vectors from
subset Di. Then an approximate version of CV(·) is

CV(yT ,yV , ζ) ≈ CV
(
y1
T ,y

1
V , ζ

)
+ CV

(
y2
T ,y

2
V , ζ

)
. (5)

Here CV
(
y1
T ,y

1
V , ζ

)
and CV

(
y2
T ,y

2
V , ζ

)
can be evalu-

ated in parallel and the scalar results are added.

Clearly, the approximation in (5) may be inaccurate,

because the prediction of y1
V lacks the information of

the training data y2
T and vice-versa. To improve the

approximation we assume that close observations are

more relevant for the prediction than more distant ones.

Thus, the observations in y2
T with a large potential to

improve the predictions of y1
V lie near the boundary

of D1. We exploit this to improve the approximation

in (5) as follows. Let Dshell
1 ⊂ D2 denote a shell of D1,

which is defined through the width δ ≥ 0 as illustrated

in Fig. 1 (left). Furthermore, let ỹ1
T denote training

data in D1 ∪ Dshell
1 and construct ỹ2

T similarly. Then

the improved approximation can be written as

CV(yT ,yV , ζ) ≈ C̃V(yT ,yV , ζ)

= CV
(
ỹ1
T ,y

1
V , ζ

)
+ CV

(
ỹ2
T ,y

2
V , ζ

)
.

(6)

The shell width δ controls the approximation accu-

racy and the computational workload. That is, a large δ

increases the number of observations in ỹ i
T , and hence,

the prediction accuracy of y i
V as well as the size of the

linear system to be solved. The relevant question is how

small can δ be relative to ζ and the number of obser-

vations in order to keep the approximation error below

a certain bound. A simulation study investigating this

question is given in Section 3.2.

Our parallel CV method generalizes this concept to

N subsets of D. The domain D is divided into the sub-

sets D1, . . . , DN and ỹ i
T and y i

V are constructed ac-

cordingly. Then the approximation is

CV(yT ,yV , ζ) ≈ C̃V(yT ,yV , ζ)

=

N∑
i=1

CV(ỹ i
T ,y

i
V , ζ).

(7)

A pseudo code version of the parallel evaluation

of C̃V(·) is given by Algorithm 1. We see that each

CPU only accesses one particular subset of the data

at a time, which can be coordinated with a parallel

file storage system. Ideally with N CPUs, each CPU

can exclusively process the data of one subset. This

has the advantage that multiple sequential evaluations

with different ζ parameters can be done while divid-

ing (line 2 and 3) and reading (line 5) the data have

to be done once. Another feature of the algorithm is

that the communication among the CPUs is limited to

receiving the ζ to be evaluated (line 6) and sending

the local SSPEs to one CPU (line 9) for gathering. Be-

cause ζ is low dimensional and the SSPE is a scalar the

amount of required communication is negligible. Thus,

the algorithm has good properties to work efficiently on

common HPC infrastructures.

4 F. Gerber, D. W. Nychka

D1 D2D
1

shell

δ

1

2

2

3 3

3 3

D1 D2

D3 D4

D5 D6

D7 D8

Fig. 1 Left: The spatial domain D (entire rectangle) is divided into N = 2 disjoint sub-domains D1 (blue) and D2 (orange).
The prediction of the validation data in D1 is based on the training data in D1 (blue) and its shell Dshell

1 (cross-hatched). Right:
Recursive division of the spatial domain D (entire rectangle) into N = 8 sub-domains D1, . . . , D8. The numbers around D
indicate the steps of the recursion and the solid, dashed, and dotted lines the corresponding splits

Algorithm 1 Parallel evaluation of C̃V(yT ,yV , ζ)

Input: yT , yV , ζ

Output: C̃V(yT ,yV , ζ)

1: procedure

2: Create ỹ1
T , . . . , ỹ

N
T from yT .

3: Create ỹ1
V , . . . , ỹ

N
V from yV .

4: parallel for i = 1, . . . , N do

5: Read ỹ i
T and y i

V in memory.

6: Receive ζ.

7: Compute local SSPE zi = CV(ỹ i
T ,y

i
V , ζ).

8: end parallel for

9: Combine to global SSPE z =
∑N

i=1 zi.

10: return z

11: end procedure

The number of subsets and δ controlling the size

of the shells Dshell
i determine the computational cost

of C̃V(·). The computational cost of CV(·) is domi-

nated by the kriging prediction in (3), and hence, is of

order O(n3). Let k be the number of observations in the

largest training subset ỹ i
T . Then the computational cost

of C̃V(·) in (7) is O(Nk3). If N CPUs are used in par-

allel, the computation cost per CPU is at most O(k3).

Thus, for large N and small δ the computational cost

of C̃V(·) is much smaller compared to a global evalu-

ation of CV(·). Details of the scaling properties of the

parallel CV method are illustrated in Section 4.3.

2.4 Division of the data into subsets

To achieve a balanced workload for the parallel evalu-

ation of C̃V(·) from (7) it is essential that all ỹ i
T con-

sist of a similar amount of data. We assume y to be

contained in a rectangular domain D and use a simple

recursive approach to divide it into the sub-domains

D1, . . . , D2q , q ∈ N, which are in turn used to construct

ỹ i
T and ỹ i

V . The recursive step consists of dividing a

rectangle into two rectangles such that both rectangles

together with their shells contain a similar amount of

data. The division lines alternate between parallel to

the x-axis and parallel to the y-axis for each step of

the recursion. For δ = 0 the recursive division leads

to subsets with similar amounts of data. However, for

δ > 0 and four or more subsets, the subsets can exhibit

substantial variability in the amount of data. Clearly,

better division strategies can be found for that situa-

tion, and this is a topic for further investigation.

We illustrate the division in Fig. 1 (right), where

D is divided recursively into N = 8 sub-domains. In

the first step, D is divided along the solid line labeled

by 1. In the second step, the two resulting subsets are

divided along the dashed lines labeled by 2. Finally, in

the third step, the four resulting subsets are divided

along the dotted lines labeled by 3.

3 Simulation studies

For the remainder of the manuscript we assume an

exponential covariance model. The corresponding co-

variance function is c(s1, s2, θ) = exp(−||s1 − s2||/θ),
where s1, s2 ∈ D are spatial locations, || · || denotes

the Euclidean norm, and θ > 0 is the spatial range.

The matrix Σ(θ) from Section 2.1 is constructed as

{c(si, sj , θ)}i,j=1,...,n. With that the parameters of the

likelihood in (2) are ξ = (σ2, τ, θ)T, and we focus on

ζ = (λ, θ)T with λ = τ/σ2 as those are the relevant

parameters for prediction.

Parallel CV 5

●

●

●●●●

●

●

●

●

●●

●

●●●●

●

●●

●●

●

●

●

●●●

●

●●

●●

●●●

●

●

●

●

●

●

●●

θ λ

CV CV (4) CV (16) ML CV CV (4) CV (16) ML

0.05

0.10

0.15

0.20

0.04

0.06

0.08

0.10 ●
●

●

●

●●
●

●
●

●●

RMSPE

CV CV (4) CV (16) ML Truth
0.575

0.600

0.625

0.650

Fig. 2 Results of the simulation study comparing the CV and ML based covariance parameter estimates. The x-axes denote
the estimation methods, and ’(4)’ and ’(16)’ indicate that 4 and 16 replicates of the simulated data with nT = 4 000 and 16 000
training data are used, respectively. The y-axes indicate the spatial range θ (left panel), the noise-to-signal ratio λ (middle
panel), and the RMSPE at the hold-out test locations (right panel). The red dashed lines in the left and middle panel show
the true θ and λ value, respectively

3.1 Comparison of CV and ML estimation

We assess the performance of CV and ML based covari-

ance parameter estimation with a simulation study. To

this end, consider the spatial domain D = [0, 1]× [0, 1]

and fix σ2 = 1, θ = 0.05, and τ = 0.1. Then 400 real-

izations of the GP with 3 000 spatial locations each are

generated. The following considerations apply to each

of those 400 realizations: The 3 000 spatial locations are

sampled according to a Latin Hypercube sampling de-

sign from the R package lhs (Carnell 2019). We estimate

ζ = (λ, θ)T using CV and ML under the assumption

that σ2 = 1 is known, i. e., λ = τ . More specifically, the

3 000 samples are randomly divided into nT = 1 000

training, nV = 1 000 validation, and nP = 1 000 test

data. Then grid-search optimization is used to esti-

mate the parameters, where the evaluated parameter

grid consists of all 225 pairwise combinations of 15 pa-

rameters in [θ/2, 2θ] and 15 parameters in [λ/2, 2λ]. The

training and validation data of each realization are used

to evaluate CV(·) in (4) and the parameter configura-

tion leading to the smallest CV(·) is ζ̂CV. Similarly,

ζ̂ML is found by evaluating (2) using the training data.

The prediction accuracy at the hold-out test locations

is measured by the root-mean-square prediction error

(RMSPE) for both the CV and ML estimates. Finally,

we study how the CV estimates change when 4 and 16

replicates of the simulated data are available. Studying

these replicates allows us to mimic larger datasets with

nT = 4 000 and 16 000 training data, respectively, while

keeping the computational costs at a moderate level.

The left and middle panel of Fig. 2 show boxplots

of θ̂ and λ̂, respectively. All median estimates are near

the true values, and the CV based estimates show larger

variability around the true values than the ML esti-

mates. However, when CV is used for the datasets with

4 and 16 replicates, the variability around the true val-

ues is reduced. The right panel of Fig. 2 shows boxplots

of the RMSPEs of the fitted models at the hold-out

test locations. Here both CV and ML show a similar

distribution and both are close to the reference distri-

bution, which is obtained using the true ζ values for

the prediction (rightmost boxplot). The variability of

the RMSPEs is reduced when the CV estimation is ap-

plied to the datasets with 4 and 16 replicates.

3.2 Choice of the shell width

The shell width δ affects the prediction accuracy at the

validation locations, and hence, the approximation ac-

curacy of C̃V(·) in (7). The spatial locations with the

largest potential to get sub-optimal predictions due to

a small δ are located near the corners of the subsets.

Conversely, if the predictions at those corner locations

are good, the approximation error of C̃V is small. While

this consideration is useful to obtain a conservative es-

timate of the require shell width δ, we have to keep in

mind that the number of corner locations is small rel-

ative to the number of observations in the entire sub-

set. Thus, C̃V(·) can still be an accurate approximation

even if the predictions of the corner locations are sub-

optimal.

The following simulation setup is designed to as-

sess how the prediction accuracy at a corner location

depends on the shell width δ, the number of training

data n relative to θ, and λ. Let D = [0, 2] × [0, 2] be a

spatial domain and D1 = [0, 1]× [0, 1] a subset thereof

containing the spatial test location s0 ∈ D1 near (1, 1)

as shown in Fig. 3 (top left). Then we quantify the pre-

diction accuracy at s0 given the data in D1∪Dshell
1 /{s0}

by the following procedure: First, sample n spatial loca-

6 F. Gerber, D. W. Nychka

Fig. 3 Top left: The [0, 2]× [0, 2] square shows the spatial domain D of the simulation study. The GP is predicted at s0 ∈ D1

given the data in D1 ∪Dshell
1 \ {s0}. The prediction error is assessed for different shell widths δ. Bottom left: The exponential

covariance function with range θ = 0.2 and the considered shell widths δ are shown. Right: The median (dots) and quartiles
(error bars) of the APEs at s0 (y-axes) are shown for the several δ (x-axes). The four panels show different scenarios, which
vary in the number of simulated data n and the noise-to-signal ratio λ. Note that δ = 1 corresponds to using all simulated
data in D \ {s0} for the prediction at s0 and serves as a reference (dashed lines)

tions in D according to a space-filling sampling design.

Second, simulate the values of the GP defined in Sec-

tion 2.1 at the n sampled locations and s0. Third, pre-

dict y0 = Y (s0) based on the data with spatial location

in D1 ∪ Dshell
1 \ {s0} using the true parameters ζ. Fi-

nally, quantify the prediction error at s0 as the absolute

prediction error (APE) |y0 − ŷ0|.

Fig. 3 (right) shows the distribution of the APEs

at s0 for a fixed spatial range θ = 0.2 and varying val-

ues for δ, n, and λ. The dots represent the median and

the vertical lines the 25% and the 75% quantiles of the

APEs from 4 000 simulations. Note that δ = 1 corre-

sponds to using all simulated data in D and serves as

a reference. We see that for n = 50 (200) a shell width

of δ = 0.1 (0.02) is sufficient to obtain predictions that

are comparable to using all data in D \ {s0}. Note that

δ = 0.1 is still much smaller than the effective spatial

range of the covariance function (Fig 3, bottom left),

and this is a specific illustration of the screening ef-

fect (Stein 2002). Surprisingly, the value of the noise-

to-signal ration λ affects the APEs in the same way for

all δ, and hence, is not relevant for the choice of δ.

4 Data illustration

4.1 Dataset

We consider a spatial dataset with 5 × 106 spatial ob-

servations consisting of airborne LiDAR canopy height

measurements taken in Alaska in 2014. This dataset

was previously used to study spatial models (Finley

et al. 2019; Taylor-Rodriguez et al. 2019), and we refer

the reader to those publications for more background

on the dataset and its creation. Due to the measure-

ment process, the observations are available along strips

as shown in Fig. 4. Of interest, however, are a high-

resolution map of the canopy height and measures of

uncertainty for the entire spatial domain. Both can be

obtained using a GP model, and we take this as mo-

tivation to study the parallel CV method using this

dataset.

In addition to the canopy height measurements and

their spatial locations we have access to two covariates:

records of forest fires and forest canopy sparseness. To

remove potential dependence of the canopy height on

these covariates, we first fit a linear model with an inter-

cept, both covariates, and the interaction of longitude

Parallel CV 7

Fig. 4 Left: Map of the 5 × 106 residuals derived from the standardized LiDAR canopy height data from Alaska. The gray
lines indicate the division into 512 rectangular subsets. Right: An enlargement of the rectangle indicated by the red arrow on
the left panel

and latitude to the standardized canopy heights. The

residuals of that model are shown in Fig. 4 and we con-

sider them as the “y” from the zero-mean GP described

in Section 2.

4.2 Computing environments

All computationally intensive tasks are performed on

Google Cloud1. Depending on the memory requirements

of the computation either up to 514 n1-standard-1 nodes

with one Intel Xeon CPU at 2.30 GHz and 3.75 GB

memory or up to 258 n1-highmem-2 nodes with 2 Intel

Xeon CPU at 2.30 GHz and 13 GB memory are used.

We set up the nodes as an elastic Slurm cluster2 with a

CentOS 7 3 Linux operating system and the statistical

software R (2019). Parallel computations are performed

using OpenMPI 4 directives, which are formulated using

the R package pbdMPI (Chen et al. 2012). OpenMP

multi-threading is disabled. Computations using fewer

than 80 CPUs are performed on a university owned

node with 80 Intel Xeon CPUs at 2 GHz and a total

of 2 TB memory. The code and data to reproduce our

results are available at: https://github.com/florafa

una/parallelCVsupplementaryMaterial.

4.3 Scaling experiments

4.3.1 Strong scaling

Strong scaling describes the parallel computing speedup

relative to the number of CPUs for a fixed problem size.

1 https://cloud.google.com
2 https://slurm.schedmd.com/elastic_computing.html
3 https://www.centos.org
4 https://www.open-mpi.org

To measure it we consider a subset of the data with

20 000 residuals and rescale the corresponding spatial

domain to D = [0, 1] × [0, 1]. The data is randomly

divided into nT = 18 000 training and nV = 2 000 val-

idation data. Using the recursive division described in

Section 2.4 with 0, . . . , 6 recursive steps we create seven

datasets with N = 1, 2, 4, 8, 16, 32, and 64 subsets. For

the division we consider the shell widths δ = 0, 0.05,

0.1, and 0.2, and create one series of subsets for each δ

leading to a total of 28 datasets. Note that δ = 0.2 is

1/5 of the domain width and most applications would

not require δ this large. The computation time of C̃V(·)
from (7) is measured for each of these datasets, where

the number of used CPUs is set to N , i. e., the number

of subsets of the specific dataset.

The results of the scaling study are shown in Fig. 5

(left). One evaluation of C̃V(·) using one CPU, i. e.,

C̃V(·) = CV(·), takes 786 seconds. When instead C̃V(·)
is evaluated using multiple CPUs in parallel, the speedup

is in most cases larger than the number of used CPUs.

This is expected, as the approximation C̃V(·) has a

computational cost of O(Nk3), whereas CV(·) has a

cost of O(n3T) (see Section 2.3). Moreover, the shell

width δ determines the amount of processed data and

has a large impact on the scaling property. For δ > 0

the recursive divisions lead to some degenerate subsets

without validation data. We ignored those subsets and

this explains why some timing results in the figure are

plotted against less CPUs than one would expect. For

δ = 0 the evaluation time reaches a lower bound when

using 32 CPUs in parallel, which suggests that the ex-

ecution of non-parallel parts of the code together with

the parallel computing overhead take about 0.3 seconds.

https://github.com/florafauna/parallelCVsupplementaryMaterial
https://github.com/florafauna/parallelCVsupplementaryMaterial
https://cloud.google.com
https://slurm.schedmd.com/elastic_computing.html
https://www.centos.org
https://www.open-mpi.org

8 F. Gerber, D. W. Nychka

Fig. 5 Left: Results of the strong scaling experiment shown as the speedup relative to using one CPU (y-axis) for different
number of CPUs (x-axis) and four shell widths δ. Right: Results of the weak scaling experiment depicted as the speedup
relative to the fastest subset (y-axis) and the number of used CPUs (x-axis). The dashed lines indicate perfect scaling

4.3.2 Weak scaling

Weak scaling describes the parallel computing speedup

relative to the number of CPUs when the problem size

increases linearly with the number of CPUs. To measure

it we consider all 5×106 residuals and randomly choose

nT = 3 999 462 (80%) training data and nV = 500 346

(10%) validation data. We consider three ways to gen-

erate the subsets and their shells: First, we divide the

data into 512 subsets without shells (δ = 0) as described

in Section 2.4. In that case the subsets have either 9 765

or 9 766 residuals with between 7 698 and 7 936 train-

ing data. Second, we consider a shell width of δ = 0.001

and again divide the data into 512 subsets. The divi-

sion leads to 20 subsets with more than 2 000 residuals

in their shells, and we reduce the number of residuals in

those shells to 2 000 by random sampling. The result-

ing 512 subsets have between 9 966 and 13 049 residuals

with between 7 863 and 10 478 training data. Third, we

construct a dataset consisting of 512 replicates of one

subset from the first case with δ = 0 above. In that case,

all subsets have 9 766 residuals with 7 845 training data,

and hence, it mimics a perfect division of the dataset

into subsets. For the three series of subsets we measure

the evaluation time of C̃V(·) using different numbers of

subsets and the corresponding number of CPUs.

Fig. 5 (right) shows the parallel computing speedup

for the three series of subsets. Not surprisingly, the se-

ries consisting of replicates has the best and almost per-

fect scaling. That is, the evaluation time of CV(·) using

one subset and one CPU is similar to the evaluation

of C̃V(·) using all 512 replicates and 512 CPUs. The

other two series of subsets have a varying number of

training data in each subset, and hence, the evaluation

time of CV(·) varies for each subset. Therefore, it is un-

clear against which subset the evaluation times should

be compared in order to compute the speedup. We de-

cided to use the fastest subset as a reference, which is

the most conservative approach. With that the scaling

is promising but less optimal than for the series con-

sisting of replicates. The deviation from perfect scaling

is mostly due to the imperfect division of the data into

subsets, which leads to unbalanced workloads among

the CPUs.

4.4 Parameter estimation

We used parallel CV to fit the GP model outlined in

Section 2 to the residuals of the canopy height dataset.

To that end, the 5×106 residuals are randomly split into

80% training, 10% validation, and 10% test data. The

data are divided into 512 subsets using a shell width

of δ = 0.001 as previously described in Section 4.3.2.

Then ζ̂CV = (λ̂CV, θ̂CV)T is found via grid-search opti-

mization, where the grid consists of 30 parameters ζi,

i = 1, . . . , 30, which are chosen based on a Latin Hyper-

cube sampling design from the R package lhs (Carnell

2019). Then C̃V(·) of (7) is evaluated sequentially for

all ζi using the training and validation data. The com-

putations are performed using 512 CPUs in parallel and

take 44 minutes in total. Hence, one evaluation of CV(·)
takes 1.4 minutes on average and a total of 376 CPU

hours are used.

Parallel CV 9

ζ1

ζ2

ζ7

ζ15

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1e−04

1e−03

1e−02

1e−01

1e+00

1e−04 1e−03 1e−02 1e−01 1e+00

spatial range θ

n
o

is
e
−

to
−

s
ig

n
a

l
ra

ti
o

 λ 0.375

0.378

0.381

0.384

global
RMSPE

no. of subsets
with smallest
RMSPE

● 0

50

100

150

ζ1 vs. ζ7

ζ1 vs. ζ2

1 8 64 512

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

aggregation level: number of subsets

re
s
a

m
p

le
d

 d
a

ta
s
e

t
fa

vo
ri

n
g

 ζ
1

Fig. 6 Left: Results of the parallel CV covariance parameter estimation for the 5× 106 residuals of the canopy height data.
Each dot represents one evaluated parameter configuration ζi, where the λ and θ components are shown on the x and y-axis,
respectively. The colors indicate the global RMSPEs and gray points have a RMSPE greater than 0.384. The labels ζ1, ζ2, ζ7,
and ζ15 denote the parameter configuration with the smallest, the 2nd, 7th, and 15th smallest global RMSPEs, respectively.
Dots sizes indicate the number of subsets for which the parameter configuration lead to the smallest local RMSPE. Right:
Assessment of the influence of the random sampling of the training and validation data. The percentage of the 100 resampled
datasets favoring ζ1 (y-axis) is plotted against the aggregation level indicated by the number of subsets (x-axis)

From the results of C̃V(·) it is straight forward to
compute the approximate global RMSPEs for all ζi as
shown in Fig. 6 (left). Here global indicates that all sub-
sets are used for the computations. We reorder the ζi

according to their global RMSPE, i. e., ζ1 = ζ̂CV in-
dicates the parameters with the smallest and ζ30 the
one with the largest global RMSPE. In figure we see
that ζ1 and ζ2 lie in opposite corners of the parameter
space, which could be due to an oversimplified covari-
ance model.

As opposed to the global RMSPE, we can also inves-
tigate the local RMSPE for each subset to get insights
into non-stationary features of the data. The circle sizes
in the Fig. 6 (left) indicate the number of subsets for
which the ζi leads to the smallest local RMSPE. We
see many large dots for small θ values, and hence, the
small range dependency in the data seems to be im-
portant. Moreover, 19 of the 30 ζi lead to the small-
est local RMSPE for at least one of the 512 subsets,
which indicates that a non-stationary extension of the
model could be beneficial. To further investigate this
conjecture the hold-out test data are predicted using
the global ζ̂CV and using the best local parameter con-
figuration for each subset. The resulting RMSPEs for
the test data using the global and local estimates are
0.372 and 0.366, respectively. This suggests that the
non-stationary version provides more accurate predic-
tions.

Furthermore, we assess the influence of the random

splitting into training, validation, and test data on the

parameter estimates. To that end, we resample that di-

vision 100 times, select ζ1, ζ2, ζ7, and ζ15, and evaluate

C̃V(·) for each resampled dataset and those parame-

ters. Using 512 CPUs in parallel the computation takes

9.1 hours, which correspond to a total of 4 659 CPU

hours. A comparison of the resulting global RMSPEs

reveals that the ordering of ζ1 and ζ2 is only repro-

duced for 39% of the resampled datasets, and hence,

it is not clear which of those parameters is preferred.

For the remaining five pairwise comparisons the order-

ing is confirmed for all resampled datasets. In addition,

we can investigate the local behavior of the RMSPEs at

subset level and for different spatial aggregations. Fig. 6

(right) shows the proportion of resampled datasets fa-

voring ζ1 against ζ2 (top, y-axis) and ζ1 against ζ7

(bottom, y-axis) for different spatial aggregation levels

(x-axis). The bottom panel shows that some subsets

favor ζ7 at the aggregation levels with 512 and 64 sub-

sets, whereas at the global level ζ1 is favored for 100%

of the resampled datasets. This is another indication

that a non-stationary model could be advantageous.

10 F. Gerber, D. W. Nychka

5 Conclusion

In this work we revisit two old ideas for handling large

spatial datasets: domain decomposition or subsetting

and out-of-sample CV for parameter estimation. Based

on numerical results we show that a modest overlap of

the subsets (referred to as shells) provides an accurate

approximation to a global spatial analysis. An expla-

nation for this useful property is the screening effect

for spatial prediction. For example, with a moderate

sample size (n = 200) in a squared domain and an ex-

ponential covariance function with a range of 10% of

the domain width, the shell width δ can be set to as

low as 1% of the domain width while recovering accu-

rate predictions. Thus, under the kind of GP models

typically used for environmental applications one can

use subsets with little overlap and still expect predic-

tions that are comparable to a global model. The size

of the shell regions depends on the correlation range

of the process and the observation density but less so

on the noise-to-signal ratio λ. In practice one can get

a rough idea of the correlation range through a simple

exploratory analysis using variograms to determine a

good choice for δ.

As expected, CV estimates of the covariance param-

eters show larger uncertainty compared to the ML es-

timates in our simulation study. In addition, we note

several important findings. The RMSPEs of predictions

at test locations using either the CV or ML estimates

are nearly identical. This suggests that spatial predic-

tion is robust to the estimated covariance model and

that the CV parameters are adequate for prediction.

We also find that the accuracy of the CV estimates

improves substantially with replicated fields. Many en-

vironmental datasets exhibit (pseudo) replicated fields

in the form of nearly uncorrelated and stationary fields

over time and so this feature can be exploited to im-

prove CV parameter estimates. Note that the design of

our simulation study puts ML in its best light by fitting

the correct covariance model. It would be interesting to

see what level of misspecification makes the ML and

CV parameter estimates comparable in mean squared

error.

Based on shell sizes that give good approximations

to global predictions, our parallel CV method is straight-

forward and shows nearly optimal weak scaling results.

For strong scaling we see more dependence on the shell

size but even with a generous shell width δ of 20% the

evaluation is 16 times faster using 16 CPUs compared

to using one CPU. In the case of a smaller, but still

realistic shell widths, we see a speedup of more than

250 for 32 CPUs. Moreover, we consider a scientifically

relevant dataset with 5 million spatial observations as

a practical benchmark, and we are able to estimate

the covariance parameters based on all data using 512

CPUs in parallel for 45 minutes. The good scaling prop-

erties are expected given the limited amount of commu-

nication among the CPUs and the reduced amount of

input/output per CPU. That being said, there is still

room for improving the scaling properties. For exam-

ple, we rely on a simple, recursive division to generate

subsets. Finding a more sophisticated division strat-

egy that leads to a more balanced workload among the

CPUs is a topic for future research.

To keep our numerical examples simple we have

omitted a mean component from the spatial model.

However, typical spatial process models include a linear

regression component and the extended model of (1) is

y ∼ N
(
Xβ, σ2Σ + τI

)
,

where X is a matrix of covariates and β a vector of

linear predictors. Often β is found using generalized

least squares (GLS) and the corresponding estimate is

β̂ = (XTM−1X)−1XTM−1y , (8)

where M = Σ + λI. M involves the process covari-

ance for all locations, and hence, this may seem prob-

lematic for our subsetting approach. But the follow-

ing considerations can be used to formulate the GLS

estimation in terms of the already solved prediction

problem. Recall that the spatial prediction of the resid-

uals w at observed locations is given by Hw , where

H = Σ(Σ+λI)−1. Simple matrix identities imply that

M−1 = (1/λ)(I − H), and hence, M−1X from (8)

can be found by a spatial prediction operation on the

columns of X. Because the parallel CV method is al-

ready efficient for finding approximate predicted val-

ues, there will be only a minimal overhead in finding

approximate GLS estimates of β for a modest number

of covariates.

One potential limitation of our parallel CV method

concerns spatial processes with long range correlations

that induce dependence across a large fraction of the do-

main. One strategy to handle this situation is to include

a low dimensional set of basis functions in the mean

component to adjust for large scale dependence. This

can often reduce the correlation scale and also simplify

the dependence structure. Moreover, the basis function

parameters can be computed based on GLS as outlined

above.

Parallel CV 11

The main focus of this work is a practical route to

approximate a global spatial analysis. While we have

been successful in establishing an accurate parallel CV

method to this end, we also note that local predictions

on subsets of the domain have value on their own. One

might expect large spatial datasets that span a hetero-

geneous environment to exhibit a non-stationarity co-

variance structure. For this reason it is natural to con-

sider local covariance models for subsets of the domain.

Information about parameters and prediction errors at

subsets scale is an intermediate computation from our

method and readily available. Section 4 illustrates some

ways to use the local results to assess stationarity and

draws the tentative conclusion that a non-stationary

model is more appropriate. The fitting and prediction

with non-stationary models is still an active area of re-

search and raises the questions of how to identify and

incorporate changing covariance parameters over space.

It would be interesting to apply the parallel CV method

to such a non-stationary model, and we believe that the

computational benefits as well as the interpretation of

the local results can support progress in this research

area.

Acknowledgements We thank Google and the Computa-
tional Information Systems Laboratory of the University Cor-
poration for Atmospheric Research for the provided compute
time on their high-performance computers.

References

Arlot S, Celisse A (2010) A survey of cross-validation pro-
cedures for model selection. Statist Surv 4:40–79, DOI
10.1214/09-SS054

Bachoc F (2013) Cross validation and maximum likelihood es-
timations of hyper-parameters of Gaussian processes with
model misspecification. Comput Stat Data Anal 66:55–
69, DOI 10.1016/j.csda.2013.03.016

Bachoc F (2018) Asymptotic analysis of covariance parameter
estimation for Gaussian processes in the misspecified case.
Bernoulli 24(2):1531–1575, DOI 10.3150/16-BEJ906

Banerjee S, Carlin BP, Gelfand AE (2014) Hierarchical Mod-
eling and Analysis for Spatial Data, Second Edition.
Chapman and Hall/CRC, DOI 10.1201/b17115

Carnell R (2019) lhs: Latin Hypercube Samples. URL https:

//CRAN.R-project.org/package=lhs, R package v. 1.0.1
Chen WC, Ostrouchov G, Schmidt D, Patel P, Yu H (2012)

pbdMPI: Programming with big data—interface to MPI.
URL https://cran.r-project.org/package=pbdMPI, R
Package, v. 0.3-9

Finley AO, Datta A, Cook BD, Morton DC, Andersen HE,
Banerjee S (2019) Efficient algorithms for Bayesian near-
est neighbor Gaussian processes. J Comput Graph Stat
28(2):401–414, DOI 10.1080/10618600.2018.1537924

Gerber F, de Jong R, Schaepman ME, Schaepman-Strub
G, Furrer R (2018) Predicting missing values in spatio-

temporal remote sensing data. IEEE TGRS 56(5):2841–
2853, DOI 10.1109/TGRS.2017.2785240

Heaton MJ, Datta A, Finley AO, Furrer R, Guinness J,
Guhaniyogi R, Gerber F, Gramacy RB, Hammerling D,
Katzfuss M, Lindgren F, Nychka DW, Sun F, Zammit-
Mangion A (2018) A case study competition among
methods for analyzing large spatial data. JABES DOI
10.1007/s13253-018-00348-w

Hmimina G, Dufrêne E, Pontailler JY, Delpierre N, Aubinet
M, Caquet B, de Grandcourt A, Burban B, Flechard C,
Granier A, Gross P, Heinesch B, Longdoz B, Moureaux
C, Ourcival JM, Rambal S, André LS, Soudani K (2013)
Evaluation of the potential of MODIS satellite data to
predict vegetation phenology in different biomes: An in-
vestigation using ground-based NDVI measurements. Re-
mote Sens Environ 132:145–158, DOI 10.1016/j.rse.2013.
01.010

Lefsky MA, Cohen WB, Parker GG, Harding DJ (2002) Lidar
remote sensing for ecosystem studies: Lidar, an emerg-
ing remote sensing technology that directly measures the
three-dimensional distribution of plant canopies, can ac-
curately estimate vegetation structural attributes and
should be of particular interest to forest, landscape, and
global ecologists. BioScience 52(1):19–30, DOI 10.1641/
0006-3568(2002)052[0019:LRSFES]2.0.CO;2

Liu H, Ong YS, Shen X, Cai J (2018) When Gaussian process
meets Big Data: A review of scalable GPs. arXiv URL
https://arxiv.org/abs/1807.01065

R (2019) A Language and Environment for Statistical Com-
puting, v. 3.6. R Core Team, R Foundation for Statistical
Computing, Vienna, Austria, URL https://www.R-proje

ct.org

Rasmussen CE, Williams CKI (2005) Gaussian Processes
for Machine Learning. MIT Press, DOI 10.7551/mitpre
ss/3206.001.0001

Ruder S (2016) An overview of gradient descent optimization
algorithms. URL https://arxiv.org/abs/1609.04747

Stein ML (1990) A comparison of generalized cross valida-
tion and modified maximum likelihood for estimating the
parameters of a stochastic process. Ann Stat 18(3):1139–
1157, DOI 10.1214/aos/1176347743

Stein ML (1999) Interpolation of Spatial Data. Some The-
ory for Kriging. Springer New York, DOI 10.1007/
978-1-4612-1494-6

Stein ML (2002) The screening effect in kriging. Ann Statist
30(1):298–323, DOI 10.1214/aos/1015362194

Sundararajan S, Keerthi SS (2001) Predictive ap-
proaches for choosing hyperparameters in Gaussian
processes. Neural Comput 13(5):1103–1118, DOI
10.1162/08997660151134343

Taylor-Rodriguez D, Finley A, Datta A, Babcock C, An-
dersen H, Cook B, Morton D, Banerjee S (2019) Spa-
tial factor models for high-dimensional and large spatial
data: An application in forest variable mapping. Stat Sin
29(3):1155–1180, DOI 10.5705/ss.202018.0005

Weiss DJ, Atkinson PM, Bhatt S, Mappin B, Hay SI, Geth-
ing PW (2014) An effective approach for gap-filling con-
tinental scale remotely sensed time-series. ISPRS J Pho-
togramm Remote Sens 98:106–118, DOI 10.1016/j.isprsj
prs.2014.10.001

Wikle CK, Zammit-Mangion A, Cressie N (2019) Spatio-
Temporal Statistics with R. Chapman and Hall/CRC

Zhang H, Wang Y (2010) Kriging and cross-validation for
massive spatial data. Environmetrics 21(34):290–304,
DOI 10.1002/env.1023

https://CRAN.R-project.org/package=lhs
https://CRAN.R-project.org/package=lhs
https://cran.r-project.org/package=pbdMPI
https://arxiv.org/abs/1807.01065
https://www.R-project.org
https://www.R-project.org
https://arxiv.org/abs/1609.04747

	1 Introduction
	2 Method
	3 Simulation studies
	4 Data illustration
	5 Conclusion

