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Abstract

Shape restrictions on functional regression coefficients such as non-negativity,
monotonicity, convexity or concavity are often available in the form of a prior
knowledge or required to maintain a structural consistency in functional regression
models. A new estimation method is developed in shape-constrained functional
regression models using Bernstein polynomials. Specifically, estimation approaches
from nonparametric regression are extended to functional data, properly account-
ing for shape-constraints in a large class of functional regression models such as
scalar-on-function regression (SOFR), function-on-scalar regression (FOSR), and
function-on-function regression (FOFR). Theoretical results establish the asymp-
totic consistency of the constrained estimators under standard regularity conditions.
A projection based approach provides point-wise asymptotic confidence intervals
for the constrained estimators. A bootstrap test is developed facilitating testing
of the shape constraints. Numerical analysis using simulations illustrate improve-
ment in efficiency of the estimators from the use of the proposed method under
shape constraints. Two applications include i) modeling a drug effect in a mental
health study via shape-restricted FOSR and ii) modeling subject-specific quantile
functions of accelerometry-estimated physical activity in the Baltimore Longitu-
dinal Study of Aging (BLSA) as outcomes via shape-restricted quantile-function
on scalar regression (QFOSR). R software implementation and illustration of the
proposed estimation method and the test is provided.

Keywords: Shape constrained estimation; Functional regression; Montonicity, Convexity;
Physical Activity
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1 Introduction

Functional regression (Ramsay and Silverman, 2005) is an active area of research in func-

tional data analysis (FDA) and refers to the class of regression models with functional

response and/or covariates. Functional regression models have diverse applications in

biological sciences such as genome-wide association studies (GWAS) (Fan and Reimherr,

2017), physical activity research (Goldsmith et al., 2016), functional magnetic resonance

imaging (Reiss et al., 2017), marine ecology (Ghosal et al., 2020), radiomics (Yang et al.,

2020), environmental modeling (Ghosal and Saha, 2021) and many others. Depending on

whether a response or a covariate is a functional observation, functional regression models

can be broadly divided into three main categories: scalar-on-function regression (SOFR),

function-on-scalar regression (FOSR), and function-on-function regression (FOFR). In

the simplest form of such models, the dynamic effect of the predictor of interest on the

response is captured using smooth univariate or bivariate functional regression coeffi-

cients. Several methods exist in FDA literature to estimate these regression coefficients

(Hastie and Tibshirani, 1993; Hoover et al., 1998; Huang et al., 2004; Reiss et al., 2010,

2017).

Shape restrictions such as non-negativity, monotonicity, convexity or concavity of the

functional regression coefficients can either be available as a prior knowledge about the

relationship between the response and the predictor of interest or be required to main-

tain structural consistency of such models. For example, in quantile regression analysis

of systolic blood pressure (SBP) and diastolic blood pressure (DBP) (Kim, 2006) on age,

it is known that DBP becomes less responsive than SBP as people get older, while SBP

increases. In particular, the amount of increase in DBP as a response to aging becomes

progressively smaller compared to the corresponding amount of increase in SBP. Hence,

for structural consistency and interpretability, the functional coefficient of DBP is re-

quired to be a nondecreasing function of the age. In the Baltimore Longitudinal Study

of Aging (BLSA), the magnitude of diurnal physical activity curve was found to decrease

as a function of age at all times during the day for both women and men (Xiao et al.,

2015). In longitudinal clinical studies exploring the effect of a drug on disease severity

(e.g., Ahkim et al. (2017)) a negative functional coefficient corresponding to the treat-

ment group would prove the effectiveness of the drug while a negative and decreasing

functional coefficient would suggest the effectiveness of the drug to increase in the follow
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up weeks. In a Quantile Function-on-Scalar Regression (QFOSR) framework introduced

in Yang et al. (2020) a non-decreasing functional coefficient provide a sufficient condition

(Yang, 2020) for ensuring monotonicity of the predicted quantile functions. In modeling

of growth curves (Hu et al., 2009), the mean function µ(t) is required to be non-decreasing

as ‘growth’ is necessarily non-decreasing. In clinical studies, often odds-ratios of a dis-

ease can be known to be positively (negatively) associated with a functional biomarker

- a knowledge that can be modelled using a constrained scalar-on-function regression

(SOFR) model. Incorporation of such shape constraints on functional regression coeffi-

cients can often lead to reduced uncertainty of the coefficient estimates in the restricted

parameter space (Lim and Glynn, 2012; Yagi et al., 2020) and can regulate the model

fit, particularly, for smaller sample sizes. Several methods have been developed for shape

constrained estimation in nonparametric regression using kernel-based approaches (Hall

and Huang, 2001; Dette et al., 2006; Birke and Dette, 2007), smoothing splines (Pya

and Wood, 2015), regression splines (Meyer, 2008, 2018), Bernstein polynomials (Chang

et al., 2005; McKay Curtis and Ghosh, 2011; Wang and Ghosh, 2012) among many others.

Ahkim et al. (2017) developed a method for shape testing using constrained regression

splines (B-spline) for the varying coefficient model.

In this article, we extend a Bernstein polynomial (BP) estimation approach from

shape-constrained nonparametric regression (Wang and Ghosh, 2012) to a wide class of

functional regression models under various shape constraints. We follow a method of

sieve (Grenander, 1981) and use Bernstein polynomial basis for modeling the unknown

functional regression coefficients. Importantly, we show that model fitting can be reduced

to solving a least square problem with linear constraints on the basis coefficients, where

the constraint matrix is universal and does not depend on the order of the basis (barring

dimension), observed time-points or the internal knots, unlike the constrained estimation

approaches with B-splines (Ahkim et al., 2017). This ensures the shape restrictions are

satisfied everywhere over the domain and not just at the observed time points. Further, we

properly account for the temporal dependence within the curves in function-on-scalar or

function-on-function regression using a pre-whitening/ feasible generalized least squares

approach (Chen et al., 2016; Ghosal et al., 2020), making the estimators more efficient.

The shape constraints on the coefficient functions automatically regularizes the coeffi-

cient functions, as often required in FDA, and smoothness of the coefficient functions
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is achieved using a truncated basis approach (Ramsay and Silverman, 2005; Fan et al.,

2015), by restricting the number of BPs in the basis. A residual bootstrap based test is

developed using the proposed estimation method, which can be useful for testing specific

shape constraints in the absence of a prior knowledge.

Bernstein polynomials have various attractive shape-preserving properties (Lorentz,

2013; Carnicer and Pena, 1993; Chang et al., 2005). Optimal stability of BPs (Farouki

and Goodman, 1996) makes this polynomial choice particularly suitable for modeling

functional regression coefficients in the constrained functional regression problem. Theo-

retical results are provided on consistency of the constrained estimators under standard

regularity conditions. A projection based approach is developed to construct point-wise

asymptotic confidence intervals for the constrained estimators. Numerical analyses us-

ing simulations show satisfactory and competitive performance of the proposed method

compared to the existing techniques for functional regression, in the presence of shape

constraints. In particular, the estimates from the constrained method are shown to have

reduced uncertainty in the restricted parameter space, particularly for finite sample sizes.

The R code for implementation of the proposed estimation method and testing is publicly

available with this article.

The rest of this article is organized as follows. We present our modeling framework,

illustrate the proposed estimation method for shape constrained functional regression,

establish the theoretical properties of the estimator, and propose a bootstrap test in

Section 2. In Section 3, we perform numerical simulations to evaluate the performance

the proposed methods and provide comparisons with existing unconstrained functional

regressions. In Section 4, we demonstrate application of the proposed method in two real

data studies: i) a time-varying coefficient model analyzing a temporal evolution of a drug

effect on the severity of illness in the National Institute of Mental Health Schizophrenia

Collaborative Study (Ahkim et al., 2017) and ii) a quantile function-on-scalar regression

model of accelerometry-estimated physical activity data from the Baltimore Longitudinal

Study of Aging (BLSA). We conclude in Section 5 with a brief discussion on our proposed

method and some possible extensions of this work.
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2 Methodology

2.1 Modeling Framework

We consider three types of functional regression models: scalar-on-function regression

(SOFR), function-on-scalar regression (FOSR), and function-on-function regression (FOFR).

Below we review these models and accompanying assumptions.

Scalar on Function Regression

Suppose {Yi, Xi(t)} is the observed data for the ith subject, i = 1, . . . , n, and Yi is a

scalar response of interest and Xi(·) is the corresponding functional predictor. To start

with, we assume the functional objects are observed on a dense and regular grid of points

S = {t1, t2, . . . , tm} ⊂ T = [0, 1], without loss of generality. Although this can be relaxed

and the proposed method can be extended to accommodate more general scenarios where

the functional observations are observed on an irregular and sparse domain and possibly

with a measurement error. We consider the commonly used scalar-on-function regression

model (Ramsay and Silverman, 2005),

Yi = α +

∫

T

Xi(t)β(t)dt+ εi. (1)

Here, β(t) is a smooth function over T , capturing the dynamic effect of the functional

predictor Xi(t). The errors εi are assumed to be i.i.d. random variables with mean zero

and variance σ2. Note that SOFR model (1) captures only a linear effect of a single

functional predictor Xi(t) and multiple extensions have been proposed (Yao and Müller,

2010; Eilers et al., 2009; McLean et al., 2014) to extend it to nonlinear models and models

with multiple functional predictors. See Reiss et al. (2017), and the references therein,

for a detailed review of various methods regarding the SOFR.

Function on Scalar Regression

Let the observed data for the ith subject is {Yi(t), Xi}, i = 1, . . . , n, where Yi(t) is now the

functional response of interest and Xi is a corresponding scalar predictor. The commonly

used function-on-scalar regression model (Ramsay and Silverman, 2005; Reiss et al., 2010)
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is defined as

Yi(t) = β0(t) +Xiβ1(t) + εi(t). (2)

The dependence of the functional response Yi(t) on the scalar predictor Xi is captured in

the function-on-scalar regression model (2) via the coefficient function β(t). We further

assume the error functions εi(t) are i.i.d. copies of ε(t) which is a mean zero stochastic

process with unknown nontrivial covariance structure. A general assumption (Huang

et al., 2004; Kim et al., 2018) made for the error process ε(t) is ε(t) = V (t) + wt, where

V (t) is a smooth mean zero stochastic process with covariance kernel G(s, t) and wt is a

white noise with variance σ2. The covariance function of the error process is then given

by Σ(s, t) = cov{ε(s), ε(t)} = G(s, t) + σ2I(s = t). FOSR model (2) assumes a linear

effect of the predictor Xi on Yi(t). This model has been extended to handle nonlinear

associations (Xiao et al., 2015) and high dimensional scenarios with a focus on variable

selection (Chen et al., 2016; Kowal and Bourgeois, 2020; Ghosal and Maity, 2021).

Function on Function Regression

In this case, let the the observed data for the ith subject is {Yi(t), t ∈ TY}, {Xi(s), s ∈
TX}, i = 1, . . . , n, where Yi(t) is now a functional response of interest observed over

domain TY and Xi(s) is a functional predictor observed over domain TY . The commonly

used functional linear model (FLM) for function-on-function regression (Ramsay and

Silverman, 2005; Yao et al., 2005b; Wu et al., 2010) is defined as

Yi(t) = β0(t) +

∫

TX
Xi(s)β1(s, t)ds+ εi(t). (3)

Here a bivariate regression coefficient β(s, t) captures the dependence of the functional

response Yi(t) on the entire predictor trajectory Xi(s), s ∈ TX . A special case of the

the above model is when TX = TY and it is assumed the response Yi(t) depends on

Xi(·) concurrently. Specifically, β1(s, t) = β1(t)I(s = t). The resulting functional linear

concurrent model (Ramsay and Silverman, 2005) is given by

Yi(t) = β0(t) +Xi(t)β1(t) + εi(t). (4)
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In both regression models discussed above, ε(·) is assumed to be a mean zero stochastic

process with an unknown nontrivial covariance structure. Multiple extensions have been

proposed involving nonlinear associations and multiple predictors in the function-on-

function regression model (Kim et al., 2018; Scheipl et al., 2015; Kim et al., 2018).

2.2 Shape Constrained Functional Regression using Bernstein

Polynomials

In all the functional regression models discussed above, the dependence between the re-

sponse and predictors are captured using nonparametric functional coefficients. Often

a prior knowledge about these functional regression coefficients is available in the form

of constraints such as β1(t) > 0, β1(t) is increasing, β1(t) is convex (concave), β1(s, t) is

monotone or bi-monotone, etc. Incorporation of these constraints in the estimation proce-

dure can lead to a reduced uncertainty about estimates in the restricted parameter space.

Below, we develop a general purpose estimation procedure for the functional regression

models 1-4 under such shape constraints. We express any univariate coefficient functions

β(t) in models (1), (2), (3), and (4) in terms of univariate expansions of Bernstein basis

polynomials. Specifically, we model them as follows:

β(t) =
N∑

k=0

βkbk(t, N), where bk(t, N) =

(
N

k

)
tk(1− t)N−k, for 0 ≤ t ≤ 1. (5)

The number of basis polynomials depends on the order of the polynomial basis N . Note

that bk(t, N) ≥ 0 and
∑N

k=0 bk(t, N) = 1. Let F be the class of shape restricted func-

tions we are interested in. Following Wang and Ghosh (2012), we define the constrained

Bernstein polynomial sieve as follows:

FN = {BN(t) =
N∑

k=0

βkbk(t, N) : ANβN ≥ 0,
N∑

k=0

|βk| ≤ LN}, (6)

where βN = (β0, β1, . . . , βN)T are the unknown basis coefficients and AN is the constraint

matrix (of the dimension RN × (N + 1)) chosen in a way to guarantee the desired shape

restriction (i.e., FN ⊂ F). Note that the condition
∑N

k=0 |βk| ≤ LN was only required

for establishing asymptotic properties implying that the functions spanned by this basis

are bounded in absolute value by LN , and can be avoided in practice (Wang and Ghosh,
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2012).

Bivariate function β(s, t) can be modelled using a bivariate basis expansion with a

tensor product of univariate Bernstein polynomials as follows:

β(s, t) =
N∑

k1=0

N∑

k2=0

βk1,k2bk1(s,N)bk2(t, N), where bkj(x,N) =

(
N

kj

)
xkj(1− x)N−kj , (7)

where s, t ∈ [0, 1]. In this case, we can define the sieve FN as

FN = {BN(s, t) =
N∑

k1=0

N∑

k2=0

βk1,k2bk1(s,N)bk2(t, N) : ANβN ≥ 0,
N∑

k1=0

N∑

k2=0

|βk1,k2| ≤ LN}.

(8)

Here βN denotes the stacked vector {βk1,k2}N,Nk1=0,k2=0 and AN is the constraint matrix of

dimension RN × (N + 1)2 ensuring the required shape restriction on the surface β(s, t).

Remark 1:

For notational simplicity, we denote the order of Bernstein polynomial by N in both the

variables s, t. Below, we consider the most common scenarios for constraints on β(t) and

β(s, t) defined by AN , including: nonnegativity, monotonicity, convexity/concavity and

their combinations.

Properties of Bernstein polynomial sieve

The sequence of function spaces FN is nested in F and
⋃∞
N=1FN is dense in F with

respect to the sup-norm (see property 3.1 and 3.2 in Wang and Ghosh (2012)). This

result along with the Stone-Weierstrass approximation theorem guarantee that for any

β(t) ∈ F , there exists BN(t) ∈ FN ⊂
⋃∞
j=1Fj which converges uniformly (Lorentz, 2013)

to β(t).

Constraints

• Fixed boundaries

Let β(t) be in the space F = {β ∈ C[0, 1] : β(0) = a0, β(1) = a1}, where C[0, 1] is

the class of all continuous functions on [0, 1]. For any BN(t) in the corresponding

sieve FN (6), these boundary conditions reduce to linear equality constraints of the
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form

ANβN ≡


1 0 . . . 0

0 0 . . . 1




2×(N+1)




β0

β1
...

βN




=


a0
a1


 .

Thus, β0 = a0 and βN = a1. Here AN is the constraint matrix with rank RN = 2.

Note that this equality constraint can be decomposed into combination of two

inequality contraints in the usual way, i.e., ANβN ≥ a and −ANβN ≥ −a, where

a = (a0, a1).

• Nonnegativity

Let β(t) be a nonnegative function in the space F = {β ∈ C[0, 1] : β(t) ≥ 0 ∀t ∈
[0, 1]}, where C[0, 1] is the class of all continuous functions on [0, 1]. For any BN(t)

in the corresponding sieve FN (6), the nonegativity constraint reduces to the linear

inequality constraint

ANβN ≡




1 0 . . . 0

0 1 . . . 0
. . .

0 0 . . . 1




(N+1)×(N+1)




β0

β1
...

βN



≥




0

0
...

0



.

Here AN is the constraint matrix with rank RN = (N + 1).

• Monotonicity

Let β(t) be a monotone (non-decreasing) function in the space F = {β ∈ C[0, 1] :

β(t1) ≤ β(t2) ∀0 ≤ t1 ≤ t2 ≤ 1}. Note that for any BN(t) in the corresponding

sieve FN (6), its derivative is given by B′N(t) = N
∑N−1

k=0 (βk+1 − βk)bk(t, N − 1).

Hence if βk+1 ≥ βk for k = 0, 1, . . . , N − 1, BN(t) is non decreasing and FN ⊂ F .

Thus the linear constraint on the parameters is given by,

ANβN ≡




−1 1 0 . . . 0

0 −1 1 0 . . .
. . .

0 . . . 0 −1 1



N×(N+1)




β0

β1
...

βN



≥




0

0
...

0



.

9



Here AN is the constraint matrix with rank RN = N . Note that a non-increasing

constraint on β(t) can simply be obtained by reversing the inequality.

• Convexity/Concavity

Let β(t) be a convex function in the space F = {β ∈ C[0, 1] : 2β( t1+t2
2

) ≤ β(t1) +

β(t2), ∀t1, t2 ∈ [0, 1]}. Note that for any BN(t) in the sieve the second derivative

is given by B′N(t) = N(N − 1)
∑N−2

k=0 (βk+2 − 2βk+1 + βk)bk(t, N − 2). Hence if

βk+2 − 2βk+1 + βk ≥ 0 for k = 0, 1, . . . , N − 2, B′′N(t) ≥ 0 and FN ⊂ F . Hence

the convexity constraint on the coefficient function reduces to the following linear

inequality constraint, where AN is the constraint matrix with rank RN = N − 1. A

concave constraint on β(t) can simply be obtained by reversing the inequality.

ANβN ≡




1 −2 1 . . . 0

0 1 −2 1 . . .
. . .

0 . . . 1 −2 1




(N−1)×(N+1)




β0

β1
...

βN



≥




0

0
...

0



.

• Bivariate monotonicity

Let β(s, t) be a bivariate function monotone in both coordinates, specifically, F =

{β ∈ C[0, 1]2 : β(s1, t1) ≤ β(s2, t1), β(s1, t1) ≤ β(s1, t2), ∀0 ≤ s1 ≤ s2 ≤ 1, 0 ≤
t1 ≤ t2 ≤ 1}. Here, C[0, 1]2 is the class of all continuous functions on [0, 1]2.

For any BN(s, t) in the sieve FN (8), the partial derivatives are given by ∂BN

∂s
=

N
∑N−1

k1=0

∑N
k2=0(βk1+1,k2 − βk1,k2)bk1(s,N − 1)bk2(t, N) and ∂BN

∂t
= N

∑N
k1=0

∑N−1
k2=0

(βk1,k2+1−βk1,k2)bk1(s,N)bk2(t, N−1). Hence the bimonotone constraint redcues to

a linear constraint of the form, ANβN ≥ 0, where the constraint matrix is given by

AN =


A(1)

N

A(2)
N


. The first submatrix A(1)

N ensures monotonicity in s and A(2)
N ensures

monotonicity in t. The two submatrices are given by

A(1)
N =




−1 0 . . . 0 1

−1 0 . . . 0 1
. . .

−1 0 . . . 0 1



N(N+1)×(N+1)2

,
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and

A(2)
N =




B

B
. . .

B



N(N+1)×(N+1)2

B =




−1 1 0 . . . 0

0 −1 1 0 . . .
. . .

0 . . . 0 −1 1



N×(N+1)

respectively. If monotonicity is required only in one of the coordinate s or t, then

the constraint matrix can be taken to be AN = A(1)
N or AN = A(2)

N accordingly.

• Partial convexity of β(s.t)

Suppose β(s, t) is a convex function in s for every fixed t and vice-versa. Here

the restricted function space is given by F = {β ∈ C[0, 1] : 2β( s1+s2
2
, t1) ≤

β(s1, t1) + β(s2, t1) and 2β(s1,
t1+t2

2
) ≤ β(s1, t1) + β(s1, t2) ∀s!, s2, t1, t2 ∈ [0, 1]}.

Note that, for any BN(s, t) in the sieve FN (8), the partial derivatives are given

by ∂2BN

∂s2
= N

∑N−2
k1=0

∑N
k2=0(βk1+2,k2 − 2βk1+1,k2 + βk1,k2)bk1(s,N − 2)bk2(t, N) and

∂2BN

∂t2
= N

∑N
k1=0

∑N−2
k2=0(βk1,k2+2−2βk1,k2+1+βk1,k2)bk1(s,N)bk2(t, N−2). Hence the

partial convexity constraints reduced to linear constraints of the form, ANβN ≥ 0,

where the constraint matrix is given by AN =


A(1)

N

A(2)
N


. The first submatrix A(1)

N

ensures convexity in s and A(2)
N ensures convexity in t. The two submatrices are

given by

A(1)
N =




1 0 . . . 0 −2 0 . . . 0 1

1 0 . . . 0 −2 0 . . . 0 1
. . .




(N2−1)×(N+1)2

,

and

A(2)
N =




B

B
. . .

B




(N2−1)×(N+1)2

B =




1 −2 1 . . . 0

0 1 −2 1 . . .
. . .

0 . . . 1 −2 1




(N−1)×(N+1)

respectively.
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• Various other shape constraints on β(t) and β(s, t) including any combination of

above constraints can similarly be shown to be reduced to linear inequality con-

straints of the form ANβN ≥ 0.

Scalar response regression

Using the basis expansion for the coefficient function β(t) in (5), the SOFR model (1)

can be reformulated as follows

Yi = α +

∫

T

Xi(t)β(t)dt+ εi

= α +
N∑

k=0

βk

∫

T

Xi(t)bk(t, N)dt+ εi

= α +
N∑

k=0

βkWik + εi, where Wik =

∫

T

Xi(t)bk(t, N)dt

= α + WT
i β + εi, (9)

where Wi = (Wi0,Wi1, . . . ,WiN)T and β = (β0, β1, . . . , βN)T . Parameters (α,β) is esti-

mated by minimizing the constrained least square problem,

(α̂, β̂) = argmin
α,β

n∑

i=1

(Yi − α−WT
i β)2 s.t ANβ ≥ 0, (10)

where the constraint ANβ ≥ 0 corresponds to the required shape restriction on β(t). The

above optimization problem is a quadratic programming problem (Goldfarb and Idnani,

1982, 1983) and can be efficiently solved in R using the quadprog (Turlach et al., 2019) or

the restriktor (Vanbrabant and Rosseel, 2019) package. Additional scalar covariates of

interest Zi (confounders) can be readily included in the SOFR model (1) and the above

optimization criterion through an additional term ZT
i γ (Reiss et al., 2017) capturing

effects of the scalar predictors.

Functional response regression

We use the Bernstein polynomial basis expansions for modeling univariate and bivariate

coefficient functions β0(t), β1(t) and β1(s, t) in function-on-scalar regression model (2)

and function-on-function regression models (3),(4). We denote the stacked functional
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response corresponding to subject i as Yi = (Yi(t1), Yi(t2), . . . , Yi(tm)). Using the basis

expansions for the coefficient functions, the function-on-scalar or the function-on-function

regression models can be reformulated as follows

Yi = B0β0 + Wiβ1 + εi. (11)

Here, the matrix B0 depends on the basis functions used for modeling β0(t). Matrix Wi

depends on the basis functions used for β1(t) or β1(s, t) and the corresponding predictor

Xi, Xi(t), or the entire trajectory Xi(·). Vectors β0 and β1 denote the basis coefficients,

and the stacked residuals are denoted as εi = (εi(t1), εi(t2), . . . , εi(tm)). The shape re-

strictions on the coefficient function of interest β1(t), or β1(s, t) can be specified as linear

constraints of the form Aβ1 ≥ 0 as illustrated in the Section 2.2. As mentioned earlier,

the error process ε(·) is assumed to have a nontrivial covariance kernel Σ(s, t) for the

functional regression models with a functional response. To take into account the within

curve dependence while doing estimation, we propose the following two-step method .

Step 1

Note that the covariance function of the error process is given by Σ(s, t) = cov{ε(s), ε(t)}
= G(s, t) + σ2I(s = t). For data observed on dense and regular grid, the covariance

matrix of the residual vector εi is Σm×m, the covariance kernel Σ(s, t) evaluated on the

grid S = {t1, t2, . . . , tm}. In reality Σm×m is unknown, and we need an estimator Σ̂m×m.

In the context of functional data, we want to estimate Σ(·, ·) nonparametrically. If the

original residuals εij were available, functional principal component analysis (FPCA) can

be used, e.g., Yao et al. (2005a) to estimate Σ(s, t). By Mercer’s theorem, the covariance

kernel G(s, t) has a spectral decomposition

G(s, t) =
∞∑

k=1

λkφk(s)φk(t),

where λ1 ≥ λ2 ≥ . . . 0 are the ordered eigenvalues and φk(·)s are the corresponding

eigenfunctions. Thus we have the decomposition Σ(s, t) =
∑∞

k=1 λkφk(s)φk(t) + σ2I(s =

t). Given εtij = V (tij) +wij, FPCA (Yao et al., 2005b) can be used to get φ̂k(·), λ̂ks and
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σ̂2. So an estimator of Σ(s, t) can be formed as

Σ̂(s, t) =
K∑

k=1

λ̂kφ̂k(s)φ̂k(t) + σ̂2I(s = t),

where K is large enough such that percent of variance explained (PVE) by the selected

eigencomponents exceeds some pre-specified value such as 99% or 95%.

In practice, we don’t have the original residuals εij. Hence we fit an unconstrained

model by minimizing the residual sum of squares
∑n

i=1 ||Yi−B0β0−Wiβ1||22, and obtain

the residuals eij = Yi(tj) − Ŷi(tj). Then treating eij as our original residuals, we obtain

Σ̂(s, t) and Σ̂m×m using the FPCA approach describe above.

Step 2

We pre-whiten (Chen et al., 2016) Yi, B0 and Wi in model (11) using the estimated

covariance matrix Σ̂−1/2m×m as Y∗i = Σ̂−1/2m×mYi, B∗0 = Σ̂−1/2m×mB0, W∗i = Σ̂−1/2m×mWi. Subsequently,

the model parameters are estimated from the constrained optimization problem

(β̂0, β̂1) = argmin
β0,β1

n∑

i=1

||Y∗i − B∗0β0 −W∗iβ1||22 s.t Aβ1 ≥ 0. (12)

Again the above constrained least square optimization can be performed using quadratic

programming as in the case of shape constrained scalar-on-function regression.

Remark 2:

This feasible GLS approach is used in the article for all the results corresponding to

functional response regression. The constrained estimator can be viewed as a projection

of the unconstrained GLS estimator as illustrated in Appendix B of the Supplementary

Material.

Consistency of the shape constrained estimators

We establish the consistency of shape constrained estimator in scalar-on-function regres-

sion. The functional response model is considered in Appendix B of the Supplementary

Material.

Theorem 1 Consider scalar-on-function regression model (1). Suppose the following

conditions hold.

(H1) ||X(·)||L2 ≤ C1 <∞, a.s.
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(H2) V ar(Y | X(·) = x(·)) ≤ C2 <∞ a.s.

(H3) The eigenvalues of the covariance operator of X(·) are positive and distinct.

(H4) The functional coefficient β(t) defined on [0, 1] is supposed to be sufficiently smooth.

In particular, let H be the class of functions β(·) having q ≥ 0 derivatives, with

β(q)(t) satisfying |β(q)(t1)− β(q)(t2)| ≤ C3|t1 − t2|v, C3 > 0 and v ∈ [0, 1].

(H5) limn d(β(·),FN) = 0 and limnNlogN/n = 0, where d(β(·),FN) is defined as d(β(·),FN) =

infg∈FN
supt∈T |β(t)− g(t)|.

If the shape restriction assumption for β(t) holds, i.e., the true coefficient function β(t) ∈
F ∩H, then the constrained estimator β̂c(t) is a consistent estimator of β(t).

Proof: The proof of Theorem 1 is given in Appendix A of the Supplementary Material.

Remark 3:

The primary advantage of the proposed estimation method, particularly for finite sample

sizes, comes from the potential reduction in variance of the constrained estimator, as the

objective function is minimized over a constrained (smaller) space with a lower entropy.

This point is also well illustrated in our empirical analysis.

2.3 Uncertainty Quantification

As shown in Section 2.2, the constrained estimator can be viewed as the projection of the

unconstrained estimator onto the restricted space: β̂r = argmin
β∈ΘR

||β − β̂ur||2Ω̂. Hence, we

can use the projection of the large sample distribution of
√
n(β̂ur−β0) to approximate the

distribution of
√
n(β̂r−β0). We assume that

√
n(β̂ur−β0) is asymptotically distributed

as N(0,∆) under suitable regularity conditions (analogous to assumption 2 of Theorem

1 in Freyberger and Reeves (2018)), where ∆ can be estimated by a consistent estimator.

For example ∆̂ = (Ω̂)−1( 1
n

∑n
i=1 ε̂i

2WiW
T
i )(Ω̂)−1 for the scalar response case. Let the

Bernstein polynomial approximation of β(t) be given by βN(t) =
∑N

k=0 βkbk(t, N) =

ρKn(t)
′
β. Algorithm 1 will be used to obtain a point-wise approximate 100(1 − α)%

asymptotic confidence interval for the true coefficient function β0(t).
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Algorithm 1 Point-wise confidence interval of β0(t) under shape restriction

1. Fit the unconstrained model and obtain the unconstrained estimator β̂ur =
argmin
β∈RKn

∑n
i=1(Yi −WT

i β)2 (for scalar response) or β̂ur = argmin
β∈RKn

∑n
i=1 ||Y∗i − Z∗iβ||22

(for the functional response, Z∗i = [B∗0 W∗i ]).
2. Let the estimated asymptotic covariance matrix of the unconstrained estimator be
given by ∆̂n = ∆̂/n = ˆcov(β̂ur).
3. For b = 1 to B
[-] generate Zb ∼ NKn(β̂ur, ∆̂n).
[-] compute the projection of Zb as β̂r,b = argmin

β∈ΘR

||β − Zb||2Ω̂.
[-] End For
4. 100(1−α)% point-wise confidence interval for β0(t) is given by (Cα/2(t), C1−α/2(t)),

where Cα(t) denotes the empirical αth percentile of ρKn(t)
′
β̂jr,b (b = 1, . . . , B), and

j = 0, 1.

2.4 Testing for Shape Constraints

So far we have focused on estimation under a prior knowledge of shape constraints on

functional regression coefficients. In many cases, such constraints may not be known

beforehand or a practitioner might posit some prior beliefs about the shape, which he

or she would like to test. In this section, we develop a testing procedure for shape

constraints based on the proposed estimation method. In particular, we use bootstrap on

a F-type test statistic based on the residual sum of squares of the constrained (null) and

unconstrained (full) model similar to Kim et al. (2018). Alternatively, one may also use

the idea of wild bootstrap (Davidson and Flachaire, 2008) which generates the responses

using scaled residuals only. The test statistic is defined as

T =
RSSc −RSSu

RSSu
, (13)

where RSSc, RSSu are the residual sum of squares under the constrained and uncon-

strained model respectively. For the scalar response case RSSu =
∑n

i=1(Yi−α̂u−WT
i β̂u)

2,

where (αu, β̂u) are the unconstrained estimators and RSSc is defined analogously. For

models with functional response RSSu, RSSc is calculated based on the residual sum

of squares from model (11) after obtaining unconstrained and constrained estimates of

βj (j = 0, 1). We illustrate our testing procedure for models with scalar response and

functional response with univariate regression functions β(·). The case with bivariate

coefficient functions β(·, ·) for more general function-on-function regression models (e.g.,
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FLM) can be handled similarly.

Shape Testing with Scalar Response

We consider the SOFR model (1). We are interested in testing prior shape restrictions

on the functional coefficient β(t) for t ∈ [0, 1]. Let F be the class of shape restricted

functions we are interested in and H be space of function as defined in condition (H4) in

Theorem 1. We want to test the null hypothesis

H0 : β(·) ∈ F ∩H versus H1 : β(·) ∈ H.

The null distribution of the the test statistic T in (13) is approximated using bootstrap.

We present the complete bootstrap procedure in Algorithm 2.

Algorithm 2 Bootstrap algorithm for shape testing with scalar response

1. Fit the unconstrained SOFR model (1) using Bernstein-polynomial representation
in (9) and calculate the residuals ei = Yi − Ŷi, for i = 1, 2, . . . , n.
2. Fit the constrained model corresponding to H0 (the null) and estimate α, β(t) from
the constrained minimization criteria in (10), denote the estimates α̂c, β̂c(t).
3. Compute test statistic T (13) based on the null and full model fits, denote this as
Tobs.
4. Resample B sets of bootstrap residuals {e∗b,i}ni=1 from residuals {ei}ni=1 obtained in
step 1.
5. for b = 1 to B
6. Generate scalar response under the constrained null model as

Y ∗b,i = α̂c +

∫

T

Xi(t)β̂c(t)dt+ e∗b,i.

7. Given the bootstrap data set {Xi(t), Y
∗
b,i}ni=1 fit the null and the full model to

compute the test statistic T ∗b .
8. end for
9. Calculate the p-value of the test as p̂ =

∑B
b=1 I(T

∗
b ≥Tobs)

B
.

Shape Testing with Functional Response

We now consider the models with functional response such as the FOSR model (2) or the

FLCM (4). Here again, we want to test,

H0 : β1(·) ∈ F ∩H versus H1 : β(·) ∈ H,
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where F is the specific class of shape restricted functions. The testing method is based

on a similar bootstrap procedure as in the case with scalar response. While performing

testing, we don’t enforce pre-whitening in the step 2 of our estimation, as the estimated

residuals from the unconstrained model (11) (corresponding to the estimators obtained

via minimizing
∑n

i=1 ||Yi−B0β0−Wiβ1||22) asymptotically has the same covariance as the

original residuals and bootstrapping these generates residuals from the same covariance

structure without going into the need for estimating it. The detailed testing procedure

is presented in Algorithm 1 within Appendix C of the Supplementary Material.

2.5 Selection of order of the Bernstein Polynomial Basis

The order of the Bernstein polynomial basis N controls the smoothness of the regres-

sion coefficient functions β(t). A smaller N might introduce bias in estimation, while a

larger N can make the coefficient functions wiggly. We follow a truncated basis approach

(Ramsay and Silverman, 2005; Fan et al., 2015), by restricting the number of BP basis

functions to ensure the estimated regression coefficient function is smooth. The empir-

ically optimal number of basis functions is chosen in a data-driven way (Ahkim et al.,

2017) via V -fold (V = 5 in this article) cross-validation method (Wang and Ghosh, 2012)

using cross-validated residual sum of squares for both the scalar and functional response

regression. In particular, the cross-validated residual sum of square for the scalar response

case is defined as follows

CVs(N) =
V∑

v=1

nv∑

i=1

(Yi,v − Ŷ −vi,v,N)2.

Here Ŷ −vi,v,N is the fitted value of the scalar outcome Yi,v, within the vth fold obtained by

applying a model trained on the rest (V − 1) folds using Bernstein polynomials of order

N . Similarly for the functional response case, cross-validated residual sum of square is

defined as follows

CVf (N) =
V∑

v=1

nv∑

i=1

||Yi,v − Ŷ−vi,v,N ||22.

The empirically optimal N is then chosen based on a grid search as the minimizer of

CVs(N) or CVf (N). It should however be noted that there is perhaps no universal (data-

dependent) method of empirically selecting the tuning parameter N , even when one can
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establish a sharp rate of asymptotic convergence.

3 Simulation Studies

In this Section, we investigate the performance of the proposed estimation method under

shape constraints via simulations. To this end, the following scenarios are considered.

3.1 Data Generating Scenarios

Scenario A: SOFR, non-negative constraint

We generate data from the scalar-on-function regression (SOFR) model given by

Yi = α +

∫

T

Xi(t)β(t)dt+ εi,

where α = 0.15 and β(t) = 0.1 ∗ sin(πt). The residuals εi ∼ N(0, 0.052) (i.i.d). We

consider a dense design with m = 50 equispaced time-points in T = [0, 1] and sample

size n ∈ {25, 50, 100}. The covariate process Xi(t) is generated as Xi(t) =
∑20

k=1 ψikφk(t),

where φk(t) are orthogonal basis polynomials (of degree k−1) and ψik are mean zero and

independent Normally distributed scores with variance σ2
k = (20 − k + 1). We consider

estimation in the above model under the constraint β(t) ≥ 0.

Scenario B: FLCM, non-increasing constraint

We generate data from the functional linear concurrent model (FLCM)

Yi(t) = β0(t) +Xi(t)β1(t) + εi(t),

where the coefficient functions are given by β0(t) = 8sin(πt), β1(t) = 5cos(πt). The

covariate process Xi(t) is generated as Xi(t) =
∑5

k=1 ψikφk(t), where φk(t) are orthogonal

basis polynomials (of degree k − 1) and ψik are mean zero and independent Normally

distributed scores with variance σ2
k = (5− k + 1). The error process εi(t) is generated as

εi(t) = ξi1cos(t) + ξi2sin(t) + N(0, 0.52), where ξi1
iid∼ N (0, 0.52) and ξi2

iid∼ N (0, 0.752).

We consider a dense design with m = 40 equispaced time-points in T = [0, 1] and sample
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size n ∈ {25, 50, 100}. We consider estimation in the above model under the constraint

β1(t) is decreasing.

Additional Simulations: We consider a sparse design under the above data generating

set up, where the functional covariate Xi(t) and the functional response Yi(t) are observed

over randomly chosen mi time-points (mi ∼ Unif{5, 6, . . . , 10}) from the dense grid of

40 equispaced time-points in T = [0, 1]. Sample size n ∈ {50, 100} is considered for this

sparse scenario.

Scenario C: FLCM, non-decreasing and concave constraint

We generate data from another FLCM given by,

Yi(t) = β0(t) +Xi(t)β1(t) + εi(t),

where the coefficient functions are given by β0(t) = 3cos(πt), β1(t) = 5sin(π
2
t). The

covariate process Xi(t) and the error process εi(t) is generated exactly as in scenario B.

We again consider a dense design with m = 40 equispaced time-points in T = [0, 1] and

sample size n ∈ {25, 50, 100}. We consider estimation in the above model under the

constraint β1(t) is non-decreasing, and β1(t) is concave.

We consider 200 Monte-Carlo (M.C) replications from the above specified simulation

scenarios to assess the performance of the proposed estimation method.

3.2 Summary of Results from Simulated Data Scenarios

Performance under scenario A:

We consider estimation in the SOFR model of scenario A under the constraint β(t) ≥ 0

(satisfied by the true coefficient function). The performance of the proposed constrained

method is compared with existing unconstrained approach using the standard "pfr"

function for SOFR within the refund package in R. Figure 1 displays the estimated

coefficient function β̂(t) (for the sample size n = 50) averaged over the 200 M.C replica-

tions from both the constrained and the unconstrained method. On average, the order of

Bernstein-polynomials chosen by five-fold (V = 5) cross-validation was N = 4 across the

three sample sizes. The 95% point-wise confidence intervals of the coefficient function are
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also shown based on the M.C replications. We can notice the confidence bands for the

constrained method does not include zero for any t, and also produce closer estimates to

the true function compared to the unconstrained approach. The confidence intervals are

also narrower, specially at the boundaries compared to the ones from the unconstrained

method. The average M.C mean square error (IMSE) of the estimated coefficient function

β̂(t) defined as IMSE =
∫
T (β̂(t)−β(t))2dt, from both the constrained and unconstrained

method, are reported in Table 1. We can notice that the constrained estimates produce

smaller average IMSE compared to the unconstrained estimates. In particular, based on

Table 1, the constrained estimators, on an average, are found to be 33% more efficient

compared to the unconstrained estimates in terms of average IMSE. As the sample size

increase, the IMSE from both the methods become negligible indicating consistency of

the estimators.
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Figure 1: Estimated coefficient function (dashed line) and true coefficient function (solid
line) along with 95% point-wise confidence interval (dotted lines) from the constrained
(left) and unconstrained (right) method, simulation scenario A, n=50.

Sample size (n) Constrained method Unconstrained method P-value
25 0.9 (1.0) 1.3 (1.1) 2.99×10−5

50 0.4 (0.3) 0.6 (0.4) 1.5×10−6

100 0.2 (0.2) 0.3 (0.2) 0.0004

Table 1: Average integrated mean square error (× 1000) over 200 Monte-Carlo repli-
cations, scenario A. Standard errors of IMSE (× 1000) are reported in the parenthesis.
P-values are obtained from two sample t-test.
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Projection-based confidence intervals

We apply the projection based method outlined in Algorithm 1 to obtain point-wise

asymptotic 95% confidence interval of the regression coefficient function β(t) under the

shape constraint β(t) > 0. Table S1 in Supplementary Material reports the average

empirical coverage of the confidence intervals across the three sample sizes for a range

of choices for the order of the Bernstein polynomial basis, N . Average estimated cov-

erages are close to the nominal 95% coverage for N ≥ 4, which is the average order of

the Bernstein polynomial basis chosen by our proposed cross-validation criterion. The

average width of the confidence interval is found to be comparable or smaller than the

unconstrained ("pfr") method for choices of N around N0 = 4. The projection based

confidence interval for a particular replication (n = 100) is displayed in Figure S1 in

Supplementary Material.

Testing shape constraints

We consider testing the following shape constraints for the simulation scenario A. i) H0 :

β1(t) ≥ 0 for all t ∈ [0, 1], ii)H0 : β1(t) is concave for all t ∈ [0, 1] iii)H0 : β1(t) is increasing

for all t ∈ [0, 1]. The true coefficient function in this scenario is β(t) = 0.1∗sin(πt) which

satisfy i) and ii) but does not satisfy iii). Table 2 displays the rejection rates of the boot-

strap test for the three null hypothesis and three sets of sample sizes for the nominal level

of α = 0.05.

H0 n = 25 n = 50 n = 100
β1(t) ≥ 0 0.055 0.05 0.065

β1(t) is concave 0.04 0.07 0.055
β1(t) is increasing 0.235 0.55 0.84

Table 2: Rejection rates for the respective hypothesis from the bootstrap based test based
on 200 M.C simulations from Scenario A.

We notice the rejection rates remain close to the nominal level of 0.05 when the null

hypothesis is true (case i and ii) and is increasing to 1 as the sample size increase when

the null is false (case iii) indicating consistency of the proposed testing method.
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Performance under scenario B:

We consider estimation in the functional linear concurrent model of scenario B under the

constraint β1(t) is decreasing. The average order of Bernstein-polynomial basis chosen

by five-fold (V = 5) cross-validation was N = 5, across the three sample sizes. Figure 2

displays the estimated coefficient function β1(t) (for sample size n = 50) averaged over

200 M.C replications from both the constrained and unconstrained approach (smoothing

spline implemented using "pffr" function within the refund package) along with their

95% point-wise confidence intervals based on the Monte-Carlo replications.
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Figure 2: Estimated coefficient function (dashed line) and true coefficient function (solid
line) along with 95% point-wise confidence interval (dotted lines) from the constrained
(left) and unconstrained (right) method, simulation scenario B, n=50.

It can be noticed the constrained approach produce much narrower confidence interval

of the estimate indicating lower uncertainty of the estimated function in the restricted

parameter space. The M.C average mean square error (IMSE) (multiplied by 100) of the

estimated coefficient function β̂1(t) from the constrained and unconstrained method is

reported in Table 3. It can be observed that the proposed constrained estimates have

much smaller average IMSE compared to the unconstrained estimates. Across the sample

sizes, the constrained estimates are found to be 346% more efficient compared to the

unconstrained estimators. As the sample size increase, the IMSE from both the methods

again become negligible indicating consistency of the estimators. The IMSE (multiplied

by 100) of the estimated coefficient function β̂1(t) from the sparse design setup is reported
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in Table S3 of the Supplementary Material, where similar improvement in efficiency can

be noticed from the constrained approach.

Sample size (n) Constrained method Unconstrained method P-value
25 1.23 (1.14) 5.37 (5.15) < 2.2× 10−16

50 0.46 (0.30) 2.13 (1.56) < 2.2× 10−16

100 0.26 (0.15) 1.14 (0.85) < 2.2× 10−16

Table 3: Average integrated mean square error (× 100) over 200 Monte-Carlo replications,
scenario B. Standard errors of IMSE (× 100) are reported in the parenthesis. P-values
are obtained from two sample t-test.

Projection-based confidence intervals

We display the projection-based point-wise asymptotic 95% confidence interval of the

regression coefficient function β1(t) under the shape constraint: β1(t) is decreasing. Table

S2 in Supplementary Material reports the average empirical coverage of the confidence

intervals across the three sample sizes for a range of choices of N . The estimated coverage

is close to the nominal 95% coverage for N ≥ 5, which is the average order of the Bernstein

polynomial basis chosen by our proposed cross-validation criterion. The average width of

the confidence interval is found to be smaller than the unconstrained ("pffr") method

for choices of N around N0 = 5, while yielding the correct coverage. The projection-

based confidence interval of β1(t) for a particular replication (n = 100) is displayed in

the Supplementary Figure S2.

Testing shape constraints

In this scenario, We test the following shape constraints. i) H0 : β1(t) is decreasing

∀ t ∈ [0, 1], ii) H0 : β1(t) is convex ∀ t ∈ [0, 1] iii) H0 : β1(t) is concave ∀ t ∈ [0, 1]. The

true coefficient function in this scenario is β1(t) = 5cos(πt) which satisfies i) but does not

satisfy ii) and ii). Table 4 displays the rejection rates of the bootstrap test for the three

null hypothesis and three sets of sample sizes for the nominal level of α = 0.05.

H0 n = 25 n = 50 n = 100
β1(t) is decreasing 0.06 0.07 0.065
β1(t) is convex 1 1 1
β1(t) is concave 1 1 1

Table 4: Rejection rates for the respective hypothesis from the bootstrap based test based
on 200 M.C simulations from Scenario B.
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We again observe that the rejection rates remain close to the nominal level of 0.05

when the null hypothesis is true (case i) and is 1 for all the sample sizes when the null is

false (case ii and iii) indicating satisfactory power of the proposed testing method.

Remark 4:

Supplementary Simulation Scenario S1 illustrates that the proposed estimation approach

and the projection based asymptotic confidence interval is able to capture the true co-

efficient function accurately, even when it lies on the boundary of the parameter space

(e.g., constant function under decreasing constraint).

Performance under scenario C:

We consider estimation in the FLCM described in simulation scenario C under the

constraints β1(t) is increasing and β1(t) is concave. The average order of Bernstein-

polynomial basis chosen by five-fold (V = 5) cross-validation was N = 5 across the three

sample sizes. Figure 3 displays the estimated coefficient function β1(t) averaged over 200

M.C replications from both the constrained and unconstrained approach along with their

95% point-wise confidence intervals. It can again be noticed the constrained approach

produce much narrower confidence interval of the estimated coefficient function β̂1(t) in-

dicating lower uncertainty of the estimate in the restricted parameter space. The average

M.C mean square error (IMSE) of the estimated coefficient function β̂1(t) from both the

constrained and unconstrained method is reported in Table 5. We again observe that

Sample size (n) Constrained method Unconstrained method P-value
25 9.5 (9.8) 49.3 (49.7) < 2.2× 10−16

50 3.1 (2.6) 19.5 (15.1) < 2.2× 10−16

100 1.4 (1.1) 10.5 (8.2) < 2.2× 10−16

Table 5: Average integrated mean square error (× 1000) over 200 Monte-Carlo repli-
cations, scenario C. Standard errors of IMSE (× 1000) are reported in the parenthesis.
P-values are obtained from two sample t-test.

the proposed constrained estimates have much smaller average IMSE compared to the

unconstrained estimates. Specifically, the constrained estimates are found to be 485%

more efficient compared to the unconstrained estimator. As the sample size increase, the

IMSE from both the methods again become asymptotically negligible.

The simulation results in this section illustrate the advantages of the proposed estima-

tion method in functional regression models under shape restrictions. For smaller sample
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Figure 3: Estimated coefficient function (dashed line) and true coefficient function (solid
line) along with 95% confidence interval (dotted lines) from the constrained (left) and
unconstrained (right) method, simulation scenario C, n=50.

sizes, such shape restrictions lead to reduced uncertainty of the coefficient functions in

the restricted parameter space.

4 Real Data Applications

In this section, we demonstrate applications of the proposed shape constraint estimation

method in functional regression models. First, we consider a mental health schizophrenia

collaborative study analyzing evolution of drug effect on the severity of illness. Next, we

apply the proposed estimation method for distributional analysis of quantile-functions of

physical activity data from Baltimore Longitudinal Study of Aging (BLSA).

4.1 Application 1: Mental Health Schizophrenia Collaborative

Study

We consider data from the National Institute of Mental Health Schizophrenia Collabo-

rative Study used in Ahkim et al. (2017). The response of interest is severity of illness
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measured in the Inpatient Multidimensional Psychiatric Scale (IMPS), ranging from 1

(normal) to 7 (among the most extremely ill). The patients (n = 437) considered in this

study were randomly assigned to a treatment (drug) or placebo and measured at weeks

0, 1, 2, . . . , 6. Majority of the patients were measure at weeks 0, 1, 3, 6 with a few being

additionally measured on weeks 2, 4, 5. The primary interest here is to assess the efficacy

of the drug. We consider a function-on-scalar regression model,

Yi(t) = β0(t) +Giβ1(t) + εi(t), (14)

where Yi(t) denotes disease severity at week t for subject i and Gi is a indicator of the

treatment group for the subject (Gi = 1, if subject i received drug). The time-varying
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Figure 4: Estimated effect of drug on disease severity as function of week. Constrained
(β1(t) ≤ 0) estimate (green solid line) and unconstrained estimate (blue solid line), along
with their 95% confidence intervals (dotted for constrained and dashed for unconstrained).

coefficient function β1(t) captures the effect of the drug on disease severity. A negative

β1(t) would prove the effectiveness of the drug while a negative and decreasing β1(t) would

suggest the magnitude of the effectiveness of the drug increase as the weeks progress.
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We apply the proposed residual bootstrap-based test in Section 2, and test the con-

straints i) β1(t) ≤ 0 and ii) β
′
1(t) ≤ 0, i.e., β1(t) is decreasing. The P-values of the

tests are calculated to be 0.53, 0.6 respectively. Hence we fail to reject the hypothesis

that the effect of the drug is negative and the effect is decreasing, which matches with

the findings by Ahkim et al. (2017). Next, we apply the proposed estimation method

in this article under the shape constraint β1(t) ≤ 0, with the prior knowledge that the

drug is effective (Ahkim et al., 2017) (ascertained by our proposed test). The degree of

the Bernstein polynomial used to model the coefficient functions was chosen to be 3 by

five-fold cross-validation indicating sufficiency of a cubic fit. The estimated coefficient

function β1(t) capturing the effect of the drug on disease severity is shown in Figure 4.

The estimated coefficient function from an unconstrained fit using penalized function-

on-scalar regression (obtained using "pffr" function within the refund package in R)

is also displayed. The estimates are accompanied with their respective 95% confidence

intervals. The average width of the confidence intervals from the constrained method

(0.62) is found to be smaller compared to that of the unconstrained method (0.65).

We notice a negative and mostly decreasing β1(t), illustrating the effectiveness of the

drug which is captured by both the constrained and the unconstrained estimator. The

fitted disease severity trajectories from the constrained method is shown in Figure 5 for

the treatment and the placebo group, which are very close to the average observed values

of disease severity (IMPS).

4.2 Quantile Function on Scalar Regression (QFOSR) of Phys-

ical Activity Data from BLSA

As our second example, we model subject-specific distributions of accelerometry-measured

physical activity from Baltimore Longitudinal Study of Aging (BLSA), the longest-

running scientific study of aging in the United States. Specifically, we are interested

in how the subject-specific quantile functions of minute-level activity counts are associ-

ated with age, gender, height and weight. We use a quantile function-on-scalar regression

framework introduced in Yang et al. (2020) for distributional analysis of physical activity.

Prior studies on BLSA (Xiao et al., 2015) have focused on modeling diurnal variability of

physical activity. Activity counts were measured using a chest-worn Actiheart physical

activity monitor on participants in their free-living environment for several consecutive

28



0 1 2 3 4 5 6

1
2

3
4

5
6

7

week

D
is

ea
se

 s
ev

er
ity

placebo fit
treatment fit
mean placebo
mean treatment

Figure 5: Fitted disease severity trajectories for placebo (solid line) and treatment group
(solid line), Schizophrenia data.

days. For this analysis, we consider a sample of n = 857 subjects in BLSA and a single

visit of each participant. Table 6 presents the descriptive statistics of the sample.

Characteristic Complete (n=857) Male (n=420 Female (n=437) P value

Mean SD Mean SD Mean/Freq SD

Age 66.83 13.17 68.11 13.36 65.6 12.88 0.005

Height (m) 1.69 0.09 1.76 0.07 1.63 0.06 < 2.2× 10−16

Weight (Kg) 78.33 16.37 85.02 14.92 71.90 15.09 < 2.2× 10−16

Table 6: Summary statistics for the complete, male and female samples considered for
the BLSA analysis.

Subject-specific daily PA is represented via 1440 minute-level activity counts. For the

analysis in this paper, we limit our attention to data collected on Mondays for each subject

visit. We also only consider activity counts from participants in their most active 10 hour

period (M i
10) (Witting et al., 1990), since this can serve as a proxy period for most of

daily physical activity. The activity counts are log transformed using the transformation

A −→ log(A + 1) to remove possible skewness in the data. Subsequently, we encode

subject level physical activity data in the window M i
10 (depends on the subject i) using

subject-specific quantile functions Qi(p) for i = 1, 2, . . . , n = 857, and p ∈ [0, 1]. Figure
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6 displays the observed (empirical) subject-specific quantile functions Qi(p).
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Figure 6: Subject-specific quantile functions of log-transformed physical activity in their
most active 10 hour window M i

10.

We model the subject-day specific quantile functions as outcomes using the quantile

function-on-scalar regression model as follows:

Qi(p) = β0(p) + xage,iβage(p) + xsex,iβsex(p) + xheight,iβH(p) + xweight,iβW (p) + εi(p). (15)

The functional regression coefficients βage(p), βsex(p), βH(p) and βW (p) capture the effects

of age, sex (Male = 1, Female = 0), height, and weight on the quantile level p of subject-

specific physical activity. The intercept function β0(p) represents the baseline p − th

quantile level of physical activity. Yang et al. (2020) proposed to use quantlets, data-

driven basis functions, for estimating the functional regression coefficients in QFOSR.

The quantlet based estimation approach does not explicitly impose monotonicity in the

predicted quantile functions, although the observed (empirical) quantile functions are

monotone (Yang et al., 2020), and most of the predicted quantile functions in their

applications were found to be monotone and non-decreasing.

Yang (2020) proposed a non-decreasing basis based estimation using I-splines (Ram-

say, 1988) or Beta CDFs which enforce this monotonicity at the estimation step. This
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produces the coefficient functions of form βa(p) =
∑K

k=1 Ψk(p)β̂ak, where β̂ak ≥ 0. Notice

that this essentially enforces the coefficient functions of the scalar predictors to be mono-

tone and non-decreasing which might not be necessarily true for many of the covariates.
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Figure 7: Estimated quantile level effect of scalar (age, sex, height, weight) predictors on
quantile function of physical activity in BLSA data using the quantile function-on-scalar
regression model (13). Constrained BP estimates (βage(p) is decreasing) are shown in
solid lines, along with their projection based 95% confidence intervals (shown in dotted
lines).
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We start with fitting unconstrained regression model (15) which is shown in Figure

S4. Several of the functional coefficients (e.g., age, gender etc.) are not necessarily

non-decreasing. The age functional coefficient, in particular, appears to be decreasing,

indicating an accelerated decrease in maximal levels of PA with increasing age (Varma

et al., 2017). To further confirm this phenomenon, we test the null hypothesis H0 :

βage(p) is decreasing for all p ∈ [0, 1] using the proposed bootstrap test (B = 200) in this

article. The p-value of the test is calculated to be 0.12, hence we fail to reject the null

hypothesis that βage(p) is decreasing.

Therefore, next, we impose the monotonicity constraint that βage(p) is decreasing. We

assume a common degree of smoothness (due to computational tractability) in the coef-

ficient functions which is controlled by the order the Bernstein polynomial basis N . The

common order of the Bernstein polynomial basis used to model all regression coefficient

functions is chosen to be 7 using the five-fold cross-validation method.

Figure 7 displays the estimated coefficient functions from the proposed Bernstein

based constrained estimation approach along with their point-wise asymptotic 95% con-

fidence intervals constructed using the projection method. The estimated effect of age

β̂age(p) is found to be negative and decreasing over p illustrating that physical activity

not only decrease with age (Xiao et al., 2015; Varma et al., 2017), but maximal levels of

physical activity are decreasing with a faster rate. Based on the confidence intervals, the

effect of age on PA is significant across all quantile levels.

The estimated effect of gender (Male) β̂sex(p) indicates that males have higher maxi-

mal capacity of physical activity (for p > 0.8) while females have higher activity levels in

the range of p between 0 and 0.8. In particular, females are shown to have significantly

higher moderate levels of PA (p ∈ (0.4, 0.8)) which is consistent with the findings of Xiao

et al. (2015). For height, we see a significant positive effect β̂height(p), especially, across a

mid-range of p. The estimated effect β̂weight(p) is negative and appears to be decreasing,

indicating an accelerated decrease of maximal levels of PA due to the increased weight.

Fitted quantile functions stratified by gender are shown in Figure 8 across different

ages and the centered values of height and weight. Similarly, the predicted physical

activity quantile function as function of weight is also displayed in Figure 8. We notice the

predicted quantile functions to be non decreasing and a clear separation among them with

respect to age and weight. These results offer important scientific insights and a deeper
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understanding of dependence between subject-specific physical activity and demographic

factors.

Remark 5:

Our analysis in this section illustrates that not all functional regression coefficients (e.g.,

age) are non-decreasing in QFOSR. In Appendix D of Supplementary Material, we il-

lustrate a method outlining a sufficient condition for the monotonicity of the quantile

function which makes much weaker assumption compared to Yang (2020), allowing for a

more flexible modeling of functional regression coefficients in QFOSR. We leave this as a

future work to be explored more deeply.
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Figure 8: Predicted quantile functions of physical activity for Male and Female for differ-
ent ages at mean values of height and weight (top) and the predicted quantile function
of physical activity for Male and Female for different weights at mean values of age and
height (bottom).
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5 Discussion

We have developed a new estimation method for dealing with shape-constrained func-

tional regression coefficients in common functional regression models. The estimation

approach extends the one of (Wang and Ghosh, 2012). It is shown that the key problem

of shape restricted estimation is reduced to a linear inequality constrained least squares

problem, where the constraint matrices are universal and do not depend on the value

of the basis functions, the observed time-points, or the order of the splines unlike the

B-spline based constrained estimation approaches (Ahkim et al., 2017).

The proposed approach is computationally efficient and can be implemented with

existing methods of quadratic programming. The constrained estimator is shown to be

a projection of the unconstrained estimator, and consistency of the constrained estima-

tor is established under the same regularity conditions as the unconstrained estimator.

Projection-based point-wise asymptotic confidence intervals are developed for the con-

strained functional regression coefficients providing uncertainty quantification of the es-

timates. A residual bootstrap-based test is proposed that is based on the constrained

estimation method. This further facilitates testing of various shape constraints in consid-

ered functional regression problems. Our empirical analysis illustrates that the proposed

constrained estimation method can lead to reduced uncertainty of the functional coeffi-

cient in the restricted parameter space.

Applications shown on schizophrenia collaborative study and Baltimore Longitudi-

nal Study of Aging illustrate the use of the proposed estimation method under prior

constraints and offer important scientific insights into these problems. Although the esti-

mation method is illustrated for functional data observed on a dense and regular grid, the

method can be extended to more general scenarios where functional data are observed

on irregular and sparse domains and covariates observed with measurement error. In

such sparse setups, although, the individual number of observations mi can be small, and
⋃n
i=1

⋃mi

j=1 tij has to be dense in T . Functional principal component analysis (FPCA)

could be applied to de-noise the functional covariates and get their predicted trajectories

at all time-points of interest (Ghosal et al., 2020). The proposed estimation method for

both functional and scalar response can then be used under the above scenarios. Exam-

ples include the schizophrenia collaborative study and the additional simulation set up

under Scenario B of this article.
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There are many research problems that remain to be explored based on this current

work. One of the limitations of the current approach is the absence of a theoretically

optimal choice for the order of the Bernstein polynomial basis N . Currently it is chosen

in a data driven way and it has shown a satisfactory performance in our empirical results.

We have considered three common functional regression models (SOFR, FOSR, FOFR)

and shown the application of the proposed estimation method under shape constraints.

The models illustrated in this article are building blocks of functional regression models

(Ramsay and Silverman, 2005) and are limited in assuming linear effects of the predictors

on the response, where as in many real world applications the effects might as well be

nonlinear. Multiple extensions have been proposed in scalar-on-function (Reiss et al.,

2010), function-on-scalar and function-on-function regression models (Kim et al., 2018)

modeling dependence between scalar/functional response and scalar/functional covariates

via unknown nonparametric functions. It would be of interest to explore the proposed

Bernstein polynomial based estimation approach to extend to these models under prior

shape constraints on the nonparametric functions.

Another interesting area of work would be to extend the proposed estimation method

beyond continuous response and allow scalar/functional responses coming from a general

exponential family, e.g, binary data, count data etc. Using the proposed Bernstein poly-

nomial based approach, in such cases would lead to optimizing a negative log-likelihood

criterion under linear inequality constraints. One natural idea would be to use a second

order Taylor approximation (James et al., 2020) of the log likelihood around the current

estimate and solve iteratively a least square objective function under the linear inequality

constraints. A Bayesian framework for generalized linear model could also be adapted

to incorporate the prior restrictions (Ghosal and Ghosh, 2022). Extending the proposed

shape constrained estimation method to such general classes of functional regression mod-

els would allow more diverse applications and remain areas for future research.

Software

Software implementation via R (R Core Team, 2018) and illustration of the proposed

framework is available online with this article.
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Supplementary Material

Additional methodological illustrations and Supplementary Tables and Figures are avail-

able online with the Supplementary Material.
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1 Appendix A: Proof of Theorem 1

First, we will show that the constrained estimator β̂c(t) is a consistent estimator of β(t)

as long as the unconstrained estimator β̂u(t) is consistent. Second, conditions (H1)-

(H5) will be used to verify the consistency of the unconstrained estimator using existing

results for SOFR (Cardot et al., 1999, 2003). Notice that for Bernstein polynomial basis

approximation, the condition (H4) with just q = v = 0 (i.e., H = C[0, 1]) would suffice.

The prior shape restrictions, e.g., positivity, monotonicity, convexity or their combi-

nations on the regression coefficient function of the form β(t) ∈ F can be approximated

by the linear constraints Aβ ≥ 0 using the Bernstein polynomial basis expansion. Notice

that although the matrix A and the vector β varies with n, we suppress such notations

for simplicity. The restricted parameter space is given by ΘR = {β ∈ RKn : Aβ ≥ 0},
where again Kn is allowed depend on the sample size n. The basis coefficients are then

estimated via constrained least squares with linear inequalities. The scalar-on-function

regression model after basis expansion with Bernstein polynomials can be written (w.l.g

by absorbing the intercept term) as follows

Yi = WT
i β + εi.

The unrestricted and restricted estimators are given by

β̂ur = argmin
β∈RKn

n∑

i=1

(Yi −WT
i β)2, (1)

β̂r = argmin
β∈ΘR

n∑

i=1

(Yi −WT
i β)2. (2)

We follow the proofs of Meyer (2008); Freyberger and Reeves (2018) who showed

that the constrained estimators are projection of the unconstrained estimators on the

restricted space, particularly when the objective function is quadratic (Freyberger and

Reeves, 2018). In our case, this can be shown by first noting that

1

n
||Y −Wβ||22 =

1

n
||Y −Wβ̂ur||22 +

1

n
||Wβ̂ur −Wβ||22,

where Y = (Y1, Y2, . . . , Yn)T and W = (W1,W2, . . . ,Wn)T . Hence, we have β̂r =

2



argmin
β∈ΘR

||β − β̂ur||2Ω̂, where Ω̂ = 1
n

∑n
i=1 WiW

T
i and Ω = E(Ω̂) is non-singular. Let

the Bernstein polynomial approximation of β(t) be given by βN(t) =
∑N

k=0 β
0
kbk(t, N) =

ρKn(t)
′
β0 for some β0 ∈ ΘR (Wang and Ghosh, 2012; Freyberger and Reeves, 2018),

which uniformly converges to β(t) (since FN is nested in F and
⋃∞

N=1FN is dense in F
with respect to the sup-norm).

Since the restricted estimator β̂r is projection of the unconstrained basis coefficient

β̂ur, we have: Pr[||β̂r − β0||Ω̂ > ε] ≤ Pr[||β̂r − β̂ur||Ω̂ + ||β̂ur − β0||Ω̂ > ε] ≤ Pr[||β̂ur −
β0||Ω̂ > ε/2]. The reason is that β̂r is the projection of β̂ur and hence ||β̂r − β̂ur||Ω̂ ≤
||β̂ur−β0||Ω̂. Let us also assume Ω̂ = 1

n

∑n
i=1 WiW

T
i → Ω, which is a standard regularity

condition in the unconstrained case. The above inequalities directly show that β̂r is

consistent, if the unrestricted estimator β̂ur is consistent. Conditions (H1)-(H5) guarantee

consistency of the unconstrained estimator using existing results for SOFR (Cardot et al.,

1999, 2003) and Huang et al. (2004) (specifically, Theorem 3.1 in Cardot et al. (2003)).

Hence the restricted estimator is consistent under the same regularity conditions.

Moreover, if β0 ∈ ΘR we have

||β̂ur − β0||2
Ω̂

= ||β̂ur − β̂r||2Ω̂ + ||β̂r − β0||2
Ω̂
.

Hence ||β̂r−β0||2
Ω̂
≤ ||β̂ur−β0||2

Ω̂
, with equality iff β̂ur = β̂r. Hence the shape-restricted

estimator of the basis coefficients has smaller squared error loss than the unrestricted

version, when the true regression function satisfies the shape assumptions.

2 Appendix B: Supplementary Results and Proofs

for Functional Response Case

We consider shape constrained estimation in the functional response regression model

(11) of the paper, arising from function-on-scalar or function-on-function regression. We

posit the following Theorem outlining consistency of the constrained estimator.

Theorem S1 Consider the functional response regression model (11). Suppose the fol-

lowing conditions hold.

(C1) The observed time-points S = {t1, t2, . . . , tm} ∼ FT on T ; moreover they are inde-

pendent of the response and covariate processes {Yi(t), Xi(t)} (i = 1, 2, . . . , n). The

3



distribution FT has a Lebesgue density fT (t) which is bounded away from 0 and ∞
uniformly over T .

(C2) ∃ positive constants M1,M2 > 0 s.t the eigenvalues λ0(t) ≤ λ1(t) of W (t) =

E{H(t)HT (t)} (H(t) = [1 X(t)]) satisfy M1 ≤ λ0(t) ≤ λ1(t) ≤ M2 uniformly

over T .

(C3) ∃ M3 > 0 s.t |X(t)| ≤M3 for t ∈ T .

(C4) There is a constant M4 s.t E(ε2(t)) ≤M4 <∞.

(C5) lim supn

max
`=0,1

N`

min
`=0,1

N`
< ∞, where N` is there order of the Bernstein basis polynomial

used to model β`(t).

(C6) The error process can be decomposed as ε(t) = V (t) + wt, where V (·) is a mean

zero stochastic process and and wt are measurement errors that are independent at

different time points and have mean zero and constant variance σ2.

(C7) limn d(β`(·),FN,`) = 0 (` = 0, 1) and limnNnlogNn/n = 0, where d(β`(·),FN,`) is

defined as d(β`(·),FN,`) = infg∈FN,`
supt∈T |β`(t)− g(t)| and Nn = max

l∈{0,1}
N`.

(C8) Σ̂ is a consistent estimator of Σ in the sense ||Σ̂−1−Σ−1||2 = op(1) (spectral norm).

If the prior shape restriction on β`(t) is correct, i.e., the true coefficient function β`(t) ∈
F`, then the constrained estimator β̂c,`(t) is a consistent estimator of β`(t).

Proof: We again show that the constrained estimator β̂c,`(t) is a consistent estimator

of β`(t) if the unconstrained estimator β̂u,`(t) is consistent. Regularity conditions (C1)-

(C8) provides the consistency of the unconstrained GLS estimator using Theorem 1 in

Huang et al. (2004). Let β(t) = [β0(t) β1(t)]. It is enough to show that β̂c(t) is a

consistent estimator of β(t) if β̂u(t) is consistent.

The prior shape restrictions, e.g., positivity, monotonicity, convexity or their combi-

nations on the regression coefficient functions of the form β(t) ∈ F (F = F0 × F1) can

be reduced to linear constraints Aβ ≥ 0 using the Bernstein polynomial basis expansion.

Let the restricted parameter space is given by ΘR = {β ∈ RKn : Aβ ≥ 0}. The basis

coefficients are then estimated via linear inequality constrained generalized least squares.

For the moment let us assume Σ to be known, in practice we will use the consistent

4



estimator Σ̂ in its place. The functional response regression model after basis expansion

with Bernstein polynomials and pre-whitening with covariance matrix can be written as,

Y∗i = B∗0β0 + W∗iβ1 + ε∗i .

Here Y∗i = Σ−1/2m×mYi, B∗0 = Σ−1/2m×mB0, W∗i = Σ−1/2m×mWi and ε∗i = Σ−1/2m×mεi. Let Z∗i =

[B∗0 W∗i ]. The unrestricted and restricted estimators are given by

β̂ur = argmin
β∈RKn

n∑

i=1

||Y∗i − Z∗iβ||22 (3)

β̂r = argmin
β∈ΘR

n∑

i=1

||Y∗i − Z∗iβ||22

We again show that the constrained estimators are projection of unconstrained esti-

mates on the restricted space (Freyberger and Reeves, 2018). Let us denote Y∗T =

(Y∗1,Y
∗
2, . . . ,Y

∗
n)T and Z∗ = [Z∗T1 ,Z∗T2 , . . . ,Z∗Tn ]T .

1

n
||Y∗ − Z∗β||22 =

1

n
||Y∗ − Z∗β̂ur||22 +

1

n
||Z∗β̂ur − Z∗β||22.

Hence we have β̂r = argmin
β∈ΘR

||β − β̂ur||2Ω̂, where Ω̂ = 1
n

∑n
i=1 Z∗Ti Z∗i and Ω = E(Ω̂) is

non-singular. Let the Bernstein polynomial approximation of β(t) be given by βN(t) =

ρKn(t)
′
β0 for some β0 ∈ ΘR (Freyberger and Reeves, 2018). Since the restricted estimator

β̂r is projection of the unconstrained basis coefficient β̂ur, arguing in the similar way as

in the scalar response case, we have : Pr[||β̂r − β0||Ω̂ > ε] ≤ Pr[||β̂r − β̂ur||Ω̂ + ||β̂ur −
β0||Ω̂ > ε] ≤ Pr[||β̂ur − β0||Ω̂ > ε/2]. We again assume Ω̂ = 1

n

∑n
i=1 Z∗Ti Z∗i → Ω. The

above inequality directly shows that β̂r is consistent if the unrestricted estimator β̂ur

is consistent, and the shape-restricted estimator is consistent under the same regularity

conditions as the unconstrained estimator.

3 Appendix C:
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Algorithm 1 Bootstrap algorithm for shape testing with functional response

1. Fit the unconstrained FOSR model (2) or the FLCM (4) using the Bernstein-
polynomial representation in (11) and calculate the residuals ei(tj) = Yi(tj) − Ŷi(tj),
for i = 1, 2, . . . , n.
2. Fit the constrained model corresponding to H0 (the null) and estimate β0(t), β1(t)
using the following constrained minimization criteria (no pre-whitening),

(β̂0, β̂1) = argmin
β0,β0

n∑

i=1

||Yi − B0β0 −Wiβ1||22 s.t Aβ1 ≥ b.

Denote the estimates β̂c
0(t), β̂

c
1(t).

3. Compute test statistic T (15) based on these null and full model fits, denote this as
Tobs.
4. Resample B sets of bootstrap residuals {e∗b,i(t)}ni=1 from residuals {ei(t)}ni=1 obtained
in step 1.
5. for b = 1 to B
6. Generate functional response under the constrained null model for the FLCM (for
FOSR Xi(t) = Xi) as

Y ∗b,i(t) = β̂c
0(t) +Xi(t)β̂

c
1(t) + e∗b,i(t),

7. Given the bootstrap data set {Xi(t), Y
∗
b,i(t)}ni=1 fit the null and the full model to

compute the test statistic T ∗b .
8. end for
9. Calculate the p-value of the test as p̂ =

∑B
b=1 I(T

∗
b ≥Tobs)

B
.

4 Appendix D: Monotonicity of Quantile functions

as outcomes in QFOSR

Let µ(p) = β0(p) +
∑J

j=1 xjβj(p), 0 ≤ p ≤ 1. We assume 0 ≤ xj ≤ 1,∀j = 1, 2, . . . , J ,

without loss of generality (otherwise achieved by linear transformation or by an activation

function, e.g., zj = F0(xj) for a c.d.f F0 on support of xj). Now, µ′(p) = β′0(p) +
∑J

j=1 xjβ
′
j(p). Let β′0(p) =

∑m
k=1 γ0kbk−1(p,m − 1) and β′j(p) =

∑m
k=1 γjkbk−1(p,m − 1),

where bk−1(p,m− 1) =
(
m−1
k−1
)
pk−1(1− p)m−k and γjk’s are the differences of the original

Bernstein basis coefficients βjk corresponding to βj(p)’s. Thus,

µ′(p) =
m∑

k=1

(
γ0k +

J∑

j=1

xjγjk

)
bk−1(p,m− 1).

Now, as γ0k+
∑J

j=1 xjγjk is a linear function in (x1, x2, . . . , xJ) ∈ [0, 1]J , by the well-known

Bauer’s principle the minimum is attained at the boundary points B = {(x1, x2, . . . , xJ) :

6



xj ∈ {0, 1}}. Hence the required sufficient condition for monotonicity (non-decreasing)

is

argmin
(x1,x2,...,xj)∈B

(γ0k +
J∑

j=1

xjγjk) ≥ 0, ∀k.

Examples

• J = 1: The constraint reduces to, argmin
x1∈{0,1}

(γ0k + x1γ1k) = min(γ0k, γ0k + γ1k) ≥
0, :⇔ γ0k ≥ 0 & γ0k + γ1k ≥ 0 ∀k. Note that this allows γ1k ≤ 0 for some k and

hence a non-decreasing β1(p) is not required.

• J = 2: A sufficient condition is argmin
(x1,x2)∈{0,1}2

(γ0k + x1γ1k + x2γ2k) ≥ 0, :⇔ γ0k ≥
0 , γ0k + γ1k ≥ 0 , γ0k + γ2k ≥ 0, γ0k + γ1k + γ2k ≥ 0 ∀k.

Notice that the sufficient condition above is linear in γjk’s and hence βjk’s. In general, the

condition can be expressed via the linear inequality constraint ANβN ≥ 0 (for a suitable

matrix AN), the framework illustrated in the paper.

5 Supplementary Simulation Scenario S1

We consider a data generating scenario similar as in Scenario B (dense data) of the

paper, with now β1(t) = 2.5, a constant function. We consider estimation under the

constraint β1(t) is decreasing, so that the true function lies on the boundary of the

restricted parameter space. Sample size n = 100 and Bernstein polynomial basis of

order N = 5 is considered for estimation and obtaining the projection based confidence

intervals. The average estimated coverage from the asymptotic 95% confidence intervals

is found to be 0.946, close to the nominal level. Figure S3 in this Supplementary Material

displays the estimated coefficient function along with its point-wise confidence intervals

for one of the Monte Carlo replication. The constant function is observed to be well

captured by the proposed estimate and the confidence intervals.
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6 Supplementary Tables

BP order (N) Sample size (n=25) Sample size (n=50) Sample size (n=100)
2 0.88 (0.09) 0.87 (0.06) 0.86 (0.04)
3 0.90 (0.11) 0.92 (0.07) 0.90 (0.05)
4 0.91 (0.15) 0.93 (0.09) 0.96 (0.06)
5 0.92 (0.23) 0.95 (0.13) 0.96 (0.08)
6 0.91 (0.41) 0.93 (0.19) 0.94 (0.11)

pfr (unconstrained) 0.88 (0.14) 0.94 (0.10) 0.98 (0.07)

Table S1: Average estimated coverage (over the grid of 50 equispaced time-points in
T = [0, 1]) of the projection-based 95% point-wise confidence intervals, for various choices
of the order of the Bernstein polynomial (BP) basis, scenario A. Average width of the
confidence interval is given in the parenthesis. The average choice of N from cross-
validation for this scenario is highlighted in bold.

BP order (N) Sample size (n=25) Sample size (n=50) Sample size (n=100)
3 0.76 (0.26) 0.70 (0.17) 0.61 (0.12)
4 0.82 (0.29) 0.78 (0.20) 0.68 (0.13)
5 0.91 (0.34) 0.92 (0.23) 0.92 (0.16)
6 0.91 (0.38) 0.93 (0.26) 0.93 (0.17)
7 0.93 (0.43) 0.93 (0.29) 0.94 (0.19)
8 0.94 (0.55) 0.94 (0.35) 0.94 (0.22)

pffr (U) 0.63 (0.40) 0.69 (0.29) 0.67 (0.21)
pffr-sandwich (U) 1.00 (1.42) 0.99 (1.00) 1.00 (0.71)

Table S2: Average estimated coverage (over the grid of 40 equispaced time-points in
T = [0, 1]) of the projection-based 95% point-wise confidence intervals, for various choices
of the order of the Bernstein polynomial (BP) basis, scenario B. Average width of the
confidence interval is given in the parenthesis. The average choice of N from cross-
validation for this scenario is highlighted in bold. Last two rows report the results from the
default unconstrained (U) ("pffr") method within "refund" and from using a sandwich
estimator for approximate variances in "pffr".

Sample size (n) Constrained method Unconstrained method P-value
50 1.84 (1.37) 3.86 (2.93) < 2.2× 10−16

100 0.967 (0.65) 1.91 (1.38) < 2.2× 10−16

Table S3: Average integrated mean square error (× 100) over 200 Monte-Carlo repli-
cations, scenario B, Sparse data. Standard errors of IMSE (× 100) are reported in the
parenthesis. P-values are obtained from two sample t-test.
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7 Supplementary Figures
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Figure S1: Asymptotic 95% point-wise confidence interval for β(t) using the projection-
based approach, scenario A, n = 100. The true regression coefficient function is the solid
black line, the constrained estimator is the solid green line, the dotted green lines show
point-wise 95% confidence intervals.
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Figure S2: Asymptotic 95% point-wise confidence interval for β1(t) from the projection
based approach, scenario B, n = 100. The true regression coefficient function is the solid
black line, the estimator is the solid green line, the dotted green lines show point-wise
95% confidence intervals.
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Figure S3: Asymptotic 95% point-wise confidence interval for β1(t) from the projection
based approach, Supplementary scenario S1, n = 100. The true coefficient function is
shown via the solid black line and the estimate is shown in solid green, the dashed lines
correspond to the point-wise 95% confidence intervals.
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Figure S4: Estimated quantile level effect of scalar (age, sex, height, weight) predictors
on quantile function of physical activity in BLSA data using the quantile function-on-
scalar regression model (13). Unconstrained penalized spline estimates obtained using
the "pffr" function within the refund package are shown in dotted lines.
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