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Abstract

We present a new vectorial total variation method that addresses the problem of color consistent
image filtering. Our approach is inspired from the double-opponent cell representation in the
human visual cortex. Existing methods of vectorial total variation regularizers have insufficient
(or no) coupling between the color channels and thus may introduce color artifacts. We address
this problem by introducing a novel coupling between the color channels related to a pullback-
metric from the opponent space to the data (RGB color) space. Our energy is a non-convex,
non-smooth higher-order vectorial total variation approach and promotes color consistent image
filtering via a coupling term. For a convex variant, we show well-posedness and existence of a
solution in the space of vectorial bounded variation. For the higher-order scheme we employ a
half-quadratic strategy, which model the non-convex energy terms as the infimum of a sequence
of quadratic functions. In experiments, we elaborate on traditional image restoration applications
of inpainting, deblurring and denoising. Regarding the latter, we demonstrate state of the art
restoration quality with respect to structure coherence and color consistency.
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1 INTRODUCTION

1.1 MOTIVATION

Image filtering is a fundamental operation in image processing applications. Typically image filtering
refers to all type of algorithms that modify image pixels in a linear or non-linear manner. Common
applictions are image denoising (or smoothing) [37, 43, 52, 63, 3, 9, 55], active contours [41], image
deblurring [50, 16], inpainting [5, 18] and optical flow [35]. These applications have in common that
they can be formulated as variational problems and are thus inherently related.

In a discrete setting, the solution of such functionals (or energies), can be formulated as maximum
a-posteriori (MAP) problems based on markov random fields (MRF), we refer to [66] and [40] for such
approaches. However, the size of the required label space makes the optimization problem intractable
as there is one label for each possible state. Due to this drawback, one computes approximate solutions,
e.g., via α-expansion or other relaxation techniques of the label space. The advantage of structured
energy minimization, such as the MRFs formulation, is that complex neighborhoods, non-smooth and
non-convex penalty functions are easily modelled.

On the other hand, continuous models do not suffer from large label spaces, see for example the
recently introduced assignment filter [2]. However, the corresponding optimization problem needs to
explicitly cope with non-smoothness and non-convexity. Convex optimization techniques are well es-
tablished methods that efficiently find optimal solutions of convex functions. During the past years, the
imaging community has seen a surge of non-convex and often non-smooth energies, often demonstrating
improved results over convex counterparts. The optimization of non-convex functions is particularly
challenging since straightforward approaches often leads to locally optimal solution only.

Relaxation of the non-smooth problems often include modification of the objective function and
approximating non-convex penalty terms via auxiliary variables. Cohen proposed fitting of auxiliary
variables [22]. However, this approach relies on conjugate functions and if no closed form-solutions are
available the relaxation method is inefficient. Another popular approach in image processing is the
half-quadratic algorithm (HQA) introduced by Geman and Reynolds [31]. The HQA approximates a
non-convex function as the infimum of quadratic functions as illustrated in Figure 1.1 (a), (b). One
may also consider lagged fix-point formulations [20]. In this case regularity is imposed via mollification
that yields a differentiable energy. Subsequently one needs to prove that there exists a convergent
fixed-point algorithm.

This work builds on the convex total variation (TV) presented in the seminal work of Rudin, Osher
and Fatemi [56]. The success story of total variation (TV) began in 1992 when Rudin, Osher and
Fatemi [56] introduced an extension of Rudin’s PhD thesis [57]. In Rudin’s work it was conjectured
that the `1 norm is more appropriate as a regularizer for image processing applications than, e.g., `2
norm. The popularity of TV is mainly due to its discontinuity preserving properties, i.e., the norm is
a strong prior for avoiding mode mixing and can be interpreted as a the solution of a MAP problem.
The common goal for noise reduction methods is to preserve characteristic image features, thus TV
is a suitable prior as it is edge preserving. Features of interest vary depending on application area.
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(a) Example of different values of the p-norm for
p ∈ (0, 2).

(b) The non-convex energy realized as the infi-
mum of quadratic functions (here p = 0.5).

(c) Introduction of artificial colors are shown
by the smooth transition from red to green in
the right figure. These types of artifacts often
arise in image smoothing due to insufficient color
channel coupling and the denoising scheme’s lack
of adaptivity to the image structure.

(d) Example of color shimmering artifacts
(right) which often appear in homogeneous im-
age regions. Color shimmering can often be sup-
pressed with stronger smoothing, however, fre-
quently at the cost of oversmoothing image fea-
tures (corners/lines etc).

Figure 1.1: Figure (a) shows several instances of the non-convex `p-norm for different p values and (b)
shows example HQA approximation for p = 0.5. Figures (c) and (d) illustrates common color image
denoising artifacts.

However, in general one wishes to preserve structures defining dominant orientations and discontinuity
points, such as edge and corners, since much of the visual information is contained in contour and
differences of contrast [54]. Extensions of the initial gray-scale TV prior for image enhancement to
color images faces the problem to characterize notions of color. The problem of consistent color image
processing is largely unsolved and still no consensus on suitable characterization of a “color edge”, or
a “color boundary” for general imaging problems has been reached.

This work studies the problem of color image regularization. Extending the scalar TV to color
images is a non-trivial problem. For example, if a color edge is insufficiently preserved in the smoothing
process, artificial colors may emerge at the smooth transition between these colors as demonstrated
by Figure 1.1 (c). The same figure (d) illustrates the problem of color shimmering, i.e., insufficient
smoothing of homogeneous regions. To address these problems we examine a color space representation,
commonly used in computer vision applications and derive a novel color mixing term that penalizes
inter-channel discontinuities. We investigate a special instance of color space representation known
as the double-opponent color space. The key aspect of our framework builds on the observation that
the Jacobian carries vital information useful for color boundary detection. Utilizing this information,
we design a TV-based regularizer that describes the color information in a subspace defined by the
hue and saturation of the original image color space. Via a higher-order non-convex, non-smooth
energy formulation we show improved discontinuity preserving properties over convex counter-parts
with respect to color consistency and structural coherence.

Our approach is motivated based on results from color perception:

• The connection between experienced visual stimuli and current color space models of the visual
cortex is naturally modeled using tools from differential geometry. Accordingly, we adopt a
geometric viewpoint to explore the relation between color edges and the regularizer based on the
color space geometries. The double-opponent color space is thought to relate neurophysiological
properties of color experience to single-opponent and double-opponent cells in the human cortex,
see [30, 44, 45, 26] and references therein. There is recent evidence that a large concentration
of double-opponent cells are located in the region V1, the primary part of the visual cortex [23].
Double-opponent cells are thought to be orientation-selective with respect to color discrimination
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and the detection of color boundaries, results made possible by modern functional magnetic
resonance imaging (fMRI) techniques [23]. We will use this fact in our subsequent analysis to
motivate the introduction of our model.

When formulating image denoising objective functions one often adopts different viewpoints. The
following two major viewpoints motivate our work: namely color perception and color model.

• Color perception. As stated, we formulate the problem of color image denoising from principles
of color perception. The discriminate power of color is one primary feature for object separation
and detection. It is often referred to as a highly important features for the visual system and
is closely related to the problem of accurate boundary detection [23]. We present a model that
preserves discontinuities in the color space motivated by a double-opponent transformation. By
preserving color discontinuities we hypothesize that color borders trigger the activation of these
double-opponent cells and thus yields the experience of crisp color borders in the image.

• Color Model. We denote transportation of the visual (RGB) stimuli to the double-opponent cells
in the visual cortex with a mapping. We postulate that, if there exists a spatial relation between
two stimuli (e.g., a color difference), then this induces a response in the double-opponent cells in
the form of orientation sensitivity. The motivation is that double-opponent cells act as color edge
detectors, as shown by neurophysical experiments (again we refer to [30, 44, 45, 26]). Thus, we
conclude that there exist a color transition function (or gradient) in the double-opponent space.
To obtain the mapping we observe that the stimuli in the opponent space, induced by a linear
opponent transformation, in fact gives rise to a pullback metric on the RGB-space where the
spatial interaction between the double-opponent cells are modeled by the gradient-operator.

1.2 ORGANIZATION

In Section 2 we sketch the framework of total variation and make the difference between our view-point
to established literature in the field. Already here, we must emphasize that much research in color
image processing is merely a multi-dimensional extension of the original total variation for gray-scale
images. The differences between our approach and related VTV methods are also detailed in Section 2.
In Section 3 we review color space models often adopted in the image processing literature. In the same
section we also introduce the double-opponent transformation. Section 4 serves to derive the connection
between the observation (RGB) space and the double-opponent representation, we also derive results
on the encoded information in the metric decomposition and relate these facts to colorfulness. The
general variational problem is defined in Section 5. In the same section we formulate the corresponding
HQA formulation and prove that the HQA is a particular instance of a majorize-minimize algorithm
for the general problem. For the particular instance corresponding to the non-relaxed, first order VTV
with a convex dataterm, we rigorously show convexity of the overall problem, that a solution exists and
is unique in Section 5.3. Section 6 describes the numerical scheme and Section 7 presents the numerical
evaluation with applications in image denoising, inpainting and deblurring. Section 8 concludes the
paper.

Next we review total variation methods and present current generalizations to color image process-
ing before we introduce our framework.

2 FURTHER RELATED WORK

In addition to TV, closest to our work is the seminal work of Sapiro and Ringach [58] who first
observed that the metric tensor eigendecomposition can be used to describe directional change and
magnitude of color images. In this work we extend this reasoning and show that there exists a natural
color space representation which leads to a corresponding interpretation of the Sapiro and Ringach
approach. Unlike the Beltrami flow [42] and Sapiro and Ringach, we exploit the inverse rate of change
of the metric tensor’s eigenvalues. This gives us a transformation from the double-opponent space back
to the observation space of the image data. We thus obtain an explicit information about the image
chromaticity, and by extension, the color edge information. The detection of edges is a well investigated
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field of study for gray-scale images and methods include, e.g., the canny edge detector [11], gradient
filters and the structure tensor [29, 7]. These methods work well for monochromatic images (such as
gray-scale images) but the extension to multi-dimensional data such as color image data is still an open
problem. One of the first extension of the structure tensor to multi-valued images was proposed by Di
Zenzo [70], but later it was reported that channel-by-channel denoising is sufficient in the framework
of partial differential equations, e.g., [68]. Coupling of the color channels were investigated in [64] and
decorrelation approaches to denoising have also been considered see, e.g., [3].

For a gray-scale image u : Ω→ R defined on a domain Ω ⊂ R2, the total variation measure is given
by

TV (u) = sup

{∫
Ω

udiv (ϕ) dx : ϕ ∈ C1
c (Ω,R2), ‖ϕ‖∞ ≤ 1

}
(2.1)

A function u ∈ L1(Ω) belongs to the space of functions of bounded variation BV (Ω) if

‖u‖BV (Ω) = ‖u‖L1(Ω) + TV (u) <∞. (2.2)

TV (u) given by (2.1) is a support function in the sense of convex analysis. Thus, combining TV (u) with
another (or more) convex functionals enables to apply a wide range of convex programming techniques.
An early basic example is [13]. Further common strategies include the primal-dual algorithm [14] and
the Split-Bregman approach [34].

Next, we review generalizations of scalar TV to vector-valued and color images.

2.1 COLOR AND VECTOR-VALUED TV

Let u : Ω→ Rd, u(x) =
(
u1(x), ..., ud(x)

)>
, denote a vector-valued image. Color images are represented

by the three color components red, green and blue, i.e., d = 3. In this section we review some extensions
of total variation to vector-valued and color images categorized in three main tracks: channel-by-
channel, spectral approaches and decorrelation approaches. We briefly mention PDE-based models.

Channel-by-channel. The straightforward extension of TV to vector-valued color image regular-
ization is to apply (2.1) channel-by-channel. However, as this naive approach neglects any channel-by-
channel correlation one of the first extensions was to penalize color edges across channels as suggested
by Blomgren and Chan [8]. They raised several important aspects highlighting the fact that the ex-
tension to color is a non-trivial task. First, they argued that the vector-valued TV should not penalize
intensity edges, as there can be a shift in color but not in intensity. Secondly, they advocate that
the corresponding TV-regularizer should be rotationally invariant in the image space, although this is
disputed in [51]. Blomgren and Chan propose

TVBC(u) =

√√√√ M∑
i=1

TV (ui)2, (2.3)

with the TV term under the sum given by (2.1). However, applying this model to the problem of
color image denoising has been shown to produce significant color smearing artifacts due to insufficient
preservation of color edges. The reason of this effect is that the model fails to comprehend that the
red, green and blue color components are in fact highly correlated. Thus, due to lacking any coupling
between the color channels, the model produces suboptimal results w.r.t. to color consistency [33].

Bresson and Chan [10] considered a vector-valued extension of the scalar dual TV formulation.
Based on work by Chambolle [13] and Fornasier and March [28], Bresson and Chan presented a
coherent framework for vectorial total variation with a study of well-posedness. While their formulation
generalizes Chambolle’s dual of Blomgrens TV semi-norm (2.3), results still exhibit color smearing.

We refer to [25] for an additional discussion on discrete vectorial total variation models. We remark
that this underlines the complex nature of color image processing and researchers continued to propose
alternative total variation color filtering models, as we will discuss below.

Spectral approaches. One of the first vectorial TV (VTV) schemes that explicitly take color
information into account, was introduced by Sapiro and Ringach [58]. In an intensity image an edge is
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localized by changes in the image intensity. The novelty introduced by Sapiro and Ringach is that they
exploited the metric imposed by the first fundamental form on the image domain, which couples the
RGB-channel’s derivatives, to indicate the presence of color edges. The resulting functional is given
by

TVS(u) =

∫
Ω

√
λ+ − λ− dx, (2.4)

where λ+ > λ− ≥ 0 are the eigenvalues of the metric tensor. Goldluecke and Cremers [32] propose a
vectorial total variation method based on the largest singular value (hence on the spectral norm) of
the derivative matrix Du,

TVJ(u) =

∫
Ω

σ1(Du) dx. (2.5)

TVJ is closely related to TVS with the difference that TVJ sets all singular values (except) the largest to
zero. Although TVJ improves the signal-to noise ratio, the visual appearance for the denoised results
contains considerable color shimmering, visible in homogeneous regions. Thus, despite a coupling
between the color channels, the approach still may produce color artifacts.

Decorrelation transforms. Regularization via decorrelation transforms was suggested in e.g.,
[19]. A more recent approach to incorporating color into a total variation formulation was introduced
by Ono and Yamada [51]. They propose a discrete norm incorporating a weight w between the intensity
and chroma in the decorrelation transform O (see also (3.1),(3.2) below)

JV TV (u) = ‖D3Ou‖w1 = w‖D1o1‖1 +

∥∥∥∥(D1o2

D1o3

)∥∥∥∥
1

(2.6)

where ‖x‖1 =
√∑

i x
2
i . D1 is the derivative matrix for one channel and D3 = diag(D1, D1, D1) the

three channel derivative matrix. The constant w ∈ (0, 1) determines the weighting between the inten-
sity and the chromaticity of the color space. A smaller w will penalize the chroma. This formulation,
however, does not take into account that the subspace defined as the chroma (o2, o3) is not decorre-
lated but actually consists of the components hue and saturation. The framework does not respect
the non-uniformity of the opponent space. As a consequence, direct regularizing on the chroma via an
Euclidean distance metric violates the non-Euclidean structure of this opponent space. Furthermore,
it is easy to construct scenarios where the image saturation changes independently of the hue, thus
further motivating why the chroma should be decoupled into hue and saturation [48].

PDE-based models. There are many PDE-based models for color image filtering. We confine
ourselves to referring to [3, 64, 68] and to discussing the work of Chambolle [12] who proposed a partial
differential equation (PDE)-based anisotropic diffusion model. This model aims to solve the problem
of color constancy (referring to the work by Poggio [36]). Although Chambolle did not present an
energy-based total variation approach, his treatment of the color channels and their smoothing along
the image gradient direction is relevant to our subsequent analysis. Chambolle defines a PDE with
directional diffusivity ξ defined as

ξ ⊥
(

(u2 − u3)∇u1 + (u3 − u1)∇u2 + (u1 − u2)∇u3

)
= 0, (2.7)

reducing smoothing perpendicular to the gradients. The coupling between color channels is explicit:
the difference of the intensity level of two color components affects the directional smoothing of the
third channel. In practice, ξ is used in the heat equation to inhibit smoothing close to color edges.
However, as noted by Sapiro and Ringach [58], if two channels are equiluminant and if the third channel
has an edge, this edge will remain unaffected by the filter.

Although these ideas were presented more than two decades ago, they did not attract much atten-
tion in the image processing community. We will see that our perceptual model is related to (2.7) in
that our approach penalizes the pair-wise differences between the image derivatives, not the pair-wise
intensity differences. In Section 4 we derive a color descriptor which couples the color channels in a
natural way derived from the geometry of the double-opponent color transform. We will show that a
color channel coupling similar to that of Chambolle, in combination with related ideas to the geometric
framework of Sapiro and Ringach [58], results in a natural description of the image colorfulness.



3 COLOR 7

3 COLOR

Color perception is a well studied area and researchers continue to propose color models. To use the
“correct” color model is application dependent and a non-trivial problem. In this work we focus on
the application of denoising. Next we briefly introduce established principles of color space design and
recall some terminology.

3.1 TERMINOLOGY

Some of the earliest works on color theory date back to the work by Newton [49]. In modern sciences,
Albert Munsell is often accredited the notion color dimensions hue, value and saturation [48]. Figure
3.1 illustrates the dimensions where hue is an angular component, value the intensity and saturation
a radial component. For consistent use of the color terminology see The Commission Internationale
de l’Eclairage (International Commission on Illumination, CIE) [21] and [60]. For further in-depth
information on color image processing and the structure of color we refer to [60]. When we write
intensity, we mean lightness, implying the monochromatic component black and its brightness, or
simply, the image gray-scale component. When we write saturation we refer to the magnitude of the
color vector orthogonal to the lightness, and hue refers to an angle ranging from 0 to 360 degrees as
illustrated in Figure 3.1. During the last decades several color systems have been proposed to represent
color, each considering different constraint sets. The next section reviews some of the more frequently
referred color space representations.

Figure 3.1: An isoluminant disc of the doule-opponent color space. Hue is an angular component
describing the primary colors red, green, blue, and the opponent colors yellow, magenta and cyan and
the corresponding colors transitions. Saturation describes the colorfulness of the corresponding hue
and value gives the intensity with which the color is perceived. In the case of scalar valued (gray-scale
images) the saturation is null and thus the hue plays no role.

3.2 COLOR SPACE DESIGN

It is important to note when dealing with color theory that color is a subjective experience. In
fact, one often thinks of color as wavelength of light. This is a misconception, however, since color
is a result of neural processing in the human brain [61, Ch. 4]. This alludes to the difficulty of
obtaining a quantitative and accurate description of color. Next, we list four major points that require
consideration when determining suitable color space representations.

• Easy to use. Modeling psychophysical effects of color in scientific applications is a highly non-
trivial problem. The study of physical stimulus of different wavelengths has shown that the
characterization of color in the human visual system is dominantly done by, what is accepted as
the colors red, green, blue and yellow. These colors are in fact electromagnetic waves and can be
represented as spectral power distributions (SPD) [60]. This realization of color perception gave
rise to one of the earliest color models namely the CIE 1931 XYZ color space which builds on
the trichromatic color representation of red (R), green (G) and blue (B). In modern applications
these colors constitute the basis of the RGB color space and is widely used to represent image
content. In the RGB color space, the relationship between two colors is linear and this simplified
representation is also its main drawback. This Euclidean treatment of color relations is not
accurate, in fact, as shown in numerous works (see [60] and references therein), the human
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visual system is less sensitive to short wavelenghts (e.g., blue), and this therefore suggests that
the color spectral distributions should be represented non-uniformly. However, despite obvious
oversimplifications in the RGB-representation it may be sufficiently good and easy to use for the
considered application and thus motivates its use.

• Color reproduction. Color reproduction is the problem of reproducing color independent of
display system. The Munsell system [48], was the first standardization for color metrics widely
accepted and later adopted by CIE in 1931. The recommendations set forth by CIE still continue
to influence today’s color research [60]. Due to the subjective nature of color perception many
color models have been proposed, however, appropriate color space representation seems so far to
be application dependent and no consensus has been reached. Due to the emerging technology of
Internet and the large variety of imaging display systems and hardware limitations, a standardized
RGB color space called sRGB was proposed for consistent image rendering over a wide range
of devices [62]. Even up to present time, sRGB is a widely used color space on the world wide
web. Also CIELAB is used for color reproduction due to its perceptual uniform structure and is
mentioned next.

• Perceptual uniformity. The CIELAB color space was developed for perceptual uniformity.
Color and perceptual uniformity, for image processing applications, implies that a perturbation
in, e.g., hue, may influence a reference color to a different degree and may induce color artifacts
for certain colors, but not for others. Perceptually, this is known to as the just-noticeable-
difference and can be visualized via MacAdam ellipses [47]. In reality it has been shown that
the CIELAB is almost perceptually uniform, see [60] and references therein. This motivates the
use of non-Euclidean metrics, even in supposedly perceptually uniform cases, to determine the
distance between colors. Due to the strong emphasis on perceptual uniformity the CIELAB color
space is less suitable for rigorous mathematical treatment due to numerous discontinuities it its
definition.

• Hardware limitations. Many color spaces were introduced as a consequence of technical and
hardware limitations. Such a color space was the HSV (Hue, Saturation, Value) color space devel-
oped in the 1970 for applications related to color display systems [38]. The YCbCr/YPbPr color
spaces were proposed for analog and digital television transmission, respectively. Furthermore,
the YCbCr/YPbPr signal representation include non-linear mappings and chroma bandlimiting
function to enable efficient transmission of the image signal [53]. One can also argue that the
previously mentioned sRGB is part of this category. Due to the strong adaptation to efficient en-
gineering requirements, color spaces in this category have not been subject to extensive research
in the context of color image processing.

Next we present the double-opponent color space.

3.3 DOUBLE-OPPONENT COLOR REPRESENTATION

Recall that the most commonly used color space is the RGB color space. It consists of three compo-
nents, r, g and b which are the Red, Green and Blue components. These components are uniformly
spaced in [0, 255] (or [0, 1]) depending on the chosen quantization. The r, g, b components are highly
correlated, and thus image processing algorithms without explicit color adaptation introduce artifi-
cial colors and color smearing. To address this problem, a decorrelation transform is usually applied,
converting the color space into the three components of lightness, saturation and hue1.

The mapping from the decorrelated double-opponent space in the visual cortex to a physical stimuli
is denoted via a function ψ−1 : R3 → R3 defined by (3.3) below. We denote by, u : Ω→ R3, the physical
stimuli containing red, green and blue spectra. Furthermore, denote by the linear mapping

O : R3 → R3, u = (r, g, b)> 7→ Ou = o = (o1, o2, o3)>, (3.1)

1The transformation to these components is not equivalent with the HSV color space. Although, the interpretation
of the components are similar.
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the transformation from the RGB color space to the double-opponent space where the matrix O is
defined as (see [30, 44, 45, 26, 46]),

O =

1/
√

3 0 0

0 1/
√

6 0

0 0 1/
√

2

1 1 1
1 1 −2
1 −1 0

 . (3.2)

We note that this linear mapping has full rank. The matrix O actually describes a rotation and scaling
of the RGB coordinate system. The opponent component o1 is nothing else than the gray-scale value,
o2 is the subtraction of yellow (mixing red and green equals yellow) from blue and the last component
o3 is the subtraction of green from red, i.e., o2 and o3 consists of the opponent colors in the RGB color
space.

The non-linear mapping to the hue (h), saturation (s) and lightness (L) representation of the
decorrelated double-opponent space is given by

ψ : R3 → R3, o 7→ c = (L, h, s)> (3.3)

where

L = o1, h = arctan

(
o2

o3

)
, s =

∥∥∥∥(o2

o3

)∥∥∥∥ , (3.4)

Let ϕ : R3 → R3 denote the composition of the linear opponent transform (3.2) and the mapping
(o1, o2, o3)> 7→ (L, h, s)> just discussed above, then we define

ϕ : u→ ϕ(u) := ψ(Ou). (3.5)

In the next section we compute the metric tensor associated with the mapping ϕ and investigates its
encoded information.

4 GEOMETRY OF THE DOUBLE-OPPONENT SPACE

In this section we derive a color representation that allows for an intuitive interpretation of the double-
opponent color space as components of the RGB-space. Subsequently we give an exposition on the
information that this representation’s encodes.

4.1 DOUBLE-OPPONENT METRIC TENSOR

Strictly speaking, in this work, we regard the RGB-space as a linear Riemannian manifoldM equipped
with the metric (4.1), which is an inner product on the tangent space TuM that smoothly varies with
u ∈ M. Since every tangent space TuM can be identified with M, however, it makes sense to regard
the Riemannian metric (4.1) as inner product defined on the space itself. We refer, e.g., to [39] for
background and further details.

The Euclidean inner product 〈·, ·〉 on the Lhs-space induces via ϕ the pullback metric on the
RGB-space which is given by

〈u1, u2〉u := 〈Dϕ(u)u1, Dϕ(u)u2〉 = 〈u1, G(u)u2〉, (4.1a)

G(u) :=
(
Dϕ(u)

)>
Dϕ(u) =

(
gij(u)

)
i,j=1,2,3

. (4.1b)

One identifies that

u = (u1, u2, u3)> = (r, g, b)>, (4.2a)

α = α(u) := (α1, α2, α3)> = (b− g, r − b, g − r)>, (4.2b)

β = β(u) := (β1, β2, β3)>

= (b+ g − 2r, b+ r − 2g, r + g − 2b)>, (4.2c)

f2 = f2(u) := ‖α‖2

= 2(b2 − bg − br + g2 − gr + r2). (4.2d)



4 GEOMETRY OF THE DOUBLE-OPPONENT SPACE 10

In the subsequent analysis we return to the following decomposition

γ = f2 = u>Pu P =

 2 −1 −1
−1 2 −1
−1 −1 2

 � 0. (4.3)

where P is a symmetric and positive semi-definite matrix. Furthermore, one easily verifies the relations

α ⊥ β, u ⊥ α, α× β = f21, (4.4a)

〈u, β〉 = f2, ‖β‖2 = 3‖α‖2. (4.4b)

The Jacobian Dϕ and the corresponding metric tensor G read

Dϕ(u) =
1√
3

(
1,

3

f

α

‖α‖
,

1

f
β

)>
, (4.5a)

G(u) =
1

3

(
I +

9

f4
αα> +

1

f2
ββ>

)
, (4.5b)

where G has non-normalized eigenvectors 1, α, β and corresponding eigenvalues

Λ =
1

3
I + diag

(
0,

3

f2
, 1

)
. (4.6)

Saprio and Ringach [58] also exploited the first fundamental form but in Euclidean space and concluded
that the tensor’s eigenvalues capture the color edge information. Here we instead use the principal
directional change obtained from the eigendecomposition of the double-opponent metric tensor. And
our focus is on γ of (4.3) (which is f2). Similarly to Saprio and Ringach, the interpretation is that a
large eigenvalue of the tensor will indicate the presence of image color. Next, we justify and elaborate
this statement in the next section while investigating the information encoded in γ.

4.2 ENCODED INFORMATION

This section investigates the information encoded in the metric tensor, decomposed into an eigensystem
as in the previous section. The derived γ describes the colorfulness of an image, and in the next section
we formulate an energy model that explicitly preserve discontinuities in γ. We identify the following
relation

γ(u) = u>Pu = (b− r)2 + (r − g)2 + (g − b)2

= ‖u>C1‖2, C1 =

 1 −1 0
0 1 −1
−1 0 1

 . (4.7)

Note that P = C1C1
> (cmp. (4.3)). The coefficients of C1u have previously appeared in an early work

by Chambolle [12].

Proposition 4.1. The function, γ in (4.7), has the properties (P1) γ(u+c1) = γ(u) and (P2) γ(cu) =
c2γ(u), where c is a constant.

Proof. The result follows immediately from (4.7).

The above result yields the following interpretation of the γ-function: a) (P1) shows that γ is
invariant to intensity shifts. b) (P2) shows that γ has a quadratic dependency on intensity changes. c)
It follows from a) that γ depends on color changes. d) It follows from b) that γ depends on color shifts.
Under constant intensity, γ captures change of color as illustrated by Figure 4.1 (a), (b). In this figure
we show equiluminant discs at constant intensity along with the corresponding response of γ. It is
clearly visible that γ describes the intrinsic color structure of the color space as there is a stronger



5 GENERAL VARIATIONAL FORMULATION 11

(a)

(b)
(c)

Figure 4.1: (a) Color discs with corresponding response of γ, (4.7), in (b). The largest magnitude
(red color) is obtained at the primary colors (red, green and blue) and the opponent colors (yellow,
cyan and magenta). As expected, the response on the intensity axis (center of discs) is 0 (black). (c)
Interpretation of the vector r − g as an orthogonal component to yellow.

response for highly saturated colors. In the lower half of the intensity range we predominantly detect
the primary colors red, green and blue. As the intensity increases, γ shows primary responses from
yellow, cyan and magenta. The intensity axis is located in the center of these discs and, as expected,
we do not obtain a value of colorfulness. We give some examples of γ-responses from natural images
in Figure 5.1.

The geometric interpretation of γ is illustrated as an example via the r− g-component. The other
two color difference terms follow with similar reasoning. We know that the color yellow, y, is composed
as a sum of red and green, i.e., y = r + g, and written in vector form we have r − g = (1,−1, 0)> and
y = r+ g = (1, 1, 0)>. We see that yellow is perpendicular to the difference r− g, i.e., y ⊥ (r− g) = 0.
This is illustrated in Figure 4.1 (c). Analogous argument hold for the other terms of γ, i.e., b − r is
orthogonal to magenta, and g−b orthogonal to cyan. In this way γ covers the RGB space. Moreover, as
γ describes the color structure, preserving its edge information prevents color distortion in the filtering
process. Based on this analysis, we are now prepared to introduce the general variational formulation.

5 GENERAL VARIATIONAL FORMULATION

Let u = [u>R, u
>
G, u

>
B ]> ∈ R3N (Ω) represent a color image on the domain Ω with stacked color channels.

N is the number of pixels in one image channel. Also, let g ∈ R3N be the corresponding noisy data.

We define the discrete image gradient for one channel as D1 =

[
Dx

Dy

]
∈ R2N×N , Dx, Dy ∈ RN×N and

subscript denotes the forward finite difference operator in x and y directions, respectively. Furthermore,
we let i ∈ N+ s.t. Ii ∈ Ri×i denotes the identity matrix. In this notation, the three channel derivative
matrix for a color image is D(1) = D1 ⊗ I3 ∈ R6N×3N where ⊗ is the Kronecker product and

D(1)u : R3N → R6N (5.1)

is the derivative matrix for the three channels.

5.1 ENERGY

Channel-by-channel filtering of the RGB space is prone to introduce color artifacts [8, 10]. On the other
hand, purely decorrelating the color channels without considering the geometry is also sub-optimal, see
results in, e.g., [58, 51]. We propose a two-component regularizer: one component performs channel-by-
channel filtering penalizing all intra-channel content and one component which explicitly targets the
color information. The color specific prior defines a natural inter-channel coupling from the geometry
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Figure 5.1: Detected color structure in real images extracted by γ. In these examples, primary colors
such as red, green and blue and the opponent color yellow are well characterized.

of the double-opponent space, realized through

C ∈ R3N×3N , C = C1 ⊗ IN (5.2)

where C1 corresponds to (4.7).
For M ∈ N let m ∈ {1, ..,M}, then we define α, β ∈ RM+ and p, q ∈ RM (0, 2), such that α, β, p, q

are vectors with components indexed by subscript, e.g., αm. We let s ∈ (0, 2) and by ‖x‖pp we mean

‖x‖pp =

3N∑
i=1

|xi|p. (5.3)

The energy we introduce and study in this work is defined as the non-convex optimization problem

min
u

{
E(u) = 1

s‖Ku− g‖
s
s

+
∑M
m=1

(
αm

pm
‖D(m)u‖pmpm + βm

qm
‖D(m)Cu‖qmqm

)}
, (5.4)

where D(m) is the m-order derivative matrix. When m = 1 we have a first-order energy and if m = 2,
we have a second-order energy and so forth. To be explicit, we give the derivative matrix for the first
and second order cases

D(1) =

(
Dx

Dy

)
(5.5a)

and

D(2) =


Dxx

Dxy

Dyx

Dyy

 (5.5b)

where subscript denotes the derivative in x and y-directions, respectively. The operator K ∈ R3N×3N

in (5.4) is the identity matrix in the case of denoising or a blurring matrix in the case of deconvolution.
Since the product Cu is now the pair-wise mixture of color channels, it means that DCu is the pair-
wise mixture of the channel gradients, i.e., DCu penalizes color opponent gradients in y, c and m, and
Du penalizes the primary colors r, g and b. With m > 1 we have a natural definition of higher-order
total variation. Although C is a constant matrix, it is non-trivial to minimize E due to its inherent
non-convexity when either of p, q, s ∈ (0, 1). For this reason, we adopt a half-quadratic formulation
presented next.
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5.2 HALF-QUADRATIC FORMULATION

Alternatives to the HQA [31] include, e.g., fitting of auxiliary variables [22] which, however for practical
applications, relies on the efficient evaluation of a conjugate function. One may also consider lagged fix-
point formulations [20], in this case one would impose regularity to obtain a differentiable energy and
prove that there exists a convergent fixed-point algorithm. Instead, the HQA algorithm is particularly
suited to optimize E since we obtain a computationally very efficient scheme. Furthermore, identifying
that the HQA can be written as an instance of a majorize-minimize scheme we also show that the
HQA convergences to a stationary point corresponding to a minimum. We make use of the following
result to optimize our energy

Lemma 5.1. (HQA p-norm [15]) Let p ∈ (0, 2) and t ∈ (R \ {0}), then

‖t‖p = min
v>0

{
vt2 +

1

ξvγ

}
(5.6)

where γ = p
2−p , ξ = 22/(2−p)

(2−p)pp/(2−p) , and the minimum is obtained at

v∗ =
p

2
|t|p−2. (5.7)

The energy E in (5.4) is not differentiable and not convex. To apply the HQA, we make use of the

mollified energy Eε and set ‖x‖ηη,ε =
∑M
i=1(|xi| + ε)η =

∑M
i |xi|ηε and 0 < η < 2. Now, the energy

Eε(u) is differentiable but not convex, therefore the direct optimization problem

uk+1 = min
u
Eε(u) (5.8)

may result in a locally optimal solution. The HQA optimization problem takes the form

min
u

{
Eε(u) =

3N∑
i=1

1

s
min
z>0

(
zi|Kiu− gi|2ε +

1

ξsz
αs
i

)

+

M∑
m=1

[
αm
pm

min
vm>0

(
vi,m|D(m)

i u|2ε +
1

ξpmv
αpm
i,m

)

+
βm
qm

min
wm>0

(
wi,m|D(m)

i Cu|2ε +
1

ξqmw
αqm
i,m

)]}
(5.9a)

=: min
u,v1>0,...,vm>0,w1>0,...,wm>0,z>0

L(u, v, w, z) (5.9b)

now convex separately in u and in z, v, w, respectively. We use subscript “i” to denote the i’th row (or
component) of a matrix (or vector). By using Lemma 5.1 we formulate an alternating minimization
strategy where the update equations for the auxiliary variables are given by

zk+1 =
s

2
|Kuk − g|s−2

ε (5.10a)

(vk+1
m , wk+1

m ) =

 pm
2
|D(m)uk|pm−2

ε
qm
2
|D(m)Quk|qm−2

ε

> , m = 1, ...,M (5.10b)

and the norm is taken component-wise. The update equation for the convex subproblem uk+1 is
obtained by minimizing

uk+1 = arg min
u

3N∑
i=1

1

s
zk+1
i |Kiu− g|2ε

+

M∑
m=1

(
αm
pm

vk+1
i,m |D

(m)
i u|2ε +

βm
qm

wk+1
i,m |D

(m)
i Cu|2ε

)
(5.11)
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Convergence analysis. The main idea of the following convergence result is to express the HQA
as an instance of the majorize-minimize (MMA) algorithm [20]. Once we establish the link between
the HQA and the MMA we can show convergence of our algorithm.

Assume there exists a function Φ such that

min
u
Eε(u) = min

u
Φ(u) (5.12)

and to show that the HQA formulation is of the MMA-type we consider the optimization problem

uk+1 = arg min
u
F(u, uk). (5.13)

If there exists a function Φ such that F satisfies

F(u, uk) ≥ Φ(u), for ∀u ∈ Rn (5.14a)

F(u, uk) = Φ(u), for u = uk (5.14b)

∇uF(u, uk) = ∇Φ(u), for u = uk (5.14c)

With L from (5.9b) and taking into account that vk+1, wk+1, zk+1 depend on uk, we define:

F(u, uk) := L(u, vk+1, wk+1, zk+1) (5.15)

and have the following result

Proposition 5.2 (MMA). The optimization problem (5.11), stemming from the HQA, is an instance
of MMA with F defined as in (5.15).

Proof. We adopt a the solution strategy introduced in [15]. The first step is to start by substitute
(5.10) into (5.15) and get expression (5.16). Then we set F(u = uk, uk) which results in

F(uk, uk) =

3N∑
i=1

1

2
|Kiu

k − gi|sε

+

M∑
m=1

(
αm|D(m)

i uk|pmε + βm|D(m)
i Cuk|qmε

)
= Φ(uk) (5.17)

where Φ was defined in (5.12) and establishes condition (5.14b). In order to show condition (5.14a),
i.e., that F forms an upper envelope of Φ(u) we identify that (5.16) can be expressed with Young’s
inequality. Then under the condition 1/a+ 1/b = 1 we have that

ga

a
+
hb

b
≥ gh. (5.18)

We set ξ(u) = |Kiu− gi|ε

g = ξ(uk)
(s−2)s

2 ξ(u)s (5.19a)

h = ξ(uk)
(2−s)s

2 (5.19b)

F(u, uk) =

3N∑
i=1

1

s

(
s

2
|Kiu

k − gi|s−2
ε |Kiu− gi|2ε +

(2− s)
2
|Kiu

k − gi|sε
)

+

M∑
m=1

[
αm
pm

(
pm
2
|D(m)

i uk|p−2
ε |D(m)

i u|2ε +
(2− pm)

2
|D(m)

i uk|pmε
)

+
βm
qm

(
qm
2
|D(m)

i Cuk|qm−2
ε |D(m)

i Cu|2ε +
(2− qm)

2
|D(m)

i Cuk|qmε
)]

(5.16)
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and let a = 2
s , b = 2

2−s , which verifies the inequality

s

2
|Kiu

k − gi|s−2
ε |Kiu− gi|2ε +

(2− s)
2
|Kiu

k − gi|sε
≥ |Kiu− gi|sε, i = 1, ..., 3N (5.20)

With an analogous reasoning of the remainder of (5.16) components we have that F(u, uk) ≥ Φ(u),
i.e., condition (5.14a) is fulfilled. Finally, one easily verifies that ∇uF(u, uk) = ∇Φ(u) at u = uk, thus
(5.14c) holds. This shows that F(u, uk) is a majorizing function of (5.9).

Theorem 5.3 (Convergence). Given a sequence {uk} generated by HQA, then (i) Φ(uk), (5.17), is
monotonically decreasing and convergent and (ii) lim ‖uk − uk+1‖22 = 0 as k →∞.

Proof. The first and second order derivatives of F are

∇uF(u, uk) =

3N∑
i=1

1

s
zk+1
i K>i (Kiu− gi)

+

M∑
m=1

2
αm
pm

vk+1
i,m (D(m))>i D

(m)
i u

+ 2
βm
qm

wk+1
i,m (D

(m)
i Q)>D

(m)
i Qu (5.21)

and

∇2
uF(u, uk) =

1

s

3N∑
i=1

zk+1
i K>i Ki

+

M∑
m=1

2
αm
pm

vk+1
i,m (D(m))>D(m)

+ 2
βm
qm

wk+1
i,m (D(m)Q)>D(m)Q (5.22)

where the latter matrix is positive semidefinite independently of u. Thus, F is convex in u. Moreover,
by (5.13) and (5.14),

Φ(uk+1) ≤ F(uk+1, uk) ≤ F(uk, uk) = Φ(uk). (5.23)

From this it is immediate that
lim
k→∞

Φ(uk)− Φ(uk+1) = 0 (5.24)

as Φ is bounded from below by 0. To show the convergence of uk, we consider the Taylor expansion
of F(u, uk) at uk+1

F(u, uk) = F(uk+1, uk)

+
1

2
(u− uk+1)∇2F(u, uk)(u− uk+1) (5.25)

where the first-order term on the right-hand side vanishes due to the optimality condition of (5.13).

Note that higher-order differentials ∇(n)
u F , n > 2 vanish. Minimizing the right-hand side with respect

to u and then setting u = uk, we obtain

F(uk, uk) ≥ F(uk+1, uk) +
ξ

2
‖uk − uk+1‖22 (5.26)

where ξ is positive and is the minimum eigenvalue of ∇2
uF . Consequently,

F(uk, uk)−F(uk+1, uk) ≥ ξ

2
‖uk − uk+1‖22 ≥ 0, (5.27)

with the left-hand side converging to 0 due to (5.23) and (5.24).
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Based on the identification with a MMA, we have shown convergence and existence of a solution for
the corresponding HQA. Although, this result is significant, we required a mollifier, a constant offset ε
in the denominator. This parameter regularizes the energy and thus introduces smoothness, albeight
being small, an returns a smoother solution than desired. In the numerical evaluation we implement
the above energy with an iterative Split-Bregman scheme and we obtain stable updates for ε as small
as 10−20, which we also used in the numerical evaluation. Next, we study the natural selection of
first order derivative (m = 1), quadratic data term (s = 2) and corresponding vectorial total variation
regularization (p, q = 1) with the same channel coupling matrix as in the HQA. In this case we do not
require a mollification and we show that the corresponding minimizer resides in the space of vectorial
bounded variation and is unique.

5.3 FIRST-ORDER VTV

As a special instance of the general variational formulation (5.4) we study the existence of a solution
of a non-mollified vectorial total variation term. Consequently we are not required to use the HQA.
In this section we will also use a continuous formulation which is more efficient for this purpose, as
such, we use the coupling matrix C1 ∈ R3×3 defined in (4.7).

In the following, let ∇u = (∇u1,∇u2,∇u3) : Ω→ R2×3 be the vectorial gradient of an color image
in the generalized sense as discussed in connection with eq. (2.1), Then we define p = (p1, p2, p3) ∈
C1
c (Ω; R2×3) with Div (p) = (div (p1) ,div (p2) ,div (p3))>.

Definition 5.1 (Double-opponent VTV). The double opponent regularizer is defined as

JOPP (u) :=

∫
Ω

‖∇C1u‖ (5.28a)

:= sup
‖p‖∞≤1

{∫
Ω

〈C1u,Div (p)〉 dx
}

(5.28b)

where ‖p‖∞ = max{‖p1‖, ‖p2‖, ‖p3‖}.

Next, we show that the regularizer JOPP is convex, invariant to rotation and intensity shift of the
color space.

Theorem 5.4 (Invariance and convexity). JOPP is rotationally and intensity invariant, 1-homogeneous
and convex.

Proof. Rotational invariance follows from the isotropy of the feasible set of the dual variable p, that
is ‖p‖∞ = ‖(p1, p2, p3)‖∞ ≤ 1 =⇒ ‖(Rp1, Rp2, Rp3)‖∞ ≤ 1, for any orthogonal matrix R. As a
consequence of property (P1) and (P2) of Prop. 4.1, JOPP is invariant to intensity shifts, and the
relation JOPP (cu) = cJOPP (u) is immediate, for any positive constant c > 0. Finally, convexity
follows from the definition of JOPP as pointwise supremum of affine functions.

The non-mollified first-order energy of (5.4), with a convex dataterm, is defined as

min
u

 E(u) =
µ

2
‖Ku− g‖2L2(Ω)

+α
∑3
i=1 TV(ui) + βJOPP (u)

 (5.29)

where µ, α, β > 0.

Existence of solution. Next we show that the variational approach (5.29) is well posed.

Lemma 5.5 (Bounded variation). Let u ∈ BV (Ω; R3) then C1u ∈ BV (Ω; R3).

Proof. Transposing the matrix C1 in the integrand of (5.28b) shows that JOPP (u) is the support
function of u with respect to the image of the unit ball {p : ‖p‖∞ ≤ 1} under the linear mapping
C>1 ◦Div. The claim then follows from the assumption u ∈ BV (Ω; R3).
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As a consequence, the objective function E(u) (5.29) is well defined. We next show that there is a
unique color image u minimizing E(u).

Theorem 5.6 (Uniqueness and existence of solution). Let g ∈ L∞(Ω,R3) and u ∈ BV (Ω,R3). Then
there exists a unique minimizer u∗ of E(u) given by (5.29).

Proof. We adapt and sketch a standard proof pattern from [4]. Due to g ∈ L∞(Ω,RM ), we may assume
that all admissible u are uniformly bounded in the sense that |ui(x)| ≤ ‖gi‖L∞(Ω), i = 1, 2, 3, ∀x ∈ Ω.
Let (un)n∈N be a minimizing sequence with respect to E(u). Then, after passing to a subsequence
(unk

)k∈N, there exists a u∗ ∈ BV (Ω; R3) with unk
→ u∗ strongly in L1

loc(Ω; R3), ∇(ui)nk
→ ∇u∗i in

an appropriate weak sense, and Jopp(unk
) → Jopp(u

∗) in view of Lemma 5.5. It follows from Fatou’s
lemma and the lower-semicontinuity of E(u) that u∗ minimizes E(u), whereas uniqueness of u∗ is a
consequence of the strict convexity of E(u) due to the data term of (5.29).

Next, we derive an efficient numerical scheme which optimizes our proposed energies.

6 IMPLEMENTATION AND OPTIMIZATION

We briefly comment on convex programming techniques that are relevant to our approach. Then
we detail our implementation of a specific technique embedded into the half-quadratic regularization
approach.

6.1 TV AND CONVEX PROGRAMMING

There exists numerous methods to minimize the total variation semi-norm. A very popular approach
is the primal-dual iteration from Chambolle and Pock [17, 14]. Related algorithms include the split
bregman method [34], augmented Lagrangian methods [69] and the alternating direction method of
multipliers (ADMM) [65]. The split-Bregman technique has been shown to be equivalent to ADMM
in the case of a linear constraint set [27]. Further connections between these methods are discussed in
[69].

An evaluation of these algorithms in connection with our approach is beyond the scope of this
paper. We adopted the split-Bregman algorithm [34] as an established technique and incorporated
it as subroutine of our half-quadratic regularization approach, without claiming that this is the best
possible choice.

6.2 OPTIMIZATION VIA SPLIT-BREGMAN AND HQA

With the notation introduced in Section 5 above, and with the discretized channel matrix C ∈ R3N×3N

(see (5.2)) we write the discretized form of (5.4) as the optimization problem

min
u,d,e

µ

2
‖Ku− g‖22 +

M∑
m=1

(
α‖dm‖pp + β‖em‖qq

)
(6.1a)

s.t. dm = D(m)u, em = D(m)Cu. (6.1b)

Let ‖v‖2H := 〈v,Hv〉 be a weighted Euclidean norm and d = (d>1 , ..., d
>
m)>, e = (e>1 , ..., e

>
m)>. Let

D = (vec(D(1))>, ..., vec(D(m))>)> (6.2)

(cf. (5.5)) and set

B(u, b, d, e) :=

(
d
e

)
−
(
D
DC

)
u− b. (6.3)



6 IMPLEMENTATION AND OPTIMIZATION 18

Applying the Split Bregman approach yields the iteration

(uk+1, dk+1, ek+1) = min
u,d,e

µ

2
‖Ku− g‖22

+ ‖d‖pp + ‖e‖qq +
1

2
‖B(u, b, d, e)‖2H , (6.4a)

bk+1 = bk +

(
D
DC

)
uk+1 −

(
dk+1

ek+1

)
. (6.4b)

In the cases of p = 1 and/or q = 1 we apply the shrinkage operator to minimize d, e, respectively.
When p, q are in the non-convex range (0, 1), we use the HQA in Lemma 5.1 and obtain the point-wise
quadratic update step

(dk+1, ek+1) = min
d,e

vk+1d2 + wk+1e2

+
1

2

∥∥B(uk+1, bk, d, e)
∥∥2

H
, (6.5a)

(vk+1, wk+1) =
(p

2
|dk|p−2

ε ,
q

2
|ek|q−2

ε

)
, (6.5b)

which is strictly convex in both d and e. Since (6.5) is defined point-wise, we get the optimality
condition,

2

(
vk+1d
wk+1e

)
+

(
α 0
0 β

)((
d
e

)
−
(
D
DC

)
uk − b

)
= 0 (6.6)

and the closed-form update-expression(
dk+1

ek+1

)
=

(
(Duk + b1)/(1 + 2vk+1/α)

(DCuk + b2)/(1 + 2wk+1/β)

)
. (6.7)

The optimization problem w.r.t. u is solved iteratively by

uk+1 = min
u

µ

2
‖Ku− g‖22 +

1

2

∥∥B(u, bk, dk, ek)
∥∥2

H
. (6.8)

In (6.8), we set b = [b>1 , b
>
2 ]> for notational convenience and compute

µK>(Kuk+1 − g)− αD>
(
dk −Duk+1 − bk1

)
− β(DC)>

(
ek −DCuk+1 − bk2

)
= 0 (6.9)

which gives the update step(
µK>K + αD>D + β(DC)>(DC)

)
uk+1

= µK>g + αD>(dk − bk1) + β(DC)>(ek − bk2). (6.10)

Our experiments confirm the observation of [34] that only computing an approximate solution ac-
celerates the overall iterative scheme without compromising convergence. Consequently, we merely
apply few conjugate gradient iterative steps to compute uk+1. This is computationally cheap since all
matrices involved are sparse.

Finally, we iterate the steps (6.10), (6.5b), (6.7) and (6.4b) until we satisfy the stopping criterion

‖uk − uk+1‖22/‖uk+1‖22 < 0.9
√

3Nσ2/2552, (6.11)

where σ is the noise level standard deviation. This numerical scheme gives stable updates even when
ε is very small. In the experimental evaluation we fixed ε = 10−20.



7 APPLICATIONS 19

Iteration

20 40 60 80

E
r
r
o
r

0.02

0.04

0.06

0.08

0.1

Iteration

20 40 60 80

P
S
N
R

26

28

30

32

34

36

38

(a) Normalized difference between two consecu-
tive updates in the iterative update (6.10) com-
puted as (6.11).

(b) PSNR value of the current iterate uk. The
second order VTV (m = 2) consistently results
in improved PSNR values.

Figure 7.1: Empirical convergence (a) of the image data in figure 7.2. The numerical scheme is
implemented as presented in Section 6 and the trend of the corresponding PSNR curves are shown in
(b). The regularization parameters were set as µ = 80, α1 = β1 = 2 for first order VTV. In the second
order case we additionally set α2 = β2 = 1.

(a) Original (b) Noisy (c) First order VTV (d) Second order VTV

Figure 7.2: Synthetic isoluminant test image (a) which consists of affine regions that compose slanting
planes in the color space, transitioning from blue to green. (b) shows the noisy data. (c) and (d) depict
the first and second order VTV when p = 0.6. This image illustrates that there is (i) no introduction
of artificial colors and (ii) quality of reconstruction is more smooth in the second order VTV compared
to the first order VTV due to the higher order constraints on jump-transitions in the image data. Yet
the second order VTV shows good edge preservation. The empirical convergence and PSNR values
are shown in figure 7.1 (a) and (b).

7 APPLICATIONS

We apply our approach to color image denoising, inpainting and deblurring. All images were normalized
to the range [0, 1] given in an 8-bit representation. In addition to a qualitative evaluation we include
the measures peak signal-to-noise ratio (PSNR), the structural similarity index (SSIM) [67] and the
CIEDE 2000 which is a measure of color consistency [59]. We consider two denoising scenarios. One
synthetic case where the image data consist of piecewise affine regions. The other scenario concerns
the denoising of natural images.

7.1 SYNTHETIC IMAGE, CONVERGENCE RATE

The synthetic image is isoluminant and therefore presents a particular challenge due to the absence
of gray-scale edges. Figure 7.1 shows the empirical convergence rate of our approach for first (m = 1)
and second (m = 2) order VTV for the noisy image in Figure 7.2. For each parameter setting the
second order VTV shows improved PSNR values which correlates with the visual impression of the
final result images in Figure 7.2 (c) and (d), respectively.



7 APPLICATIONS 20

7.2 DENOISING OF NATURAL IMAGES

The aim of this section is to illustrate differences between commonly benchmarked methods. With this
in mind we evaluate the performance of the proposed energy and optimize each method with respect
to its parameters and noise levels. The following methods and parameter ranges are included in the
evaluation and we refer to the respective works for further details:

• Decorrelated VTV [51] (DVTV): Search space for optimal parameter configuration is τ ∈
{0.95, 1, 1.05}, w ∈ {0.3, 0.4, 0.5, 0.6, 0.7}.

• Primal-dual VTV [10] (PDVTV): The regularization parameter was optimized for 5 uniformly
sampled values in the range 10−3 to 0.2.

• Total generalized variation [9] (TGV): Applied component-wise and only included for compari-
son. The regularization parameter was uniformly sampled with 5 values in the range 10−3 and
0.25.

• Color BM3D [24] (BM3D): The standard deviation of the additive Gaussian noise was given as
input.

We evaluate our double-opponent (OPP) formulation, see (5.4) for the case of a first (OPP1
p) and

second order energy OPP2
p. We restrict q = p and let p ∈ {0.2, 0.6, 0.8, 1}. The following parameter

setup was used:

• (OPP1
p): First-order scheme optimized with µ ∈ {10, 20, 30, 40, 80, 100} and fixed α1 = β1 = 2.

• (OPP2
p): Second-order scheme optimized with µ ∈ {10, 20, 30, 40, 80, 100} and α1 = β1 = 2 and

α2 = β2 = 1.

• (OPP1
1): Optimized parameter space of µ are 5 uniformly sampled values from 1/255 to 30/255,

α = 1 and β was uniformly sampled in from 5 values in the range 1/255 to 5/255.

The experimental evaluation use 100 color images from the Weizmann Institute [1]. The image
data were normalized to the range [0, 1] using a 8-bit representation.

We are interested in consistent color image processing, that is we are specifically tackling the color
image filtering problem. Accordingly, we consider the case that the color of the image is corrupted
by additive Gaussian noise, not the intensity channel. Until now this denoising setup has not been
benchmarked and poses an interesting task, i.e., the recovery of color information. Rather than
corrupting all image data with additive noise, we corrupt the components (o2 and o3) with 20, 40, 60
or 80 standard deviations of Gaussian noise and ignore the intensity channel.

After transforming from the (now noisy) opponent representation to the RGB space, one can show
that the r,g,b components retain a Gaussian noise distribution as the following calculation illustrates.
Let σ2

i , i = 1, 2, 3 denote the standard deviation of zero mean Gaussian noise, then the opponent com-
ponents, now seen as random variables, are normally distributed, i.e., oi ∼ N (0, σ2

i ). Transformation
from the double-opponent space to the RGB color space is done via

u = O−1o, O−1 =

1/
√

3 1/
√

6 1/
√

2

1/
√

3 1/
√

6 −1/
√

2

1/
√

3 −2/
√

6 0

 . (7.1)

Assuming normally distributed opponent components o ∼ N (0,Σo), Σo = Diag(0, σ2, σ2), we obtain
u ∼ N (0,Σu) with

Σu = O−1ΣoO
−T (7.2)

Excluding the inter-channel correlation between the r,g,b components in (7.2) the noise transformation
is given by

u ∼ N (0,
2

3
Diag(σ2, σ2, σ2)). (7.3)

Therefore, we also evaluate BM3D with a scaled standard deviation. We denote this approach as

• Scaled-BM3D (BM3DS): Color BM3D with
√

2/3 of the noise standard deviation.

Next we present and discuss the results obtained with OPP and the compared methods.
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Original Noisy (60)
15.0/0.35/23.40

OPP1
p OPP2

p OPP1
1 BM3D [24]

23.3/0.71/8.27 23.8/0.75/8.15 24.3/0.73/6.90 22.6/0.63/6.16

DVTV [51] PDVTV [10] TGV [9] BM3DS [24]
18.8/0.37/10.29 21.1/0.57/10.98 21.0/0.57/10.85 23.0/0.64/6.95

Figure 7.3: Visual comparison of the compared methods and corresponding error values. The result
of our OVTV produces the most accurate result, only marginally beaten by BM3D in terms of color
accuracy. Yet, the visual quality of OVTV is more clear and does not suffer from desaturated colors
as in DVTV.

7.2.1 RESULTS

Table 2 shows the average PSNR, SSIM and CIEDE error measures for each method and noise level.
Three methods stand out: OPP1

p, OPP1
1 and BM3D. For lower noise-levels the non-convex first-order

method OPP1
p shows highest PSNR and SSIM values. While OPP1

1 performs marginally better than
OPP1

p for noise levels larger than 60 standard deviations of noise, BM3D has the best CIEDE accuracy
for all noise levels. Comparing only energy based methods (i.e., not BM3D/BM3DS) it is clear that
all OPP-based methods show improved accuracy for PSNR, SSIM and CIEDE in all cases. In all cases
OPP2

p shows worse accuracy than OPP1
p (except SSIM at noise level 60) due to the extra smoothness

constraints imposed by the higher-order derivative. OPP2
p is more suitable for images with piecewise

affine regions, such as illustrated in the synthetic example, Section 7.1.
The principal difference between OPP1

1 and PDVTV is that the additional color mixing regular-
ization term is included in the former, thus illustrating the success of the mixing term in OPP. With
respect to error measures we see an improvement in each case for OPP1

1. Comparing the second order



7 APPLICATIONS 22

Noisy OPP1
p OPP2

p OPP1
1

24.6/0.81/9.90 29.5/0.92/4.40 26.1/0.81/4.59 27.9/0.88/4.33

19.0/0.58/17.39 24.4/0.79/7.75 24.6/0.77/6.46 25.3/0.82/6.72

15.8/0.42/22.94 22.0/0.69/10.13 22.3/0.70/9.70 21.7/0.68/10.99

13.6/0.31/27.25 20.2/0.57/9.59 20.3/0.62/12.02 20.5/0.60/10.33

Figure 7.4: Qualitative comparison between OPP. From top row to bottom row the noise levels the
images are corrupted with 20, 40, 60 and 80 standard deviations of noise. For higher noise-levels the
second-order OPP2

p shows improved SSIM, in particular for noise level 80 shows less oversmoothing of
the background image structure. Although, it contains more color shimmering reflected in the higher
CIEDE value. For lower noise levels, the first-order methods seem preferable. (PSNR/SSIM/CIEDE)

OPP2
p with the result of TGV the error value differences are smaller, however OPP still shows improved

results.
The visual quality, comparing all methods for the (high) noise level 60, is seen in Figure 7.3.

All methods suffer from color shimmering in homogeneous regions, although, the shimmering is less
obvious for BM3D, which also shows the best color consistency. Although, the result of BM3D is
heavily oversmoothed, seen in the detailed panel and the trees in the background. All versions of the
proposed OPP show higher PSNR and SSIM, although in these examples, there is color shimmering.
DVTV shows the worst performance and shows strong structural oversmoothing of the trees in the
background and there is strong evidence of color smearing. We remark that DVTV is designed for the
color transform used in this work, however the method is fundamentally different from ours: DVTV
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Original Noisy
15.6/0.28/18.71

OPP1
p OPP2

p OPP1
1

23.3/0.71/6.02 23.7/0.73/5.55 24.1/0.74/5.21

Figure 7.5: Example result images from the evaluation dataset for 60 standard deviations of Gaussian
noise. In this image the OPP1

1 performs shows marginally better performance than the non-convex
counter-parts. (PSNR/SSIM/CIEDE)

considers the intensity and the color information as orthogonal and independent, and also regularize
these separately, however, for the color image data, this is not the case in practice and the method
fails as this assumption is violated.

Figure 7.4 shows the output for the OPP methods for different noise levels. At the lowest noise-
level, the result images appears crisp and do not contain disturbing color artifacts at color edges.
Color shimmering artifacts are naturally more pronounced as the noise level increases, due to im-
precise parameter settings. Hand-tuning regularization parameters to separate image structure from
noise increase clarity and suppress color shimmering, however, further accurate determination of these
parameters is subject to further study.

To additionally illustrate the recovery of noisy images using OPP, Figures 7.5 and 7.6 show two
challenging images at noise level 60 standard deviations of Gaussian noise. Figure 7.5 is an image
with vivid colors and many details, visually each methods performs well. OPP1

1 appear most crisp and
produces the most smooth background whereas OPP1,2

p both preserve the flower well. Figure 7.6 shows
similar characteristics as the previous example, although in this case OPP2

p shows a larger degree of
color shimmering than OPP1

p and OPP1
1. Each of the methods does compensate for the image noise

well and preserves facial-features and the stamp’s text.
Table 1 shows the average error for the used p-values in the evaluation of the 100 natural images.

There is an indication towards better performance for PSNR and SSIM for p in the range 0.6-0.9
whereas CIEDE suggests smaller p-values for the first order scheme. Error values for the second order
scheme is in general worse than the first order, this is due to the additional smoothness introduced by
the higher-order derivatives. However, as seen in the synthetic result in Section 7.1, the second-order
scheme performs very well when the image data is mostly affine.
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Original Noisy
15.8/0.17/22.44

OPP1
p OPP2

p OPP1
1

24.9/0.64/5.17 25.1/0.65/5.65 25.1/0.63/5.27

Figure 7.6: Example result images from the evaluation dataset for 60 standard deviations of noise.
OPP2

p performs well in images with pice-wise affine regions as indicated by the high SSIM value, al-
though with respect to color consistency OPP1

1 shows marginally better result. (PSNR/SSIM/CIEDE)

7.3 IMAGE INPAINTING, IMAGE DEBLURRING

Inpainting refers to the task of restoring missing image data, and thus could be viewed as an interpo-
lation problem. Figure 7.7 illustrates the result for the non-convex OPP for the task of removing the
disturbing text in the input image (from [6]). This is a supervised inpainting task, consequently we
define the operator K in our objective function to describe the region of interested to be inpainted,
i.e., the text. The second example is the task of restoring image data which has been corrupted by
motion blur - a common problem in hand-held imaging devices. In this non-blind deblurring problem
we restore the input image, blurred with a motion kernel of 9 pixel shift at and angle of 10 degrees
counter-clockwise. The final restoration result, for the first and second order regularization, is seen in
Figure 7.8. Qualitatively both approaches compensate for the blur and produces similar results in this
example image, however the first order scheme shows better error values.

8 DISCUSSION AND CONCLUSION

We have shown that the double-opponent theory can significantly improve the performance of vectorial
total variation-based methods. Motivated by recent and classical results in color theory, we let the
inverse mapping from the opponent-space to the data space serve as a basis of our vectorial formulation.
We showed that the inverse mapping encodes image colorfulness. We believe that as the field of
perceptual psychophysics continue to evolve we will see further advances in color adaptive algorithms
which are inspired by biology. The study presented in this work is a first step towards such models.
We formulated a general energy that can model arbitrary higher-order derivatives, where all involved
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Original OPP1
0.8 OPP2

0.8

Figure 7.7: The input image contains disturbing text as shown in red color. The restoration task is to
remove this text. Final results for the second and first order VTV formulations are seen on the second
row for p = 0.8. Both approaches produces convincing results without introducing disturbing color
artifacts or oversmoothing.

Input OPP1
0.8 OPP2

0.8 (PSNR/SSIM/CIEDE)

24.20/0.73/3.84 32.27/0.93/1.94 30.76/0.92/2.01

Figure 7.8: Example of image sharpening with known motion blur. This example shows that both our
first and second order VTV formulations produce high-quality results without introducing disturbing
color artifacts, oversmoothing homogeneous regions or over sharpening artifacts.

regularization terms can be convex, non-convex or a mixture. Automatic parameter selection for
optimal restoration performance remains an open problem. We discretizised and decomposed our
formulation using the iterative split Bregman scheme, and we demonstrated competitive performance
compared to standard vectorial total variation methods and state of the art denoising algorithms
evaluated using commonly used error measures in the image restoration community.
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[64] Tschumperlé, D., Deriche, R.: Vector-valued image regularization with pde’s: A common frame-
work for different applications. In: Proceedings of the 2003 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. pp. 651–656. CVPR’03, IEEE Computer Society,
Washington, DC, USA (2003)

[65] Wahlberg, B., Boyd, S., Annergren, M., Wang, Y.: An admm algorithm for a class of total
variation regularized estimation problems. In: Preprints of the 16th IFAC Symposium on System
Identification. pp. 83–88 (2012)

[66] Wang, C., Komodakis, N., Paragios, N.: Markov Random Field modeling, inference & learning in
computer vision & image understanding: A survey. Computer Vision and Image Understanding
117(11), 1610–1627 (2013), http://dx.doi.org/10.1016/j.cviu.2013.07.004

[67] Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility
to structural similarity. Image Processing, IEEE Transactions on 13(4), 600–612 (April 2004)

[68] Weickert, J.: Coherence-enhancing diffusion filtering. International Journal of Computer Vision
31(2-3), 111–127 (1999)

[69] Wu, C., Tai, X.C.: Augmented Lagrangian Method, Dual Methods, and Split Bregman Iteration
for ROF, Vectorial TV, and High Order Models. SIAM J. Img. Sci. 3(3), 300–339 (Jul 2010)

[70] Zenzo, S.D.: A note on the gradient of a multi-image. Computer Vision, Graphics, and Image
Processing 33(1), 116 – 125 (1986)

http://dx.doi.org/10.1016/j.cviu.2013.07.004

	1 Introduction
	1.1 Motivation
	1.2 Organization

	2 Further Related Work
	2.1 Color and vector-valued TV

	3 Color
	3.1 Terminology
	3.2 Color space design
	3.3 Double-opponent color representation

	4 Geometry of the double-opponent space
	4.1 Double-Opponent Metric Tensor
	4.2 Encoded information

	5 General Variational Formulation
	5.1 Energy
	5.2 Half-quadratic formulation
	5.3 First-Order VTV

	6 Implementation and Optimization
	6.1 TV and Convex Programming
	6.2 Optimization via Split-Bregman and HQA

	7 Applications
	7.1 Synthetic image, convergence rate
	7.2 Denoising of natural images
	7.2.1 Results

	7.3 Image inpainting, image deblurring

	8 Discussion and Conclusion
	References

