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ABSTRACT

In this work, we define and address a novel domain adaptation (DA) problem in semantic scene
segmentation, where the target domain not only exhibits a data distribution shift w.r.t. the source
domain, but also includes novel classes that do not exist in the latter. Different to “open-set” [1] and
“universal domain adaptation” [2], which both regard all objects from new classes as “unknown”, we
aim at explicit test-time prediction for these new classes. To reach this goal, we propose a framework
that leverages domain adaptation and zero-shot learning techniques to enable “boundless” adaptation
in the target domain. It relies on a novel architecture, along with a dedicated learning scheme,
to bridge the source-target domain gap while learning how to map new classes’ labels to relevant
visual representations. The performance is further improved using self-training on target-domain
pseudo-labels. For validation, we consider different domain adaptation set-ups, namely synthetic-2-real,
country-2-country and dataset-2-dataset. Our framework outperforms the baselines by significant
margins, setting competitive standards on all benchmarks for the new task. Code and models are
available at: https://github.com/valeoai/buda.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Detailed interpretation of operating environments is crucial

for autonomous systems like self-driving cars or delivery droids.

Aiming at such an exhaustive scene understanding, most re-

cent vision systems conduct semantic segmentation, the task of

predicting semantic classes for all scene pixels. As for other

perception modules, significant shifts between train (source do-

main) and test (target domain) distributions drastically degrade

the segmentation performance. Many works, e.g., [3, 4, 5],

propose unsupervised domain adaptation (UDA) techniques to

address such domain gaps, while alleviating the taxing need

for data labeling in the target domain. Besides these domain

adaptation (DA) works, where the same categories are assumed

∗∗Paper under review

in both domains, few recent works consider more general set-

ups in which source and target label sets differ. For example,

partial DA [6, 7] is the case where the source label set contains

the target one. Differently, open-set DA [1] assumes that each

domain holds a set of “private” classes besides the ones they

share. More challenging, universal DA [2] considers having a

completely unknown target label set. These preceding efforts

contribute all to make domain adaptation closer to real-world

applications. In open-set and universal DA settings, objects

from that classes that are absent in the source domain are all

classified as “unknown”. Nevertheless, for real-life scenarios

where the target label set is indeed boundless, one could expect

the final system to predict new classes explicitly. For example,

one might require that the perception model, once trained on

European driving scenes, behaves well on Indian streets where
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Input image Closed-set UDA BudaNet

Fig. 1: Illustration of BudaNet, the proposed approach to the new problem of boundless UDA for semantic segmentation. At test time, for an input image

(left), we display the closed-set UDA segmentation result (middle) as well as BudaNet’s segmentation result (right). Both “ tuk-tuk ” vehicles, which are from a new

class only appearing in the target domain, have been correctly identified by BudaNet: Our approach is able to deal with new classes for which no annotated images

have been provided during training. The model trained following the closed-set UDA setting wrongly predicts these new vehicles as a spatial mix of car and truck .

vehicles similar to European ones cohabit with specific ones

like “tuk-tuk”. Zhuo et al. [8] address this realistic set-up for

classification and propose a unified framework to handle new

classes at test time while minding the domain gap.

All the above-mentioned DA works take image classification

as the only test-bed.

Different to those works, we address here semantic segmen-

tation with UDA, i.e., the task of exhaustively classifying all

pixels in input images in presence of a domain gap. We aim

at pixel-wise recognition of objects from both shared and new

classes in the target domain but, as each image may contain

multiple objects, this UDA task is much more challenging than

classification. As required in several real-life applications, the

detailed analysis of urban scenes is an example where such

complex spatial arrangements of multiple object categories are

common place.

In this segmentation set-up, pixels of shared and new classes

can co-occur in the same scene, requiring dedicated strategies to

carefully handle source-target domain alignments; for example,

as new-class objects only exist in the target domain, a naive

alignment might undesirably force their visual features close to

those from shared-class objects.

We call this framework “boundless” unsupervised domain

adaptation”, BUDA in short, and we propose ways to attack it

in the present work. In particular, we introduce a full seman-

tic segmentation pipeline, BudaNet, that jointly addresses two

main challenges: (1) Bridging the gap between source and tar-

get domains; (2) Learning discriminant visual representations

for new-class objects in the target domain. Within a standard

semantic segmentation framework, we propose a UDA strat-

egy to mitigate the distribution gap for shared classes across

domains, without causing unwanted misalignment to new ones.

We then introduce a novel domain-aware model to generate,

for all classes, pixel-level visual features for both domains. By

using this generative model, we collect features from the new

target-domain classes, along with features from shared classes

in the source domain, to learn the last classification layer of

BudaNet. Last, we refine BudaNet with a step of self-training

using pseudo-labels on the target domain. The resulting behavior

of our system is illustrated in Figure 1.

With this new form of DA task and the proposed BudaNet ap-

proach to solve it, we advocate for more practical and ubiquitous

domain adaptation in which the target label set is boundless.

2. Related work and positioning

In this section, we briefly go through previous UDA works

and position our setting with respect to them. We also review

some zero-shot learning techniques that play an important role

in the proposed framework.

Unsupervised domain adaptation. Most existing UDA works

consider the classic setting in which source and target label sets
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Fig. 2: Different UDA settings. In contrast with classic UDA (“closed-set” hypothesis), boundless UDA (BUDA) assumes that source and target label sets differ. In

addition, unlike the “open-set” setting where objects from the private target classes are classified in a single unknown category, BUDA allows the target classes to be

explicitly predicted.

are the same. Though approaching UDA via different angles,

these works are in the same vein of learning task-dependent

domain-invariant features, i.e., minimizing inter-domain dis-

crepancy of feature distributions. Popular techniques include

regularizing the maximum mean discrepancy [9], matching deep

activation correlation [10], aligning source-target distributions

via adversarial training [11, 3], self-training [12, 13, 14] or self-

ensembling [15, 16]. Recently, UDA for complex recognition

tasks like detection [17] and semantic segmentation [18] have

received more attention. Such tasks often require special tech-

niques to handle as well the spatial layout [4, 5] or class propor-

tions [14]. While the standard UDA setting facilitates investiga-

tions and helps gain fundamental insights, it is still far from the

real-life scenarios.

Some recent works propose techniques in more relaxed UDA

settings. In those cases, differences between source and target

label sets make approaches by direct distribution alignment less

effective. For partial DA, Cao et al. [6] align class-wise distri-

butions using multiple domain discriminators, while Zhang et

al. [7] adopt an auxiliary domain classifier to estimate source-

domain sample importance. In open-set DA, where source and

target domains can hold private label sets, a common practice is

to use an “unknown” class gathering all target domain’s private

objects [1, 19]. In [2], the authors introduce a more extreme set-

ting coined “universal” DA, which imposes no prior knowledge

on the target label set.

Dealing with news classes. Zero-Shot Learning (ZSL) aims to

recognize new classes based solely on their semantic associa-

tions with previously seen classes. To this end, attributes [20],

description [21] or even word embedding [22] have been shown

to be shared semantic representations that allow transferring

knowledge from seen to unseen classes. In this work, we use

word2vec [23] as it is extracted at minimal cost and it alleviates

the need to define and assign hundreds of attributes.

ZSL for image classification has been actively studied in the

literature [24, 25, 26, 27, 28, 29, 30, 31, 32] and existing meth-

ods can be generally categorized into the following two groups.

The first group [24, 25, 28, 29, 30, 32] addresses ZSL as an

embedding problem and maps image data and class descriptions

into a common space where semantic similarity translates into

spacial proximity. The second group [26, 27, 31] of methods

learns from visual and semantic features of seen classes and

produces generators that can synthesize visual features based

on class semantic descriptions. The synthetic features are then

used to train a standard classifier for object recognition. This

second type of methods has been shown to be more effective than

embedding approaches as it reduces the inherent bias toward

seen classes. In this work, we leverage this type of generative

techniques.

More and more ZSL works [14, 33, 34] address the gener-

alized setting (GZSL) where both seen and unseen classes are

jointly evaluated at test time. From a practical point of view,

GZSL’s evaluation protocol better reflects the real-life perfor-
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mance of zero-shot models.

Very recently, generalized zero-shot learning has been ex-

tended to semantic segmentation [35, 36, 37]. Bucher et al. [35]

introduce the task by combining a deep visual segmentation

model with an approach to generate visual representations from

semantic word embeddings. Kato et al. [36] propose a varia-

tional mapping of the class labels’ embedding vectors to the

visual space. Xian et al. [37] introduce a model with a visual-

semantic embedding module to encode images in the word em-

bedding space and a semantic projection layer that produces

class probabilities. In this work, we evaluate our models us-

ing the GZSL evaluation protocol for semantic segmentation

proposed in [35].

Transductive zero-shot learning. Transductive ZSL solves ZSL

in a semi-supervised learning manner, i.e., all data including

test ones are available at train time and, as with classic ZSL,

there is no domain gap between base-class labelled samples

and new-class unlabelled test ones. The latter can be utilized

to form clearer decision boundaries for both base and new

classes. Rohrbach et al. [38] explore the manifold structure

of new classes by graph-based label propagation. Fu et al. [39]

extend the label propagation with a multi-view hyper-graph.

Several approaches adopt a joint learning framework to train

on labeled and unlabeled data separately [40, 41, 42]. Such

a training can be in the semantic space [40], the visual space

[41] or a latent space [42]. Other efforts attempt to refine visual-

semantic embeddings iteratively with unlabeled unseen data [43].

A domain-invariant projection is learnt in [44], which maps vi-

sual features to semantic embeddings and then reconstructs back

the same visual features. Recently, [45] described a transductive

unbiased embedding to improve generalized ZSL performance.

Positioning. In this paper, we consider for semantic segmenta-

tion the “open UDA” setting described in [8] for classification.

In this setting, the system is expected to handle explicitly objects

from new classes in the target domain. Here, the target label

set is thus unbounded. In Figure 2, we illustrate this boundless

UDA setting alongside other UDA settings. Opposite to the

open-set setting in [19], the source label set in BUDA is a subset

of the target label set. BUDA is different from both open-set and

universal DA as it explicitly requires prediction for all labels at

test time. Also, as briefly mentioned in Section 1 and later elab-

orated in Section 3, the natural co-occurrence of objects from

both shared and private classes in train and test target-domain

images makes BUDA more challenging.

The BUDA framework differs from classic ZSL since training

images with new classes are available but are unlabeled, whereas

they would not be available at all during training in a pure ZSL

setting. Our scenario is also different from transductive learning

as: (1) training and test sets of target-domain samples are disjoint

and (2) test images stem from a domain that differs from the

labeled training domain, opening the door to the domain-shift

problem.

BUDA raises jointly zero-shot problems (handling private

classes) and domain adaptation ones (mitigating domain shifts);

traditional ZSL and DA approaches are thus insufficient here.

One the one hand, a direct application of zero-shot techniques

fails to close the distribution gaps between source and target

shared classes. As one must leverage shared-class features and

semantic relations between shared and private classes to “gen-

erate” private-class features, source/target misalignment of the

shared-class features results in an erroneous mapping to private-

class features in the target domain. On the other hand, a direct

distribution alignment across domains should be avoided to not

undesirably mix-up features of shared and private classes. These

two points are discussed in Sections 3.3 and 3.4.

3. Proposed framework: BudaNet

We first formulate the new task of semantic segmentation

with boundless UDA. Given a set Cs of class labels in the source

domain, a training set Ds is available in this domain. It is

composed of pairs (xs, ys) formed by a color image xs ∈ RH×W×3

of size H × W and the associated Cs−class ground-truth one-

hot segmentation map ys ∈ {0, 1}H×W×Cs , where Cs = |Cs|. In

addition, a set Dt of unlabelled color images from the target

domain is also available at train time.

Aiming for a more practical DA, we argue that, given a mini-
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mal semantic prior, the final system should be capable of explic-

itly predicting new classes, i.e, which are not part of Cs, hence

with no instances visible in the annotated source-domain images.

In search of such minimal and practically accessible prior, we

opted for the names of these new classes. These names are as-

sumed to be known beforehand, certainly something effortless

to achieve. In order to exploit the semantic relations between the

classes of interest, we adopt the ‘word2vec’ model [23] learned

on a dump of the Wikipedia corpus.

In BUDA, the set Cs of classes in the source domain is fully

shared with the target domain – the source domain does not

hold privates classes –, while the latter hold a private set of new

classes we denote Cp and Cp its size. At run-time, we want

to classify each pixel of target-domain images as one of the

categories in Cs ∪ Cp. In BUDA, we know beforehand all these

labels.

3.1. Introduction to our strategy

In this work, we propose a multi-step framework, coined as

BudaNet, with dedicated strategies to address the aforemen-

tioned concerns. We start from an existing semantic segmen-

tation model trained with a supervised loss on source-domain

data and an unsupervised loss on target-domain train data (Step

1 in Figure 3). The unsupervised criterion mitigates the source-

target distribution gap over the shared classes without causing

unwanted misalignment to the private ones.

Once trained, this first semantic segmentation model is limited

to trained categories and, hence, unable to recognize new classes.

To allow the model to recognize both shared and private cate-

gories, we propose to generate synthetic training data for private

classes. This is obtained with a generative model conditioned

on the semantic representation of these classes. The genera-

tor’s outputs attempt to mimic the visual features computed by

the current semantic segmentation model (Step 2 – blue part

in Figure 3). As no existing UDA technique guarantees perfect

and universal alignment between domains, we decided to take

domain information into account when training the generator.

This is done by conditioning not only on the class embedding

but also on the domain. In addition, we introduce an additional

adversarial discriminator that tries to distinguish source-target

generated features (Step 2 – red part in Figure 3).

Once the generator is trained, many synthetic features can be

produced for private classes, and combined with real samples

from shared classes. This new set of training data is used to

retrain the classifier of the segmentation network so that it can

now handle both shared and private classes (Step 3 – blue part

in Figure 3). The classifier is used to extract pseudo-labels on

target-domain training set. The whole segmentation network is

then fine-tuned again with these pseudo-labels (Step 3 – red part

in Figure 3).

Section 3.2 overviews the base zero-shot pipeline which helps

to handle never-seen classes in semantic segmentation. Sec-

tion 3.3 introduces our UDA strategy to align shared classes

across domains with minimal negative alignment effects on

private-class features. In Section 3.4, we present the novel

domain-aware generative model to synthesize private-class fea-

tures for the target domain. Lastly, Section 3.5 details the final

self-training procedure for the classifier.

3.2. Base zero-shot pipeline

We now revisit the pure adaptation-free zero-shot seman-

tic segmentation (ZS3) pipeline from [35], trained only on

source-domain images in our context. This pipeline is built

on top of an existing semantic segmentation network F, i.e.,

DeepLabv3+ [46]. To facilitate explanations, we decompose F

into two consecutive parts: Ffeat as the feature extractor, which

outputs pixel-wise features f ∈ Rd f , and Fcls as the final 1 × 1

convolutional classification layer which associates class-scores

to each pixel-wise feature (its output size thus depends on the

number of considered classes).

The base zero-shot pipeline consists of three steps:

1. Training of a segmentation network F using source-domain

supervision on shared classes. Once trained, the feature

extractor Ffeat can extract visual features from shared-class

objects in source-domain images.

2. Training of a generative network G, conditioned on

shared-class embeddings, to generate corresponding source-
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Fig. 3: BudaNet’s architecture and learning framework. Our BudaNet learning strategy consists of three steps: Train the semantic segmentation network with

domain alignment only for shared classes; Extract image features and use them as supervision for domain-aware generative model training; Combine the generated

features with real ones to fine-tune the classification layer. The red-background pane (right) corresponds to the three proposed strategies for domain alignment,

zero-shot learning on target domain and self-training with private classes. Black-dash arrows indicate connections between the steps. Colored arrows distinguish

source-domain from target-domain flows.

domain visual features. The ground-truths are the shared-

class features extracted after Step 1. The high-level idea is

that geometric relations among classes in the embedding

space are transferred to the generated feature space, which

will help G to handle private classes.

3. Training of the last classification layer Fcls of F, now for

both shared and private classes, with private-class features

(generated by G after Step 2) and shared-class features

(computed by Ffeat after Step 1).

The final model is composed of Ffeat from Step 1 and Fcls

from Step 3. In detail, the segmentation network F and the

classifier Fcls are trained using a standard segmentation cross-

entropy loss Lseg. Given a source sample (xs, ys) and Pxs
its

soft-segmentation map predicted by F(xs), this loss reads:

Lseg(xs, ys) = −

H∑
h=1

W∑
w=1

∑
c∈C

ys[h,w, c] log Pxs
[h,w, c]. (1)

For the training of F in Step 1 (resp. in Step 3), we set C to Cs

(resp. Cs ∪ Cp). We follow [35] and adopt a generative moment-

matching network (GMMN) as G, trained with a maximum mean

discrepancy lossLGMMN. Given a random sample z ∈ Rdz from a

fixed multivariate Gaussian distribution, the semantic embedding

a ∈ Rda and the domain indicator d (set as 1 for source and 0

for target), new pixel-level feature sets are generated as f̂ =

G(a, d, z; θG), where θG are the parameters of G. With two

random populations F (a, d) of real features and F̂ (a, d; θG) of

generated ones, we have:

LGMMN(a, d) =
∑

f , f ′∈F (a,d)

k( f , f ′) +
∑

f̂ , f̂ ′∈F̂ (a,d;θG)

k( f̂ , f̂ ′)

− 2
∑

f∈F (a,d)

∑
f̂∈F̂ (a,d;θG)

k( f , f̂ ), (2)

where k is the Gaussian kernel, k( f , f ′) = exp(− 1
2σ2 ‖ f − f ′‖2)

with bandwidth parameter σ.

Figure 3, to the left, illustrates the ZS3 pipeline. Our proposed
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BudaNet is built upon such a base three-steps paradigm.

3.3. BudaNet’s Step 1: Domain adaptation on shared classes

A pure zero-shot model like ZS3 is able to handle simultane-

ously base and new classes from the same domain but fails to

address the domain gap exhibited in BUDA. One straightforward

solution for BUDA is to use UDA techniques while training F

in Step 1, with the hope that Ffeat can extract domain-invariant

features. Additional unlabeled target-domain images are used

for this purpose.

To this end, we study two recent UDA techniques in segmen-

tation, MinEnt (self-training) and AdvEnt (adversarial training),

both introduced in [5]. With MinEnt, the unsupervised entropy

loss Lent, applied on target-domain samples, is jointly optimized

with the supervised segmentation loss Lseg on source-domain

samples. This loss is the sum of pixel-wise predictive entropies

in target domain. Given a target sample xt with predicted soft-

segmentation map Pxt
, the entropy loss is:

Lent(xt) =
−1

log(Cs)

H∑
h=1

W∑
w=1

∑
c∈Cs

Pxt
[h,w, c] log Pxt

[h,w, c]. (3)

Differently, AdvEnt approaches global distribution alignment

via adversarial training on the weighted self-information space.

We refer readers to the original work in [5] for more details.

As mentioned earlier, the mismatch between source and target

label sets prevents the direct alignment between the visual dis-

tributions in source and target domains. Figure 4-(a) illustrates

the problem caused by brute-force adoption of existing UDA

techniques in the presence of private classes. Indeed by design,

AdvEnt, using global output-space alignment, and MinEnt, us-

ing global entropy aggregation, do not differentiate between

shared and private classes, which eventually results in undesir-

able “clusters” of mixed shared-class and private-class features.

We propose a simple yet effective strategy based on MinEnt

to mitigate the above concern. A segmentation network F pre is

first pre-trained only on the shared classes in the source domain.

We then use F pre to produce shared-class predictions on the

target-domain training images, which may include both shared-

class and private-class objects. We argue that, as F pre has never

observed private classes in the pre-training phase, top-confident

predictions coming from F pre should mostly constitute of shared-

class pixels. Effectively, applying entropy minimization solely

on such top-confident pixels minimizes the risk of misalignment

in the presence of private-class target-domain features. We

then fine-tune F initialized with F pre, using the optimization

objective:

min
θF

1
|Ds|

∑
xs∈Ds

Lseg(xs, ys) +
λent

|Dt |

∑
xt∈Dt

L̂ent(xt), (4)

where θF are the parameters of F and L̂ent is derived from Lent

by restricting the sum of the predictive entropies to the top-k%

most-confident pixels according to F pre. The parameter λent

controls the weight of this entropy term. Figure 3 illustrates

Step 1 operating on both source and target domains.

3.4. BudaNet’s Step 2: Domain-aware ZSL for private classes

The domain shift affects all classes, both shared and private

ones. Although for BUDA we assume the absence of private

classes in the source domain, if there still appeared a private-

class instance in a source-domain scene, its appearance should

be notably different from target-domain instances. For example,

similar to ‘car’ images, ‘tuk-tuk’ images if taken in Paris should

look different from those taken in India, due to distinct weather,

illumination and overall appearance of each city. We thus find it

crucial to take domain information into account in Step 2 where

the goal is to synthesize target-domain private-class features.

One may argue that after Step 1, the two domains are already

aligned and the domain-invariant feature extractor Ffeat should

be ready as is for feature synthesis. However, no existing UDA

technique guarantees complete alignment across domains, which

we thus do not expect either in our approach.

We propose a novel domain-aware generative model, denoted

GDA, which is trained to synthesize visual features for both

source and target domains. This generative model is modified

such that it is conditioned not only on the class embedding

but also on the domain (source or target). Now, the modified

model can output shared-class features for both source and target

domains. We note that, although our objective is to generate

domain-aware features, those stemming from the same classes

should be rather close. Intuitively, we want our generator to
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(a) UDA problem with private classes (b) Zero-shot problem with domain gap

Fig. 4: Challenges of boundless UDA. (a) Existing UDA techniques, ignoring the presence of target private classes, tend to shift target-domain features to shared-class

clusters. (b) Because of the domain gap, learning domain-agnostic mappings (black arrows) from word embedding space to visual space is sub-optimal as only mean

modes (black circles) are captured. Instead, our domain-aware generative model can map to domain-specific modes (blue or red circles).

mimic well the feature generator Ffeat, which produces close

source-domain and target-domain feature distributions (as a re-

sult of the adaptation Step 1) yet still exhibiting certain discrep-

ancies (as discussed above).

To this end, we leverage adversarial training. In details, we

introduce an additional discriminator D trying to distinguish

source-target generated features. At train time, D minimizes

the binary cross-entropy classification loss; Given f̂ s and f̂ t,

two generated features for source (label 1) and target (label 0)

domains, this loss reads:

LD( f̂ s, f̂ t) = LBCE( f̂ s, 1) +LBCE( f̂ t, 0), (5)

with LBCE being the binary cross-entropy loss. Meanwhile, the

generative model trained with an additional adversarial lossLadv

tries to confuse D. Training is now based on the two losses:

LGMMN as in Section 3.2 and the adversarial loss Ladv. Given f̂ t,

a generated feature for target domain, this loss reads:

Ladv( f̂ t) = LBCE( f̂ t, 1). (6)

To train GDA, we use a weighting factor λadv for Ladv.

Generative training is supervised by real shared-class features

coming from both source and target domains. While in the

source domain we can easily assign class labels to shared-class

features using the ground-truth maps, in the target domain we

must opt for a heuristic pseudo-labeling strategy. Specifically,

we run F (pre-trained in Step 1) on the unlabeled target-domain

training set. For each pixel, we assign the class with the high-

est prediction probability as its pseudo-label. However, this

labelling is error prone: it is not guaranteed to be correct on

shared-class pixels, and cannot be correct on private-class pixels

whose true labels are unknown to it. To mitigate such negative

effects, only the top p% of the most confident pseudo-labels

are kept; the rest are ignored during training. Doing that, we

improve pseudo-label quality for shared classes and reduce the

number of retained private-class pixels. In Figure 3, the strategy

is illustrated as Step 2.

In Figure 4-(b), we illustrate different outcomes of our pro-

posed model as opposed to one without domain awareness. As

GDA can capture domain-specific modes in the visual-feature

space, we expect better generalization to private classes in the

target domain.

3.5. BudaNet’s Step 3: Self-training with private classes

We start by only pre-training the final classification layer Fcls

with the shared-class source-domain features used in Step 2

and the generated private-class features coming from GDA – see

Figure 5 (left). Once Fcls is trained, the network can now handle

both shared and private objects at once, which effectively can

be used to extract pseudo-labels on target-domain training set.

The whole segmentation network F is then fine-tuned again with

pseudo-labels – similar to above, we only train on top confident

ones. Differently to the previous steps, the pseudo-labels now
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cover both shared and private classes. Figures 5 and 3-(Step 3)

illustrate this final self-training strategy. In Figure 5-(right), the

decision boundaries, learned after pre-training Fcls (blue lines)

are shifted to new positions that are better adapted to the target

domain after fine-tuning F (black lines).

4. Experiments

In Section 4.1, we introduce our set-ups as well as some

implementation details. Section 4.2 presents the main results,

followed by ablation studies in Section 4.3.

4.1. Experimental details

BUDA scenarios. To evaluate our approach, we define three

BUDA scenarios: synthetic-2-real, country-2-country and

dataset-2-dataset. These very different set-ups allow investi-

gating boundless adaptation from multiple angles of practical

interest.

In the synthetic-2-real set-up, available at train time are la-

belled synthetic data and unlabeled real images. The zero-cost

(and zero-risk) source-domain ground-truth acquisition makes

this configuration especially appealing for semantic segmenta-

tion task. We use the SYNTHIA-RAND-CITYSCAPES split of

the SYNTHIA dataset [47] containing 9,400 synthesized images

as for source domain. The target-domain images are from the

Cityscapes dataset [48] with 2,975 images for training and 500

images for test. In this set-up, we consider 16 shared classes,

previously used in some closed-set UDA works [3, 4, 5]. Dif-

ferently, our target domain holds a private label-set of 3 classes:

‘terrain’, ‘truck’ and ‘train’.

The country-2-country set-up addresses the very practical

use-case where a model trained using data from one region is

deployed in other parts of the world. In details, the source

domain is defined by the Cityscapes data acquired in 50 German

cities while, for the target domain, we use images from the

India driving dataset (IDD) [49]. The geographic gap translates

into a large visual gap on both the vehicles and the overall

scenes’ layout. While common vehicles like cars, trucks or

buses exist almost everywhere in the two countries, only in

India we observe auto-rickshaws. It is also worth mentioning

that class distributions are very different, i.e. in Indian streets,

the most frequent vehicles are motorbikes while in Germany,

cars are more prevalent. Such unique signatures of different

countries can be challenging for applications like self-driving

cars. More into details, we use for training 2,975 real Cityscapes

images with annotations along with 6,993 unlabeled IDD images.

There are 19 shared classes between the two datasets and 2

private classes only in IDD: ‘auto-rickshaw’ (a.k.a. ‘tuk-tuk’)

and ‘animal’. We evaluate models on 981 IDD images for the

total 21 classes.

Our last BUDA set-up is dataset-2-dataset: Pascal-VOC [50]

and MS-COCO [51] as source and target domains. As both were

collected from the Internet, one may expect that the two datasets

are very similar. The big difference lies in the scene complexity

and the level of annotation done in each: while Pascal-VOC im-

ages mostly have a single centered object with a limited 20-class

label-set, MS-COCO images are more complex with multiple

objects exhaustively annotated. Still, as the visual gap is small

between the two datasets, we do not expect very significant

performance drop in the shared classes. The challenge clearly

appears once we consider a target’s private label set. In detail,

there are 1, 464 VOC images and 118k COCO images used

in training. We consider, in the main experiment, 20 shared

classes and 5 target private classes: ‘truck’, ‘bench’, ‘zebra’,

‘giraffe’ and ‘laptop’. For validation, we use 5000 COCO images

which contain at least one of the 25 classes. For the ablation

study in Section 4.3, we also increased in this set-up the number

of private classes from 5 to 20, something the two considered

datasets permit while respecting the BUDA assumption that

private classes do not appear in the source domain.

Model implementation. We adopt the DeepLabv3+ frame-

work [46] built upon a ResNet-101 [52] backbone. The

SGD [53] optimizer is used with polynomial learning rate decay

with the base learning rate of 10e − 2, weight decay 1e−4 and

momentum 0.9.

Generative models G and GDA are multi-layer perceptrons hav-

ing a single hidden layer with leaky-ReLU non-linearity [54] and

dropout [55]. We fix the number of hidden neurons as 256. Both
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Fig. 5: Self-training with private classes. (Left) Pre-training Fcls using aligned source-domain features of shared classes used in Step 2 and features generated

for private classes, e.g., ‘tuk-tuk’ indicated with squares. Solid lines illustrate the decision boundaries. (Right) Fine-tuning the whole segmenter F using only

pseudo-labeled target-class features – blue points are there to contrast with the left figure but are not used to train F.

generative models take as input a semantic classes’ embedding

of dimension da = 300 and a Gaussian noise vector of dimension

dz = 300. GDA additionally accepts a 1−dim vector specifying

the domain (source or target). Regarding the generative loss

LGMMN, we chose kernel bandwidths in {2, 5, 10, 20, 40, 60}.

For adversarial training of GDA, we introduce an additional bi-

nary classification discriminator D: a fully connected layer takes

256−dim feature vectors and predicts the corresponding domain.

All generative models are trained using Adam optimizer [56]

with a learning rate of 2e−4.

Evaluation metrics. We want to assess performance of both

shared and private classes at test time. Therefore, we adopt

the GZSL evaluation protocol for semantic segmentation used

in [35]. The protocol considers three traditional base metrics

in segmentation: pixel accuracy (PA), mean accuracy (MA)

and mean intersection-over-union (mIoU), separately computed

for shared and private sets. Also reported are the harmonic

means (hPA, hMA and hIoU) of shared and private results. The

harmonic means are used because the common metrics suffer

from the performance bias of shared classes, while our aim is to

achieve high accuracy for both shared and private classes [57].

4.2. Results

Tables 1, 2 and 3 report our results in different setups.

In each experiment, we report performance for shared, private,

and all classes. “Supervised” stands for the model trained with

full supervision on the target domain. “Oracle” corresponds to

the zero-shot framework trained on target-domain data using

only shared labels; “ZS3Net (only source)” is a similar network

but only trained on source-domain data (based on ZS3Net in

[35]). One straight-forward baseline is to directly apply a vanilla

UDA technique, i.e. MinEnt [5], in Step 1 without considering

the private classes. We denote “ZS3Net + UDA” this baseline.

We note that in the new BUDA setting, existing UDA techniques

compare differently than in the classic setting, as later reported

in Section 4.3; Indeed “MinEnt” performs better than a state-of-

the-art adversarial training approach. In addition, we consider

the proposed strategy introduced in Section 3.3 as a stronger

baseline, denoted “ZS3Net + Adaptation” in the result tables.

Synthetic-to-Real. Table 1 reports the segmentation perfor-

mance of the models trained on SYNTHIA data and evaluated on

the 19 classes of the Cityscapes validation set. Not surprisingly,

the pure zero-shot segmentation method with no adaptation

(ZS3Net) produces unfavourable results. The straight-forward

baseline (ZS3Net + UDA) does introduce some improvement

over ZS3Net. With the shared-class alignment strategy proposed

in Section 3.3, our stronger baseline (ZS3Net + Adaptation) per-

forms better on all classes. Finally, BudaNet outperforms all

baselines by significant margins for both shared and private

classes. Figure 6 illustrates the merit of our approach. On

shared classes, ZS3Net produces noisy predictions, mistaking

‘road’ pixels with ‘sidewalk’, while BudaNet produces correct

predictions for most pixels. On private classes, i.e. ‘train’ and
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Table 1: Semantic segmentation performance on SYNTHIA→Cityscapes. Pixel accuracy (PA), mean accuracy (MA) and mean intersection-over-union (mIoU)

on shared and private class sets, and their harmonic averages over the two class sets (hPA,hMA,hIoU). See text for method’s discussion.

Shared Private Overall

Method PA MA mIoU PA MA mIoU hPA hMA hIoU

Supervised 95.1 68.1 61.7 58.1 60.0 48.2 72.1 63.8 54.1

Oracle 94.3 65.7 56.4 50.1 45.9 31.5 65.4 54.0 40.4

ZS3Net (source only) [35] 80.3 43.1 28.1 9.0 40.7 6.9 16.2 41.9 11.1

ZS3Net + UDA 85.3 42.4 30.1 12.5 46.8 8.2 21.8 44.9 12.8

ZS3Net + Adaptation 89.9 42.6 35.0 18.6 51.1 8.9 30.8 46.5 14.2

BudaNet 93.0 46.0 36.2 26.9 58.7 17.0 41.7 51.6 23.1

Input image GT ZS3Net BudaNet

Fig. 6: Qualitative results on Cityscapes. The first and second columns show input images and corresponding segmentation ground truth. The third and fourth

columns visualize results produced by ZS3Net and BudaNet. Private target classes: terrain , truck , train . Some shared classes: road , side walk , car , person ,

motorbike , tree , building .
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Table 2: Semantic segmentation performance on Cityscapes→IDD. Pixel accuracy (PA), mean accuracy (MA) and mean intersection-over-union (mIoU) on

shared and private class sets, and their harmonic averages over the two class sets (hPA,hMA,hIoU). See text for method’s discussion.

Shared Private Overall

Method PA MA mIoU PA MA mIoU hPA hMA hIoU

Supervised 92.8 65.1 56.9 57.3 61.9 48.0 70.9 63.5 52.1

Oracle 91.7 63.0 53.1 47.2 41.8 28.8 62.3 50.3 37.3

ZS3Net (source only) [35] 81.0 43.8 29.2 9.3 41.0 7.9 16.7 42.4 12.4

ZS3Net + UDA 86.8 40.0 32.4 13.8 45.9 8.1 23.8 42.7 13.0

ZS3Net + Adaptation 88.3 40.5 32.7 15.9 47.0 8.6 26.9 43.5 13.6

BudaNet 92.0 47.2 37.3 28.6 58.9 18.5 43.6 52.4 24.7

Input image GT ZS3Net BudaNet

Fig. 7: Qualitative results on IDD. The first and second columns show input images and corresponding segmentation ground truth. The third and fourth columns

visualize results produced by ZS3Net and BudaNet. Private target classes: tuk-tuk , animal . Some shared classes: truck , road , side walk , car , person , motorbike ,

tree , building .

‘truck’, while ZS3Net can only localize small regions, BudaNet

provides more complete areas with better contours. ZS3Net

produces noisy segmentation with, for example, the shared class

‘person’ missing in rows 2 and 3. In the same way, the areas of
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Table 3: Semantic segmentation performance on Pascal-VOC→MS-COCO. Pixel accuracy (PA), mean accuracy (MA) and mean intersection-over-union (mIoU)

on shared and private class sets, and their harmonic averages over the two class sets (hPA,hMA,hIoU). See text for method’s discussion.

Shared Private Overall

Method PA MA mIoU PA MA mIoU hPA hMA hIoU

Supervised 94.8 68.8 70.1 70.5 61.0 64.3 80.9 64.7 67.1

Oracle 93.8 68.6 68.0 61.6 57.7 39.9 74.4 62.8 50.3

ZS3Net (source only) [35] 92.0 67.3 63.3 29.9 51.4 17.3 45.1 58.3 27.2

ZS3Net + UDA 92.3 68.0 63.3 32.3 50.3 19.5 52.0 47.9 29.8

ZS3Net + Adaptation 92.3 68.2 63.8 36.2 54.1 20.9 52.0 60.3 31.5

BudaNet 93.1 68.4 65.0 38.5 56.5 23.8 54.5 61.9 34.8

the private class ‘truck’ are hardly detected and wrongly local-

ized elsewhere in rows 1 and 3. Our BudaNet provides better

predictions on these areas.

Country-to-Country. Table 2 reports the results on the 21 classes

of the IDD validation set. We observe similar behaviors for the

baselines and for BudaNet. While ZS3Net trained only on the

source domain produces poor results, ZS3Net + UDA baseline

performs better thanks to the straight-forward domain alignment.

Using our adaptation strategy in Step 1, the ZS3 + Adaptation

baseline enhances recognition performances on all classes. Bu-

daNet introduces gains in both shared and private classes with

a significant improvement of +11.1% hIoU in comparison to

ZS3 + Adaptation baseline. Figure 7 provides some segmenta-

tion examples. Qualitatively, BudaNet’s results look much better.

Both ZS3Net and BudaNet produce reasonable segmentation for

the shared classes. However, in rows 1 to 5, ZS3Net hallucinates

‘auto rickshaw’ parts on all vehicles. Further, most of ‘auto rick-

shaw’ pixels are partially predicted or incorrectly classified as

‘truck’ (row 3) or ‘bus’ (row 1, 2, 3 and 4). The last row shows

the second private class ‘animal’. While ZS3Net completely

misses the animals on the road, BudaNet correctly predicts two

of them.

Dataset-to-Dataset. Table 3 reports the semantic segmentation

performances on the MS-COCO validation set. We only report

results for the 20 shared + 5 private classes and do not consider

others. Unlike the two other settings, Pascal-VOC and MS-

COCO exhibit a small domain gap since they were both collected

from the Internet. Effectively with ZS3Net (no adaptation), the

mIoU drop on shared classes is only 4.7% compared to the

Oracle. Still, we demonstrate here similar improvements after

addressing adaptation and zero-shot challenges. Private-class

segmentation results remain much lower due to the absence of

training samples for these categories.

Domain alignment with the proposed strategy in Step 1

(ZS3Net + Adaptation) brings a +3.6% mIoU improvement on

private classes; the scores on shared classes remain comparable

(63.3% vs. 63.8% mIoU). BudaNet helps boosting the perfor-

mance in all classes with a hIoU increase of +7.6% in com-

parison to ZS3Net, most of which accounts to private classes.

Figure 8 shows some outputs of ZS3Net and BudaNet. ZS3Net

wrongly classifies private objects’ parts as background or shared

classes. BudaNet produces better predictions with accurate

object contours. In row 1, while ZS3Net wrongly segments

most pixels of the private class ‘bench’ as ‘chair’, BudaNet can

recognize more complete objects. In the 2nd and 3rd exam-

ples, ZS3Net confuses the pixels of private ‘giraffe’ and ‘zebra’

classes as ‘background’. By contrast, BudaNet delivers good

predictions for these classes. In the last row, BudaNet is shown

to improve performance for the ‘truck’ class.

Transductive domain adaptation. While the focus of the present

work is on inductive learning (test data is unknown at train time),
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Input image GT ZS3Net BudaNet

Fig. 8: Qualitative results on MS-COCO. The first and second columns show input images and corresponding segmentation ground truth. The third and fourth

columns visualize results produced by ZS3Net and BudaNet. Private target classes: bench , giraffe , zebra , truck . Shared classes: person , cow , sheep , background .

transductive learning could also be considered with the proposed

tools. In that very specific setup, there is no distinction between

train and test data. BudaNet could thus be further refined using

pseudo-labeling of the target-domain test set in Step 3. This

actually boosts the performance on all classes, with a large gain

of 24.9% in harmonic IoU on MS-COCO. Note however that

such a transductive scenario is extremely contrived and is not

suited for systems to be deployed in open environments.

4.3. Ablation studies

Effect of the proposed strategies. We report in Table 4 an ab-

lative study that analyses the impact of four key ingredients of

BudaNet: Entropy minimization while training the segmenter

F (“MinEnt”); Entropy minimization on top-confident pixels

only (“Domain Adaptation on shared classes” ); Generator train-

ing with adaptation (“Domain-aware ZSL on private classes” );

fine-tuning of the semantic segmentation model with pseudo-

labels (“Self-training”). To this end, five different models are

compared: A model trained only on source, hence without
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Table 4: Ablation experiments. Performance in hIoU on the validation set of Cityscapes for five variants of the approach, adding one key component at a time on top

of the adaptation-free zero-shot semantic segmentation. See text for details.

Setup MinEnt
Domain Adaptation

on shared cls.

Domain-aware ZSL

on private cls.
Self-training hIoU (%)

ZS3Net 11.1

ZS3Net + UDA X 12.8

BudaNet - Step 1 X X 14.2

BudaNet - Step 1+2 X X X 22.0

BudaNet - Step 1+2+3 X X X X 23.1

Table 5: Analysis of the adaptation strategy on shared classes. Target-domain test performance in mIoU on shared (“Shar.”) and private (“Priv.”) classes and in

hIOU on both sets (“All”) for the three BUDA settings, and for different adaptation strategies in Step 1. We compare the proposed stategies “ZS3Net + UDA” and

“ZS3Net + Adaptation” to the ZS3Net variant adopting the adversarial DA technique AdvEnt [5]. Note that “ZS3Net + Adaptation” amounts to ”BudaNet - Step 1” in

Table 4.

Cityscapes IDD MS-COCO

Method Shar. Priv. All Shar. Priv. All Shar. Priv. All

ZS3Net + AdvEnt 30.1 7.5 12.0 32.3 8.0 12.8 63.4 19.5 29.8

ZS3Net + UDA 30.0 8.2 12.8 32.4 8.1 13.0 63.3 19.5 29.8

ZS3Net + Adaptation 35.0 8.9 14.2 32.7 8.6 13.6 63.8 20.9 31.5

adaptation (“ZS3Net”); Our baseline with entropy minimization

(“ZS3Net + UDA”); The full-fledged model (“BudaNet - Step

1+2+3”); Two stripped-down versions of it (“BudaNet - Step 1”

and “BudaNet - Step 1+2”). We first observe that the brute force

entropy minimization contributes to improving the performance

by 1.7% (“ZS3Net” vs. “ZS3Net + UDA”), which demonstrates

the need for domain alignment prior to generative model train-

ing. The table indicates that the pseudo-label strategy selection

for shared-class pixels in the target domain (“ZS3Net + UDA”

vs. “BudaNet - Step 1”) significantly increases the performance

by 1.4%. For the training of the generator, the combination of

source-domain training data with pseudo-labeled target-domain

data and the adversarial loss (“BudaNet - Step 1” vs. “BudaNet -

Step 1+2”) further improves the performance, from 14.2 to 22.0.

Finally, the complete BudaNet benefits from self-training (up to

1.1%), as this step of pseudo-labeling makes it possible to exploit

the information related to the private-class visual features.

Number of private classes. To analyse the impact of the number

of private classes on the performance of BudaNet, we made

it vary in the dataset-2-dataset setup. More precisely, we de-

fined five nested sets with 2, 5, 10, 15 and 20 private classes

respectively, among the 25 classes in Pascal-VOC and MS-COO.

These sets are:

C2
p = {‘truck’,‘zebra’},

C5
p = C2

p ∪ {‘bench’,‘giraffe’,‘laptop’},

C10
p = C5

p ∪ {‘elephant’,‘umbrella’,‘bear’,‘snowboard’,‘toilet’},

C15
p = C10

p ∪ {‘laptop’,‘fridge’,‘blanket’,‘napkin’,‘stone’},

C20
p = C15

p ∪ {‘tent’,‘skyscraper’,‘salad’,‘river’,‘pillow’}.

The corresponding sets of shared labels have size 23, 20, 15, 10

and 5 respectively. Note that C5
p is the private label set used in

the main dataset-to-dataset experiments.
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(a) Shared (b) Private (c) Overall

Fig. 9: Influence of the number of target private classes. Performance in mIoU on shared classes (a), mIoU on private classes (b) and hIoU on both (c) when

training BudaNet on Pascal-VOC→MS-COCO with private class set C2
p, C5

p, C10
p , C15

p and C20
p , respectively. The number Cs of shared classes is 23, 20, 15, 10 and 5

respectively.

‘c
ar

’
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’

Fig. 10: Domain shifts in visual-feature distributions for shared and pri-

vate classes. Visualization with tSNE, for ‘car’ (shared) and ‘tuk-tuk’ (pri-

vate) classes, of the distributions of (from left to right) Real , BudaNet ,

ZS3Net + UDA and ZS3Net features. Must be viewed in color.

Figure 9 shows hIoU plots as a function of the number of

private classes. We observe a decreasing trend in performance

for all methods when more private classes (respectively fewer

shared classes) are used. In all set-ups, BudaNet (green curves)

outperforms the baselines by a significant margin.

Domain adaptation strategy on shared classes. In Table 5, we

compare the proposed DA strategies on shared classes to the

state-of-the-art adversarial DA technique AdvEnt [5]. We here

notice the negative effects caused by global alignment techniques

like AdvEnt in BUDA; such a drawback was similarly observed

in partial DA and open-set DA works.

These experiments echo the arguments developed in Sec-

tion 3.3 to justify the relevance of the proposed adaptation strat-

egy.

Feature visualization. Using the models in Table 2, we visu-

alize in Figure 10 domain shifts between real and generated

pixel-wise features from different approaches for both shared

and private classes. For the shared class ‘car’, as real features

are used in training, we observe equally good alignment from

BudaNet and “ZS3Net + UDA”, as opposed to the adaptation-

free ZS3Net. Regarding the private class ‘auto-rickshaw’, we

clearly see a smaller gap between real and BudaNet-generated

features, compared to the baseline and to the adaptation-free

model. As no real private-class features are provided during

training, we do not expect a “perfect” alignment in the latter

case. The visualization is inline with the results in Table 2.

Table 6: Impact of the fraction of high-scoring predictions re-

tained as pseudo-labels. Target-domain performance in hIoU on the

SYNTHIA→Cityscapes setup as a function of p(%). “GT”: see text for explana-

tion.

p% of high-scoring 10% 30% 50% 70% 100% GT

Cityscapes hIoU 20.4 21.6 22.0 21.8 17.8 38.9

Proportion of retained top-scoring predictions as pseudo-labels

in Step 2. Our aim here is to compare different p% values for

the pseudo-labeling strategy on target features. Table 6 reports

hIoU performance on Cityscapes as this parameter varies. Keep-

ing only the highest-scoring predictions, at p = 10%, results

in a drop of performance of 1.6%. One possible explanation

is that because the number of training features becomes too

low, the model lacks generalization capacity. Conversely, when

all predictions are kept (p = 100%), a significant decrease of
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performance can be observed, which confirms the need for an ef-

fective pseudo-label selection strategy. Finally, we observe that

the performance is better when p ∈ [30, 70], specifically when

p = 50% with a recognition score of 22.0 hIoU 1. In the last

column of Table 6, “GT”, we report the recognition score when

the p = 50% highest-scoring predictions are replaced by their

ground-truth labels. We observe a performance improvement of

16.9%, the pixel selection technique is therefore an essential ele-

ment of the method and must be investigated in future work. In

all other steps with pseudo-labeling, we also fix the percentage

of retained high-scoring predictions as 50%.

5. Conclusion

In the context of semantic segmentation, we have explored

boundless UDA, the realistic domain adaptation setting where

new classes can emerge in the target test domain. Compared

to existing DA settings, BUDA is more challenging because (i)

objects from private new classes must be explicitly recognized at

test time and (ii) objects from both shared and private classes fre-

quently coexist in the test scenes. To address this new problem,

we proposed BudaNet, a unified pipeline that leverages domain

adaptation and zero-shot learning techniques. BudaNet consists

of three steps with dedicated strategies to (i) mitigate the domain

gap, (ii) handle the private classes and (iii) adjust the decision

boundaries in the presence of new-class objects. On generalized

ZSL evaluation metrics, BudaNet outperforms the baselines by

significant margins and sets competitive standard in the BUDA

setting. This first step towards boundless UDA will hopefully

foster future research on this type of domain adaptation and,

more generally, on new DA settings motivated by real-world

applications.

1The result corresponds to “BudaNet - Step 1+2” in Table 4.
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