
ar
X

iv
:1

60
9.

04
47

7v
1

 [
m

at
h.

C
O

]
 1

5
Se

p
20

16

EIGENVALUE LOCATION IN COGRAPHS

DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

Abstract. We give an O(n) time and space algorithm for constructing a diagonal
matrix congruent to A+xI, where A is the adjacency matrix of a cograph and x ∈ R.
Applications include determining the number of eigenvalues of a cograph’s adjacency
matrix that lie in any interval, obtaining a formula for the inertia of a cograph, and
exhibiting infinitely many pairs of equienergetic cographs with integer energy.

1. Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E. For
v ∈ V , N(v) denotes the open neighborhood of v, that is, {w|{v, w} ∈ E}. The closed
neighborhood N [v] = N(v)∪{v}. If |V | = n, the adjacency matrix A = [aij] is the n×n

matrix of zeros and ones such that aij = 1 if and only if vi is adjacent to vj (that is,
there is an edge between vi and vj). A value λ is an eigenvalue if det(A− λI) = 0, and
since A is real symmetric its eigenvalues are real. In this paper, a graph’s eigenvalues
are the eigenvalues of its adjacency matrix.
This paper is concerned with cographs. This class of graphs has been discovered

independently by several authors in many equivalent ways since the 1970’s. Corneil,
Lerchs and Burlingham [6] define cographs recursively:

(1) A graph on a single vertex is a cograph;
(2) A finite union of cographs is a cograph;
(3) The complement of a cograph is a cograph.

A graph is a cograph if and only it has no induced path of length four [6]. They are often
simply called P4 free graphs in the literature. Linear time algorithms for recognizing
cographs are given in [7] and more recently in [10].
While recognition algorithms for cographs is an interesting problem, our motivation

for considering cographs comes from spectral graph theory [4, 8]. Spectral properties of
cographs were studied by Royle in [16] where the surprising result was obtained that
the rank of a cograph is the number of non-zero rows in the adjacency matrix. An
elementary proof of this property was later given in [5]. More recently, in [2] Bıyıkoğlu,
Simić and Stanić obtained the multiplicity of −1 and 0 for cographs.
The purpose of this paper is to extend to cographs eigenvalue location algorithms that

exist for trees [11], threshold graphs [12] and generalized lollipop graphs [9]. Recall that
two real symmetric matrices R and S are congruent if there exists a nonsingular matrix
P for which R = P TSP . Our main focus is an algorithm that uses O(n) time and space
for constructing a diagonal matrix congruent to A + xI, where A is adjacency matrix
of a cograph, and x ∈ R. Our paper is similar in spirit to the papers [11, 12] which
describe O(n) diagonalization algorithms for trees and for threshold graphs. Threshold

1991 Mathematics Subject Classification. 05C50, 05C85, 15A18.
Key words and phrases. cograph, adjacency matrix, eigenvalue.
Work supported by Science without Borders CNPq - Grant 400122/2014-6, Brazil.

1

http://arxiv.org/abs/1609.04477v1

2 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

graphs are P4, C4, and 2K2 free, and therefore are a subclass of cographs. Hence our
algorithm is an extension of the algorithm in [12].
Several points are worth noting. First, while one might expect linear time algorithms

for graphs with sparse adjacency matrices such as trees, the adjacency matrix of a
cograph can be dense. Next, while our algorithm’s correctness is based on elementary
matrix operations, its implementation operates directly on the cotree and uses only
O(n) space. Finally, the analysis of algorithms for trees and threshold graphs has led
to interesting theoretical results. For example, in [15] conditions were determined for
the index (largest eigenvalue) in trees to be integer. In [12] the authors showed that all
eigenvalues of threshold graphs, except −1 and 0, are simple. In [13] the algorithm was
used to show that no threshold graphs have eigenvalues in (−1, 0).
If G is a graph having eigenvalues λ1, . . . , λn, its energy, denoted E(G) is defined

to be
∑n

i=1 |λi|. Two non-cospectral graphs with the same energy are called equiener-
getic. Finding non-cospectral equienergetic graphs is a relevant problem. In [13] the
authors presented infinite sequences of connected, equienergetic pairs of non-cospectral
threshold graphs with integer energy. In this paper, we continue this investigation.
Here is an outline of the remainder of this paper. In Section 2 we describe cotrees,

and present some known facts. In Section 3 we give the elementary matrix operations
used in our algorithm. In Section 4 we give the complete diagonalization algorithm. In
Section 5, using Sylvester’s Law of Inertia, we show how to efficiently determine how
many eigenvalues of a cograph lie in a given interval. The inertia of a graph G is the
triple (n+, n0, n−) giving the number of eigenvalues of G that are positive, zero, and
negative, and in Section 6 we give a formula for cograph inertia. Finally in Section 7
we exhibit infinitely many non-threshold cographs equienergetic to a complete graph.

2. Cotrees and adjacency matrix

Cographs have been represented in various ways, and it is useful to recall the represen-
tation given in [6]. The unique normalizend form of a cograph G is defined recursively:
If G is connected, then it is in normalized form if it is expressed as a single vertex, or
the complemented union of k ≥ 2

G = G1 ∪G2 ∪ . . . ∪Gk

connected cographs Gi in normalized form. If G disconnected its normalized form is
the complement of a connected cograph in normalized form. The unique rooted tree TG

representing the parse structure of the cograph’s normalized form is called the cotree.
The leaves or terminal vertices of TG correspond to vertices in the cograph. The interior
nodes represent ∪ operations.
It is not difficult to show that the class of cographs is also the smallest class of

graphs containing K1, and closed under the union ∪ and join ⊗ operators. In fact one
can transform the cotree of Corneil, Lerchs and Burlingham into an equivalent tree
TG using ∪ and ⊗. In the connected case, we simply place a ⊗ at the tree’s root,
placing ∪ on interior nodes with odd depth, and placing ⊗ on interior nodes with even
depth. To build a cotree for a disconnected cograph, we place ∪ at the root, and place
⊗’s at odd depths, and ∪’s at even depths. It will be convenient for us to use this
unique alternating representation. In [2] this structure is called a minimal cotree, but
throughout this paper we call it simply a cotree. All interior nodes of cotrees have at
least two children. Figure 1 shows a cograph and cotree. The following is well known.

EIGENVALUE LOCATION IN COGRAPHS 3

Lemma 1. If G is a cograph with cotree TG, vertices u and v are adjacent in G if and
only if their least common ancestor in TG is ⊗.

v1

v2

v3

v4

v5 v6

v7

v8

v9

v1

v7v6v5

⊗

v8

v9

∪

⊗

∪

v4

⊗

∪

v3

v2

Figure 1. A cograph G and its cotree.

Two vertices u and v are duplicates if N(u) = N(v) and coduplicates if N [u] = N [v].
We call u and v siblings if they are either duplicates or coduplicates. Siblings play an
important role in the structure of cographs, as well as in this paper.

Lemma 2. Two vertices v and u in a cograph are siblings if and only if they share the
same parent w node in the cotree. Moreover, if w = ∪, they are duplicates. If w = ⊗
they are coduplicates.

Lemma 3. A cograph G of order n ≥ 2 has a pair of siblings.

Proof. The cotree of G must have an interior vertex adjacent to two leaves. �

Let G be a cograph with cotree TG. Let G − v denote the subgraph obtained by
removing v. It is known that G − v is a cograph, so we shall use T − v to denote the
cotree of G−v. There is a general method for constructing T −v [6, Lem. 1]. However,
it somewhat simplifies the process if v has maximum depth. The following lemma can
be proved with Lemma 1.

Lemma 4. Let TG be a cotree, and let {v, u} be siblings of greatest depth, whose parent
w has k children. If k > 2 we obtain T − v by removing v. If k = 2 and w is not the
root, we obtain T − v by moving u to the parent of w, and removing v and w. If k = 2
and w is the root, the cotree is u.

We end this section by making an important observation.

Lemma 5. Let G be a cograph with adjacency matrix A and cotree TG. Let {vk, vl} be
siblings with parent w. If w = ∪ (they are duplicates), then rows(columns) k and l in
A are equal. If w = ⊗ (they are coduplicates), then the rows (columns) are equal except
in two positions, namely A[k, k] = A[l, l] = 0 and A[k, l] = A[l, k] = 1.

3. Diagonalizing a row and column

Given a cographG with adjacency matrix A, and x ∈ R, we will transform B = A+xI

into a congruent diagonal matrix in stages. In this section, we illustrate a stage, given

4 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

a partially transformed matrix. Recall that matrices are congruent if one can obtain
the other by a sequence of pairs of elementary operations, each pair consisting of a row
operation followed by the same column operation.
Let TG be the cotree of G, and let {vk, vl} be a pair of siblings. We assume the

diagonal values dk and dl of rows k and l, respectively, may have been modified by
previous computations, but only diagonal values. The goal is to annihilate off-diagonal
1’s in the row and column corresponding to vk, maintaining congruence to B. Let w

be the parent of the siblings in TG. There are two cases.
Case 1: w = ⊗. By Lemma 2 we know {vk, vl} are coduplicates. By Lemma 5 rows
(columns) l and k of the matrix B have the form

a1 a1
...

...
ai ai
...

...
a1 . . . ai . . . dl 1 . . . an

a1 . . . ai . . . 1 dk . . . an
...

...
an an

,

where ai ∈ {0, 1}. The row and column operations

Rk ← Rk −Rl

Ck ← Ck − Cl

give:

a1 0
...

...
ai 0
...

...
a1 . . . ai . . . dl 1− dl . . . an

0 . . . 0 . . . 1− dl dk + dl − 2 . . . 0
...

...
an 0

.

Most of the non-zero elements in row and column k have been removed. But we must
now remove the two entries 1 − dl. There are three subcases, depending on whether
dk + dl − 2 6= 0 and whether dl = 1.
subcase 1a: dk + dl − 2 6= 0. Then we may perform the operations

Rl ← Rl −
1− dl

dk + dl − 2
Rk

Cl ← Cl −
1− dl

dk + dl − 2
Ck

obtaining:

EIGENVALUE LOCATION IN COGRAPHS 5

a1 0
...

...
ai 0
...

...
a1 . . . ai . . . γ 0 . . . an

0 . . . 0 . . . 0 dk + dl − 2 . . . 0
...

...
an 0

,

where

γ = dl −
(1− dl)

2

dk + dl − 2
=

dkdl − 1

dk + dl − 2
·

The following assignments are made

dk ← dk + dl − 2 dl ←
dkdl − 1

dk + dl − 2
. (1)

Since row (and column) k is diagonalized, the value dk becomes permanent value and
we remove vk from the cotree:

TG ← TG − vk.

The assignments in (1) are technically incorrect since dk is modified in the first assign-
ment and used in the second. In our algorithm’s pseudo-code, we will use temporary
variables and assign α← dk and β ← dl, and then assign dk ← α+β−2 and dl ←

αβ−1
α+β−2

.

To keep notation simple, in the remainder of this section, we will not do this.
subcase 1b: dk + dl = 2 and dl = 1. Then the matrix looks like

a1 0
...

...
ai 0
...

...
a1 . . . ai . . . 1 0 . . . an

0 . . . 0 . . . 0 0 . . . 0
...

...
an 0

,

and we are done. We make the assignments

dk ← 0 dl ← 1 TG ← TG − vk

as dk becomes permanent, and vk is removed.
subcase 1c: dk + dl − 2 = 0 and dl 6= 1. Then our matrix looks like

6 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

a1 0
...

...
ai 0
...

...
a1 . . . ai . . . dl 1− dl . . . an

0 . . . 0 . . . 1− dl 0 . . . 0
...

...
an 0

.

We note that a1, . . . , an ∈ {0, 1} and since 1−dl 6= 0, for each i 6= k, l such that ail = 1,
we perform:

Ri ← Ri −
1

1− dl
Rk (2)

Ci ← Ci −
1

1− dl
Ck

This annihilates most of row (column) l, without changing any other values:

0 0
...

...
0 0
...

...
0 . . . 0 . . . dl 1− dl . . . 0

0 . . . 0 . . . 1− dl 0 . . . 0
...

...
0 0

.

The operations

Rl ← Rl +
1

2
Rk

Cl ← Cl +
1

2
Ck

replace the diagonal dl with one, while the operations

Rk ← Rk − (1− dl)Rl

Ck ← Ck − (1− dl)Cl

eliminate the two off-diagonal elements, finally giving:

EIGENVALUE LOCATION IN COGRAPHS 7

0 0
...

...
0 0
...

...
0 . . . 0 . . . 1 0 . . . 0

0 . . . 0 . . . 0 −(1 − dl)
2 . . . 0

...
...

0 0

.

What is different about this subcase is that both rows k and l have been diagonalized.
We make the following assignments

dk ← −(1− dl)
2 dl ← 1 TG ← TG − vk TG ← TG − vl

removing both vertices from TG and making both variables permanent.
Case 2: w = ∪. By Lemma 5, row k and l of the matrix B look like:

a1 a1
...

...
ai ai
...

...
a1 . . . ai . . . dl 0 . . . an

a1 . . . ai . . . 0 dk . . . an
...

...
an an

,

Similar to Case 1, the row and column operations

Rk ← Rk −Rl

Ck ← Ck − Cl

give:

a1 0
...

...
ai 0
...

...
a1 . . . ai . . . dl −dl . . . an

0 . . . 0 . . . −dl dk + dl . . . 0
...

...
an 0

,

subcase 2a: dk + dl 6= 0. Then the matrix operations

Rl ← Rl +
dl

dk + dl
Rk

Cl ← Cl +
dl

dk + dl
Ck

8 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

diagonalize the matrix and the following assignments are made:

dk ← dk + dl TG ← TG − vk dl ←
dkdl

dk + dl

subcase 2b: dk + dl = 0, and dl = 0. Similar to subcase 1b, the matrix is in diagonal
form and the following assignments are made:

dk ← 0 TG ← TG − vk dl ← 0

subcase 2c: dk + dl = 0, and dl 6= 0. Since dl 6= 0, we use operations similar to (2) to
annihilate most of rows and columns l:

0 0
...

...
0 0
...

...
0 . . . 0 . . . dl −dl . . . 0

0 . . . 0 . . . −dl 0 . . . 0
...

...
0 0

.

The operations

Rk ← Rk +Rl

Ck ← Ck + Cl

complete the diagonlization. The following assignments are made:

dk ← −dl dl ← dl TG ← TG − vk TG ← TG − vl

4. Diagonalizing A+ xI

The algorithm in Figure 2 constructs a diagonal matrix D, congruent to B = A+xI,
where A is the adjacency matrix of a cograph G, and x ∈ R. The algorithm’s input
is the cotree TG and x. Note the algorithm does not store the matrix, but rather only
records changes on the diagonal values di of B, allowing only O(n) space.
It initializes all entries of D with x. At the beginning of each iteration, the cotree

represents the subgraph induced by vertices whose rows and columns have not yet been
diagonalized. During each iteration, a pair of siblings {vk, vl} from the cotree is selected,
whose existence is guaranteed by Lemma 3. Note that the algorithm can’t assume that
either of the diagonal elements dk and dl are still x.
Each iteration of the loop annihilates either one or two rows (columns), updating

diagonal values wth arithmetic from Section 3. Once a row (column) is diagonalized,
those entries never participate again in row and column operations, and so their values
remain unchanged. When a row (column) corresponding to vertex v has been diagonal-
ized, the subgraph induced by those vertices whose rows (columns) are undiagonalized,
has been reduced. Thus v is removed from the cotree. It is slightly easier to reconstruct
the cotree when leaves of maximum depth are removed, using the method of Lemma 4.
Hence we always choose sibling pairs of maximum depth. The algorithm terminates
when all rows and columns have been diagonalized. Each iteration of Diagonalize
takes constant time, so its running time is O(n).

EIGENVALUE LOCATION IN COGRAPHS 9

INPUT: cotree TG, scalar x

OUTPUT: diagonal matrix D = [d1, d2, . . . , dn] congruent to A(G) + xI

Algorithm Diagonalize (TG, x)
initialize di := x, for 1 ≤ i ≤ n

while TG has ≥ 2 leaves

select siblings {vk, vl} of maximum depth with parent w

α← dk β ← dl
if w = ⊗

if α+ β 6= 2 //subcase 1a

dk ← α + β − 2; dl ←
αβ−1
α+β−2

; TG = TG − vk
else if β = 1 //subcase 1b

dk ← 0; dl ← 1; TG = TG − vk
else //subcase 1c

dk ← −(1− β)2; dl ← 1; TG = TG − vk; TG = TG − vl
else if w = ∪

if α+ β 6= 0 //subcase 2a

dk ← α + β; dl ←
αβ

α+β
; TG = TG − vk

else if β = 0 //subcase 2b

dk ← 0; dl ← 0; TG = TG − vk
else //subcase 2c

dk ← −β; dl ← β; TG = TG − vk; TG = TG − vl
end loop

Figure 2. Diagonalization algorithm

Theorem 1. For inputs TG and x, where TG is the cotree of cograph G having adjacency
matrix A, algorithm Diagonalize computes a diagonal matrix D, which is congruent
to A+ xI using O(n) time and space.

It is interesting that for threshold graphs, the cotree is a caterpillar, as shown in [17,
Cor. 3.2]. When Diagonalize is given such a cotree, it performs essentially the same
arithmetic as the threshold graph algorithm in [12].

Example 1. In the remainder of this section we apply Algorithm Diagonalize to the
cograph in Figure 1 with x = 0. In our figures, diagonal values di appear under the
vertex vi in the cotree. Initially, all di will be x = 0. Sibling pairs appear in red. Dashed
edges indicate vertices about to be removed from the cotree. To follow this example, the
reader need not be concerned with labels of vertices, but simply check that each cotree
produces the next one.

In the first iteration of the algorithm, siblings {vk, vl} are chosen of maximum depth.
Since dk = α = 0 and dl = β = 0, subcase 2b occurs. The assignments

dk ← 0 dl ← 0

are made, represented in Figure 3. Figure 4 depicts the cotree after vertex vk is removed
and vl is relocated under its parent’s parent using the rules in Lemma 4.
In the next step, a sibling pair {vk, vl} of depth three is chosen. Since their parent

is ⊗, and dk = α = 0 and dl = β = 0, subcase 1a is executed and the following
assignments are made:

dk ← −2 dl ←
1

2

10 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

0

000

⊗

0

0

∪

⊗

∪

0

⊗

∪

0

0

Figure 3.

0

000

⊗

0

0

∪

⊗

∪

0

⊗

0 0

Figure 4.

Figure 5 shows the cotree after these assignments, and Figure 6 shows the cotree with
vk removed and vl relocated.

0

000

⊗

0

0

∪

⊗

∪

0

⊗

−2
1
2

Figure 5.

0

000

⊗

0

0

∪

⊗

∪

01
2

−2

Figure 6.

Next, another depth three sibling pair {vk, vl} is chosen. Since dk = α = 0 and
dl = β = 0, subcase 1a is taken and assignments

dk ← −2 dl ←
1

2

made. Vertex vk is removed from the cotree as shown in Figure 7, making the value
dk = −2 permanent. Note vl does not move per the rules in Lemma 4.
Depth three siblings {vk, vl} are selected again. Since dk = α = 1

2
and dl = β = 0,

subcase 1a is again executed and the assignments

dk ← −
3

2
dl ←

2

3

are made as shown in Figure 8. Vertex vk will be removed from the cotree, and vl
relocated to its parent’s parent, as Figure 9 shows.
Next, a depth two pair {vk, vl} is chosen. Since dk = α = 1

2
, and dl = β = 0,

subcase 2a is applied, and the following assignments are made:

dk ←
1

2
dl ← 0

EIGENVALUE LOCATION IN COGRAPHS 11

0

01
2−2

⊗

0

0

∪

⊗

∪

01
2

−2

Figure 7.

0

2
3−3

2

−2

⊗

0

0

∪

⊗

∪

01
2

−2

Figure 8.

Their values don’t change, as indicated in Figure 10. Vertex vk is removed from the
cotree, and vertex vl is relocated as shown in Figure 11. Next, a depth two pair {vk, vl}
is selected. Since dk = α = 2

3
and dl = β = 0. the subcase 2a is applied again.

0 −3
2

−2

2
3

0

0

∪

⊗

∪

01
2

−2

Figure 9.

0 −3
2

−2

2
3

0

0

∪

⊗

∪

01
2

−2

Figure 10.

The assignments are made

dk ←
2

3
dl ← 0.

leaving the dk and dl unchanged, as shown in Figure 12. Vertex vk is removed from the
cotree and vl relocated to the cotree’s root, as shown in Figure 13.

12 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

0 −3
2

−2

2
3

0

0

∪

⊗

0

1
2−2

Figure 11.

0 −3
2

−2

2
3

0

0

∪

⊗

0

1
2−2

Figure 12.

In the penultimate step, a depth one pair {vk, vl} is chosen. Since dk = α = 0 and
dl = β = 0, subcase 1a is applied, and assignments

dk ← −2 dl ←
1

2

are made, as shown in Figure 14.

0 −3
2

−2
2
3

00

⊗

0

1
2−2

Figure 13.

0 −3
2

−2
2
3

01
2

⊗

−2

1
2−2

Figure 14.

The final sibling pair {vk, vl} is chosen. Since dk = α = 1
2
and dl = β = 0, subcase 1a

is applied and

dk ← −
3

2
dl ←

2

3

as shown in Figure 15. When we remove vk using Lemma 4, the remaining cotree is vl.
The algorithm stops, and the final diagonal is shown in Figure 16.

EIGENVALUE LOCATION IN COGRAPHS 13

0 −3
2

−2
2
3

2
3−3

2

⊗

−2
1
2−2

Figure 15.

0 −3
2

−2
2
3

2
3

−3
2

−2
1
2−2

Figure 16.

5. Locating eigenvalues

As an application, we can compute in O(n) time the number of eigenvalues of a
cograph in a given interval, as was done in [11] for trees and in [12] for threshold
graphs. The following theorem is called Sylvester’s Law of Inertia [3, p. 336].

Theorem 2. Two n×n real symmetric matrices are congruent if and only if they have
the same number of positive eigenvalues and the same number of negative eigenvalues.

The proof of the following theorem is similar to Theorem 3 in [12], and is based on
Theorem 2.

Theorem 3. Let D = [d1, d2, . . . , dn] be the diagonal returned by Diagonalize(TG,−a),
and assume D has k+ positive values, k0 zeros, and k− negative values.

i: The number of eigenvalues of G that are greater than a is exactly k+.
ii: The number of eigenvalues of G that are less than a is exactly k−.
iii: The multiplicity of a is k0.

Note that when we use Diagonalize(TG, x) and obtain D = [d1, d2, . . . , dn], the order
of the di’s depends on the order in which maximum depth sibling pairs are selected. It
is not clear whether the values in D are invariant, but their signs certainly are.

Example 2. As Figure 16 indicates, Diagonalize(TG, 0), produces three positive en-
tries, five negative entries and one zero. Therefore G has 3 positive eigenvalues, 5
negative eigenvalues and 0 is an eigenvalue with multiplicity one.

Example 3. One can check that Diagonalize(TG, 1), produces a diagonal with multiset
{2,−1

2
, 0, 0, 2, 2,−1,−1

4
, 1}. Since there are four positive entries, three negative entries

and two zeros, it follows that there are four eigenvalues greater than -1, three less than
-1, and -1 has multiplicity two.

Assume a < b, and let k+ be the number of positive values in the diagonal of
Diagonalize(TG,−a), and let j+ be number of positive values in the diagonal of
Diagonalize(TG,−b). Then (a, b] must contain exactly k+ − j+ eigenvalues. The
number of eigenvalues in (a, b) is k+− j+− j0, where j0 is the multiplicity of b. Thus we
can find the number of eigenvalues in an interval by making two calls to the algorithm.

Example 4. From Example 2 and Example 3, it follows that G has exactly 4 − 3 = 1
eigenvalue in (−1, 0]. However, from Example 2 we know that zero is an eigenvalue, so

14 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

there must be no eigenvalues in (−1, 0). This is not an accident. Recently in [14], the
striking result was obtained that no cograph has eigenvalues in (−1, 0).

Any eigenvalue λ can be approximated by first finding an interval for which

a < λ ≤ b.

By using a divide-and-conquer approach in which the interval length is successively cut
in half, one can find an interval (a′, b′] of arbitrarily small size for which

a′ < λ ≤ b′.

See [12, Sec. 4] for more detail.

6. Inertia of cographs

The inertia of a graph G is the triple (n+, n0, n−), where n+, n0, n− denote respec-
tively the number of positive, zero, and negative eigenvalues of G. We wish to compute
the inertia of any cograph G. If G is a single vertex, its inertia is (0, 1, 0), so we as-
sume that G has order n ≥ 2 with cotree TG. Note also that since n = n+ + n0 + n−,
it suffices to compute only two of these components. In what follows, we will obtain
formulas for n− and n0 by using our diagonalization algorithm. Our formula for n−

given in Theorem 4 below appears to be new. The formulas for n0 (Theorem 5) and
the multiplicity of −1 (Theorem 6) can be found in [2]. Formulas relating inertia to
the representation of threshold graphs can be found in the papers [1, 13].
By Theorem 3, we can obtain the inertia of a cograph by applying Diagonalize

to TG with x = 0, and then counting the number of entries in the diagonal that are
positive, zero and negative. The following technical result appears in Lemma 3 of [5].

Lemma 6. Suppose that 0 ≤ α, β < 1. Then

(a) 0 < αβ−1
α+β−2

< 1

(b) 0 ≤ αβ

α+β
< 1, provided α + β 6= 0.

Lemma 7. If {vk, vl} is a sibling pair processed by Diagonalize, with parent w = ⊗
for which 0 ≤ dk, dl < 1, then dk becomes permanently negative, and dl is assigned a
value in (0, 1).

Proof. By our assumption, subcase 1a is executed. Hence

dk ← α+ β − 2

dl ←
αβ − 1

α+ β − 2

where α, β are the old values of dk, dl. Clearly dk < 0. By Lemma 6-(a), dl ∈ (0, 1). �

Lemma 8. If {vk, vl} is a sibling pair processed by Diagonalize, with parent w = ∪
for which 0 ≤ dk, dl < 1, then dk becomes permanently nonnegative and dl is assigned a
value in [0, 1).

Proof. If dk > 0 or dl > 0, then subcase 2a is executed which means

dk ← α + β

dl ←
αβ

α + β

Clearly dk > 0 and by Lemma 6-(b), dl ∈ [0, 1). If dk = dl = 0, then subcase 2b is
executed meaning that both dk and dl are assigned 0, dk permanently so. �

EIGENVALUE LOCATION IN COGRAPHS 15

Lemma 9. During the execution of Diagonalize(TG, 0), all diagonal values of vertices
remaining on the cotree are in [0, 1).

Proof. Initially all values on TG are zero. Suppose after m iterations of Diagonalize
all diagonal values of the cotree are in [0, 1), and consider iteration m+ 1 with sibling
pair {vk, vl} and parent w. By assumption, 0 ≤ dk, dl < 1. If w = ⊗ then Lemma 7
guarantees the vertex dl remaining on the tree is assigned a value in (0, 1). If w = ∪,
Lemma 8 guarantees dl ∈ [0, 1). This means after m + 1 iterations the cotree TG − vk
satisfies the desired property, completing the proof. �

Remark 1. Observe that if w is an interior node in TG having t children, as the
algorithm progresses bottom up through the rules of Lemma 4, each interior child of w
eventually is replaced by a leaf. Thus when w is ready to be processed it will have t

leaves as children. To simplify our analysis, without loss of generality we can assume
that all t− 1 sibling pairs are processed consecutively.

The following theorem shows that the quantity n−(G) can be computed in linear
time from the cotree.

Theorem 4. Let G be a cograph with cotree TG having ⊗-nodes {w1, . . . , wj}, and
assume each wi has ti children in TG. Then

n−(G) =

j
∑

i=1

(ti − 1).

Proof. In executing Diagonalize(TG, 0), consider an interior node wi in TG of type ⊗
with ti children. By Remark 1, when it becomes eligible to be processed, it will have
ti leaves, and the algorithm will process ti − 1 sibling pairs. By Lemma 9 all diagonal
values on the cotree remain in [0, 1). By Lemma 7 each of the ti − 1 sibling pairs will
produce a permanent negative value before wi is removed. This shows

n−(G) ≥

j
∑

i=1

(ti − 1).

However Lemma 8 shows that processing a sibling pair with parent ∪ can only produce
nonnegative permanent values. Hence the inequality is tight, completing the proof. �

We now consider n0(G). A formula by Bıyıkoğlu, Simić and Stanić is known [2, Cor.
3.2] but we give an alternate proof using our algorithm.

Remark 2. Consider an interior node w of type ∪ with k = s + t children, where
s children are interior (of type ⊗) and t children are terminal. In the execution of
Diagonalize(TG, 0), from Lemmas 7 and 9 each ⊗ node will become positive. Thus
when w is processed, it will have s leaves with positive values and t leaves with zero.

Theorem 5. Let G be a cograph with cotree TG having ∪-nodes {w1, . . . , wm}, where
wi has ti terminal children. If G has j ≥ 0 isolated vertices, then

n0(G) = j +

m∑

i=1

(ti − 1).

Proof. Consider the execution of Diagonalize(TG, 0), and first consider the case when
j = 0. Let wi be an interior node of type ∪ having ki children where si children are
interior nodes and ti are terminal. By Remark 2, when wi is ready to be processed

16 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

it will have si positive children and ti zeros. From Lemma 8 we see that subcase 2a

will be executed si times and subcase 2b ti− 1 times. Each execution of subcase 2b

produces a permanent zero on the diagonal, and so wi contributes to ti− 1 zeros. This
shows n0(G) ≥

∑m

i=1(ti − 1). To obtain equality, we note that no zero can be created
when processing a sibling pair whose parent is ⊗. If G has j > 0 isolates, then the root
of TG has type ∪ with j children as leaves. We claim j additional zeros are created.
Indeed, j − 1 are created through subcase 2b. The last iteration, either subcase 2a

or subcase 2b, creates an additional zero. �

It is possible to frame Theorem 5 in terms of duplicate vertices. Let {Vi} be a
partition over the set of all vertices that are in duplicate pairs, such that each Vi

contains mutually pairwise duplicate vertices, and for i 6= j, v ∈ Vi and w ∈ Vj imply
N(v) 6= N(w). Then |Vi| = ti.
We mention two other known theorems that can be obtained through our algorithm.

While we omit the details, their proofs involve algorithm analysis when x = 1. One
such result [14] is that no cograph has an eigenvalue in (−1, 0). Another [2] involves
the multiplicity of −1:

Theorem 6. Let G be a cograph with cotree TG having ⊗-nodes {w1, . . . , wm}, where
wi has ti terminal children. Then the multiplicity of −1 is

∑m

i=1(ti − 1).

We apply the theorems in this section to the graph of Figure 1. By Theorem 5, we
have n0(G) = 2− 1 = 1. Applying Theorem 4, n−(G) = (3− 1)+ (3− 1)+ (2− 1) = 5.
Therefore n+(G) = 9 − 5 − 1 = 4. By Theorem 6 the multiplicity of −1 in G is two.
These numbers agree with those given in Section 5.

7. Equienergetic cographs

Recall that the energy E(G) of a graph G is defined to be
∑n

i=1 |λi|, where λ1, . . . , λn

are its eigenvalues. If E(G) = E(H), we say G and H are equienergetic. It is known
that the complete graph Kn has energy 2(n − 1). We finish this paper by exhibiting
an infinite class G = {G1, G2, . . . , Gr, . . .} where Gr is a cograph of order n = 3r + 4
and E(Gr) = E(K3r+4). In [13] the authors gave similar examples of threshold graphs,
however our present example involves non-threshold graphs. This is of interest because
equienergetic examples seem to often involve non-integer energy.
The following two technical lemmas describe the diagonalization algorithm when

multiple leaves of the same parent have the same diagonal value di = y. In particular,
when an interior vertex w of the cograph has m terminal children, v1, . . . , vm, the
algorithm will generally make m − 1 iterations. If all di are equal, then under certain
conditions, can say exactly what assignments are made at each iteration. We can
assume sibling pairs are chosen to be the leftmost pair. In Lemma 10, we prove the
case when w = ⊗, and the case w = ∪ in Lemma 11 is handled in a similar way.

Lemma 10. If v1, . . . , vm have parent w = ⊗, each with diagonal value y > 1, then the
algorithm performs m− 1 iterations of subcase 1a assigning, during iteration j:

dk ←
j + 1

j
(y − 1) (3)

dl ←
y + j

j + 1
(4)

Proof. It is easy to check that when j = 1, since α = β = y > 1, subcase 1a will be
chosen and perform assignments dk ← 2(y− 1) and dl ←

y+1
2
. Now suppose iteration j

EIGENVALUE LOCATION IN COGRAPHS 17

makes assignments (3) and (4). Then during iteration j + 1, we will have α = y+j

j+1
> 1

and β = y > 1. Therefore α + β 6= 2 and subcase 1a will execute again. From the
rules of the algorithm we get

dk ← α + β − 2 =
y + j

j + 1
+ y − 2 =

j + 2

j + 1
(y − 1)

dl ←
αβ − 1

α + β − 2
= (

y2 + jy

j + 1
− 1)

j + 1

(j + 2)(y − 1)
=

j + y + 1

j + 2

which completes the induction. �

Lemma 11. If v1, . . . , vm have parent w = ∪, each with diagonal value y > 0, then the
algorithm performs m− 1 iterations of subcase 2a, assigning during iteration j:

dk ←
(j + 1)y

j
(5)

dl ←
y

j + 1
(6)

Proof. Similar to Lemma 10. �

For each integer r ≥ 1, we now define the cograph Gr to be the join of Kr+2 with the
disjoint union of r + 1 copies of K2, that is

Gr = (K2 ∪K2 ∪ . . . ∪K2)
︸ ︷︷ ︸

r+1

⊗Kr+2.

Gr has order n = 3r + 4 and its cotree is shown in Figure 17. Let m(λ;G) denote the
multiplicity of an eigenvalue in G.

Lemma 12. Gr has inertia (r + 1, 0, 2r + 3) and m(−1;Gr) = 2(r + 1).

Proof. This follows from Theorem 4, Theorem 5 and Theorem 6. �

Lemma 13. The eigenvalue 1 in Gr has multiplicity r.

Proof. By Theorem 3 it suffices to show that Diagonalize(TGr
,−1) creates exactly r

zeros. After initializing vertices with −1, the algorithm performs subcase 1a on each
of the r + 1 sibling pairs {vk, vl} of depth three. Each operation

dk ← −4

dl ← 0

leaves a zero on the tree at depth two. After all depth three pairs have been processed,
the algorithm applies subcase 2b to r sibling pairs {vk, vl} where dk = dl = 0. This
creates r permanent zeros, and so m(1;Gr) ≥ r. By Lemma 12, Gr has exactly r + 1

⊗

. . . r + 2 ∪1

⊗1 ⊗. . . r + 1

Figure 17. The cotree TGr

18 DAVID P. JACOBS, VILMAR TREVISAN, AND FERNANDO COLMAN TURA

positive eigenvalues. However m(1;Gr) = r + 1 would contradict the well-known fact
that a graph’s largest eigenvalue is simple. So we have m(1;Gr) = r. �

Since n = 3r + 4, Lemmas 12 and 13 account for all but two eigenvalues.

Lemma 14. The largest and smallest eigenvalues of Gr are

λ1 = 2r + 3 (7)

λn = −(r + 1). (8)

Proof. We will prove (8), and (7) will follow since a graph’s eigenvalues sum to zero.
To show (8), it suffices to prove that Diagonalize(TGr

, r + 1) creates a non-negative
diagonal with a single zero. Consider the r + 1 sibling pairs at depth three. Since
α = β = r + 1, for each pair subcase 1a is executed. The assignments

dk ← 2r

dl ←
r + 2

2

are made, leaving r + 1 vertices with a permanent positive value of 2r.
At depth two, there are r + 1 leaves all with positive value y = r+2

2
, and r iterations

are performed. By Lemma 11, each iteration generates the positive permanent diagonal
value of (5). On iteration r, the assignment in (6)

dl ←
y

j + 1
=

r + 2

2(r + 1)

is made to a vertex u which then gets moved under the root.
At depth one, there are r + 3 leaves: r + 2 with diagonal value r + 1, and a single

leaf u whose diagonal value is r+2
2(r+1)

. Assume the algorithm processes the leaves with

identical value first. Letting y = r + 1 in Lemma 10, we see that on each of the r + 1
iterations the algorithm generates the permanent positive diagonal value in (3). Letting

j = r+1 in (4) we see that the last iteration leaves the value 2(r+1)
r+2

on the tree. For the
last step of the algorithm, we process the two remaining vertices whose diagonal values

are α = 2(r+1)
r+2

and β = r+2
2(r+1)

. Since α > 2 and β > 0, on the last iteration subcase 1a

assigns

dk ← α+ β − 2 > 0

dl ←
αβ − 1

α+ β − 2
= 0

creating a positive value and zero for the last two diagonal entries. �

From Lemma 12, Lemma 13, and Lemma 14 it follows that

E(Gr) = 2(r + 1) + r + (2r + 3) + (r + 1) = 2(3r + 4)− 2 = 2n− 2

so we have:

Theorem 7. For each r ≥ 1, Gr and K3r+4 are equienergetic.

Clearly Gr and Kn are noncospectral. Note Gr is not a threshold graph since its
cotree is not a caterpillar. Three other infinite classes of cographs, equienergetic to
complete graphs, were discovered. In all cases, the cotrees had depth three. Since the
cotree structure and proofs are similar to the above example, we omit them.

EIGENVALUE LOCATION IN COGRAPHS 19

References

1. R. B. Bapat, On the adjacency matrix of a threshold graph, Linear Algebra Appl. 439 (2013),
no. 10, 3008–3015.

2. Türker Bıyıkoğlu, Slobodan K. Simić, and Zoran Stanić, Some notes on spectra of cographs, Ars
Combin. 100 (2011), 421–434.

3. Gerald L. Bradley, A primer of linear algebra, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.
4. Andries E. Brouwer and Willem H. Haemers, Spectra of graphs, Universitext, Springer, New York,

2012.
5. Gerard J. Chang, Liang-Hao Huang, and Hong-Gwa Yeh, On the rank of a cograph, Linear Algebra

Appl. 429 (2008), no. 2-3, 601–605.
6. D. G. Corneil, H. Lerchs, and L. Stewart Burlingham, Complement reducible graphs, Discrete Appl.

Math. 3 (1981), no. 3, 163–174.
7. D. G. Corneil, Y. Perl, and L. K. Stewart, A linear recognition algorithm for cographs, SIAM J.

Comput. 14 (1985), no. 4, 926–934.
8. Dragoš M. Cvetković, Michael Doob, and Horst Sachs, Spectra of graphs, third ed., Johann Am-

brosius Barth, Heidelberg, 1995, Theory and applications.
9. Renata R. Del-Vecchio, David P. Jacobs, Vilmar Trevisan, and Cybele T. M. Vinagre, Diagonal-

ization of generalized lollipop graphs, Proc. 8th Latin-American Algorithms, Graphs, and Opti-
mization Symposium, Electron. Notes Discrete Math., LAGOS 2015, Beberibe, to appear.

10. Michel Habib and Christophe Paul, A simple linear time algorithm for cograph recognition, Discrete
Appl. Math. 145 (2005), no. 2, 183–197.

11. David P. Jacobs and Vilmar Trevisan, Locating the eigenvalues of trees, Linear Algebra Appl. 434
(2011), no. 1, 81–88.

12. David P. Jacobs, Vilmar Trevisan, and Fernando Tura, Eigenvalue location in threshold graphs,
Linear Algebra Appl. 439 (2013), no. 10, 2762–2773.

13. , Eigenvalues and energy in threshold graphs, Linear Algebra Appl. 465 (2015), 412–425.
14. Ali Mohammadian and Vilmar Trevisan, Some spectral properties of cographs, Manuscript submit-

ted for publication, 2015.
15. Laura Patuzzi, Maria Aguieiras A. de Freitas, and Renata R. Del-Vecchio, Indices for special

classes of trees, Linear Algebra Appl. 442 (2014), 106–114.
16. Gordon F. Royle, The rank of a cograph, Electron. J. Combin. 10 (2003), Note 11, 7 pp. (elec-

tronic).
17. Irene Sciriha and Stephanie Farrugia, On the spectrum of threshold graphs, ISRN Discrete Math-

ematics 2011, 1–29.

School of Computing, Clemson University Clemson, SC 29634 USA

E-mail address : dpj@clemson.edu

Instituto de Matemática, UFRGS, 91509–900 Porto Alegre, RS, Brazil

E-mail address : trevisan@mat.ufrgs.br

Departamento de Matemática, UFSM, 97105–900 Santa Maria, RS, Brazil

E-mail address : ftura@smail.ufsm.br

	1. Introduction
	2. Cotrees and adjacency matrix
	3. Diagonalizing a row and column
	4. Diagonalizing A + xI
	5. Locating eigenvalues
	6. Inertia of cographs
	7. Equienergetic cographs
	References

