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Abstract

Let c denote a non-negative constant. Suppose that we are given an edge-weighted bipartite

graph G = (V,E) with its 2-layered drawing and a family X ⊆ E × E of intersecting edge

pairs. We consider the problem of finding a maximum weighted matching M∗ such that each

edge in M∗ intersects with at most c other edges in M∗, and that all edge crossings in M∗ are

contained in X . In the present paper, we propose polynomial-time algorithms for the cases of

c = 1 and 2. The time complexities of the algorithms are O
(
(k + m) logn + n

)
for c = 1 and

O
(
k3 + k2n + m(m + logn)

)
for c = 2, respectively, where n = |V |, m = |E| and k = |X |.

1 Introduction

Let G = (A,B,E) denote an edge-weighted bipartite graph, where {A,B} is the bipartition of

the entire vertex set V = A ∪ B and E ⊆ A × B is the edge set. Denoting by nA = |A| and

nB = |B|, we let A = {a1, . . . , anA
}, B = {b1, . . . , bnB

}, n = nA +nB and m = |E|. We abbreviate

(ai, bq) ∈ E into aibq for simplicity. The edge weight is given by a function w : E → R+. A

subset M ⊆ E of edges is called a matching if no two edges in M share an endpoint in common.

Denoted by w(M), the weight of a matching M is defined as the sum of edge weights over M , i.e.,

w(M) =
∑
e∈M w(e).

A 2-layered drawing [2, 18, 19] of a bipartite graphG is a 2D drawing ofG such that a1, . . . , anA
∈

A and b1, . . . , bnB
∈ B are put on two horizontal lines as distinct points from left to right, respec-

tively, and that every edge is drawn as a straight line segment between the endpoints. Two edges

e = aibq and e′ = ajbp make a crossing or intersect if either (i < j and p < q) or (i > j and p > q)

holds.

In our research, we study the problem of computing a maximum weighted (max-weighted for

short) matching under a constraint such that only a small number of edge crossings are admitted.

The constraint we take up here is that each matching edge may intersect with at most c other

matching edges, where c is a non-negative constant.

We formulate the problem in a more general setting. For e, e′ ∈ E, we call {e, e′} a crossing

pair if e and e′ make a crossing. Let XG denote the set of all crossing pairs in G. For input, we

accept a subset X ⊆ XG as well as G and w, where X is the set of crossing pairs that are admitted

to make crossings. Let us call X an admissible set and a crossing pair in X an admissible pair .

A matching M is called at-most-c-crossings-per-edge (c-CPE) if each edge in M makes at most c

crossings along with other edges in M and every crossing pair that appears in M belongs to X .

We formalize the max-weighted c-CPE matching problem (MW-c-CPEMP) as follows.
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Max-weighted c-CPE matching problem (MW-c-CPEMP)

Input: A bipartite graph G = (A,B,E) along with its 2-layered drawing, a positive edge

weight function w : E → R+, and an admissible set X ⊆ XG.

Output: A c-CPE matching M∗ ⊆ E that maximizes w(M∗).

For example, when X = XG, we are asked to compute a max-weighted c-CPE matching such

that any crossing pair may appear. When c = 0 or X = ∅, the problem asks for a max-weighted

non-crossing matching since no crossing pair is admitted.

In the present paper, we propose polynomial time algorithms for the MW-c-CPEMP with

c ∈ {1, 2}. Our approach reduces the MW-c-CPEMP to what we call the non-contact trapezoid

selection problem (NTSP). We then solve the reduced NTSP problem by an algorithm named

SelectTrape, which is an extension of the Malucelli et al.’s O(m log n)-time algorithm for the

MW-0-CPEMP [10]. The time complexities of the proposed algorithms are O
(
(k + m) log n + n

)
for c = 1 and O

(
k3 + k2n+m(m+ log n)

)
for c = 2 respectively, where k = |X |.

The paper is organized as follows. We describe our motivation and related work in Section 2.

In Section 3, we introduce the NTSP and present the algorithm SelectTrape. We then explain

how to reduce the MW-c-CPEMP to the NTSP in Section 4, followed by concluding remarks in

Section 5.

2 Background

2.1 Motivation

Plant chronobiologists would like to compare gene expression dynamics at the individual level (i.e.,

macro level) with the single cell level (i.e., micro level) along the same time axis. However, there

is a technically hard issue. Conventional microarray or RNA-sequencing can easily measure indi-

vidual gene expression patterns in actual time-series but have limited spatial resolutions. On the

other hand, single-cell transcriptome techniques have ultimate spatial resolution of gene expression

analysis, but most techniques are requiring destruction of cells to perform single cell transcriptome

and thus actual time-series analysis is impossible. Thus, to provide an analytic tool to achieve

higher spatiotemporal resolution was required.

As an alternative, single cell analysis often uses pseudo time-series reconstruction for reveal-

ing cell-state transition (e.g., [17, 23]). Pseudo time reconstruction is a process that orders cells

transcriptome on a hypothetical time axis, along which they show continuous changes in the tran-

scriptome. However, ordinal scale-based pseudo time-series will not provide any time information

so that it is impossible to analyze circadian rhythm, for example, in a single cell resolution.

We have hypothesized that timing of significant gene expression peak on the pseudo time-series

is comparable to that on the actual time-series. In our recent work [22], we formulated the problem

of estimating the actual time of cell expressions as the MW-0-CPEMP. We considered a 2-layered

drawing of a complete bipartite graph G = (A,B,E) such that A is the set of individual expression

records that are sorted in the actual-time order, and B is the set of cell expression records that

are sorted in a hypothetical order. We weighted each edge aibq ∈ E by a heuristic method that

evaluates how ai and bq are likely to match. Solving the MW-0-CPEMP on G, we estimated the
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actual time of a gene expression bq by the time of the individual expression ai to which bq is

matched. We imposed the non-crossing constraint to preserve the vertex orders. We observed that

the model can be a useful tool for actual-time estimation, compared with conventional actual-time

estimation methods.

However, the non-crossing constraint is not necessarily a hard constraint since cell expression

records may contain noise in practice. In pursuit of alternative models, we study the MW-c-

CPEMP for a constant c ≥ 1.

2.2 Related Work

The MW-0-CPEMP is an extension of the longest common subsequence problem on given two

sequences [5]. It has an application in the sequence alignment problem that appears in bioinfor-

matics [24] and in natural language processing [12].

Knauer et al. [9] studied the problem of finding a subgraph that has few edge crossings; given

a graph (not necessarily bipartite) and its geometric drawing (i.e., every vertex is specified by a

2D point, all edges are drawn as straight line segments, and no two edges overlap or intersect at a

vertex), we are asked to find a subgraph of a certain class that makes the minimum number of edge

crossings. They showed that, for spanning trees, s-t paths, cycles, matchings of a fixed size, and 1-

or 2-factors, it is NP-hard to approximate the minimum number of edge crossings within a factor

of z1−ε for any ε > 0, where z denotes the number of edge crossings in the given graph. They also

presented fixed-parameter algorithms to decide whether there is a non-crossing subgraph of one of

the above graph classes, where z is used as the parameter.

The non-crossing (or crossing-free) constraint has been considered for some problems of finding

an “optimal” subgraph. It is Malucelli et al. [10] who first studied the algorithmic aspect of

the MW-0-CPEMP explicitly. For the edge-unweighted case, they provided a polynomial-time

algorithm that runs in O(m log logn) time or in O(m + min{nµ,m logµ}) time, where µ denotes

the cardinality of a maximum 0-CPE matching. They also extended the algorithm to the edge-

weighted case, which yields an O(m log n) time algorithm. A bipartite graph is convex if, for every

ai ∈ A, aibp, aibq ∈ E (p ≤ q) implies aibp′ ∈ E for all p ≤ p′ ≤ q. For the MW-0-CPEMP in

edge-unweighted convex bipartite graphs, Chen et al. [4] presented an algorithm whose running

time is O(n log n). Carlsson et al. [3] considered the Euclidean non-crossing bipartite matching

problem, where each vertex is represented by a 2D point. The objective is to find a non-crossing

perfect matching whose longest edge is minimized. They showed that the problem is NP-hard

in general, but that it is polynomially-solvable in some special cases. More recently, Altinel et

al. [1] showed that the minimum cost non-crossing flow problem on a layered network is NP-hard.

Ruangwises and Itoh [15] studied the stable marriage problem under the non-crossing constraint,

showing that there exists a weakly stable non-crossing matching for any instance.

The conflict pair constraint (or negative disjunctive constraint) is a generalization of the non-

crossing constraint. Represented by a conflict graph Ĝ = (E, C), this constraint prohibits a solution

from including two edges e, e′ ∈ E such that {e, e′} ∈ C. The minimum cost perfect matching

problem with conflict pair constraints is strong NP-hard for a general graph G even if the conflict

graph Ĝ is a collection of single edges [6] and is NP-hard even for G that consists of 4-cycles [13]; it

turns out that the problem is NP-hard for a bipartite graph. For this type of constraint, there are

also studies on the transportation problem [20, 21], the minimum spanning tree problem [7, 16, 25],

and the max-flow problem [14].
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3 Non-contact Trapezoid Selection Problem

To solve the MW-c-CPEMP, we reduce the problem to what we call the non-contact trapezoid

selection problem (NTSP). In this section, we define the NTSP and propose an efficient algorithm

for it. The algorithm is an extension of the Malucelli et al.’s algorithm [10] for the MW-0-CPEMP.

3.1 Problem Description

Suppose two distinct horizontal lines on the 2D plane. LetA = {a1, . . . , anA
} andB = {b1, . . . , bnB

}
denote vertex sets. We put a1, . . . , anA

on the upper line from left to right, and b1, . . . , bnB
on the

lower line from left to right. We are given a collection T = {T1, . . . , Tz} of weighted trapezoids

such that each Ts ∈ T is given its weight, denoted by ω(Ts), and its two upper corners are among

A, whereas its two lower corners are among B. We denote by λA(Ts) (resp., γA(Ts)) the index i

(resp., j) of the upper-left corner ai (resp., upper-right corner aj). Similarly, we denote by λB(Ts)

(resp., γB(Ts)) the index p (resp., q) of the lower-left corner bp (resp., lower-right corner bq). We

admit Ts to be a triangle or a line segment. Then λA(Ts) ≤ γA(Ts) and λB(Ts) ≤ γB(Ts) hold.

Given (A,B, T , ω), the NTSP asks for a max-weighted subcollection S ⊆ T such that any

Ts, Tt ∈ S do not contact each other. Specifically, for any Ts, Tt ∈ S with Ts 6= Tt and λA(Ts) ≤
λA(Tt), it should hold that γA(Ts) < λA(Tt) and γB(Ts) < λB(Tt).

3.2 Partial Order Based Algorithm

We can solve the NTSP by using the notion of partial order. Let us introduce a binary relation ≺
on T ; For Ts, Tt ∈M, we write Ts ≺ Tt if γA(Ts) < λA(Tt) and γB(Ts) < λB(Tt). One easily sees

that ≺ is a (or an irreflexive) partial order on T , and thus (T ,≺) is a partially ordered set (poset).

We say that Ts and Tt are comparable if either Ts ≺ Tt or Tt ≺ Ts holds. For a subcollection

C ⊆ T , the poset (C,≺) (or C) is called a chain if every T, T ′ ∈ C are comparable. Obviously C is

a feasible solution of the NTSP iff it is a chain.

We represent the poset (T ,≺) by a directed acyclic graph (DAG). We denote the DAG by

D = (T ∪ {φ},A), where φ is the dummy node and A = Aφ ∪ A≺ is the arc set such that

Aφ = {(φ, T ′) : T ′ ∈ T },

A≺ = {(T, T ′) ∈ T × T : T ≺ T ′}.

For an arc (T, T ′) ∈ A, we define the distance to be ω(T ′). Any feasible solution of the NTSP is

represented by a path from φ. Then we can solve the NTSP by solving the longest path problem

on D. The time complexity of this algorithm is O(z2) because we can construct D and solve the

longest path problem in O(z2) time [5].

3.3 An Efficient Algorithm SelectTrape

We propose a faster algorithm whose time complexity is O(z log n + n). The proposed algorithm

is based on the Malucelli et al.’s algorithm [10] for the MW-0-CPEMP. The MW-0-CPEMP is

regarded as a special case of the NTSP such that every trapezoid T ∈ T is a line segment, that

is, λA(T ) = γA(T ) and λB(T ) = γB(T ). We extend the Malucelli et al.’s algorithm based on this

observation.

For two integers i, j with 1 ≤ i ≤ j ≤ nA, let us denote [i, j] = {i, . . . , j} and [i] = [1, i]. We

define A[i, j] , {ai, . . . , aj} and A[j] , A[1, j]. Similarly, for integers p, q with 1 ≤ p ≤ q ≤ nB , we
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Algorithm 1: An algorithm SelectTrape to compute the optimal value of a given NTSP

instance
Input : An instance (A,B, T , ω), where A = {a1, . . . , anA

}, B = {b1, . . . , bnB
},

T = {T1, . . . , Tz}, and ω : T → R+

Output: The max-weight of a subcollection S ⊆ T such that every Ms,Mt ∈ S (Ms 6= Mt)

do not contact each other

1 µ̂γ(q)← 0 for all q ∈ [nB ]

2 ω∗ ← −∞
3 for i = 1 to nA do

4 for Ts ∈ T such that λA(Ts) = i do

5 p← λB(Ts)

6 µT (Ts)← ω(Ts) + max{µ̂γ(q) : q ∈ [p− 1]}

7 for Tt ∈ T such that γA(Tt) = i do

8 q ← γB(Tt)

9 µ̂γ(q)← max{µ̂γ(q), µT (Tt)}
10 if µ̂γ(q) > ω∗ then ω∗ ← µ̂γ(q)

11 output ω∗

define a subset B[p, q] , {bp, . . . , bq} and B[q] , B[1, q]. We say that a trapezoid T is contained in

A[i, j] ∪ B[p, q] if all corners are contained in the vertex subset, that is, λA(T ), γA(T ) ∈ [i, j] and

λB(T ), γB(T ) ∈ [p, q].

For Ts ∈ T , we denote by µT (Ts) the max-weight of a feasible solution that has Ts as the

rightmost trapezoid (i.e., no T in the solution satisfies Ts ≺ T ). For (i, q) ∈ [nA] × [nB ], we

denote by µγ(i, q) the max-weight of a feasible solution such that the trapezoids are contained in

A[i]∪B[q] and the lower-right corner of the rightmost trapezoid is exactly bq. For convenience, we

let µγ(0, q) = 0 for all q ∈ [nB ]. The following lemmas are obvious by the definitions.

Lemma 1 Suppose that (A,B, T , ω) is given. For Ts ∈ T , we have

µT (Ts) = ω(Ts) + max
{
µγ(λA(Ts)− 1, q) : q ∈ [λB(Ts)− 1]

}
. (1)

Lemma 2 Suppose that (A,B, T , ω) is given. For (i, q) ∈ [nA]× [nB ], we have

µγ(i, q) = max
{
µγ(i− 1, q), max

Ts∈T : (γA(Ts),γB(Ts))=(i,q)
{µT (Ts)}

}
.

In Algorithm 1, we show an algorithm SelectTrape that computes the optimal weight of a

given NTSP instance. The algorithm repeats the outer for-loop for i = 1, . . . , nA. We do not store

µγ(i, q) for all i ∈ [nA], but only for the current i. It is stored as µ̂γ(q). When every T ∈ T is a

line segment (i.e., λA(T ) = γA(T ) and λB(T ) = γB(T )), the algorithm works exactly in the same

way as the Malucelli et al.’s algorithm.

Theorem 1 Given an instance (A,B, T , ω) of the NTSP, the algorithm SelectTrape in Algo-

rithm 1 computes the optimal weight in O(z log n+ n) time and in O(z + n) space, where z = |T |.

Proof: We show that µ̂γ(q) = µγ(i−1, q) holds at the beginning of the outer for-loop with respect

to i (i.e., line 3). When i = 1, we have µ̂γ(q) = 0 = µγ(0, q) by line 1. In line 6, we see that µT (Ts)
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Algorithm 2: An algorithm to construct an optimal solution of a given NTSP instance

Input : An instance (A,B, T , ω), where A = {a1, . . . , anA
}, B = {b1, . . . , bnB

},
T = {T1, . . . , Tz}, and ω : T → R+, the optimal weight ω∗ of the instance, and a

function µT : T → R+ the satisfies (1)

Output: An optimal solution

1 S ← ∅; α← ω∗; i← nA; q ← nB

2 while α > 0 do

3 for Tt ∈ T such that γA(Tt) = i and γB(Tt) ≤ q do

4 if µT (Tt) = α then

5 S ← S ∪ {Tt}; α← α− ω(Tt); i← λA(Tt); q ← λB(Tt)− 1

6 break the for-loop

7 i← i− 1

8 output S

is computed correctly for Ts ∈ T with λA(Ts) = i, due to µ̂γ(q) = µγ(i− 1, q) = µγ(λA(Ts)− 1, q)

(by induction) and Lemma 1. The second inner for-loop (i.e., line 7 to 10) computes the maximum

among µ̂γ(q) = µγ(i−1, q) and µT (Ts) for all Ts ∈ T with (γA(Ts), γB(Ts)) = (i, q), and substitutes

the maximum for µ̂γ(q), which is µγ(i, q) by Lemma 2. Upon completion of the algorithm, we have

ω∗ = maxq∈[nB ]{µ̂γ(q)} = maxq∈[nB ]{µγ(nA, q)}, which is the optimal value.

We analyze the computational complexity. Each trapezoid is searched as Ts in the first inner

for-loop exactly once, and as Tt in the second inner for-loop exactly once. We can access Ts ∈ T
with λA(Ts) = i in line 4 (and Tt ∈ T with γA(Tt) = i in line 7) in O(1) time by executing the

bucket sort on T beforehand. The bucket sort runs in O(z + n) time. We use priority search

tree [11] to store (q, µ̂γ(q)) for q ∈ [nB ], by which we can take the maximum in line 9 in O(log nB)

time. We see that the algorithm runs in O(z log n+n) time. We use O(z+n) space to store µT (Ts)

for Ts ∈ T and µ̂γ(q) for q ∈ [nB ]. 2

We explain how to construct an optimal solution S∗. For the rightmost trapezoid Tt in S∗, it

holds that µT (Tt) =
∑
T∈S∗ ω(T ) = ω∗. Similarly, for S = S∗\{Tt} and the rightmost trapezoid Tt′

in S, since S is a max-weighted feasible solution among those having Tt′ as the rightmost trapezoid,

it holds that µT (Tt′) =
∑
T∈S ω(T ) = ω∗ − ω(Tt). Note that, since Tt′ ≺ Tt, γA(Tt′) < λA(Tt)

and γB(Tt′) < λB(Tt) should hold. Then we can construct S∗ by Algorithm 2 after running

Algorithm 1. The running time is O(z + n).

4 Algorithm for the MW-c-CPEMP

In this section, we reduce the MW-c-CPEMP to the NTSP, which yields polynomial-time algo-

rithms for the cases of c = 1 and 2. Throughout this section, we assume that an instance (G,w,X )

of the MW-c-CPEMP is given for a non-negative constant c. We also assume that X is expressed

by a list of crossing pairs.

Before proceeding, let us mention that the problem is solvable in O∗(2k)-time as follows, where

k = |X | and O∗(·) is introduced to ignore polynomial factors; For each Y ⊆ X , let MY = {e ∈ E :

∃Y ∈ Y, e ∈ Y }. In other words, MY is the set of edges that appear in Y. We check whether

MY is a c-CPE matching, which can be done in polynomial time. If it is the case, we compute

a max-weighted non-crossing matching, say M ′Y , on the subgraph that is obtained by removing
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MY and the extreme points from G. The M ′Y can be computed in polynomial time by using the

Malucelli et al’s algorithm [10]. The max-weighted c-CPE matching MY ∪M ′Y over Y ⊆ X is an

optimal solution.

4.1 Notations

For V ′ ⊆ V , we define λA(V ′) to be the smallest index among the vertices in A ∩ V ′. For

convenience, we let λA(V ′) be zero when A ∩ V ′ = ∅. That is,

λA(V ′) ,

{
minai∈A∩V ′{i} if A ∩ V ′ 6= ∅,
0 otherwise.

Similarly, we define γA(V ′) to be the largest index among the vertices in A∩V ′, and for convenience,

it is set to nA + 1 if A ∩ V ′ = ∅. That is,

γA(V ′) ,

{
maxaj∈A∩V ′{j} if A ∩ V ′ 6= ∅,
nA + 1 otherwise.

Observe that, when A ∩ V ′ 6= ∅, λA(V ′) and γA(V ′) represent the indices of the leftmost and

rightmost vertices in A ∩ V ′, respectively. We define λB(V ′) and γB(V ′) in the analogous way.

For an edge subset E′ ⊆ E, we define V [E′] to be the set of extreme points of edges in E′.

For simplicity, We write λA(V [E′]) by λA(E′). The notations γA(E′), λB(E′) and γB(E′) are

analogous. When E′ is a singleton, that is, E′ = {e} for some edge e ∈ E, we write λA({e})
as λA(e). In this case, it holds that λA(e) = γA(e) and λB(e) = γB(e). We write an inequality

λA(e) ≤ λA(e′) as e ≤A e′. Using this notation, e and e′ intersect if (e <A e′ and e′ <B e) or

(e′ <A e and e <B e′).

Recall that XG denotes the set of all possible crossing pairs in G. Observe that each X ∈ XG is

a matching that consists of two intersecting edges. We may write X = {e, e′} in XG as an ordered

pair X = (e, e′) when we assume e <A e′ (and thus e′ <B e). For a matching M ⊆ E, we define

XG[M ] to be a set of crossing pairs that appear in M , that is,

XG[M ] ,
{
{e, e′} ∈ XG : e, e′ ∈M

}
.

A matching M is at-most-c-crossings-per-edge (c-CPE) if XG[M ] ⊆ X holds and each e ∈ M

appears in at most c crossing pairs in XG[M ]. Hence, M is 0-CPE iff XG[M ] = ∅.

4.2 Overview

Let M denote the family of all matchings in G. We regard any M ∈ M as a trapezoid TM that

has ai with i = λA(M) as the upper-left corner, aj with j = γA(M) as the upper-right corner, bp

with p = λB(M) as the lower-left corner, and bq with q = γB(M) as the lower-right corner, and

that has the weight ω(TM ) =
∑
e∈M w(e). Then (M,≺) is a poset, where ≺ is the partial order

on a trapezoid collection that we introduced in Section 3.2.

Lemma 3 For a 2-layered bipartite graph G, let M ∈ M. For any e, e′ ∈ M , exactly one of the

following holds:

(i) {e, e′} ∈ XG; and

(ii) e and e′ are comparable.
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Proof: When e = e′, (ii) holds. Suppose that e 6= e′. If e and e′ intersect, then we have

{e, e′} ∈ XG. Otherwise, either e ≺ e′ or e′ ≺ e should hold as they do not share endpoints in

common. 2

We introduce an auxiliary graph, which we denote by H = (E,XG). We call an edge in

the underlying graph G a node when we use it in the context of H. For M ∈ M, we denote

by H[M ] = (M,XG[M ]) the subgraph induced by M . Let CM denote the family of connected

components in H[M ].

Lemma 4 For a 2-layered bipartite graph G, let M ∈M. Then (CM ,≺) is a chain.

Proof: We show that any X,Y ∈ CM (X 6= Y ) are comparable. The X and Y are node sets of

connected components of H[M ]. For any eX ∈ X and eY ∈ Y , eX and eY are not adjacent. Then

{eX , eY } /∈ XG holds. By Lemma 3, eX and eY are comparable. We assume that eX ≺ eY without

loss of generality. Suppose that there is e′Y ∈ Y such that e′Y ≺ eX . Since H[Y ] is connected,

there is a path between eY and e′Y . The path should contain an edge e′′Y that intersects with eX

in G. Then {eX , e′′Y } ∈ XG, which contradicts that eX and e′′Y are not adjacent in H. We see that

eX ≺ eY ′ holds for any eX ∈ X and eY ′ ∈ Y and thus X ≺ Y holds. 2

Let Mc ⊆ M denote the family of all c-CPE matchings. For a c-CPE matching M ∈ Mc, it

holds that XG[M ] ⊆ X and the degree of any node in H[M ] is at most c. We call M connected if

H[M ] is connected. By Lemma 4, any M ∈Mc is partitioned into connected c-CPE matchings.

If we are given a family T of all connected c-CPE matchings (which are regarded as trapezoids),

then we can find a max-weighted c-CPE matching by solving the corresponding NTSP. The time

complexity of this algorithm is O(Γ + |T | log n + n) by Theorem 1, where Γ denotes the time

for constructing T . Then, if Γ and |T | are polynomially bounded, the total running time of the

algorithm is also polynomially bounded.

Let us consider how to construct T . For M ∈Mc, the degree of any node in H[M ] is at most

c. Then, when c = 0, we have T = E, that is, the collection of isolated nodes in H. Then |T | = m

holds. When c = 1, we have T = E ∪X , and thus |T | = m+ k holds. For c ∈ {0, 1}, the following

theorems are immediate.

Theorem 2 (Malucelli et al. [10]) Given an instance (G,w) of the MW-0-CPEMP, we can find

a max-weighted 0-CPE matching in O(m log n) time and in O(m+ n) space.

Theorem 3 Given an instance (G,w,X ) of the MW-1-CPEMP, we can find a max-weighted 1-

CPE matching in O
(
(k +m) log n+ n

)
time and in O(k +m+ n) space.

For Theorem 2, the complexity would be O(m log n+ n) if we apply Theorem 1 directly to the

analysis. However, the second term O(n) can be dropped since we do not need to execute the

bucket sort before running Algorithm 1. When c = 0, each trapezoid is an edge itself. The bucket

sort is not needed on condition that the graph is represented by an adjacency list.

4.3 Trapezoid Collection for c = 2

For a connected 2-CPE matching M , the auxiliary graph H[M ] is an isolated point, an edge, a

cycle or a path, and XG[M ] ⊆ X should hold. The next lemma tells that, when it is a cycle, the

length (which is |M |) is at most four. We call a cycle an `-cycle if the length is `.
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e1 e2 e3 e1
e2

e3
e4

(a) 3-cycle (b) 4-cycle

Figure 1: 2-CPE matchings that appear as cycles in the auxiliary graph H

Lemma 5 For a 2-layered bipartite graph G and an admissible set X , let M be a 2-CPE matching.

If H[M ] is a cycle, then |M | is at most four.

Proof: Each edge in M intersects with exactly two other edges in M . Hence |M | ≥ 3. Let

M = {e1, . . . , ed} (d ≥ 3). Without loss of generality, we suppose that e1 <A et holds for all

t ∈ [2, d], that e2 and e3 are two edges that intersect with e1, and that e2 <A e3 holds.

As shown in Figure 1 (a), if e2 and e3 intersect, then we see that any of {e1, e2, e3} intersects

with two others. Since H[M ] is a cycle, M = {e1, e2, e3} holds. Otherwise (i.e., if e2 and e3 do not

intersect), as shown in Figure 1 (b), we have e1 <A e2 <A e3 and e2 <B e3 <B e1. Since H[M ] is

a cycle, the edge e2 intersects with another edge in M , say e4. From the definition of e1, we have

e1 <A e4. Since e1 and e4 should not intersect, e2 <B e3 <B e1 <B e4 holds. Since e2 and e4

intersect, e1 <A e4 <A e2 <A e3 holds. We see that e3 intersects with e1 and e4, and e4 intersects

with e2 and e3. Any of {e1, . . . , e4} intersects with two others, and thus we have M = {e1, . . . , e4}.
2

Lemma 6 For a 2-layered bipartite graph G and an admissible set X , we can enumerate all 3-

and 4-cycles in O(k2 +m2) time and in O(m2) space.

Proof: First, we construct an m×m intersection matrix I such that each row/column corresponds

to an edge, and that each entry takes 1 (resp., 0) if the corresponding edge pair belongs to X (resp.,

does not belong to X ). We can construct I in O(m2) time and store it in O(m2) space.

We can enumerate all 4-cycles in O(k2) time as follows; for each X,Y ∈ X , let X = (e1, e3)

and Y = (e4, e2), where we assume e1 ≤A e4 without loss of generality. We check whether X ∪ Y
is a matching such that {e1, e2}, {e3, e4} ∈ X and {e1, e4}, {e2, e3} /∈ XG. If yes, then X ∪ Y is a

4-cycle (Figure 1 (b)). The check can be done in O(1) time since whether {e, e′} ∈ X or not can

be identified in O(1) time by using I. Enumeration of 3-cycles is analogous. 2

There may exist an exponentially large number of paths in H. However, for our purpose, it is

sufficient to take into account only O(k2) paths; Let M be a 2-CPE matching such that H[M ] is

a path. There are two nodes e, e′ ∈M whose degrees are one. This means that e and e′ appear in

exactly one admissible pair in XG[M ]. Suppose that e <A e′ holds without loss of generality. We

call X ∈ XG[M ] with e ∈ X (resp., e′ ∈ X) the leftmost (resp., rightmost) admissible pair of M .

For X,Y ∈ X , we call a 2-CPE matching M an (X,Y )-path if H[M ] is a path and X and Y are

the leftmost and rightmost admissible pairs of M , respectively. Among all (X,Y )-paths, we have

only to take a max-weighted one into account because all (X,Y )-paths form the same trapezoid

whose corners are ai, aj , bp, and bq, where i = λA(X), j = γA(Y ), p = λB(X), and q = γB(Y ).

We define the size of an (X,Y )-path M to be |M |, that is, the number of edges in the matching

M . In Figure 2 (a) and (b), we show a 2-CPE matching M = {e1, . . . , e8} that is an (X,Y )-path

9



e1
e2 e3

e4 e5 e6 e7

e8 e2 e1 e4 e3 e6 e5 e8 e7

(a) Upper (X,Y )-path (b) Lower (X,Y )-path

Figure 2: (X,Y )-paths in an underlying graph G; X = {e1, e2}, Y = {e7, e8}

e1 e2 e3 e4 e5 e6 e7 e8

Figure 3: Path H[M ] in the auxiliary graph H for (X,Y )-paths M in Figure 2

for X = {e1, e2} and Y = {e7, e8}. The size of M is eight. We also show the path H[M ] in the

auxiliary graph H in Figure 3.

For X,Y ∈ X , we denote by ρ∗(X,Y ) the max-weight of an (X,Y )-path. We also denote by

ρ∗odd(X,Y ) (resp., ρ∗even(X,Y )) the max-weight of an (X,Y )-path such that the size is odd (resp.,

even). We let ρ∗(X,Y ), ρ∗odd(X,Y ), and ρ∗even(X,Y ) be −∞ when no corresponding path exists.

Clearly we have

ρ∗(X,Y ) = max{ρ∗odd(X,Y ), ρ∗even(X,Y )}. (2)

If X = Y , then the path size is two and ρ∗(X,Y ) = w(X) holds. If X ∩ Y = {e}, then the path

size is three and ρ∗(X,Y ) = w(X) + w(Y ) − w(e) holds. If X ∩ Y = ∅, then the path size is no

less than four.

A max-weighted even-sized (X,Y )-path. We study how to obtain a max-weighted even-sized

(X,Y )-path for given X,Y ∈ X . We design an algorithm that computes ρ∗even(X,Y ) and constructs

the path. This strategy is then extended to the odd-size case.

For X,Y ∈ X , let X = (eX , e
′
X) and Y = (eY , e

′
Y ). We say that an ordered pair (X,Y ) is a

link if one of the followings holds:

(a) eX ≺ eY , eX ≺ e′Y , {e′X , eY } ∈ X , and e′X ≺ e′Y .

(b) eX ≺ eY , {eX , e′Y } ∈ X , e′X ≺ eY , and e′X ≺ e′Y .

If (X,Y ) is a link that satisfies the condition (a) (resp., (b)), then we call it an upper link (resp.,

a lower link). In Figure 2 (a), every ({et, et+1}, {et+2, et+3}) with t ∈ {1, 3, 5} is an upper link. In

Figure 2 (b), every ({et, et+1}, {et+2, et+3}) with t ∈ {1, 3, 5} is a lower link.

The following lemma gives a characterization of an even-sized path.

Lemma 7 For a 2-layered bipartite graph G and an admissible set X , let M ∈ M2 such that

M = {e1, . . . , e2d} for an integer d ≥ 2. If H[M ] is a path e1 → · · · → e2d such that e1 <A e2d,

then all of ({e2t−1, e2t}, {e2t+1, e2t+2}), t ∈ [d− 1], are either upper links or lower links.

Proof: For t ∈ [d], we denote Xt = {e2t−1, e2t}. For s, s′ ∈ [2d], if |s − s′| = 1, then {es, es′} ∈
XG[M ] holds, which means that two edges es and es′ intersect. Otherwise, since {es, es′} does not

belong to XG, they are comparable (Lemma 3). Among the edges in Xt and Xt+1, t ∈ [d−1], e2t ∈
Xt and e2t+1 ∈ Xt+1 intersect, and {e2t−1, e2t+1}, {e2t−1, e2t+2} and {e2t, e2t+2} are comparable
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pairs. We claim that e2t−1 ≺ e2t+1 should hold; if not so, let t′ ∈ [d − 1] denote the smallest

index such that e2t′+1 ≺ e2t′−1. This means e1 ≺ · · · ≺ e2t′−1. We have e1 ≺ e2d by assumption.

If e2d ≺ e2t′−1, there is an edge es (s ∈ [2, 2t′ − 2]) that intersects with e2d, which contradicts

that e2d intersects with only e2d−1. If e2t′−1 ≺ e2d, since e2t′+1 ≺ e2t′−1, there is an edge es

(s ∈ [2t′ + 2, 2d− 1]) that intersects with e2t′−1, which contradicts that e2t′−1 intersects with only

e2t′−2 and e2t′ . We can show that e2t−1 ≺ e2t+2 and e2t ≺ e2t+2 also hold in the same way.

Now we have two cases: e2t−1 <A e2t or e2t <A e2t−1. In the former case, (Xt, Xt+1) is an

upper link since the condition (a) holds by eX = e2t−1, e′X = e2t, eY = e2t+1 and e′Y = e2t+2. Then

e2t+1 <A e2t+2 also holds. For t ≤ d− 2, (Xt+1, Xt+2) is also an upper link since the condition (a)

holds by eX = e2t+1, e′X = e2t+2, eY = e2t+3 and e′Y = e2t+4. We see that, if (X1, X2) is an upper

link, then (Xt+1, Xt+2) is also an upper link for t ∈ [d− 2]. The latter case (i.e., e2t <A e2t−1) is

analogous. 2

For X,Y ∈ X , let M denote an even-sized (X,Y )-path such that the path H[M ] is given

by e1 → · · · → e2d and e1 <A e2d. We call M an upper (resp., a lower) (X,Y )-path if all of

({e2t−1, e2t}, {e2t+1, e2t+2}), t ∈ [d − 1], are upper (resp., lower) links. Figure 2 (a) and (b)

illustrate these two types of paths. For convenience, we regard that an (X,X)-path is an upper

path as well as a lower path. We denote by ρ∗↑even(X,Y ) (resp., ρ∗↓even(X,Y )) the max-weight of an

upper (resp., a lower) (X,Y )-path such that the size is even. We define ρ∗↑even(X,Y ) , −∞ (resp.,

ρ∗↓even(X,Y ) , −∞) if no such (X,Y )-path exists. Clearly we have

ρ∗even(X,Y ) = max{ρ∗↑even(X,Y ), ρ∗↓even(X,Y )}. (3)

Due to symmetry, we focus on even-sized upper paths. For X ∈ X , we define Next(X) ,

{Z ∈ X : (X,Z) is an upper link}. For Y ∈ X , we define Prev(Y ) , {Z ∈ X : Y ∈ Next(Z)}.
Moreover, for j ∈ [λA(Y ) + 1, γA(Y ) − 1], we define the subset Prev(Y ; j) = {Z ∈ Prev(Y ) :

γA(Z) = j}. For X,Y ∈ X with X 6= Y , an even-sized upper (X,Y )-path should contain Z ∈
Prev(Y ; j) for some j ∈ [λA(Y ) + 1, γA(Y ) − 1]. In other words, (Z, Y ) is the “last” upper link

on the (X,Y )-path. Then we define ρ∗↑even(X,Y ; j) to be the max-weight of an even-sized upper

(X,Y )-path such that last upper link on the path, say (Z, Y ), satisfies γA(Z) ∈ [λA(Y ) + 1, j].

Again, if no such path exists, we define ρ∗↑even(X,Y ; j) , −∞. Obviously we have

ρ∗↑even(X,Y ;λA(Y ) + 1) ≤ · · · ≤ ρ∗↑even(X,Y ; γA(Y )− 1) = ρ∗↑even(X,Y ).

Let L = (X ,L) denote a digraph such that the admissible set X is the node set and that

L = {(Z,Z ′) ∈ X × X : Z ′ ∈ Next(Z)} is the arc set. Since λA(Z) < λA(Z ′) holds for any

(Z,Z ′) ∈ L, no cycle exists in L, that is, L is a DAG. We define the subset XX ⊆ X to be

XX = {Y ∈ X : there is a path from X to Y in L}. Clearly, if there is an even-sized upper

(X,Y )-path, then Y ∈ XX holds, while the converse does not necessarily hold. For Y ∈ X \ XX ,

we have

ρ∗↑even(X,Y ;λA(Y ) + 1) = · · · = ρ∗↑even(X,Y ; γA(Y )− 1) = ρ∗↑even(X,Y ) = −∞.

For Y ∈ Next(X) ⊆ XX , the only even-sized upper (X,Y )-path is X ∪ Y . Then it holds that;

ρ∗↑even(X,Y ; j) =

{
−∞ if j ∈ [λA(Y ) + 1, γA(X)− 1],

w(X) + w(Y ) if j ∈ [γA(X), γA(Y )− 1].
(4)

The following lemma gives a characterization of ρ∗↑even(X,Y ; j) for Y ∈ XX \Next(X).
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λA(Y ) γA(Y )λA(Z) γA(Z)λA(Q) γA(Q)

Figure 4: Three admissible pairs Q (black), Z (gray), and Y (white) such that (Q,Z) and (Z, Y )

are upper links

Lemma 8 For a 2-layered edge-weighted bipartite graph G and an admissible set X , let X,Y ∈ X .

If Y ∈ XX \ ({X} ∪Next(X)), then for j = λA(Y ) + 1,

ρ∗↑even(X,Y ; j) =

 w(Y ) + max
Z∈Prev(Y ;j)

{
ρ∗↑even(X,Z;λA(Y )− 1)

}
if Prev(Y ; j) 6= ∅,

−∞ otherwise,
(5)

and for any j ∈ [λA(Y ) + 2, γA(Y )− 1],

ρ∗↑even(X,Y ; j) =

 max
{
ρ∗↑even(X,Y ; j − 1), w(Y ) + max

Z∈Prev(Y ;j)
{ρ∗↑even(X,Z;λA(Y )− 1)}

}
if Prev(Y ; j) 6= ∅,

ρ∗↑even(X,Y ; j − 1) otherwise.

(6)

Proof: Suppose that j = λA(Y )+1. If Prev(Y ; j) = ∅, then there is no even-sized upper (X,Y )-

path such that the last link (Z, Y ) satisfies γA(Z) = j. Hence we have ρ∗↑even(X,Y ; j) = −∞.

We consider the case of Prev(Y ; j) 6= ∅. Suppose that an even-sized upper (X,Y )-path exists.

There is Z ∈ Prev(Y ; j) such that (Z, Y ) is the last link. let M∗Z be a max-weighted (X,Y )-path

among those having (Z, Y ) as the last link. We partition M∗Z into M∗Z = MZ ∪ Y , where MZ is a

max-weighted even-sized upper (X,Z)-path. Since Z 6= X by Y ∈ XX \ ({X} ∪Next(X)), there

is Q ∈ X such that (Q,Z) is the last upper link of MZ (Figure 4). No edge in Q should intersect

with any edge in Y , and it holds that γA(Q) ∈ [λA(Z) + 1, λA(Y )− 1]. Hence we have

ρ∗↑even(X,Y ; j) = max
Z∈Prev(Y ;j)

{w(M∗Z)} = w(Y ) + max
Z∈Prev(Y ;j)

{w(MZ)}

and w(MZ) = ρ∗↑even(X,Z;λA(Y )−1). We see that Eq. (5) determines ρ∗↑even(X,Y ; j) correctly. If no

even-sized upper (X,Y )-path exists, then ρ∗↑even(X,Z;λ(Y )−1) = −∞ holds for all Z ∈ Prev(Y ; j)

by induction. We have ρ∗↑even(X,Y ; j) = −∞ by (5).

The proof for j ∈ [λA(Y ) + 2, γA(Y )− 1] is analogous. 2

By Lemma 8, for a given X ∈ X , we can compute ρ∗↑even(X,Y ) for all Y ∈ XX with Y 6= X

as follows. First, we compute the value ρ∗↑even(X,Y ; j) for all Y ∈ Next(X) and j ∈ [λA(Y ) +

1, γA(Y ) − 1] by (4). Note that ρ∗↑even(X,Y ) = ρ∗↑even(X,Y ; γA(Y ) − 1) holds. Then, if there is

Y ∈ XX such that ρ∗↑even(X,Y ) has not been determined and ρ∗↑even(X,Z) has been determined for

all Z ∈ Prev(Y ), we compute the value of ρ∗↑even(X,Y ; j) for all j ∈ [λA(Y ) + 1, γA(Y )− 1] by (5)

and (6).

We summarize the algorithm as EvenUpper in Algorithm 3. The binary flag δ(Y ) is introduced

to represent whether ρ∗↑even(X,Y ) has been determined or not.
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Algorithm 3: An algorithm EvenUpper to compute ρ∗↑even(X,Y ) for a given X ∈ X and all

Y ∈ XX \ {X}
Input : A 2-layered bipartite graph G, a non-empty admissible set X , and X ∈ X
Output: The max-weight ρ∗↑even(X,Y ) of an even-sized upper (X,Y )-path for all

Y ∈ XX \ {X}
1 for Y ∈ XX \ {X} do
2 if Y ∈ Next(X) then

3 Compute ρ∗↑even(X,Y ; j) by (4) for all j ∈ [λA(Y ) + 1, γA(Y )− 1]

4 δ(Y )← True

5 else δ(Y )← False

6 while there is Y ∈ XX \ {X} such that δ(Y ) = False and δ(Z) = True for all

Z ∈ Prev(Y ) do

7 Compute ρ∗↑even(X,Y ; j) by (5) and (6) for all j ∈ [λA(Y ) + 1, γA(Y )− 1]

8 δ(Y )← True

9 output ρ∗↑even(X,Y ; γA(Y )− 1) as ρ∗↑even(X,Y ) for all Y ∈ XX \ {X}

Lemma 9 For a 2-layered edge-weighted bipartite graph G, a non-empty admissible set X and an

admissible pair X ∈ X , the algorithm EvenUpper in Algorithm 3 computes ρ∗↑even(X,Y ) for all

Y ∈ XX \ {X} in O(k2 + kn) time and space.

Proof: For Y ∈ Next(X), ρ∗↑even(X,Y ; j) is computed in line 3. We see that the algorithm visits

all Y ∈ XX \ ({X} ∪Next(X)) by induction with respect to the length of the longest path from

X. When Y is visited, ρ∗↑even(X,Z;λA(Y ) − 1) is already computed for all Z ∈ Prev(Y ). Then

ρ∗↑even(X,Y ; j) is computed correctly in line 7 for all j ∈ [λA(Y ) + 1, γA(Y )− 1] (Lemma 8).

The algorithm EvenUpper can be implemented as follows. For preprocessing, we construct

the DAG L and the family XX , which takes O(k2) time. During the execution, we maintain all

Y that satisfy the condition of line 6 in a queue. Every time δ(Y ) is set to True (i.e., lines 4

and 8), we check whether each Y ′ ∈ Next(Y ) \Next(X) satisfies the condition of line 6; if yes,

we insert Y ′ to the queue. We can do the check over all Y ∈ XX \ {X} in O(k2) amortized time

since
∑
Y |Next(Y )| = O(k2). For Y ∈ XX \ ({X} ∪Next(X)) and j ∈ [λA(Y ) + 1, γA(Y ) − 1],

we can compute ρ∗↑even(X,Y ; j) in O(|Prev(X,Y ; j)|) time. We obtain ρ∗even(X,Y ) by computing

ρ∗↑even(X,Y ; j) for all j, which takes
∑
j O(|Prev(X,Y ; j)|) = O(|Prev(X,Y )|) time. Therefore,

we can compute ρ∗even(X,Y ) for all Y in O(k2 + kn) time since every Y is inserted to the queue

exactly once,
∑
Y O(|Prev(X,Y )|) = O(k2), and there are O(kn) entries for ρ∗even(X,Y ; j). For

the space complexity, we use O(k2) space for L, and O(kn) space for all ρ∗↑even(X,Y ; j) and δ(Y ).

2

The algorithm can be used to construct a max-weighted even-sized upper (X,Y )-path.

Lemma 10 For a 2-layered edge-weighted bipartite graph G, a non-empty admissible set X and

an admissible pair X ∈ X , we can construct a max-weighted even-sized upper (X,Y )-path for all

Y ∈ X in O(k2 + kn) time and space.

Proof: For Y ∈ XX \ ({X} ∪ Next(X)) and j ∈ [λA(Y ) + 1, γA(Y ) − 1], let us store the

maximizer Z = Z∗ in (5) and (6) as χ(Y ; j). Specifically, for j = λA(Y ) + 1, we let χ(Y ; j)← Z∗
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if Prev(Y ; j) 6= ∅, and otherwise, we let χ(Y ; j) ← Null. For other j, we let χ(Y ; j) ← Z∗ if

Prev(Y ; j) 6= ∅ and ρ∗↑even(X,Y ; j − 1) < w(Y ) + ρ∗↑even(X,Z∗;λA(Y ) − 1), and otherwise, we let

χ(Y ; j)← χ(Y ; j − 1). Observe that, if Z = χ(Y ; γA(Y )− 1) is not Null, then (Z, Y ) is the last

link of a max-weighted even-sized upper (X,Y )-path, and otherwise, no such path exists.

Upon completion of the algorithm, if Y = X, the only (X,Y )-path is X itself. If Y ∈ Next(X),

then X ∪ Y is the required path. If Y ∈ XX \ ({X} ∪ Next(X)) and ρ∗↑even(X,Y ) 6= −∞, then

we can construct a max-weighted even-sized upper (X,Y )-path by tracing χ(Y, γA(Y )− 1), which

requires O(n) time since the path size is at most n. For all the other Y , there is no even-sized upper

(X,Y )-path. The algorithm runs in O(k2 + kn) time and space (Lemma 9). The construction of

paths can be done in O(kn) time. We can store χ(Y ; j) in O(kn) space. 2

We can derive the similar results for even-sized lower paths due to symmetry.

Lemma 11 For a 2-layered edge-weighted bipartite graph G, a non-empty admissible set X and

an admissible pair X ∈ X , we can construct a max-weighted even-sized lower (X,Y )-path for all

Y ∈ X in O(k2 + kn) time and space.

Lemma 12 For a 2-layered edge-weighted bipartite graph G, a non-empty admissible set X , we

can compute a max-weighted even-sized (X,Y )-path and its weight ρ∗even(X,Y ) for all X,Y ∈ X
in O(k3 + k2n) time and in O(k2 + kn) space.

Proof: By Lemmas 9, 10 and 11, given X ∈ X , we can compute max-weighted even-sized upper

and lower (X,Y )-paths and their weights (i.e., ρ∗↑even(X,Y ) and ρ∗↓even(X,Y )) for all Y ∈ X in

O(k2 + kn) time and space. The path having a larger weight is the required path by (3). Since

|X | = k, we have the time complexity O(k(k2 + kn)) = O(k3 + k2n). 2

A max-weighted odd-sized (X,Y )-path. We compute a max-weighted odd-sized (X,Y )-path

for given X,Y ∈ X by extending the strategy for the even case that we explained so far.

We consider how to compute the max-weight ρ∗odd(X,Y ). Observe that the minimum odd size

of an (X,Y )-path is three. Let X = (eX , e
′
X) ∈ X and Z = (eZ , e

′
Z) ∈ X . We say that an ordered

pair (X,Z) is a wedge if one of the followings holds:

(a) eX = eZ and e′X ≺ e′Z .

(b) eX ≺ eZ and e′X = e′Z .

If (X,Z) is a wedge that satisfies (a) (resp., (b)), then we call it an upper wedge (resp., a lower

wedge). See Figure 5. Analogously to Lemma 7, we can show that any larger odd-sized path is

obtained by connecting upper links to an upper wedge or lower links to a lower wedge.

Then for X,Y ∈ X , we can compute ρ∗odd(X,Y ) in a similar fashion to the even case. We denote

by ρ∗↑odd(X,Y ) (resp., ρ∗↓odd(X,Y )) the max-weight of an odd-sized upper (resp., a lower) (X,Y )-

path. We define ρ∗↑odd(X,Y ) , −∞ (resp., ρ∗↓odd(X,Y ) , −∞) if no such path exists. Clearly we

have

ρ∗odd(X,Y ) = max{ρ∗↑odd(X,Y ), ρ∗↓odd(X,Y )}.

Let us focus on upper paths. The analysis is different from the even case in that wedges should

be taken into account in the current case. For X,Z ∈ X , we define NextX(Z) as follows;

NextX(Z) ,

{
{Y ∈ X : (Z, Y ) is an upper wedge} if Z = X,

{Y ∈ X : (Z, Y ) is an upper link} otherwise.
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eX = eZ
e′X e′Z eX eZ

e′X = e′Z

(a) An upper wedge followed by upper links (b) A lower wedge followed by lower links

Figure 5: Wedges (X,Y ) and odd-sized paths; a thick edge indicates the edge that is contained in

both X and Y

For Y ∈ X , we define PrevX(Y ) , {Z ∈ X : Y ∈ NextX(Z)} and for j ∈ [λA(Y )+1, γA(Y )−1],

PrevX(Y ; j) , {Z ∈ PrevX(Y ) : γA(Z) = j}. We define ρ∗↑odd(X,Y ; j) to be the max-weight of

an odd-sized upper (X,Y )-path such that γA(Z) ∈ [λA(Y ) + 1, j] holds, where Z is an admissible

pair on the path that satisfies Y ∈ NextX(Z). If no such path exists, we define ρ∗↑odd(X,Y ; j) ,

−∞.

We consider a digraph LX = (X ,LX) such that the node set is X and the arc set LX is defined

by LX = {(Z,Z ′) ∈ X × X : Z ′ ∈ NextX(Z)}. We see that LX is a DAG. Let YX = {Y ∈ X :

there is a path from X to Y in LX}. Whenever an odd-sized upper (X,Y )-path exists, Y ∈ YX
holds. Then we have ρ∗↑odd(X,Y ; j) = −∞ for Y ∈ X \ YX and j ∈ [λA(Y ) + 1, γA(Y )− 1], and for

Y ∈ NextX(X) ⊆ YX ,

ρ∗↑odd(X,Y ; j) =

{
−∞ if j ∈ [λA(Y ) + 1, γA(X)− 1],

w(X ∪ Y ) if j ∈ [γA(X), γA(Y )− 1].

For Y ∈ YX \ ({X} ∪NextX(X)), we have the following lemma, which is analogous to Lemma 8

in the even case.

Lemma 13 For a 2-layered edge-weighted bipartite graph G and an admissible set X , let X,Y ∈ X .

If Y ∈ YX \ ({X} ∪NextX(X)), then for j = λA(Y ) + 1,

ρ∗↑odd(X,Y ; j) =

 w(Y ) + max
Z∈PrevX(Y ;j)

{
ρ∗↑odd(X,Z;λA(Y )− 1)

}
if PrevX(Y ; j) 6= ∅,

−∞ otherwise,

and for any j ∈ [λA(Y ) + 2, γA(Y )− 1],

ρ∗↑odd(X,Y ; j) =

 max
{
ρ∗↑odd(X,Y ; j − 1), w(Y ) + max

Z∈PrevX(Y ;j)
{ρ∗↑odd(X,Z;λA(Y )− 1)}

}
if PrevX(Y ; j) 6= ∅,

ρ∗↑odd(X,Y ; j − 1) otherwise.

Given X, we can compute ρ∗↑odd(X,Y ) for all Y ∈ X in O(k2 + kn) time and space, as we have

done for the even case. Consequently, we have the following lemma.

Lemma 14 For a 2-layered edge-weighted bipartite graph G, a non-empty admissible set X , we

can compute a max-weighted odd-sized (X,Y )-path and its weight ρ∗odd(X,Y ) for all X,Y ∈ X in

O(k3 + k2n) time and in O(k2 + kn) space.

Construction of T . Now we are ready to explain how to construct the collection T of trapezoids.

Lemma 15 Given an instance (G,w,X ) of the MW-2-CPEMP, we can construct a collection T
of weighted trapezoids in O(k3 + k2n + m2) time and in O(k2 + kn + m2) space such that any

optimal solution in the corresponding NTSP is also optimal for (G,w,X ).
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Proof: It suffices to collect all trapezoids that correspond to 2-CPE matchings M such that

H[M ] (in the auxiliary graph H) is an isolated point, a cycle or a max-weighted (X,Y )-path

for some X,Y ∈ X . It takes O(m) time for isolated points, O(k2 + m2) time for cycles by

Lemma 6, and O(k3 + k2n) time for max-weighted (X,Y )-paths by Lemmas 12 and 14, where

ρ∗(X,Y ) = max{ρ∗odd(X,Y ), ρ∗even(X,Y )} holds by (2). The space complexity is immediate from

these lemmas. 2

This lemma tells Γ = O(k3 + k2n + m2). By Theorem 1 and |T | = O(k2 + m), we have the

following theorem immediately.

Theorem 4 Given an instance (G,w,X ) of the MW-2-CPEMP, we can find a max-weighted 2-

CPE matching in O
(
k3 + k2n+m(m+ log n)

)
time and in O(k2 + kn+m2) space.

5 Concluding Remarks

In the present paper, we have considered the max-weighted c-CPE matching problem (MW-c-

CPEMP). Given (G,w,X ), the problem asks to find a max-weighted matching M∗ such that each

edge in M∗ intersects with at most c other edges in M∗, and that all edge crossings are contained

in X . The MW-c-CPEMP is regarded as a relaxation of the MW-0-CPEMP (i.e., max-weighted

crossing-free matching problem). The degree of relaxation is represented by the constant c. Besides

chronobiology, we believe that the MW-c-CPEMP should have many possibilities for application

and extension.

Our approach reduces the MW-c-CPEMP to the non-contact trapezoid selection problem

(NTSP). Given (T , ω), the NTSP asks to find a max-weighted subcollection of trapezoids such

that no two of them contact each other. We propose an algorithm for the NTSP that runs in

O(|T | log n+n) time (Theorem 1). The proposed algorithm is an extension of the Malucelli et al.’s

algorithm for the MW-0-CPEMP [10]. We construct an NTSP instance (T , ω) such that any opti-

mal solution for (T , ω) is also optimal for the underlying MW-c-CPEMP instance. We explained

how to construct such an NTSP instance and showed that the problem is polynomially solvable

for c ≤ 2 (Theorems 2 to 4). We leave analyses for the cases of c ≥ 3 open.

The constraint that we have treated in the paper, at-most-c-crossings-per-edge, depends on the

given drawing of the graph. We dealt with 2-layered drawing on parallel straight lines, one of the

conventional drawing layouts, but the problem can be extended to others; e.g., 2-layered drawing

on curves [8], 2-layered radial drawing [2], 2D geometry drawing [3]. Observe that the drawing

implicitly specifies a conflict list of edge pairs that should not be included in a solution at the same

time. Like the recent studies mentioned in Section 2.2, it would be interesting to explore problems

of finding an “optimal” subgraph under the at-most-c-conflict constraint, where a conflict list is

given as a part of the input instead of a graph drawing.
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