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Abstract

A coloring of a graph G is a map f : V (G) → Z
+ such that f(v) 6= f(w) for all vw ∈ E(G).

A coloring f is an odd-sum coloring if
∑

w∈N [v] f(w) is odd, for each vertex v ∈ V (G). The

odd-sum chromatic number of a graph G, denoted χos(G), is the minimum number of colors
used (that is, the minimum size of the range) in an odd-sum coloring of G. Caro, Petruševski,
and Škrekovski showed, among other results, that χos(G) is well-defined for every finite graph
G and, in fact, χos(G) ≤ 2χ(G). Thus, χos(G) ≤ 8 for every planar graph G (by the 4 Color
Theorem), χos(G) ≤ 6 for every triangle-free planar graph G (by Grötzsch’s Theorem), and
χos(G) ≤ 4 for every bipartite graph.

Caro et al. asked, for every even ∆ ≥ 4, whether there exists g∆ such that if G is planar
with maximum degree ∆ and girth at least g∆ then χos(G) ≤ 5. They also asked, for every even
∆ ≥ 4, whether there exists g∆ such that if G is planar and bipartite with maximum degree ∆
and girth at least g∆ then χos(G) ≤ 3. We answer both questions negatively. We also refute a
conjecture they made, resolve one further problem they posed, and make progress on another.

1 Introduction

A coloring of a graph G is a map f : V (G) → Z
+ such that f(v) 6= f(w) for all vw ∈ E(G). In

this note, we consider odd-sum coloring, which was recently introduced by Caro, Petruševski,
and Škrekovski [1]. Specifically, we answer two of their questions, refute one of their conjectures,
solve one of their problems, and make progress on another of their problems.

A coloring f is an odd-sum coloring odd-sum coloringif
∑

w∈N [v] f(w) is odd, for each vertex v ∈ V (G). The

odd-sum chromatic number of a graph G, denoted χos(G) χos(G), is the minimum number of colors
used (that is, the minimum size of the range) in an odd-sum coloring of G. Caro, Petruševski,
and Škrekovski showed (among other results) that χos(G) is well-defined for every finite graph
G and, in fact, χos(G) ≤ 2χ(G). Thus, χos(G) ≤ 8 for every planar graph G (by the 4 Color
Theorem), χos(G) ≤ 6 for every triangle-free planar graph G (by Grötzsch’s Theorem), and
χos(G) ≤ 4 for every bipartite graph.

Caro et al. asked, for every even ∆ ≥ 4, whether there exists g∆ such that if G is planar
with maximum degree ∆ and girth at least g∆ then χos(G) ≤ 5. They also asked, for every even
∆ ≥ 4, whether there exists g∆ such that if G is planar and bipartite with maximum degree ∆
and girth at least g∆ then χos(G) ≤ 3. In Sections 2 and 3, we answer both questions negatively.

Caro et al. also conjectured that every planar graph G with maximum degree at most 5
has χos(G) ≤ 7. In Section 4 we construct infinitely many counterexamples to this conjecture.
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Further, they asked about the maximum odd-sum chromatic number of a graph embeddable in
each orientable surface, which we consider in Section 5. Finally, they also asked for a planar
graph G with χos(G) = 8 and at least two odd-dominating sets odd-dominating

sets
(dominating sets S such that

|N [v]∩S| is odd, for every vertex v); we provide numerous examples of such graphs in Section 6.
For completeness, we include a few standard definitions. The girth girthof a graph is the length

of its shortest cycle. The chromatic number of a graph G, denoted χ(G) χ(G), is the fewest colors
that allow a proper coloring of G. The neighborhood N(v) of each vertex v is defined by
N(v) := {x : vx ∈ E(G)} and N [v] N [v]:= N(v) ∪ v.

2 Planar Graphs of High Girth

Caro et al. [1] showed that χos(G) ≤ 2χ(G) for every graph G. So, every triangle-free planar
graph G, by Grötzsch’s Theorem, satisfies χos(G) ≤ 6. For each even ∆ ≥ 4, they asked [1,
Problem 6.7] whether there exists g∆ such that every planar graph1 with maximum degree ∆
and girth at least g∆ satisfies χos(G) ≤ 5. In this section, we answer their question negatively.

Theorem 1. Fix integers k and ∆. If k ≥ 1, ∆ ≥ 4, and ∆ is even, then there exists a planar

graph J∆,k with maximum degree ∆ and girth at least k such that χos(J∆,k) = 6.

To prove Theorem 1, we use Proposition A. (For convenience, we reproduce the proof.)
Recall, for a graph G, that D ⊆ V (G) is odd-dominating odd-dominatingif |D ∩N [x]| is odd for all x ∈ V (G).

Proposition A ([1]). For every graph G, we have χos(G) = minD {χ(G[D]) + χ(G[V (G) \D])},
where D ranges over all odd-dominating sets of G. In particular, χos(G) ≤ 2χ(G).

Proof. The second statement follows from the first, since G[D] and G[V (G) \ D] are both
subgraphs of G, and thus each has chromatic number at most χ(G). Now we prove the first.

Given any odd-dominating set D of G, we can color G[D] with colors 1, 3, . . . and color
G[V (G) \D] with colors 2, 4, . . . Thus, χos(G) is at most this minimum. Conversely, given any
odd-sum coloring ϕ, the vertices with odd colors form an odd-dominating set D, and ϕ uses at
least χ(G[D]) colors on D and at least χ(G[V (G)\D]) colors on V (G)\D. Thus, χos is at least
this minimum.

Figure 1: Left: G1,1,1 has 1 path of length 3(1)+1, top; and 1 path of length 3(1)+2, bottom.
Right: G1,3,1 has 1 path of length 3(1) + 1, top; and 3 paths of length 3(1) + 2, bottom.

To prove Theorem 1, we also use the following lemma.

Lemma 1. Fix positive integers a, b, k. a, b, k, v, wForm Ga,b,k

Ga,b,k

from two vertices v and w by adding b v, w-
paths of lengths 3k+2 and adding a v, w-paths of length 3k+1, with all paths internally disjoint;

see Figure 1. Let V2 := V (Ga,b,k) \ {v, w}. If D ⊆ V2 ∪ {v, w} Dsuch that |D ∩N [x]| ≡ 1 mod 2
for all x ∈ V2, and a and b are odd, then also |D ∩N [x]| ≡ 1 mod 2 for all x ∈ {v, w}.

Proof. We will show that for each possibility for D ∩ {v, w}, there is exactly one possibility for
D restricted to a v, w-path of length 3k + 1, and exactly one possibility for D restricted to a

1They also posed the analogous question for outerplanar graphs, which we do not consider.
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Figure 2: In each path, v is the left endpoint and w is the right endpoint (shown as squares).
Each row shows two paths that would have their endpoints identified in a copy of Ga,b,k.
Left: A path of length 1 mod 3, and the unique possibility for an odd-dominating set, given
each intersection with the path’s endpoints. Right: A path of length 2 mod 3, and the unique
possibility for an odd-dominating set, given each intersection with the path’s endpoints.

v, w-path of length 3k+2. Let P 1 and P 2
P 1, P 2denote, respectively, v, w-paths of lengths 3k+1 and

3k + 2. Note that if {v, w} 6⊆ D, then we must have |D ∩N [x]| = 1 for each internal vertex x
of P 1 ∪ P 2. (We can prove this formally by induction on the distance of x from one of v and w
that is absent from D.) Suppose v, w /∈ D. Now D must contain the second internal vertex of
P 1 (from either end) and every third vertex thereafter; see the top row of Figure 2. Similarly,
D must contain the first internal vertex of P 2 and every third vertex therafter. Suppose instead
(by symmetry) that v ∈ D and w /∈ D; see the second row of Figure 2. Now D must contain
the third internal vertices (away from v) of both P 1 and P 2, and every third vertex thereafter.
Finally, suppose that v, w ∈ D; see the bottom row of Figure 2. It is straightforward to check
that D must contain all vertices of P 1 ∪ P 2.

Now, to verify the lemma, it suffices to consider the case that a = b = 1, since every pair of
paths of the same length will make the same contribution to |D ∩N [x]| for each x ∈ {v, w} (so,
when we delete a pair of paths with the same length, these numbers are unchanged modulo 2).
To complete the proof, it suffices to check the three cases shown in Figure 2: |D ∩ {v, w}| = 0
(top), |D ∩ {v, w}| = 1 (middle), and |D ∩ {v, w}| = 2 (bottom), for both paths with length
1 mod 3 (left) and paths with length 2 mod 3 (right).

Proof of Theorem 1. Fix k and ∆ satisfying the hypotheses of the theorem. Since ∆ ≥ 4 and
∆ is even, there exist odd positive integers a1, a2, b1, b2 a1, a2, b1, b2such that ∆ = a1 + a2 + b1 + b2. Form
H∆,k H∆,kfrom copies of Ga1,b1,k and Ga2,b2,k (as in Lemma 1) by identifying the copies of v in these
two graphs. Form H ′

∆,k H′

∆,k
by adding a leaf adjacent to each copy of w in H∆,k. Call one leaf the

left leaf and the other the right leaf (for concreteness, assume the neighbor of the right leaf has
degree at least that of the neighbor of the left leaf).

Figure 3: J6,1 has ∆ = 6 and girth 4(1) + 1. Its unique odd-dominating set is shown in gray.
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Form J∆,k from 4k+1 copies of H ′
∆,k by adding a cycle through all the left leaves and a cycle

through all the right leaves. (We assume these cycles visit the copies of H ′
∆,k in the same order,

which is needed to ensure planarity of J∆,k.) Clearly, J∆,k is a planar graph with maximum
degree ∆ and girth 4k+1. We will show that χos(J∆,k) ≥ 6 (for all integers k and ∆ satisfying
the hypotheses). In fact, we will show that J∆,k has a unique odd-dominating set D consisting
of all vertices appearing in copies of H∆,k. Thus, χ(J∆,k[D]) = 3 and χ(J∆,k[V (J∆,k) \D]) = 3,
so χos(J∆,k) = 3 + 3 = 6; see Proposition A.

Consider an odd-dominating set D for J∆,k. Let D
′ denote the restriction of D to some copy

of Gai,bi,k for some i ∈ {1, 2}. Clearly, D′ satisfies the hypotheses of Lemma 1, so |D′∩N [w]| ≡
1 mod 2. Since w has only one neighbor, call it y, outside of Gai,bi,k, we conclude that y /∈ D.
Thus, no vertex that was a left leaf or right leaf in a copy of H ′

∆,k is in D. But this implies
that every copy of w is in D. Suppose some copy of v is not in D. Let D1 and D2 denote
the restrictions of D to the copies of Ga1,b1,k and Ga2,b2,k containing v. By Lemma 1, we have
|N [v] ∩ D1| ≡ |N [v] ∩ D2| ≡ 1 mod 2. Since ((N [v] ∩ D1) ∩ (N [v] ∩ D2)) = {v} ∩ D = ∅, we
have |N [v]∩D| ≡ 1+ 1 ≡ 0 mod 2, a contradiction. Thus, v ∈ D, as claimed. Finally, it is easy
to check, for each i ∈ {1, 2}, that if |N [x] ∩ D| ≡ 1 mod 2 for all x ∈ V (Gai,bi,k) \ {v, w}, and
v, w ∈ D, then V (Gai,bi,k) ⊆ D; see the bottom row of Figure 2. Thus, D consists precisely of
all vertices that are neither right nor left leaves. Since the left leaves induce an odd cycle (as do
the right leaves), and each copy of Ga1,b1,k has a cycle of length 6k + 3, the theorem holds.

In Theorem 1 we require that ∆ is even, because that is what Caro et al. asked for. But it
is easy to extend to the case when ∆ is odd. We now pick odd a and b summing to ∆− 1, and
again start with Ga,b,k. Rather than combining two copies of Ga,b,k, we simply add a right leaf
adjacent to w and a left leaf adjacent to v; call the resulting graph G′

a,b,k. The rest of the proof
is nearly identical, with G′

a,b,k in place of H ′
a,b,k. But now the resulting graph has maximum

degree a+ b+ 1 = ∆.

3 Planar Bipartite Graphs of High Girth

By Proposition A below, every graph G satisfies χos(G) ≤ 2χ(G). So every bipartite G satisfies
χos(G) ≤ 4. Caro et al. asked [1, Problem 6.8], for each even ∆ ≥ 4, whether there exists g∆
such that every planar bipartite graph G with maximum degree ∆ and girth at least g∆ satisfies
χos(G) ≤ 3. We answer this question negatively. The main result of this section is the following.

Theorem 2. For every even integer ∆, with ∆ ≥ 4, and every positive integer g there exists a

bipartite planar graph G∆,g with maximum degree ∆ and girth at least g such that χos(G∆,g) = 4.

Proof. We begin with a sketch of the proof. We start with an arbitrary planar graph G (with
maximum degree even and at most ∆) such that, for every odd-dominating set D, we have
χ(G[D]) ≥ 2 and χ(G[V (G) \ D]) ≥ 2. For example, G could be the graph constructed by
Theorem 1. We first add some paths (each with one endpoint at a common vertex of maximum
degree) to increase the maximum degree to ∆. Next, we subdivide some edges to ensure that
the resulting graph both (a) has high girth and (b) is bipartite.

The intuition motivating the first step is that, when we add two paths of a common length
(equal to 1 mod 3 or equal to 2 mod 3) between two vertices, any odd-dominating set D in the
resulting graph also restricts to an odd-dominating set in the original graph. This is because
the intersections of D with the vertices of the two paths must look identical, so each endpoint
of the paths has the same number of neighbors in D on each path.

The intuition behind the second step (subdividing each edge, possibly multiple times) is
that subdividing an edge 3 times does not change whether or not a given subset of the original
vertices can be extended to an odd-dominating set. Essentially, an odd dominating set for the
original graph extends to an odd dominating set for the new graph in exactly one way. So,
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starting from our initial graph G we can simply subdivide each edge 6s + 3 times, for some
choice of s large enough. This will ensure that (a) the new graph has high girth and (b) the
new graph is bipartite; in fact, each vertex of the original graph is in the same part. Finally, we
will need to check that these subdivisions preserve the property that, for every odd-dominating
set D, we have χ(G[D]) ≥ 2 and χ(G[V (G) \ D]) ≥ 2. Thus, by Proposition A we get that
χos ≥ 2 + 2 = 4. Now we provide the details.

Let G be a graph as in the first paragraph; for example, take G to be any graph constructed
as in the proof of Theorem 1. Fix a vertex r with maximum degree in G; recall that d(r) is even.
Pick a neighbor r′ of r and add ∆ − d(r) r, r′-paths, each of length 4 (that is, having 3 new
internal vertices); in fact, we show how to add two paths, and repeat that process (∆− d(r))/2
times. Call the resulting graph G′, and note that G′ has maximum degree ∆.

Now suppose that we are given a path P with length not divisible by 3, and call its endpoints
v and w. v, wFor each possible specified intersection D∩{v, w} there is precisely one set D ⊆ V (P )
such that |D ∩ N [x]| ≡ 1 mod 2 for every vertex x ∈ V (P ) \ {v, w}. (We showed this in the
first paragraph proving Lemma 1; see Figure 2.) Suppose that P 1 and P 2 are two internally-
disjoint v, w-paths of the same length (not divisible by 3). Now if we prescribe the intersection
D ∩ {v, w}, then there is precisely one set D such that |D ∩ N [x]| ≡ 1 mod 2 for every x ∈
(V (P 1)∪ V (P 2)) \ {v, w}. Further, |N [x]∩D ∩ V (P 1)| = |N [x]∩D ∩ V (P 2)| for all x ∈ {v, w}.
Suppose that we are given a graph G, pick arbitrary vertices v, w ∈ V (G), and form G′

G′from G
by adding two (internally disjoint) v, w-paths of equal length, not divisible by 3; call the paths
P 1 and P 2 P 1, P 2. If D′ is an odd-dominating set in G′, then D′ \ ((V (P 1) ∪ V (P 2)) \ {v, w}) is an
odd-dominating set in G. (In fact, we can also extend every odd-dominating set in G to an
odd-dominating set in G′, but we will not need this fact for our proof.) This formalizes and
proves the first step in our outline.

↔
↔
↔

Figure 4: Left: The possibilities that 0, 1, or 2 endpoints of an edge vw appear in an odd-
dominating set (up to swapping the two endpoints) in a graph G′. Right: For each possibility
on the left, there is a unique way to extend an odd-dominating set D′ in G′ to an odd-
dominating set D′′ in the graph G′′, formed from G′ by subdividing the edge 3 times.

Now we consider the second step. Suppose that we form G′′
G′′from G′ by subdividing a single

edge vw 3 times; denote the set of three new vertices by V2 V2. We show that if χ(G′[D′]) ≥ 2
and χ(G′[V (G′) \D′]) ≥ 2 for every odd-dominating set D′ in G′, then also χ(G′′[D′′]) ≥ 2 and
χ(G′′[V (G′′) \D′′]) ≥ 2 for every odd-dominating set D′′ D′′of G′′. To do this, we first show that
if we start with D′′ in G′′ and contract the three edges newly added to G′, then we form a set
D′ that is an odd-dominating set in G′. To see this, we note that either {v, w} ∪ V2 ⊆ D′′ or
else |V2 ∩D′′| = 1. Figure 4 shows all possible cases (up to swapping the names v and w, when
|D′′ ∩ {v, w}| = 1). Finally, we must show that if neither D′ nor V (G′) \D′ is independent in
G′, then neither D′′ nor V (G′′)\D′′ is independent in G′′. But this also follows from inspecting
Figure 4 (bottom and top). If v, w ∈ D′, then we have {v, w}∪V2 ⊆ D′′. And if v, w /∈ D′, then
we have |({v, w}∪V2)\D′′| = 4. All other edges induced byD′ and V (G′)\D′ are preserved when
transformingG′ toG′′. By induction on the number of times that we thrice subdivide an edge, we
conclude that every graph G′′ formed from G′ by repeated application of this procedure has the
property that, for every odd-dominating setD′′ inG′′, neitherD′′ nor V (G′′)\D′′ is independent.
So Proposition A implies that χos(G

′′) = minD′′{χ(G′′[D′′])+χ(G′′[V (G′′) \D′′])} ≥ 2+2 = 4.
If we subdivide to ensure that G′′ is bipartite, then the inequality must hold with equality.
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4 Planar Graphs with Odd-sum Chromatic Number 8 and

Maximum Degree 5

Caro et al. conjectured [1, Conjecture 6.6] that every planar graph with maximum degree at
most 5 has odd-sum chromatic number at most 7. In this section, we disprove their conjecture.

Theorem 3. There exist 2-connected planar graphs G with maximum degree 5 and χos(G) = 8.

To prove Theorem 3, the following easy observation is helpful.

Observation 2. Fix a graph G. If there exist vertices v, w, x ∈ V (G) such that x /∈ N [v] and
N [w] = N [v] ∪ {x}, then x cannot appear in any odd-dominating set for G.

Proof. Suppose, to the contrary, that D is an odd-dominating set for G and x ∈ D. Now
|N [w] ∩D| = 1 + |N [v] ∩D| 6≡ |N [v] ∩D| mod 2, a contradiction. Thus, x /∈ D.

Proof of Theorem 3. Begin with a copy ofK4 induced by vertices v1, v2, v3, v4. FormH Hfrom this
K4 by adding four new vertices w12, w34, x1, x3 with NH(w12) = {v1, v2}, NH(w34) = {v3, v4},
NH(x1) = {v1}, and NH(x3) = {v3}. Note that H is induced by the 8 leftmost vertices in
Figure 5. (Here v1 is at the top of the K4 and v3 is at the bottom right.2) We first show that
H has a unique odd-dominating set {v1, v2, v3, v4, w12, w34}. It is easy to check that these 6
vertices form an odd-dominating set of H . Thus, we must only verify uniqueness.

Figure 5: G is a planar graph with maximum degree 5 and χos(G) = 8. Shaded vertices
denote the unique odd-dominating set of G. Bold edges denote 4 induced “extended bowties”
and an induced subgraph called H (left).

Let DH be an arbitrary odd-dominating set for H . By Observation 2, we note that x1, x3 /∈
DH . This implies that v1, v3 ∈ DH . Since {v1, v3} is not an odd-dominating set, DH must
contain additional vertices; in fact DH must contain v2 or v4, or both. By symmetry, assume
that v2 ∈ DH . This implies that w12 ∈ DH , which, in turn, implies that v4 ∈ DH ; finally,
v4 ∈ DH implies that w34 ∈ DH , as claimed.

By an extended bowtie extended bowtiewe mean a 7-vertex graph formed from two copies of K3 by identifying
a vertex in each copy, and then adding leaves adjacent to two non-adjacent vertices in the
resulting 5-vertex graph. We call the vertices of degree 1 in an extended bowtie its leaves. Note
that the graph G, shown in Figure 5 contains 4 induced extended bowties, with edges in bold.
Consider an odd-dominating set D for the graph G shown in Figure 5. By Observation 2, each
leaf of an extended bowtie is omitted from D. Since 4 of these leaves induce K4, we see that
χ(G[V (G)\D]) = 4. (It is true, although not needed for the proof, that in each extended bowtie
all vertices but the leaves are contained in D.) Let ∂H denote the set of 2 vertices outside H
with neighbors in H . Since each vertex of ∂H is omitted from D, our previous analysis for D∩H
still applies. Thus, K4 ⊆ G[D] and K4 ⊆ G[V (G) \D]. So χos(G) = 8, by Proposition A.

2Since H has an automorphism swapping v1 and v3, we can also take v1 and v3 to be interchanged.

6



It is worth noting that the graph G, shown in Figure 5, is far from being the unique planar
graph G with maximum degree 5 and χos(G) = 8. In fact, we can easily construct infinitely
many of these. One way to do this is to add arbitrary planar subgraphs (of sufficiently low
maximum degree) that are adjacent to leaves of extended bowties. If we are careful, we can
also ensure that the resulting graphs remain 2-connected. Another nice variation is to replace
the two extended bowties adjacent to H by two disjoint chains (of arbitrary length) of extended
bowties, with the leaf of one adjacent to the leaf of the next in the chain.

5 Odd-sum Chromatic Number of Surfaces

In this short section, for each orientable surface Σg we consider χos(Σg), which is the maximum
value of χos(G) taken over all graphs G that embed in Σg. Caro et al. posed the problem:
“Determine χos(Σg), where g is the Euler genus.” They continued “It is our belief that for
some positive constant C, it turns out that H(Σg) + C colors always suffice, where H(Σg) =
⌊

7+
√
1+48g
2

⌋

is the Heawood number of the surface Σg.” We disprove this belief as follows.

Theorem 4. χos(Σg) ≥ −3 +
√
24g − 67. In particular, limg→∞ χos(Σg)−H(Σg) = ∞.

For our proof, we will simply bound (from above) the genus of the productK2�Kn. Recall [1,
Proposition 3.12] that χos(K2�Kn) = 2n = χos(K2n), when n is odd. Intuitively we should ex-
pect that if a given surface admits an embedding ofK2n, then it should also admit an embedding
of K2�Kn′ for some n′ > n, since the latter graph is less dense than the former. To formalize
this intuition, we need a bound on the genus of a cartesian product. In the next theorem, the
first Betti number of a graph H , denoted B(H) is given by B(H) := |E(H)| − |V (H)|+ 1.

Theorem B ([3]). The genus γ(G1�G2) of G1�G2 satisfies the inequality:

γ(G1�G2) ≤ |V (G1)|γ(G2) + |V (G2)|γ(G1) + B(K|V (G1)|,|V (G2)|).

We will also need the following well-known result.

Theorem C ([2]). The genus γ(Kn) of the complete graph Kn is given by

γ(Kn) =

⌈

(n− 3)(n− 4)

12

⌉

.

Proof of Theorem 4. We consider the graph K2�Kn. By Theorem B, we have γ(K2�Kn) ≤
2⌈ (n−3)(n−4)

12 ⌉ + n(0) + (2n − (2 + n) + 1) ≤ (n − 3)(n − 4)/6 + 11/6 + n − 1. Solving for n
gives n = ⌊(1 +

√
24γ − 67)/2⌋. So there exists odd n such that K2�Kn embeds in Σg and

n ≥ ⌊(1 +√
24γ − 67)/2⌋ − 1 ≥ (−3 +

√
24γ − 67)/2. Thus, χos(Σg) ≥ −3 +

√
24g − 67. Note

that this expression is larger than the Heawood number, H(Σg), for all g ≥ 30. Further, as
g → ∞ this difference tends to infinity.

In the argument above, we have not made an effort to calculate the additive constant pre-
cisely, preferring instead a simpler and shorter proof.

6 Many Odd-Dominating Sets

Caro et al. [1, Problem 6.5] asked for a planar graph G with χos(G) = 8 that has at least two
odd-dominating sets. Recall that a vertex subset D is odd-dominating if |N [x] ∩D| ≡ 1 mod 2
for all x ∈ V (G). For each graph G, let ods(G) odsdenote the number of odd-dominating sets of G.
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In this section, we show that there exist planar graphs Gt with χos(Gt) = 8 and with at least t
odd-dominating sets, for every positive integer t. A bowtie bowtieis formed from two copies of K3 by
identifying one vertex in each copy. We call the vertex of degree 4 in a bowtie its center.

Lemma 3. Given an arbitrary graph G and v ∈ V (G), we form GB
v from G by identifying the

center of a new bowtie with v. Now χos(G
B
v ) ≥ χos(G) and ods(GB

v ) = 4ods(G); see Figure 6.

Proof. Denote by B the bowtie used to form GB
v from G. Denote V (B) by {w, x1, x2, y1, y2},

such that dB(w) = 4 and x1x2, y1y2 ∈ E(B). Consider an odd-dominating set D of G. First
suppose that v ∈ D. Now D is also an odd-dominating set of GB

v . So are D ∪ {x1, x2},
D∪{y1, y2}, and D∪{x1, x2, y1, y2}; see the left of Figure 6. Suppose instead that v /∈ D. Now
GB

v has the four odd-dominating sets D ∪{x1, y1}, D∪ {x1, y2}, D ∪{x2, y1}, and D∪ {x2, y2};
see the right of Figure 6. This proves that ods(GB

v ) ≥ 4ods(G). But actually, it is easy to
reverse this process. For every odd-dominating set DB

v of GB
v , it is true that DB

v ∩ V (G) is
an odd-dominating set for G. Thus, χos(G

B
v ) ≥ χos(G), by Proposition A. Further, it is easy

to check that exactly 4 odd-dominating sets of GB
v (those shown in Figure 6) restrict to each

odd-dominating set of G. Thus, ods(GB
v ) = 4ods(G), as claimed.

Figure 6: Left: An odd-dominating set D of a graph G (shown as a large circle) that includes a
vertex v, and 4 extensions of D to odd-dominating sets of GB

v , the graph formed by identifying
v with the center of a new bowtie. Right: An odd-dominating set D of G that excludes v,
and 4 extensions of D to odd-dominating sets of GB

v .

Theorem 5. For each integer t ≥ 0 some planar graph Gt has χos(Gt) = 8 and ods(Gt) = 4t.

Proof. Figure 5 shows a planar graph G0 with χos(G0) = 8 and ods(G0) = 1. Thus, by
successively identifying the centers of t bowties with vertices of G0 (with repeated use of a given
center allowed), by induction on t, we construct a planar graph Gt with ods(Gt) = 4t. The
base case is G0, and the induction step follows from Lemma 3. Furthermore, for every odd-
dominating set Dt of Gt, there exist an odd-dominating set D0 of G0 such that D0 ⊆ Dt and
such that V (G0) \D0 ⊆ V (Gt) \Dt. Thus, we have χ(Gt[Dt]) ≥ χ(G0[D0]) ≥ 4. Similarly, we
have χ(Gt[V (Gt) \Dt]) ≥ χ(G0[V (G0) \D0]) ≥ 4. Hence, χos(Gt) ≥ 8, as desired. As noted in
the introduction, [1] showed that χos(G) ≤ 8 for every planar graph G. Thus, χos(Gt) = 8.

In the proof of Theorem 5, we can also identify the center of a new bowtie with a degree 2
vertex of a previously added bowtie. Thus, we can create graphs with arbitrarily large diameter,
and we can keep the maximum degree bounded while the number of odd-dominating sets grows
without bound. Our examples are 2-edge-connected, but have (potentially many) cut-vertices.
So it would still be interesting to know of examples that are 2-connected.
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Question 1. Do there exist 2-connected planar graphs Gt with χos(Gt) = 8 and ods(Gt) ≥ t
(for all positive integers t)?
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