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Abstract

Reverse engineering is the primary step to analyze a piece of malware. After
having disassembled a malware binary, a reverse engineer needs to spend ex-
tensive effort analyzing the resulting assembly code, and then documenting it
through comments in the assembly code for future references. In this paper,
we have developed an assembly code clone search system called ScalClone
based on our previous work on assembly code clone detection systems [1][2].
The objective of the system is to identify the code clones of a target malware
from a collection of previously analyzed malware binaries. Our new contri-
butions are summarized as follows: First, we introduce two assembly code
clone search methods for malware analysis with a high recall rate. Second,
our methods allow malware analysts to discover both exact and inexact clones
at different token normalization levels. Third, we present a scalable system
with a database model to support large-scale assembly code search. Finally,
experimental results on real-life malware binaries suggest that our proposed
methods can effectively identify assembly code clones with the consideration
of different scenarios of code mutations.

Keywords: assembly code clone detection, malware analysis, reverse
engineering
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1. Introduction

Malware, such as viruses, trojan horses, and worms, is software that in-
tends to gain unauthorized access to computer systems or information. As
malware attacks become more frequent, there is a pressing need to develop
systematic techniques to understand their behaviour and potential impacts.
Although reverse engineering is often the primary step taken to gain an in-
depth understanding of a piece of malware, it is a time-consuming and manual
process. To achieve a more efficient analysis, malware analysts can manu-
ally compare the assembly code under study with a repository of previously
analyzed assembly code and identify identical or similar code fragments. By
identifying the matched code fragments and transferring the comments from
the previously analyzed to the new assembly code, analysts can minimize
redundant efforts and focus their attention on the new functionalities of the
malware. However, the comparison process itself is a challenging task, and
the chances of identifying similar code fragments often depend on the expe-
rience and knowledge of the analyst.

The problem of assembly code clone search for malware is informally
described as follows: Given a large repository of previously analyzed malware
and a new target malware, the goal is to identify all code fragments in the
repository that are syntactically or semantically similar to the code fragments
in the target malware. This research problem was identified from extensive
discussions with malware analysts and reverse engineers from the software
industry and a government agency. The challenges and special requirements
of clone search for malware analysis are summarized as follows.

Simple keywords matching insufficiency : A simple method to identify
assembly code clones is to identify some keywords such as constants, strings,
and imported function names in a code fragment, and then attempt to match
them in the code repository. This method is applicable only if the target code
fragments contain some uniquely identifiable numbers or strings.

Large code repository : As part of the reverse engineering process, mal-
ware analysts put comments in assembly files and archive them to a code
repository. The size of an assembly code repository can range from a couple
of megabytes to over dozens of gigabytes of textual data, and the size keeps
growing as new malware emerges. A clone search system for malware analy-
sis should be efficient and scalable. Efficiency refers to the response time of
identifying all the clones of a target file from a code repository. Scalability
refers to its capability to handle the size of a code repository.
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Robustness : Malware with obfuscated code and different compiler opti-
mizations may degrade the clone search accuracy. The optimization options
used to compile the target malware binary in hand and the optimization op-
tions used to compile the malware binaries in the repository may be different.
Thus, a clone search system for malware analysis should be robust enough
to handle these variations.

Consistency : To support effective malware analysis, the clone search re-
sults should be consistent and repeatable, given the same search query and
malware repository. In other words, the clone search methods should be
deterministic. Otherwise, it would be very difficult for an analyst to draw
meaningful conclusions and preserve the evidence from the results.

The literature [3] on source code clone detection defines four types of
clones. Types I, II, and III are known as textual clones, while Type IV clones
are known as semantic clones. We borrow a similar notion from source code
clone detection and define the following four types of clones for assembly
code clone detection.

Type I: Identical code fragments except for variations in whitespace,
layouts, and comments.

Type II: Structurally and syntactically identical fragments except for
variations in memory references, registers, constant values, whitespace, lay-
outs, and comments.

Type III: Copied fragments with further modifications. Statements can
be changed, added, or removed, in addition to variations in memory refer-
ences, registers, constant values, whitespace, layouts, and comments.

Type IV: Code fragments that perform the same computation, but im-
plemented using different syntactic variants.

Contributions: In this paper, we have significantly improved our previ-
ous assembly code clone detection system BinClone [1][2], which was devel-
oped based on the framework suggested by Sæbjørnsen et al. [4]. BinClone
provides a proof of concept on the feasibility of detecting both exact and
inexact clones in assembly code, but it was not designed for handling large
volumes of assembly code. The proposed clone search system, ScalClone,
addresses the aforementioned challenges for malware analysis. To the best
of our knowledge, this is the first scalable clone search system specifically
designed for supporting malware analysis. The contributions of ScaleClone
are summarized as follows:

• High recall rate. Sæbjørnsen et al. [4] presented a method to identify
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Type III clones, i.e., clone pairs that are not exactly identical. Their
general approach is to first extract a set of features from each region,
create a feature vector for each of them, and then use locality-sensitive
hashing (LSH ) to find the nearest neighbor vectors of a given query
vector. Although their approach shows some encouraging results in
identifying Type III clones, its assumption on the uniform distribution
of vectors may not hold as the number of features (i.e., dimensions)
increases, resulting in many false negatives. In contrast, our proposed
inexact clone search method addresses the issue of false negatives and
improves the recall rate by employing a filtering process to identify
Types I, II, and III clones.

• Scalable clone search system. The clone search process consists of two
phases. The first phase is to extract features from the previously ana-
lyzed assembly code and populate the feature values into a database.
The second phase is to search for clone fragments of a target assembly
file from the database. The computational complexity of both phases
is linear to the size of the assembly code repository. Experiments on
a large collection of real-life binary (assembly) files suggest that our
proposed system is scalable.

• Support for malware analysis. Malware analysts clearly stated two re-
quirements. First, the clone results have to be deterministic. Thus,
any clone search method that employs randomization, such as the non-
determinisitic LSH in [4], does not satisfy this requirement. In this
paper, we present a deterministic inexact clone detection method while
maintaining its scalability. Second, the system should support clone
search at different normalization levels of assembly code tokens. Our
proposed normalization process allows the user to generalize the tokens,
i.e., memory references, registers, and constant values, to different lev-
els. Experimental results suggest that generalizing tokens can help
improve the recall rate when identifying Types I and II clones.

• Robustness against obfuscation techniques and different compiler op-
timizations. Malware authors often want to hide the true intention
of their code and sometimes employ obfuscation techniques, such as
instruction reordering and do-nothing code insertion, to disorient the
attention of malware analysts. Furthermore, the same piece of source
code compiled using different compiler optimization options results in
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different assembly code. Experimental results suggest that our pro-
posed clone search technique is robust against obfuscated code clones
and different compiler optimizations.

• Systematic evaluation of assembly code clones. Measuring the accuracy
of the assembly code clone results is challenging because it is infeasible
to manually identify all assembly code clones as ground truth. Thus,
we propose an approach to systematically evaluate the accuracy of as-
sembly code clones with respect to source code clones. The general idea
is to insert a unique identifier to each block in the source code, apply
a source code detection method to identify all source code clones, and
then evaluate the quality of the assembly code clones with respect to
the source code clones.

The rest of this paper is organized as follows: Section 2 describes related
work and some background information on clone detection, followed by a
formal problem definition of assembly code clone search in Section 3. The
proposed clone search system is described in Section 4. Section 5 provides
more details on the database schema. Section 6 presents the experimental
results of the implemented system. Section 7 concludes the paper.

2. Related Work

The problem of source code clone detection has been studied exten-
sively in the literature. The methods can be broadly categorized into seven
categories, namely token-based [5][6], text-based [7][8], similarity distance-
based [9], metric-based [10][11], tree-based [12][13], program dependency graph
(PDG)-based [14][15] and hybrid [16][17] approaches. However, the existing
source code clone detection techniques are inapplicable to assembly code be-
cause source code contains different types of control flow statements, such as
while-loop, for-loop, switch-case, and if-then-else.

In contrast, assembly code contains a large collection of instructions that
share a nearly identical format. The assembly code clone detection methods
can be broadly categorized as follows:

Text-based approach: Jang et al. [18][19] used a fingerprinting algorithm
based on bloom filters to cluster malware samples. While their work does
not directly concern the comparison of unknown assembly code to previously
analyzed samples, it does present a potential solution to address the scalabil-
ity of any comparison system. Rahimian et al. [20] proposed a system called
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RESource to match a piece of assembly code with online source code repos-
itories, in order to identify the libraries used in the target binary file. The
general idea is to extract keywords from the target assembly code and use
them to query open source code repositories. RESource cannot find clones
in assembly code as proposed in this paper.

Token-based approach: Schulman [21] proposed a system to create a
database of previously analyzed binaries to recognize duplicate functions.
This is a pioneer work on detecting code clones at the functional level. Karim
et al. [22] addressed the problem of classifying new malware into existing
malware families whose individual entries share common code. Walenstein
et al. [23] further extended this approach to match assembly code by com-
paring n-grams and n-perms extracted from disassembled binaries that have
been unpacked and decrypted. Each binary file is represented as a feature
vector for similarity comparison. The method is effective only if two binary
files are similar. In contrast, our proposed method works at the fragment
level.

Metric-based approach: Bruschi et al. [24] presented a technique to nor-
malize assembly code and detect both polymorphic and metamorphic mal-
ware. The prototype is based on using a normalization technique to ease the
comparison between malware samples. The prototype implementation has
some restrictions regarding the identification of program characteristics such
as removing obfuscated instructions and dead code. These restrictions can
have a huge impact on the results. Sæbjørnsen et al. [4] presented a general
clone detection framework that utilizes an existing tree similarity framework,
models the assembly instruction sequences as vectors, and groups similar vec-
tors together using existing “nearest neighbor” algorithms.

Structural-based approach: Dullien et al. [25] presented research results
on executable code comparison for attacker correlation. They implemented
a system that can identify code similarities in executable files. Carrera and
Erdelyi [26] addressed the challenge of having a large number of malware
samples. They developed a system based on graph theory to rapidly and
automatically analyze and classify malware based on its underlying code
structure. Briones et al. [27] designed an automated classification system for
binaries with a similar internal structure. They used graph theory to iden-
tify similar functions that are used to classify malware samples. Flake [28]
presented a method that constructs an isomorphism between the groups of
functions that are used into two different versions of the same binary. Dullien
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developed BinDiff 1 which is a software tool that compares binary files using
a graph-based approach and displays the matched functions in a control flow
graph. It parses and extracts features of every function, and then iteratively
matches the callers and callees of a function. BinDiff assumes the input
binaries are different versions of the same piece of code. The main purpose
of BinDiff is to analyze software patches. BinCrowd2 creates a repository
that stores the analyzed assembly code together with their function names,
comments, or other related information. This tool employs the BinDiff al-
gorithm to discover known functions in other disassembled files.

Behavioral-based approach: Comparetti et al. [29] developed a system
called REANIMATOR that allows the identification of dormant functionali-
ties in malware. The system exploits the fact that a dynamic malware anal-
ysis captures malware execution and reports its behavior. This approach can
be useful if one wants to match different code portions that are semantically
identical but syntactically different. Jin et al. [30] proposed a binary function
clustering method to group similar functions with respect to their behaviour.
Their method first captures the semantic of each function using the machine
state changes made at the functional level. Then, a clustering method using
hashing is used to identify code clones based on common features. Bayer et
al. [31] proposed a method to group malware by their behaviour, but this
problem is different from assembly clone detection.

Hybrid approach: Wang et al. [32] presented a tool called BMAT that cre-
ates mappings between old and new versions of binaries. This tool is used to
generate the profile information of applications and illustrates how to prop-
agate stale profiles from an old to a new version. Khoo et al. [33] developed
a search engine that allows searching for binary code against some existing
open source code repositories. First, they tokenized assembly functions and
then extracted three sets of features to build a query term. These features
include mnemonics, CFGs, and constant values. As they considered only
assembly functions as the unit of comparison, their work cannot find code
clones within functions. Their experiments were not performed on malware,
as we do in this paper, but their results on GNU C libraries show that their
search engine can efficiently identify the matched binary code with a high
recall rate, with the trade-off of relatively low precision. Their search engine

1http://www.zynamics.com/bindiff.html
2http://www.zynamics.com/bincrowd.html
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does not employ normalization for assembly operands. Therefore, it may not
be able to correctly identify Types I and II clones.

3. Problem Definition

The problem of assembly code clone search is formally defined as follows:
Let A = {A1, . . . , An} be a collection of analyzed and stored assembly files,
where each assembly file Ai consists of a collection of functions F and each
function f ∈ F contains one or multiple lines of assembly code instructions.
A code fragment f [a : b] in an assembly file Ai refers to a subsequence of
assembly code from line a to line b inclusively in function f in Ai. |f [a : b]|
denotes the number of lines of assembly code in f [a : b]. In the rest of this
section, we assume the memory references, registers, and constant values
in the assembly code have been normalized. The normalization process is
explained in Section 4.

We define two notions of clones as follows: Intuitively, two code fragments
are an exact clone pair if they have the same sequence of normalized assembly
instructions. Two code fragments that share similar instructions with respect
to the mnemonics and normalized operands are considered as an inexact clone
pair.

Definition 3.1 (Exact clone). Let f1[a : b] and f2[c : d] be two arbitrary
non-empty code fragments in functions f1 and f2, respectively. f1[a : b]
and f2[c : d] are an exact clone pair if |f1[a : b]| = |f2[c : d]| and f1[a] =
f2[c], . . . , f1[b] = f2[d]. The relation = denotes that two code fragments are
identical with respect to the sequence of mnemonics and normalized operands
appearing on the assembly code instruction line.

Definition 3.2 (Inexact clone). Let f1[a : b] and f2[c : d] be two arbi-
trary non-empty code fragments in functions f1 and f2, respectively. Let
sim(f1[a : b], f2[c : d]) be a function that measures the similarity between
two code fragments f1[a : b] and f2[c : d]. f1[a : b] and f2[c : d] are an
inexact clone pair if sim(f1[a : b], f2[c : d]) ≥ minS, where minS is a
user-specified minimum similarity threshold 0 ≤ minS ≤ 1.

The problem of assembly code clone search is formally defined as follows.

Definition 3.3 (The problem of assembly code clone search). Let A =
{A1, . . . , An} be a collection of previously analyzed assembly files. Let tar be
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a target assembly file or a target assembly code fragment. The problem of
assembly code clone search is to identify all exact and inexact clone pairs of
tar from A, given a minimum similarity threshold minS.

(a) sub 40B13E (b) sub 567C14B

Figure 1: Examples of exact clone and inexact clone

Example 1. Figure 1 shows two assembly code fragments extracted from
Zeus, which is a well-known trojan horse that uses the man-in-the-browser
keystroke logging and form grabbing techniques to extract banking informa-
tion. Suppose sub 40B13E is the target, and sub 567C14B is in the repos-
itory. Code fragments f [20, 29] and f [51, 60] are an exact clone pair. Code
fragments f [27, 36] and f [58, 67] are an inexact clone pair.

Note that an exact clone pair has sim(f1[a : b], f2[c : d]) = 1. In other
words, an exact clone pair is also an inexact clone pair with similarity equal
to 1. Thus, at first glance, the two notions of clones can be merged into
one, and it seems to be unnecessary to develop two different clone search
methods for identifying exact and inexact clones separately. This observation
is incorrect because an inexact clone pair with sim = 1 does not necessarily
mean they are an exact clone pair. Consider two normalized code fragments
that contain two identical instructions but in different order. They have
sim = 1, but they are not an exact clone pair. In real-life malware analysis,
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Figure 2: Overview of ScalClone

an analyst might want to identify only exact clones. Thus, the two clone
search methods should remain separate.

4. Assembly Code Clone Search System: ScalClone

Figure 2 depicts an overview of the proposed assembly code clone search
system ScaleClone, which consists of four major components, namely disas-
sembler, feature processor, clone searcher, and visualizer. The first step is
to disassemble a collection of malware binaries into a collection of assembly
files. The feature processor extracts features from the assembly files and
loads them into a database. The clone searcher takes as input a target as-
sembly file or a target code fragment and identifies its clone pairs from the
database. Finally, the clone visualizer displays the identified clone pairs and
allows a user to interactively browse through them.

4.1. Disassembler

This step disassembles the input binaries into a collection of assembly
files A using a disassembler such as IDA Pro3. Each assembly file Ai ∈ A
contains a set of functions. Each function contains a sequence of assembly

3http://www.hex-rays.com/products/ida
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code instructions, and each assembly instruction consists of a mnemonic
and a sequence of operands. Mnemonics are used to represent the low-level
machine operations. The operands can be classified into three categories:
memory reference, register reference, and constant value.

4.2. Feature Processor

The objective of the feature processor is to extract features from a col-
lection of assembly files A and load them into a database in order to support
code clone search. Specifically, the feature processor performs six steps on
each assembly file in A: (i) Each assembly file is parsed and irrelevant assem-
bly code and comments are removed. (ii) The assembly code is normalized
for clone comparison. (iii) Constants, strings, and imports tokens in the
assembly code are indexed to support token search. (iv) Functions (or sub-
routines) from the assembly are extracted, based on the function header and
footer, as indicated by the keywords proc near, proc far, and endp. (v) Each
function is partitioned into an array of regions and features from each region
are extracted for inexact clone detection. (vi) The regional features vectors
are stored into the database. The rest of this section provides more details
on some of these steps.

4.2.1. Normalize Assembly Files

Referring to the description of Type II clones in Section 1, two structurally
and syntactically identical fragments with variations in memory references,
registers, and constant values can be considered a clone pair.

Two code fragments may be considered an exact clone pair even if some
of their operands are different. For example, two instructions with the same
mnemonic but with different registers, such as eax and ebx, can be considered
identical. Thus, it is essential that the assembly code is normalized before
the comparison. The objective of the normalizer is to generalize the memory
references, registers, and constant values to an appropriate level selected by
the user. For constant values, the normalizer generalizes them to V AL,
which simply ignores the exact constant value. The same logic applies to
memory references. For registers, the user can generalize them according to
the normalization hierarchy depicted in Figure 3. The top-most level REG
generalizes all registers, regardless of their type. The next level differentiates
between General Registers (e.g., eax, ebx), Segment Registers (e.g., cs, ds),
as well as Index and Pointer Registers (e.g., esi, edi). The third level
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breaks down the General Registers into three groups by size: 32-, 16-, and
8-bit registers.

REG

REGIdxPtrREGGenREGSeg

REGGen32REGGen16REGGen8

Figure 3: Normalization hierarchy for registers

Example 2. Figure 4 shows the normalized version of the sub 40B13E func-
tion in Figure 1 based on the REG normalization level.

Figure 4: Normalized assembly code sample used in Zeus
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4.2.2. Extract Assembly Regions and Features

Each function is partitioned into an array of overlapping regions using
a sliding window with a size of at most w instructions, where w is a user-
specified threshold. Figure 5 shows the extracted regions of the normalized
procedure sub 40B13E in Figure 4 with w = 15. The offset between regions
is set to 1 by default in order to ensure that no regions are skipped. Therefore,
no clones will be missed. Each region is then hashed to an unsigned integer
and stored into the database Region table. Section 5 discusses the database
schema in details.

Figure 5: Regionization for w = 15

4.2.3. Extract Region Features

This step consists of three operations. (i) Construct a feature frequency
vector for each region. A feature frequency vector contains the frequencies of
three groups of features from the assembly instructions [4]. The first group
of features includes all mnemonics. The second group includes all operand
types. The third group includes all combinations of mnemonics and the type
of the first operand. (ii) Compute the median of each feature over all re-
gions. The median feature vector is stored into the database Feature table.
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The medians serve as the separation points for grouping regions because the
frequency distribution of the features is skewed and the median is a good
measure for central tendency of skewed data. If more than half of the regions
do not contain a particular feature, then the median of the feature is zero
and the feature cannot be used to differentiate regions. Thus, all features
that have medians equal to zero are removed from the median vectors. Ex-
periments suggest that this will significantly reduce the size of the vectors
in the subsequent steps. (iii) Store the median feature vector into database
table FilteredFeature.

4.2.4. Store Inexact Clone Groups

Intuitively, two assembly code fragments are considered as an inexact
clone pair if they share many similar, but not exactly the same features in
terms of mnemonics and operand types. The objective of this step is to
group regions into overlapping clone groups by their syntactic similarity. Let
med be the non-zero median vector. For each region, construct a binary
vector by comparing its feature frequency vector with the non-zero median
vector med. All features with a zero median are skipped. If the feature’s
value is larger than the corresponding median in med, then 1 is inserted
into the corresponding entry of the binary vector. Otherwise, 0 is inserted.
To build the clone groups, we compute all possible two-combinations of the
binary vectors. Let s be the size of the binary vectors. There are C(s, 2) =
s×(s−1)

2
possible two-combinations. Each combination has the size of 2 with

22 = 4 possible values, namely (0, 0), (0, 1), (1, 0), and (1, 1). Each of these
combinations forms a clone group, making C(s, 2) number of clone groups.
Each clone group maps each region to one of the 4 possible values. These
clone groups will be used for inexact clone detection in Section 4.3.2. These
clone groups are then inserted into the database table InexactGroups.

Example 3. Figures 6 and 7 show a feature vector, a median vector, and a
binary vector of size 5 for a region. As the size of the median vector is 5,
there are C(5, 2) = 10 clone groups. Figure 7 shows the 10 clone groups with
the values the sample region is mapped to.

4.3. Clone Searcher

This component aims to search for possible clones of a target assembly
file or code fragment. First, we normalize the target file or target code frag-
ment, extract its functions, and regionize them based on the same algorithms
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Figure 6: Sample feature, median and binary vector of size 5

Figure 7: Sample clone groups

explained in Section 4.2. Then, the clone search sends each extracted region
to both exact and inexact clone detectors to search for possible clones. The
last step is to merge and unify the clones found.

4.3.1. Exact Clone Detector

Refer to Definitions 3.1 and 3.2. A clone pair is defined as an unordered
pair of code regions that have similar normalized statements. This step iden-
tifies the exact clone pairs of the target regions. Two regions are considered
an exact clone pair if all the normalized statements in the two regions are
identical. We used a hashing approach with linear complexity to find the
exact clones of a target region. Specifically, if a target region shares the
same hash value with a region, they are considered to be an exact clone pair.
As this approach uses a hash algorithm to map each region to an integer
value, all identical regions are mapped to the same hash value without false
negatives. The process requires only one scan of the regions. A polynomial
hash function, called djb2 is used for this purpose. djb2 is defined as follows:

h(0) = 5381, h(k) = 33h(k) + s(k) for k > 0 (1)

where sk denotes the kth character of the string being hashed [34]. It simply
starts with a seed, multiplies it by 33 and adds the current character to
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create a new hash value. Then it repeats this process for every character in
the string.

Algorithm 1 provides the details of the method. First, the target regions
are hashed to unsigned integers v based on their instructions. Then, regions
with their corresponding hash values are stored in the database. In Lines
3-5, the method iterates through each target region r, creates a hash value
v, and adds the region r together with its hash value to a hash table Htarget.
In Lines 6-9, the method iterates through each bucket in (Htarget), finds the
similar regions in terms of hash value with the regions stored in Dexact, and
forms an array of exact clone pairs, denoted by EP .

Algorithm 1: Exact Clone Detector

input : target assembly file A
database table Dexact

output: set of exact clone pairs EP

1 begin
2 Htarget ← ∅;
3 foreach region r ∈ A do
4 v ← hash(r);
5 Htarget ← {r, v};
6 foreach record d ∈ Dexact do
7 foreach h ∈ Htarget do
8 if h.v = d.hashV alue then
9 EP ← EP ∪ {(h.r, d.region)};

10 return EP ;

4.3.2. Inexact Clone Detector

The objective of the inexact clone detector is to identify inexact clone
pairs of a target assembly file/fragment from a given collection of regions.
For each region in each function of the target assembly file or code fragment,
a binary vector is constructed as described in Section 4.2.4. Then, for every
combination of two features in the binary vector, the inexact clone detector
submits a query to the database to retrieve all regions from the InexactGroups
table that match the two features and binary values of the target region. Each
two combination forms a clone group. The database query Q is:
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SELECT dbRegionID FROM InexactGroups
WHERE featAIDFKey = firstFeatureID AND

featBIDFKey = secondFeatureID AND

featAPresent = 1 /0 AND

featBPresent = 1 /0

where featAIDFKey is the identifier of the first non-zero median feature;
featBIDFKey is the identifier of the second non-zero median feature in the
binary vector; and featAPresent and featBPresent represent the presence or
absence of the features in the target region.

A co-occurrence counter is created for each stored region to keep track of
the number of co-occurrences of the stored region with the target region. In
other words, the co-occurrence counter keeps track of the number of common
inexact clone group values between the stored region and the target region.
The stored regions with the number of co-occurrences equal to or greater
than the minimum similarity threshold minS times the total number of clone
groups, i.e., minS × C(n, 2), are considered to be the inexact clone pairs of
a target region, where n is the size of a binary vector.

Algorithm 2 provides an overview of the inexact clone detection method
in four steps.

• Step #1: Extract target file features: This step extracts the
features of each region in the target file. It follows the same method
explained in Section 4.2.3 to construct a feature vector.

• Step #2: Generate target file binary vectors: This step con-
structs a binary vector for each target region by comparing the feature
vector of the target region with the median attribute of the FilteredFea-
ture table. If a feature value is larger than the corresponding median,
then “1” is inserted into the entry of the binary vector. Otherwise, “0”
is inserted.

• Step #3: Count co-occurrences: For each target region r, this
step first retrieves the clone groups of r, denoted by CG, by executing
a database query Q on the InexactGroups table. A region r′ co-occurs
with a target region r if they share the same value in the retrieved clone
group. This step counts the number of co-occurrences.

• Step #4: Identify inexact clone pairs: The regions having the
number of co-occurrences above or equal to the similarity threshold
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Algorithm 2: Inexact Clone Detector

input : target assembly file A
minimum similarity threshold minS
database table DFilteredFeatures

database table DInexactGroups

output: set of inexact clone pairs IP

1 begin
2 // Step1

3 foreach region r ∈ A do
4 r.F ← extractFeatures(r);

5 // Step2

6 foreach record d ∈ DFilteredFeature do
7 foreach region r ∈ A do
8 if r.F [d] ≥ d.Median then
9 r.binary[d]← 1;

10 else
11 r.binary[d]← 0;

12 k = C(n, 2);
13 foreach region r ∈ A do
14 // Step3

15 CG← DInexactGroups.Q(r);
16 foreach clone group cg ∈ CG do
17 foreach region r′ ∈ cg do
18 ++r′.cooccurCnt;
19 // Step4

20 if r′.cooccurCnt ≥ minS × k then
21 IP ← IP ∪ {(r, r′)};

22 return IP ;

minS × C(n, 2) are considered to be the inexact clone pairs, where n
is the size of the binary vector.
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4.3.3. Maximal Clone Merger

Since the clone search process operates on regions, the size of the identified
clones is bounded by the window size w. As a result, a naturally large clone
fragment may be broken down into small consecutive clone regions, making
the malware analysis difficult. The objective of this step is to merge the
smaller consecutive clone regions into a larger clone. Algorithm 3 presents the
maximal clone merger process. It takes a set of clone pairs CP as input and
returns a set of maximal merged clone pairs MP as output. The clone pairs in
CP are sorted by line numbers of the target file/fragment in ascending order.
The function overlap determines whether or not two regions have an overlap.
Two consecutive clone pairs are merged into a single clone pair if their regions
in the target file and in the stored file have an overlap. The overlap function
in this algorithm works differently for exact and inexact clone detection. If
the identified exact clones have an overlap, they are merged. If the identified
inexact clones have an overlap, their overall size after the merge may differ.
This may happen if the offset between each overlapped clone is not the same.
In this case, two inexact clone pairs are merged if the difference between the
offsets of two regions is smaller than or equal to (1−minS)× windowSize.

Algorithm 3: Maximal Clone Merger

input : sorted sequence of clone pairs CP
output: set of maximal merged clone pairs MP

1 begin
2 MP ← CP ;
3 for every two consecutive clone pairs cp, cp′ ∈MP do
4 if overlap(cp.A, cp′.A) and overlap(cp.B, cp′.B) then
5 MP ← merge(cp, cp′);

6 return MP ;

Example 4. Figure 8 provides an example of the maximal clone merger pro-
cess. With window size w = 5, every region in lines 50 - 60 on the left cor-
responds to a region in lines 105 - 115 on the right, represented by six clone
pairs. Since every consecutive clone pair overlaps, they are merged into one
clone pair, as indicated by the outer dashed rectangles.
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Figure 8: Maximal clone merging with w = 5

Figure 9: Database model for clone search system

5. Database Model for Clone Search System

Figure 9 depicts the relational database model of our implementation.
Our proposed system allows malware analysts to employ different param-
eters: window size, window offset, and register normalization level. Every
combination of these parameters forms a record in the Parameter table. Each
assembly file contains a set of functions. Each function is represented as a
set of overlapping regions. Their corresponding attributes are stored into
the File, Function, and Region tables, respectively. The Feature table stores
the extracted features together with their median. The FilteredFeature table
stores the non-zero median features discussed in Section 4.2.3. Finally, the
InexactGroups table contains the regions and their clone groups generated
in Section 4.2.4.
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In the preprocessing step, the preprocessor may remove some code in-
structions and comments from the assembly files. Yet, when the visualizer
displays a clone pair, malware analysts prefer viewing the original assembly
files. Thus, we need to keep track of the line numbers before and after the
processing step in order to correctly display the code in the visualization
step. Malware analysts are particularly interested in searching for imports,
strings, and constants. Thus, a separate index is built for them to provide ef-
ficient retrieval. They are stored in the Import, String, and Constant tables,
respectively.

6. Experimental Evaluation

The objective of the experimental study is to evaluate the proposed as-
sembly code clone search system, ScalClone, in terms of accuracy, efficiency,
and scalability. Extensive experiments were conducted on four data sets,
namely DLL18, zlib, malware297, and DLL1GB in order to evaluate the
performance of ScalClone with respect to different parameter values, obfus-
cation techniques, and compiler optimization options. We also compare our
results with a previously proposed assembly code clone detection method [4],
which uses locality-sensitive hashing (LSH ) for identifying inexact clones. All
experiments were performed on a PC with an Intel Xeon E31220 3.10GHz
Quad-Core processor, 16GB of RAM, running Microsoft Windows 7 64-bit.

6.1. Accuracy

We employ three typical measures to evaluate the accuracy of the pro-
posed clone search system:

Precision(Solution,Result) =
nij

|Result|
(2)

Recall(Solution,Result) =
nij

|Solution|
(3)

F (Solution,Result) =
2×Recall × Precision

Recall + Precision
(4)

where Solution is the set of a priori known clone fragments, Result is the
set of code fragments in a clone search result, and nij is the number of
code fragments in both Solution and Result. Intuitively, F(Solution, Result)
measures the quality of the clone detection Result with respect to the Solution
by the harmonic mean of Recall and Precision.
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(a) Precision (b) Recall (c) F-measure

Figure 10: Accuracy for DLL18

6.1.1. Data set: DLL18

The first data set, denoted by DLL18, is an assortment of 18 DLL files
obtained from an operating system. The size of their assembly code is not
too large. Thus, we can afford to manually identify the a priori known clone
fragments. To evaluate the accuracy of the proposed clone search system,
some code fragments were first selected from the 18 assembly files. Then,
clones of the code fragments were manually identified in the data set. Fi-
nally, the results of the proposed system were compared with the manually
identified clones in order to compute the precision, recall, and F-measure.

Figure 10 shows the precision, recall, and F-measure for minimum simi-
larity threshold minS = 0.5 and minS = 0.8 on DLL18. The precision and
F-measure are consistently above 75%. The recall is 100% for both exact and
inexact detections, suggesting that the clone detection methods are effective.

6.1.2. Data set: zlib

The second data set is zlib v1.2.7 and v1.2.84, an open source library
for data compression. It is a crucial component of many software platforms
including Linux, Mac OS X, and iOS. The zlib project includes 235 files with
total of 32,885 lines of source code. The compiled zlib includes 50,848 lines
of assembly code with 221 functions. Due to the size of zlib, it is infeasible to
manually identify a priori all the code clones. Thus, we propose a process to
automate the evaluation. First, we employ CCFinder 5, a token-based source
code clone detection tool [35], to first identify the source code clones and then

4http://www.zlib.net
5http://www.ccfinder.net
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evaluate whether or not our clone search system can identify in the assembly
code the ones identified by CCFinder. In order to perform this evaluation, we
need a mechanism to match source code clones with assembly code clones.
The assembly code clones that are indirectly identified by CCFinder are
considered to be the Solution in the calculation of Precision, Recall, and
F-measure.

In brief, we insert a unique identifier (a constant integer) into each source
code block of zlib, use CMake6 to make the zlib source code, compile zlib in
Microsoft Visual Studio 2010 (64-bit), and reidentify the clones based on the
unique identifiers. Figure 11 shows an example of the identifier insertion pro-
cess in the source code and its corresponding assembly code. If the assembly
clones identified by ScalClone are covered by the Solution of CCFinder, the
clones are considered to be correctly identified.

Figure 11: Token insertion

Exact clones: CCFinder can identify 79 source code clones between zlib
v1.2.7 and v1.2.8. We manually review them and confirm that 62 of them are
valid source code clones. The others are too small, with few source code lines,
or are simply false positives. All 62 clones are Type I or Type II exact clones.
We populate the assembly code features of zlib v1.2.7 into the database, and
consider v1.2.8 as target files. The validity of the found clones are verified
by inspecting if the clones are covered by the Solution. The mnemonics se-
quences for all clones are the same but some registers are different because
of different register allocation techniques used by the compiler. These differ-

6http://www.cmake.org

23



ences are removed by our normalization technique described in Section 4.2.1.
In this particular experiment, all the clones identified by CCFinder can also
be identified by ScalClone. All of them are exact clones. Thus, both recall
and precision of ScalClone are 100%.

Inexact clones: The objective of this experiment is to evaluate the
performance of the inexact clone search method. In malware analysis, find-
ing code clones that are mutations of a known piece of malware is a major
challenge. The mutations can be caused by code obfuscation, instruction
reordering, or different compiler optimization options:

• Do-nothing code insertion. One of the obfuscation techniques com-
monly used in malware is to insert some useless or do-nothing instruc-
tions in the assembly code. While they do not effect the overall func-
tionality of a basic block or function, they make the analysis more diffi-
cult. This technique may bypass anti-virus detection based on software
signatures.

• Instruction reordering. There are many reasons for instruction reorder-
ing, such as compiler optimization, as a side effect of different platforms,
or as code obfuscation from malware authors.

• Different compiler optimization. Employing different compiler opti-
mization options may result in different assembly code, but without
changing its functionality. The question is whether or not the assem-
bly code clones can still be identified.

To evaluate the effects of the above-mentioned mutations on assembly
code clone search, we populate zlib v1.2.7 into the database and create three
variants of v1.2.8, one variant for each mutation process. For do-nothing
code insertion, we use PELock 7 to insert some do-nothing code into each
of the 62 code clone fragments. This insertion mechanism does not change
the functionality of the assembly code. PELock is a tool to modify x86
assembly code to make its analysis more difficult. For the second mutation,
we reorder instructions using PELock without changing the functionality of
the code fragments. For the third mutation, we first compile zlib 1.2.8 with
a full optimization level using Visual Studio and then disassemble it using
IDA Pro. This optimization option replaces and reorders some instructions

7http://www.pelock.com
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due to pipeline optimizations. Although the assembly code is different, the
functionality remains the same. We select all of the 62 code clone fragments
and transform them based on these mutations. Then, we run ScalClone on
the code fragments and examine them to see if the system can still find their
corresponding code clones.

Method Do-nothing Reordering Optimization
ScalClone Inexact Algorithm 90% 100% 62%
Locality Sensitive Hashing (LSH) 67% 100% 14%

Table 1: Comparison with LSH on zlib

Table 1 presents the recall rates of ScalClone for the three mutation
scenarios. The rates for do-nothing code insertion, instruction reordering,
and compiler optimization are 90%, 100%, and 62%, respectively. The recall
rate for do-nothing code insertion is high because adding more code to the
regions only adds more syntactic features, but the original features do not
change much. The second scenario reorders the instructions. The recall
stays at 100% because reordering has no impact on the frequencies of the
mnemonics. Therefore, the syntactic features remain intact in most cases. In
contrast, changing the compiler optimization options does affect the syntactic
features. As a result, the impact on recall is more significant than in the other
two scenarios.

LSH Comparison: Sæbjørnsen et al. [4] presented an inexact clone
detection method using locality-sensitive hashing (LSH) to find the nearest
neighbor vectors of a given query vector. Their assumption on the uniform
distribution of vectors in the LSH method affects the number of false-negative
errors, i.e., the recall rate. LSH consists of m hash functions. Each hash
function hi maps a vector v to a binary vector by computing the dot product
of v and a base vector bi. If the computed result is negative, the vector is
mapped to 0. Otherwise, it is mapped to 1. The base vector and vector v
must share the same size. Using these parameters, the LSH value lsh(v) of
a vector v is defined using the following equation:

lsh(v) = (h1(v), h2(v), . . . , hm(v)) (5)

The LSH method splits a vector space into 2m sub-spaces by m base vec-
tors. These base vectors are randomly chosen, and the distribution of vec-
tors is not considered. If the distribution of vectors is lopsided, then LSH
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cannot split the vector space efficiently, resulting in incorrect subspace as-
signment for some vectors. The accuracy of finding the nearest neighbor
problem using LSH depends on the chosen parameters, which is challenging
in high-dimensional feature vectors. Also, due to the use of randomization,
the clone results produced by LSH are non-deterministic. Some malware an-
alysts clearly indicate that this non-deterministic behaviour is unacceptable
because it will be very difficult for a reverse engineer to produce a consistent
malware analysis for evidence preservation. To avoid the non-deterministic
behaviour as in LSH, our proposed method employs fixed parameters de-
rived from the data. The first one is the number of subspaces, which is
the number of two-combinations of features. The second parameter is the
subspace dimensionality, which is 2. In our comparison, we used the LSH
algorithm implemented by Andoni and Indyk [36] and compared its results
with ScalClone results for all the three aforementioned mutations.

Table 1 presents the recall rates for LSH in the three mutation scenarios.
The rates for do-nothing code insertion, instruction reordering, and compiler
optimization are 67%, 100%, and 14%, respectively. This result suggests that
ScalClone in general is more robust than LSH with respect to do-nothing code
insertion and compiler optimization.

6.2. Efficiency and Scalability

Next, we evaluate the efficiency and scalability of our proposed clone
search system and compare them with our previous assembly code clone
detection method BinClone [1]:

Efficiency and Scalability on malware297 : The third data set is
an assortment of 297 malware (150MB) obtained from the National Cyber-
Forensics and Training Alliance (NCFTA) Canada8.

Figure 12a depicts the runtime for clone detection methods for a window
size ranging from 10 to 30 on malware297. Increasing the window size would
increase the number of captured features. ScalClone captured 5, 5, and 10
features for a windows size of 10, 20, and 30, respectively. As explained
in Section 4.2.4, a higher number of features results in a higher number of
inexact clone groups. The chosen window sizes create 10, 10, and 45 inexact
clone groups. Having a higher number of inexact clone groups increases
the runtime of the feature processor step because we are storing more clone

8http://www.ncfta.ca
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(a) Efficiency

(b) Feature processor scalability (c) Clone searcher scalability

Figure 12: Efficiency and scalability on malware297

groups into the database. Yet, it also increases the precision of the found
clones. Figure 12a shows that the unification process runtime decreases with
respect to the increase of window size, due to a smaller number of clones.

Figure 12b depicts the runtime for feature processor for the number of
regions ranging from 150,000 to 750,000 extracted from malware297, with
data size ranging from 27MB to 150MB. The feature processor makes two
scans on the files. In the first scan, the processor extracts the significant
features and filters out less significant ones. The second scan is responsible
for storing the functions, regions, imports, constants, strings, features, and
inexact clone groups into the database. The runtime increases from 1,157s
to 9,860s in total as the number of regions increases from 150,000 to 750,000.
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(a) Feature processor scalability (b) Clone searcher scalability

Figure 13: Scalability of ScalClone on DLL1GB

This figure suggests that the time complexity of the feature processor is linear
with respect to the data size.

Figure 12c depicts the runtime of the clone search process for the same set
of files discussed in feature processor. The target assembly file is a malware
obtained from NCFTA Canada. The figure depicts that both the unification
and clone searching steps yield linear time complexity. The runtime increases
from 145s to 11,450s in total, as the number of regions increases from 150,000
to 750,000.

In the zlib benchmark, the window sizes are not fixed and depend on the
source code clones sizes. But, in the DLL18 and malware assortment, we
could manually choose different window sizes to check their impact on the
results to calculate the efficiency.

Scalability on DLL1GB : The fourth data set is an assortment of 1GB
of DLL files obtained from an operating system. Figure 13a depicts the run-
time for feature processor for the number of regions ranging from 2.2 million
to 11 million, with data size ranging from 155MB to 1GB. The runtime in-
creases from 21,401s to 102,605s in total as the number of regions increases
to 11 million with 1GB of data. This figure also suggests that the time
complexity of the feature processor is linear with respect to the data size.

Figure 13b depicts the runtime of the clone search process for the same
set of files. The target assembly file is one of the DLL files in the data set.
The figure depicts that both the unification and clone searching steps yield
linear time complexity. The runtime increases from 308s to 2,525s in total
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as the number of regions increases from 2.2 million to 11 million.
BinClone [1] Comparison: We used the same dataset and configura-

tions to compare the scalability of ScalClone and BinClone [1]. Figure 14
depicts the runtime for both methods on 10 to 70 malware files with a window
size w = 40, and a minimum similarity minS = 0.8. The total processing
time ranges from 35 to 980 seconds for BinClone, while ScalClone has a
linear time complexity ranging from 16 to 92 seconds. This comparison sug-
gests that adding a database on the backend can significantly improve the
scalability of the clone search process.

Figure 14: Scalability comparison between ScalClone and BinClone

7. Conclusions

In this paper, we present a scalable assembly code clone search system
called ScalClone, which incorporates a database in the backend, in order to
handle a large volume of assembly files. First, we present an effective as-
sembly code clone search system with a high recall rate. Second, unlike the
LSH approach employed in [4], our proposed clone detection methods are
deterministic, an important property for malware analysis. Third, thanks
to the well-designed database schema and operations, experimental results
strongly suggest that our proposed clone search system is scalable to handle
a large volume of assembly code. Fourth, experimental results also suggest
that ScalClone can still effectively identify the clones with the presence of
dead code insertion, instruction reordering, and compiler optimization. Fi-
nally, we present a system evaluation method for assembly code clone search,
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with respect to the results of source code clone search. We demonstrate the
feasibility of identifying high-quality clones from assembly code.
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