4-choosability of planar graphs with 4-cycles far apart via the Combinatorial Nullstellensatz^{*}

Fan Yang^{\dagger} Yue Wang^{\ddagger} Jian-liang Wu[§]

Abstract

By a well-known theorem of Thomassen and a planar graph depicted by Voigt, we know that every planar graph is 5-choosable, and the bound is tight. In 1999, Lam, Xu and Liu reduced 5 to 4 on C_4 -free planar graphs. In the paper, by applying the famous Combinatorial Nullstellensatz, we design an effective algorithm to deal with list coloring problems. At the same time, we prove that a planar graph G is 4-choosable if any two 4-cycles having distance at least 5 in G, which extends the result of Lam et al.

Key words: planar graphs, choosable, nice path, Combinatorial Nullstellensatz.

1 Introduction

All graphs considered in the paper are simple and finite. The concepts of list coloring and choosability were introduced by Vizing [19] and independently by Erdős, Rubin and Taylor [10]. Given a graph G, a *list assignment* L for G is a function that to each vertex $v \in V(G)$ assigns a set L(v) of colors, and an L-coloring is a proper coloring ϕ such that $\phi(v) \in L(v)$ for all $v \in V(G)$. We say that G is L-colorable if G has an L-coloring. Moreover, G is kchoosable if G is L-colorable for every list assignment L with $|L(v)| \ge k$ for each $v \in V(G)$. List coloring is a fundamental object in graph theory with a wealth of results studying various aspects and variants. A variety of mathematicians have suggested imposing slightly stronger conditions in order to further explore the choosability of graphs, see [6, 9, 13]. The distance of two vertices is the shortest length (number of edges) of paths between them, and

^{*}This work is supported by NSFC(11971270, 11631014) of China and Shandong Province Natural Science Foundation (ZR2018MA001, ZR2019MA047) of China.

[†]Data Science Institute, Shandong University, Jinan 250100, China, Email: yangfan5262@163.com.

[‡]School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, China, Email: wangyue_math@163.com.

[§]Corresponding author. School of Mathematics, Shandong University, Jinan 250100, China, Email: jlwu@sdu.edu.cn.

the distance $d(H_1, H_2)$ of two subgraphs H_1 and H_2 is the minimum of the distances between vertices $v_1 \in V(H_1)$ and $v_2 \in V(H_2)$.

The classic Four Color Theorem claims that every planar graph is 4-colorable, which was proved by Appel and Haken in 1976 [3, 4]. However, the result can not be extended to that of list colorings as Voigt [20] found a planar graph which is not 4-choosable. Fortunately, Thomassen [17] proved that every planar graph is 5-choosable by induction on the number of vertices. In order to further explore list coloring problems, forbidding certain structures within a planar graph is a common restriction used in graph coloring. Notice that all 2choosable graphs have been characterised by Erdős, Rubin and Taylor [10]. So it remains to determine whether a given planar graph is 3- or 4-choosable. In recent years, a number of interesting results about the choosability of special planar graphs have been obtained. Alon and Tarsi [2] proved that every planar bipartite graph is 3-choosable. Thomassen [18] showed every planar graph of girth at least 5 is 3-choosable, and there exist triangle-free planar graphs which are not 3-choosable [21], so the bound 5 is tight. Very recently, Dvořák [7] showed that every planar graph in which any two (≤ 4)-cycles have distance at least 26 is 3-choosable.

Steinberg's Conjecture from 1976 states that every $\{C_4, C_5\}$ -free planar graph is 3colorable, which was disproved by Cohen-Addad et al. [5]. Previously, Voigt [22] disproved a list version of Steinberg's Conjecture by giving a $\{C_4, C_5\}$ -free planar graph which is not 3-choosable. A graph G is said to be k-degenerate if every nonempty subgraph H of G has a vertex of degree at most k in H. Note that the list chromatic number of a k-degenerate graph is at most k + 1. It is simple to check that every triangle-free planar graph is 3degenerate, and so it is 4-choosable. In addition, it was proved that every C_k -free planar graph is 4-choosable for k = 4 in [15], for k = 5 in [14, 24], for k = 6 in [12, 14, 23], and for k = 7 in [11]. On the other hand, it is shown in [14] that every planar graph in which any two triangles have distance at least 2 is 4-choosable, and a conjecture was proposed in this paper, which claims that every planar graph without adjacent triangles is 4-choosable (this conjecture is still open so far). After that, Wang and Li [25] improved one of the results in [14] by showing that each planar graph without intersecting triangles is 4-choosable.

Inspired by the improvements of the results about triangle-free planar graphs, we further explore the picture when any two 4-cycles in a planar graph is far apart. A natural question can be proposed as follows.

Problem A. Does there exist a constant d such that a planar graph G is 4-choosable if any two 4-cycles have distance at least d in G?

We give a positive answer to this question with d = 5.

Theorem 1. If G is a planar graph such that any two 4-cycles have distance at least 5, then G is 4-choosable.

2 A Structural Lemma

For any positive integer r, we write [r] for the set $\{1, \ldots, r\}$. Given a plane graph G, we denote its vertex set, edge set, face set by V(G), E(G), and F(G), respectively. For any vertex $v \in V(G)$ (or any face $f \in F(G)$), the degree of v (or f), denoted by d(v) (or d(f)), is the number of edges incident with v (or the length of the boundary walk of f, where each cut edge is counted twice). A vertex v is called a k-vertex (k⁺-vertex, or k⁻-vertex) if d(v) = k $(d(v) \ge k, \text{ or } d(v) \le k, \text{ respectively})$. Analogously, a k-face (k⁺-face, or k⁻-face) is a face of degree k (at least k, or at most k, respectively). Moreover, we use $\Delta(G)$ and $\delta(G)$ to denote the maximum degree and the minimum degree of G, respectively.

We write $f = (u_1, \ldots, u_t)$ if u_1, \ldots, u_t are the boundary vertices of f in the clockwise order. Sometimes we replace u_i with $d(u_i)$ for some $i \in [t]$ in $f = (u_1, \ldots, u_t)$ to describe the face f. For example, $f = (4, 4, 5, u_4)$ denotes a 4-face with $d(u_1) = d(u_2) = 4$, $d(u_3) = 5$. For a vertex v and a face f, let $f_k(v)$, $n_k(v)$ and $n_k(f)$ denote the number of k-faces incident with v, the number of k-vertices adjacent to v, and the number of k-vertices incident with f, respectively. Let $f = (v_1, v_2, v_3, v_4, v_5)$ be a 5-face, f is called bad if $d(v_i) = 4$ for all $i \in [5]$. For convenience, we use $f_{5b}(v)$ to denote the number of bad 5-faces incident with a vertex v. In addition, let $\zeta_v(f_{3b})$ denote the number of 3-faces f = (x, y, v) incident with v such that d(x) = d(y) = 4 and xy locates on a bad 5-face. Below Figure 1 shows a 6-vertex v with $\zeta_v(f_{3b}) = 3$.

Figure 1: d(v) = 6 and $\zeta_v(f_{3b}) = 3$.

A 4-vertex v with $f_3(v) + f_{5b}(v) \le 1$ of G is called *good*, whereas v is called *bad* if $f_3(v) = 1$ and $f_{5b}(v) = 1$. **Lemma 2.1.** Let G be a connected planar graph such that any two 4-cycles have distance at least 5. Then

- (a) G has a 3^- -vertex, or
- (b) G contains one of the configurations S_1 - S_{47} , see Appendix B.

Proof. Let G be a counterexample to the lemma with |V(G)| + |E(G)| as small as possible. Then $\delta(G) \ge 4$ and G contains none of the configurations S_1 - S_{47} in Appendix B. Euler's formula |V(G)| - |E(G)| + |F(G)| = 2 can be expressed in the form

$$\sum_{v \in V(G)} (d_G(v) - 2) + \sum_{f \in F(G)} (-2) = -4.$$
(1)

An initial charge ch_0 on $V(G) \cup F(G)$ is defined by letting $ch_0(v) = d(v) - 2$ for each $v \in V(G)$ and $ch_0(f) = -2$ for each $f \in F(G)$. Thus we have $\sum_{z \in V(G) \cup F(G)} ch_0(z) < 0$.

In the following, $c(x \to y)$ is used to denote the amount of charges transferred from an element x to an element y. For brevity, let $\gamma = \frac{2-\frac{1}{3}n_4(f)}{n_{5+}(f)}$.

We define the following two rounds of discharging rules. The first round contains R1-R5. Let v be a k-vertex, and let f be an ℓ -face incident with v.

R1.
$$c(v \to f) = \frac{2}{3}$$
 if $\ell = 3$, and $c(v \to f) = \frac{1}{3}$ if $\ell \ge 6$.

R2. For k = 4 and $\ell \in \{4, 5\}$.

R2.1. Let $T_f = \{v_i : d(v_i) = 4 \text{ and } f_3(v_i) \le 1\}$. If $f = (v_1, v_2, v_3, v_4, v_5)$ is a bad 5-face with $f_3(v) \le 1$, then $c(v \to f) = \frac{2}{3}$ when $|T_f| = 1$, and $c(v \to f) = \frac{1}{2}$ when $|T_f| \ge 2$.

R2.2. $c(v \to f) = \frac{1}{3}$ otherwise.

- **R3.** For k = 5, $c(v \to f) = \frac{5}{9}$ if $\ell = 4$ and $n_{6^+}(f) = 1$, $c(v \to f) = \frac{4}{9}$ if $\ell = 5$ and $n_{6^+}(f) = 1$, and $c(v \to f) = \gamma$ otherwise.
- **R4.** For $k \ge 6$, $c(v \to f) = \frac{7}{9}$ if $\ell = 4$ and $n_5(f) = 1$, $c(v \to f) = \frac{5}{9}$ if $\ell = 5$ and $n_5(f) = 1$, and $c(v \to f) = \gamma$ otherwise.
- **R5.** Let $f = (v_1, v_2, v_3, v_4, v_5)$ be a bad 5-face with $f_3(v_i) = 2$ for each $i \in [5]$, and let $f_i = (v_i, v_{i+1}, u_i)$. Then $c(u_i \to f) = \frac{1}{9}$ if u_i is not incident with any 4-cycle.

Let $ch_1(x)$ be the new charge of x after applying R1-R5. A vertex v is called *rich* if $ch_1(v) > 0$ while it is called *poor* if $ch_1(v) < 0$ and v is incident with a 4-cycle. Given a poor vertex, we aim to get additional charge from rich vertices to keep it non-negative.

Definition 2.2. Let u be a poor vertex with $5 \le d(u) \le 6$, and v be a rich vertex. A nice uv-path is a path connecting u and v of length at most two and the internal vertex (if any) has degree at most 5 in G, see Figure 2.

Figure 2: Nice paths.

The second round R6 can be expressed as follows.

R6. Let u be a poor vertex, and v_1, \ldots, v_ℓ be the rich vertices at distance at most 2 from u. Then $c(v_i \to u) = ch_1(v_i)$ if G has a nice uv_i -path.

Remark 2.3. Since the poor vertex is incident with a 4-cycle and any two 4-cycles have distance at least 5, each rich vertex sends additional charge to at most one poor vertex. Note that the new charge of every rich vertex still keeps non-negative after applying R6.

Let $ch_2(x)$ be the final charge of x after applying R1-R6. For convenience, we say that $S_i \not\subseteq G$ if G contains no subgraphs isomorphic to the configurations S_i $(1 \leq i \leq 47)$ in Appendix B. Our goal is to show that $ch_2(z) \geq 0$ for each $z \in V(G) \cup F(G)$ and so we find a contradiction to (1), which implies that the minimum counterexample does not exist. Note that $ch_2(x) = ch_1(x)$ if R6 is not applied to x. Thus, we have that $ch_2(f) = ch_1(f)$ for any $f \in F(G)$ by R6 and $ch_2(v) = ch_1(v)$ for any v with $ch_1(v) = 0$. By Remark 2.3, we get that $ch_2(v) \geq 0$ for each rich vertex. So if $ch_1(z) \geq 0$, then we have that $ch_2(z) \geq 0$ for each $z \in V(G) \cup F(G)$.

Since G has no intersecting 4-cycles, we immediately have the following simple fact.

Fact 2.4. For each vertex $v \in V(G)$, $f_3(v) \leq \lceil \frac{d(v)}{2} \rceil$.

Claim 2.5. For each face $f \in F(G)$, $ch_2(f) = ch_1(f) \ge 0$.

Proof. If d(f) = 3, then $ch_1(f) \ge -2 + 3 \times \frac{2}{3} = 0$ by R1. If $d(f) \ge 6$, then $ch_1(f) \ge -2 + 6 \times \frac{1}{3} = 0$ by R1.

Suppose that $4 \le d(f) \le 5$ and f is not a bad 5-face. By R2.2, f gets $\frac{1}{3}$ from each of its incident 4-vertices.

(i) If d(f) = 4, $n_5(f) = 1$ and $n_{6^+}(f) = 1$, then f gets $\frac{5}{9}$ from its incident 5-vertex and $\frac{7}{9}$ from its incident 6⁺-vertex by R3 and R4.

(ii) If d(f) = 5, $n_5(f) = 1$ and $n_{6^+}(f) = 1$, then f gets $\frac{4}{9}$ from its incident 5-vertex and $\frac{5}{9}$

from its incident 6^+ -vertex by R3 and R4.

(iii) Otherwise, f gets γ from each of its incident 5⁺-vertices by R3 and R4. Thus, we have that $ch_1(f) \ge -2 + \min\{\frac{1}{3} \times 2 + \frac{5}{9} + \frac{7}{9}, \frac{1}{3} \times 3 + \frac{4}{9} + \frac{5}{9}, \frac{1}{3} \cdot n_4(f) + \frac{2 - \frac{1}{3}n_4(f)}{n_5 + (f)} \cdot n_5 + (f)\} = 0.$

Suppose that f is a bad 5-face. If there exists exactly one i $(i \in [5])$ such that $f_3(v_i) \leq 1$, then f gets at least $\frac{4}{3}$ from other incident vertices by R2.1, and so we have that $ch_1(f) \geq -2 + \frac{2}{3} + 4 \times \frac{1}{3} = 0$. If there exist at least two vertices, say v_i and v_j , such that $f_3(v_i) \leq 1$ and $f_3(v_j) \leq 1$, then f gets $\frac{1}{2}$ from each of v_i and v_j by R2.1 and gets at least 1 from other incident vertices by R2, and so we have that $ch_1(f) \geq -2 + \frac{1}{2} \times 2 + 3 \times \frac{1}{3} = 0$. Hence, we assume that each v_i satisfies $f_3(v_i) = 2$. For brevity, denote by $f_i = (v_i, v_{i+1}, u_i)$ the 3-face sharing the edge $v_i v_{i+1}$ with f, and let $U = \{u_1, u_2, u_3, u_4, u_5\}$. Since $S_2 \notin G$, we get that $d(u_i) \geq 5$ for each $i \in [5]$. By the assumption of G, either at most one vertex in U lies on a 4-cycle, or two vertices in U lie on the same 4-cycle. Let $U^* \subseteq U$ such that each vertex in U^* does not lie on any 4-cycle. Note that $|U^*| \geq 3$ and it follows that f receives at least $3 \times \frac{1}{9}$ from U^* by R5. So we get that $ch_2(f) = ch_1(f) \geq -2 + 5 \times \frac{1}{3} + 3 \times \frac{1}{9} = 0$ by R2.2.

Claim 2.6. For each 4-vertex v, $ch_1(v) \ge 0$. In particular, for each good 4-vertex v, $ch_1(v) \ge \frac{1}{3}$.

Proof. Let v be a 4-vertex. If $f_3(v) + f_{5b}(v) \leq 2$, then $ch_1(v) \geq 2 - \frac{2}{3} \times 2 - \frac{1}{3} \times 2 = 0$ by R1 and R2. So suppose that $f_3(v) + f_{5b}(v) \geq 3$. By Fact 2.4, $f_3(v) \leq 2$. As $S_2, S_3 \not\subseteq G$, we have that $f_{5b}(v) \leq 2$ and if $f_{5b}(v) = 2$, then $f_3(v) = 0$. It remains to consider the case that $f_3(v) = 2$ and $f_{5b}(v)=1$. By R2, v sends $\frac{1}{3}$ to each of other 4⁺-faces and $\frac{2}{3}$ to each 3-face. Thus, $ch_1(v) \geq 2 - \frac{2}{3} \times 2 - \frac{1}{3} \times 2 = 0$.

Since $f_3(v) + f_{5b}(v) \le 1$ holds for each good vertex v, we have that $ch_1(v) \ge 2 - \frac{1}{3} \times 3 - \frac{2}{3} = \frac{1}{3}$ by R1-R2.

Claim 2.7. $ch_1(v) \ge 0$ if v is a 7⁺-vertex, or a 6-vertex with $f_{6^+}(v) \ge 1$, or a 5-vertex with $f_{6^+}(v) \ge 2$.

Proof. Let v be a vertex. Suppose d(v) is odd. Note that $f_3(v) \leq \frac{d(v)+1}{2}$ by Fact 2.4. If $f_3(v) = \frac{d(v)+1}{2}$, then by R1 and R4, we have that $ch_1(v) \geq d(v) - 2 - \frac{2}{3}d(v) = \frac{d(v)-6}{3}$. If $f_3(v) \leq \frac{d(v)-1}{2}$ and $f_4(v) = 1$, then by R1 and R4, we have that $ch_1(v) \geq d(v) - 2 - 1 - \frac{2}{3}(d(v)-1) = \frac{d(v)-7}{3}$. If $f_3(v) \leq \frac{d(v)-1}{2}$ and $f_4(v) = 0$, then by R1 and R4-R5, we have that $ch_1(v) \geq d(v) - 2 - \frac{2}{3}d(v) - \frac{1}{9}\left(\frac{d(v)-1}{2}\right) = \frac{5d(v)-35}{18}$. Particularly, if $f_{6^+}(v) \geq 2$, then $ch_1(v) \geq \min\left\{\frac{d(v)-7}{3}, \frac{5d(v)-35}{18}\right\} + 2 \times \frac{1}{3} = \min\left\{\frac{d(v)-5}{3}, \frac{5d(v)-23}{18}\right\}$.

Suppose d(v) is even. Note that $f_3(v) \leq \frac{d(v)}{2}$ by Fact 2.4. If $f_4(v) = 1$, then by R1 and R4, we have that $ch_1(v) \geq d(v) - 2 - 1 - \frac{2}{3}(d(v) - 1) = \frac{d(v) - 7}{3}$. If $f_4(v) = 0$, then by R1 and R4-R5, we have that $ch_1(v) \geq d(v) - 2 - \frac{2}{3}d(v) - \frac{1}{9}\left(\frac{d(v)}{2}\right) = \frac{5d(v) - 36}{18}$. In particular, if $f_{6^+}(v) \geq 1$, then $ch_1(v) \geq \min\left\{\frac{d(v) - 7}{3}, \frac{5d(v) - 36}{18}\right\} + \frac{1}{3} = \min\left\{\frac{d(v) - 6}{3}, \frac{5d(v) - 30}{18}\right\}$. Therefore, Claim 2.7 is true.

Now it remains to consider the vertices of $W_1 = \{v : d(v) = 6 \text{ and } f_{6^+}(v) = 0\}$ and $W_2 = \{v : d(v) = 5 \text{ and } f_{6^+}(v) \le 1\}$ by Claim 2.6 and 2.7.

For $v \in W_1$, let $N(v) = \{v_1, \ldots, v_6\}$ and let f_1, \ldots, f_6 be the faces incident with v in clockwise such that v_i and v_{i+1} are incident with f_i . In the following Claims 2.8-2.11, we show that $ch_2(v) \ge 0$ for each vertex $v \in W_1$.

Claim 2.8. For each vertex $v \in W_1$ with $f_3(v) \leq 2$ and $f_4(v) = 1$, $ch_2(v) \geq 0$.

Proof. W.l.o.g., let f_1 be the 4-face, denoted by v_1vv_2x . Note that v sends no charge to a bad 5-face (if it exists) which is incident with a (4, 4, v)-face by R5. According to R1 and R4, v sends at most 1 to each 4-face and $\frac{2}{3}$ to each 3-face and 5-face. Thus, $ch_1(v) \ge 4-1-\frac{2}{3}\times 5 = -\frac{1}{3}$. If $ch_1(v) \ge 0$, then we are done. So suppose that $ch_1(v) < 0$, that is, v is poor. Clearly, if there is a good 4-vertex in N(v), then $ch_2(v) \ge 4-1-\frac{2}{3}\times 5+\frac{1}{3}=0$ by Claim 2.6 and R6. Next we only consider the case that there is no good 4-vertex in N(v).

Now we first claim that f_i is not a (4, 4, 4, 4, 6)-face for each $i \in \{2, 6\}$ (that is, $n_{5^+}(f_i) \ge 2$). Suppose to the contrary that for some $i \in \{2, 6\}$, f_i is a (4, 4, 4, 4, 6)-face, say f_2 . As $S_2, S_3 \not\subseteq G$, we get that $f_3(v_2) + f_{5b}(v_2) \le 1$ and v_2 is a good 4-vertex, a contradiction. Similarly, if f_6 is a (4, 4, 4, 4, 6)-face, then v_1 is a good 4-vertex, a contradiction.

Figure 3: Configurations for 6-vertex v with $f_4(v) = 1$.

Case 1. $n_{5^+}(f_1) = 1$.

Subcase 1.1. Assume that $f_3(v) \leq 1$. We will show that there are at least three 5faces f_i such that $n_{5^+}(f_i) \geq 2$, which implies that $c(v \to f_i) \leq \frac{5}{9}$ by R4, and so $ch_1(v) \geq 4 - 1 - 2 \times \frac{2}{3} - 3 \times \frac{5}{9} = 0$ by R1. (a) Suppose that $f_3(v) = 0$. Since G has no intersecting 4-cycles, the remaining faces incident with v are all 5-faces. By $S_{24} \not\subseteq G$, there exists at least one i $(i \in \{3, 4, 5\})$ such that $n_{5^+}(f_i) \ge 2$. Note that $n_{5^+}(f_2) \ge 2$ and $n_{5^+}(f_6) \ge 2$, so we are done.

(b) Suppose that $f_3(v) = 1$. By symmetry, three cases need to be considered (see Figure 3). In A_1 , since $S_{32} \not\subseteq G$, we have that $n_{5^+}(f_3) \ge 2$. In A_2 , since $S_{24} \not\subseteq G$, we have that $n_{5^+}(f_4) \ge 2$ or $n_{5^+}(f_5) \ge 2$. In A_3 , since $S_{27} \not\subseteq G$, we have that $n_{5^+}(f_3) \ge 2$ or $n_{5^+}(f_5) \ge 2$. Note that if f_i is a 5-face, then $n_{5^+}(f_i) \ge 2$ for $i \in \{2, 6\}$, so we are done.

Subcase 1.2. Assume that $f_3(v) = 2$. There are four subcases to be considered.

Firstly, we suppose that $d(f_2) = d(f_4) = 3$. Note that $f_3(v_1) \leq 1$ and v_1 is not good. It implies that v_1 is bad. Since $S_2, S_3 \not\subseteq G$, v_1x locates on the same bad 5-face. In this situation, $f_3(x) \leq 1$, and by R2.1, each of $\{v_1, x\}$ sends $\frac{1}{2}$ to the bad 5-face. Thus, by R2 $ch_1(u) \geq 2 - \frac{2}{3} - \frac{1}{2} - \frac{1}{3} \times 2 = \frac{1}{6}$ for each $u \in \{v_1, x\}$. Therefore, each of $\{v_1, x\}$ sends $\frac{1}{6}$ to v (if $ch_1(v) < 0$) via a nice path by R6. Thus $ch_2(v) \geq 0$. The case that $d(f_2) = d(f_5) = 3$ is similar as above.

Next, we suppose that $d(f_3) = d(f_5) = 3$. Since v_1 and v_2 are not good and $S_2, S_3 \not\subseteq G$, v_1x locates on the same bad 5-face g_1 and v_2x locates on the same bad 5-face g_2 . By $S_2 \not\subseteq G$, we have that $f_3(x) = 0$. Note that $f_3(v_i) \leq 1$ for each $i \in [2]$. It follows that $|Tg_1| \geq 2$ and $|Tg_2| \geq 2$. Thus, $ch_1(x) \geq 2 - 2 \times \frac{1}{2} - 2 \times \frac{1}{3} = \frac{1}{3}$ by R1 and R2. Hence, v (if $ch_1(v) < 0$) could receive at least $\frac{1}{3}$ from x via a nice path by R6, and $ch_2(v) \geq 0$.

It remains to consider the case where $d(f_2) = d(f_6) = 3$. Since $S_{32} \nsubseteq G$, we get that for each $i \in \{3, 5\}$, $n_{5^+}(f_i) \ge 2$ and $c(v \to f_i) \le \frac{5}{9}$ by R4. If $n_{5^+}(f_4) \ge 2$, then $ch_1(v) \ge 4 - 1 - 2 \times \frac{2}{3} - 3 \times \frac{5}{9} = 0$ by R1 and R4. Now let $n_{5^+}(f_4) = 1$, and denote by $f_4 = (v, v_4, y_1, y_2, v_5)$, that is $d(v_4) = d(v_5) = d(y_1) = d(y_2) = 4$. Note that $f_3(v_4) = f_3(v_5) \le 1$. So we may assume that both v_4 and v_5 are not good (otherwise v receives at least $\frac{1}{3}$ from $\{v_4, v_5\}$ and $ch_2(v) \ge 0$). Since $S_2 \nsubseteq G$, v_4y_1 and v_5y_2 locate on two bad 5-faces, respectively. On the other hand, notice that $S_2, S_{47} \nsubseteq G$, and then at least one $j \in \{3, 5\}$ satisfying $n_{5^+}(f_j) \ge 3$, and so $c(v \to f_j) \le \frac{4}{9}$ for some $j \in \{3, 5\}$ by R4. Thus $ch_1(v) \ge 4 - 1 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R4.

Case 2. $n_{5^+}(f_1) \ge 2$. Since $S_2, S_{36} \not\subseteq G$, there exists at least one $i \in \{2, 3, 4, 5, 6\}$ such that $n_{5^+}(f_i) \ge 2$, and we have $c(v \to f_i) \le \frac{5}{9}$ by R4. So $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - \frac{7}{9} - \frac{5}{9} = 0$ by R1 and R4.

Claim 2.9. For each vertex $v \in W_1$ with $f_3(v) \leq 2$ and $f_4(v) = 0$, $ch_2(v) \geq 0$.

Proof. Suppose that $f_4(v) = 0$. If $f_3(v) = 0$, then $ch_2(v) \ge 4 - 6 \times \frac{2}{3} = 0$ by R1 and R4. If $f_3(v) = 1$, then by $S_{35} \nsubseteq G$, either $\zeta_v(f_{3b}) = 0$ or there exists some *i* such that $n_{5^+}(f_i) \ge 2$,

and thus $ch_1(v) \ge 4 - 5 \times \frac{2}{3} - \max\{\frac{5}{9} + \frac{1}{9}, \frac{2}{3}\} = 0$ by R1, R4-R5. Finally, we discuss the case where $f_3(v) = 2$. If the two 3-faces are consecutive, then $ch_1(v) \ge 4 - 6 \times \frac{2}{3} = 0$ by R1 and R4. Otherwise if they are not consecutive, by the fact that $S_{30}, S_{35} \not\subseteq G$, we get that $ch_1(v) \ge 4 - 2 \times \frac{5}{9} - 4 \times \frac{2}{3} - 2 \times \frac{1}{9} = 0$ by R1, R4-R5.

Next we focus on the case $f_3(v) = 3$. Since $S_{46} \nsubseteq G$, we get $\zeta_v(f_{3b}) \le 2$.

Figure 4: Configurations for 6-vertex v with $f_3(v) = 3$.

Recall that v sends no charge to a bad 5-face which is incident with a (4, 4, v)-face by R5.

Claim 2.10. For each vertex $v \in W_1$ with $f_3(v) = 3$ and $f_4(v) = 1$ (see Figure 4(B₁)), $ch_2(v) \ge 0$.

Proof. We divide the proof into four possibilities depending on $n_4(v) \in \{4, 5, 6\}$ or $n_4(v) \leq 3$.

(i) Suppose $n_4(v) = 6$. (a). d(x) = 4. As $S_{32} \not\subseteq G$, for each $i \in \{4, 6\}$, we have $n_{5^+}(f_i) \ge 2$, and so $c(v \to f_i) \le \frac{5}{9}$ by R4. If $n_{6^+}(f_i) \ge 2$ or $n_{5^+}(f_i) \ge 3$ for each $i \in \{4, 6\}$, then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - 2 \times \frac{1}{2} = 0$ by R1 and R4. Assume $n_6(f_4) = 1$ and $n_{5^+}(f_4) = 2$. Denote by $f_4 = (v, v_4, y_1, y_2, v_5)$. First, let $d(y_1) = 5$ and $d(y_2) = 4$. If $f_3(v_4) = 1$, then according to $S_{25} \not\subseteq G$, v_4 can not locate on a bad 5-face. Thus v_4 is good, and $ch_1(v_4) \ge \frac{1}{3}$. If $f_3(v_4) = 2$, then by $S_{25}, S_{41}, S_{44} \not\subseteq G$, we have $\zeta_{y_1}(f_{3b}) = 0$. Thus $ch_1(y_1) \ge 3 - 3 \times \frac{2}{3} - \frac{4}{9} - \frac{1}{2} = \frac{1}{18}$ by R1 and R3. In both cases, $\{v_4, y_1\}$ could send at least $\frac{1}{18}$ to v (if $ch_1(v) < 0$) via a nice path by R6. Second, let $d(y_1) = 4$ and $d(y_2) = 5$. If $f_3(v_5) = 1$, then v_5 can not locate on a bad 5-face by $S_{38} \not\subseteq G$. Thus v_5 is good, and $ch_1(v_5) \ge \frac{1}{3}$. If $f_3(v_5) = 2$, then by $S_{38}, S_{39}, S_{42} \not\subseteq G$, we have $\zeta_{y_2}(f_{3b}) = 0$. Thus $ch_1(y_2) \ge 3 - 3 \times \frac{2}{3} - \frac{4}{9} - \frac{1}{2} = \frac{1}{18}$ by R1 and R3. In both cases, $\{v_5, y_2\}$ could send at least $\frac{1}{18}$ from $\{v_4, v_5, y_1, y_2\}$. By symmetry, the same arguments also hold for the vertices on f_6 (i.e. $\{v_1, v_6, z_1, z_2\}$). If $n_6(f_6) = 1$ and

 $n_{5^+}(f_6) = 2$, then $ch_2(v) \ge 4 - 3 \times \frac{2}{3} - 1 - 2 \times \frac{5}{9} + 2 \times \frac{1}{18} = 0$ by R1, R4 and R6. Otherwise $ch_2(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{1}{2} + \frac{1}{18} = 0$.

(b). $d(x) \ge 5$. Since $S_{30} \not\subseteq G$, $n_{5^+}(f_i) \ge 2$ for some $i \in \{4, 6\}$, and $c(v \to f_i) \le \frac{5}{9}$ by R4. Thus $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - \frac{7}{9} - \frac{5}{9} = 0$ by R1 and R4.

(ii) Suppose $n_4(v) = 5$. By symmetry, we only need to consider three subcases: $d(v_1) \ge 5$, $d(v_2) \ge 5$ and $d(v_5) \ge 5$.

(a). d(x) = 4. Assume that $d(v_1) \ge 5$. If $d(v_1) = 5$, then $n_{5^+}(f_6) \ge 3$ by $S_{33} \not\subseteq G$, and we have $c(v \to f_i) \le \frac{4}{9}$ by R4. Thus $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R4. If $d(v_1) = 6$, then $ch_1(v_1) \ge 4 - 4 \times \frac{2}{3} - \frac{1}{2} - \frac{5}{9} - 2 \times \frac{1}{9} = \frac{1}{18}$ by R1, R4-R5 because of $S_{40} \not\subseteq G$. If $d(v_1) \ge 7$, then by Claim 2.7, $ch_1(v_1) \ge \frac{5d(v) - 36}{18} + \frac{1}{9} + \frac{1}{18} \ge \frac{1}{18}$. Hence, when $d(v_1) \ge 6$, v (if $ch_1(v) < 0$) could receive at least $\frac{1}{18}$ from v_1 via a nice path by R6. Thus $ch_2(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{1}{2} + \frac{1}{18} = 0$ by R1, R4 and R6.

Assume that $d(v_2) \ge 5$. Then $n_{5^+}(f_i) \ge 2$ for some $i \in \{4, 6\}$ by $S_{30} \nsubseteq G$, and we have $c(v \to f_i) \le \frac{5}{9}$ by R4. Thus $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - \frac{7}{9} - \frac{5}{9} = 0$ by R1 and R4.

Assume that $d(v_5) \ge 5$. Since $S_{32} \not\subseteq G$, $n_{5^+}(f_6) \ge 2$ and $c(v \to f_6) \le \frac{5}{9}$ by R4. According to $S_{26} \not\subseteq G$, either $d(v_5) \ge 6$ or $n_{5^+}(f_4) \ge 3$. If $n_{5^+}(f_4) \ge 3$, then $c(v \to f_4) \le \frac{4}{9}$ by R4, and thus $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R4; if $d(v_5) \ge 6$, then by the similar arguments as above, we have that v (if $ch_1(v) < 0$) could receive at least $\frac{1}{18}$ from v_5 via a nice path by R6, and thus $ch_2(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{1}{2} + \frac{1}{18} = 0$ by R1, R4 and R6.

(b). $d(x) \ge 5$. In all three cases, it is easy to check that $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - \max\{\frac{7}{9} + \frac{5}{9}, \frac{5}{9} + \frac{2}{3}\} = 0$ by R1 and R4.

(iii) Suppose $n_4(v) = 4$. That is, $n_{5^+}(v) = 2$. If the pair of two 5⁺-vertices fall in $\{(v_1, v_2), (v_1, v_3), (v_2, v_3), (v_2, v_5), (v_2, v_6)\}$, then we have $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - \max\{\frac{7}{9} + \frac{5}{9}, \frac{2}{3} + \frac{5}{9}\} = 0$ by R1 and R4. By symmetry, it remains to discuss the following cases.

Assume that $d(v_1) \ge 5$ and $d(v_4) \ge 5$. (a). d(x) = 4. Note that v_1 and v_4 are symmetric to some extent. If $d(v_1) \ge 6$ and $d(v_4) \ge 6$, then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - 2 \times \frac{1}{2} = 0$ by R1 and R4. If $d(v_i) = 5$ for some $i \in \{1, 4\}$, then $n_{5^+}(f_{8-2i}) \ge 3$ by $S_{31} \not\subseteq G$, and so $c(v \to f_{8-2i}) \le \frac{4}{9}$ by R4. Thus $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \max\{\frac{1}{2} + \frac{4}{9}, 2 \times \frac{4}{9}\} = \frac{1}{18} > 0$ by R1 and R4. (b). $d(x) \ge 5$. Then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - \frac{7}{9} - 2 \times \frac{5}{9} = \frac{1}{9} > 0$ by R1 and R4.

Assume that $d(v_1) \ge 5$ and $d(v_5) \ge 5$. (a). d(x) = 4. If $d(v_1) \ge 6$ and $d(v_5) \ge 6$, then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - 2 \times \frac{1}{2} = 0$ by R1 and R4. If $d(v_i) = 5$ for some $i \in \{1, 5\}$, then $n_{5^+}(f_{\frac{13-i}{2}}) \ge 3$ by $S_{26}, S_{33} \not\subseteq G$, and so $c(v \to f_{\frac{13-i}{2}}) \le \frac{4}{9}$ by R4. Thus $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \max\{\frac{1}{2} + \frac{4}{9}, 2 \times \frac{4}{9}\} = \frac{1}{18} > 0$ by R1 and R4. (b). $d(x) \ge 5$. Then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 2 \times \frac{5}{9} - \frac{7}{9} = \frac{1}{9} > 0$ by R1 and R4.

Assume that $d(v_1) \ge 5$ and $d(v_6) \ge 5$. (a). d(x) = 4. Since $S_{32} \nsubseteq G$, we get $n_{5^+}(f_4) \ge 2$,

and $c(v \to f_4) \leq \frac{5}{9}$ by R4. Then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R4. (b). $d(x) \geq 5$. Then we have $ch_1(v) \geq 4 - 4 \times \frac{2}{3} - \frac{7}{9} - \frac{4}{9} = \frac{1}{9} > 0$ by R1 and R4.

Assume that $d(v_5) \ge 5$ and $d(v_6) \ge 5$. (a). d(x) = 4. If $d(v_5) \ge 6$ and $d(v_6) \ge 6$, then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - 2 \times \frac{1}{2} = 0$ by R1 and R4. If $d(v_i) = 5$ and $d(v_{11-i}) \ge 6$ for some $i \in \{5, 6\}$, then by $S_2 \nsubseteq G$, we get that $ch_1(v_i) \ge 3 - \frac{2}{3} - 2 \times \frac{4}{9} - \max\{\frac{2}{3} + \frac{1}{2} + \frac{1}{9}, 2 \times \frac{2}{3}\} = \frac{1}{9}$ by R1, R3 and R5. Hence, v_i could send at least $\frac{1}{9}$ to v via a nice path by R6, and $ch_2(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{1}{2} + \frac{1}{9} > 0$ by R1, R4 and R6. If $d(v_5) = 5$ and $d(v_6) = 5$, then there is at least one $i \in \{4, 6\}$ such that $n_{5^+}(f_i) \ge 3$ by $S_{34} \nsubseteq G$, and so $c(v \to f_i) \le \frac{4}{9}$ by R4. Hence, $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - 1 - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R4. (b). $d(x) \ge 5$. Then $ch_1(v) \ge 4 - 3 \times \frac{2}{3} - \frac{7}{9} - 2 \times \frac{5}{9} = \frac{1}{9} > 0$ by R1 and R4.

(iv) Suppose $n_4(v) \leq 3$. If $n_4(v) = 3$, then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - \max\{2 \times \frac{5}{9} + \frac{7}{9}, \frac{2}{3} + \frac{4}{9} + \frac{7}{9}, \frac{2}{3} + 2 \times \frac{5}{9}, 1 + \frac{4}{9} + \frac{5}{9}, \frac{4}{9} + \frac{5}{9} + \frac{7}{9}\} = 0$ by R1 and R4. If $n_4(v) = 2$, then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - \max\{\frac{7}{9} + \frac{4}{9} + \frac{5}{9}, 3 \times \frac{5}{9}, \frac{2}{3} + \frac{4}{9} + \frac{5}{9}, 1 + 2 \times \frac{4}{9}\} = \frac{1}{9} > 0$ by R1 and R4. If $n_4(v) = 1$, then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - \max\{2 \times \frac{5}{9} + \frac{4}{9}, 2 \times \frac{4}{9} + \frac{7}{9}\} = \frac{4}{9} > 0$ by R1 and R4. If $n_4(v) = 0$, then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - \max\{2 \times \frac{5}{9} + \frac{4}{9}, 2 \times \frac{4}{9} + \frac{7}{9}\} = \frac{4}{9} > 0$ by R1 and R4. \Box

Claim 2.11. For each vertex $v \in W_1$ with $f_3(v) = 3$ and $f_4(v) = 0$, $ch_2(v) \ge 0$.

Proof. If v is incident with a 4-cycle (see Figure 4(B_2)), then v also sends no charge to a bad 5-face (if it exists) which is incident with a (4, 4, v)-face by R5. Thus $ch_1(v) \ge 4 - 6 \times \frac{2}{3} = 0$ by R1 and R4. Next we turn to the case that v is not incident with any 4-cycle, see Figure 4(B_3). Recall that $\zeta_v(f_{3b}) \le 2$.

(i) Suppose $n_4(v) = 6$. Then there are at least two faces f_i , f_j in $\{f_2, f_4, f_6\}$ satisfying $f_i \neq (4, 4, 4, 6)$ and $f_j \neq (4, 4, 4, 6)$ by $S_{30} \notin G$. Thus $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - 2 \times \frac{5}{9} - 2 \times \frac{1}{9} = 0$ by R1 and R4-R5.

(ii) Suppose $n_4(v) = 5$. By symmetry, say $d(v_1) \ge 5$. Since $S_{30} \nsubseteq G$, we get $n_{5^+}(f_i) \ge 2$ when $d(f_i) = 5$ for some $i \in \{2, 4\}$, and so $c(v \to f_i) \le \frac{5}{9}$ by R4. Thus $ch_1(v) \ge 4 - 4 \times \frac{2}{3} - 2 \times \frac{5}{9} - 2 \times \frac{1}{9} = 0$ by R1 and R4-R5.

(iii) Suppose $n_4(v) \leq 4$. If $n_4(v) = 4$, then $ch_1(v) \geq 4 - \max\{4 \times \frac{2}{3} + 2 \times \frac{5}{9} + 2 \times \frac{1}{9}, 5 \times \frac{2}{3} + \frac{4}{9} + \frac{1}{9}\} = 0$ by R1 and R4-R5. If $n_4(v) = 3$, then $ch_1(v) \geq 4 - \max\{4 \times \frac{2}{3} + \frac{4}{9} + \frac{5}{9} + \frac{1}{9}, 3 \times \frac{2}{3} + 3 \times \frac{5}{9} + \frac{1}{9}\} = \frac{2}{9} > 0$ by R1, R4-R5. If $n_4(v) = 2$, then $ch_1(v) \geq 4 - \max\{3 \times \frac{2}{3} + \frac{4}{9} + 2 \times \frac{5}{9} + \frac{1}{9}, 4 \times \frac{2}{3} + 2 \times \frac{5}{9}\} = \frac{2}{9} > 0$ by R1, R4-R5. If $n_4(v) = 2$, then $ch_1(v) \geq 4 - \max\{3 \times \frac{2}{3} + \frac{4}{9} + 2 \times \frac{5}{9} + \frac{1}{9}, 4 \times \frac{2}{3} + 2 \times \frac{5}{9}\} = \frac{2}{9} > 0$ by R1, R4-R5. If $n_4(v) = 1$, then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - 2 \times \frac{4}{9} - \frac{5}{9} = \frac{5}{9} > 0$ by R1 and R4. If $n_4(v) = 0$, then we have $ch_1(v) \geq 4 - 3 \times \frac{2}{3} - 3 \times \frac{4}{9} = \frac{2}{3} > 0$ by R1 and R4.

For each vertex $v \in W_2$, denote by f_i $(i \in [5])$ the faces incident with v. If $d(f_i) = 3$ for some i, then denote by $f_i = (v, v_i, v_{i+1})$. The following Claims 2.12-2.16 imply that

 $ch_2(v) \ge 0$, for each vertex $v \in W_2$.

Claim 2.12. For each vertex $v \in W_2$ with $f_3(v) = 3$, $ch_2(v) \ge 0$.

Proof. In this case, $f_4(v) = 0$ since G does not contain intersecting 4-cycles. Let f_1 , f_2 and f_4 be the 3-faces incident with v. If $d(f_i) \ge 6$ for some $i \in \{3, 5\}$, then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Next, we consider the situation where $d(f_i) = 5$ for each $i \in \{3, 5\}$, see Figure $5(C_1)$.

Figure 5: Configurations for 5-vertex v.

(i) Suppose $n_4(v) = 5$. Then $n_{5^+}(f_3) \ge 2$ and $n_{5^+}(f_5) \ge 2$ hold by $S_2 \nsubseteq G$, and so $c(v \to f_i) \le \frac{1}{2}$ for each $i \in \{3, 5\}$ by R3. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

(ii) Suppose $n_4(v) = 4$, that is $n_{5^+}(v) = 1$. By symmetry, there are only three cases need to be considered: $d(v_1) \ge 5$; $d(v_2) \ge 5$; $d(v_4) \ge 5$. In all three cases, since $S_2 \not\subseteq G$, we have $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

(iii) Suppose $n_4(v) = 3$, that is $n_{5^+}(v) = 2$. If the pair of two 5⁺-vertices fall in $\{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_1, v_5), (v_4, v_5)\}$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \max\{2 \times \frac{1}{2}, \frac{4}{9} + \frac{1}{2}\} = 0$ by R1 and R3. By symmetry, it remains to consider the pair (v_2, v_4) with $d(v_2) \ge 5$ and $d(v_4) \ge 5$. We may assume that $n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \ge 0$). Since $S_{22} \not\subseteq G$, $d(v_2) \ge 6$. If $d(v_2) = 6$, then by $S_{29}, S_{35}, S_{37} \not\subseteq G$, there are at least two faces \tilde{f} incident with v_2 such that $n_{5^+}(\tilde{f}) \ge 2$, and so $c(v \to \tilde{f}) \le \frac{5}{9}$. Thus $ch_1(v_2) \ge 4 - 4 \times \frac{2}{3} - 2 \times \frac{5}{9} = \frac{2}{9}$ by R1 and R4. If $d(v_2) \ge 7$, then $ch_1(v_2) \ge \frac{d(v)-6}{3} > \frac{2}{9}$. Hence, v_2 could send at least $\frac{2}{9}$ to v (if $ch_1(v) < 0$) via a nice path by R6, and $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{2} + \frac{2}{9} > 0$ by R1, R3 and R6.

(iv) Suppose $n_4(v) = 2$. If the pair of two 4-vertices fall in $\{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_4), (v_4, v_5)\}$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \max\{2 \times \frac{1}{2}, \frac{4}{9} + \frac{1}{2}\} = 0$ by R1 and R3. By symmetry, it remains to consider the pair (v_1, v_5) with $d(v_1) = d(v_5) = 4$. We may assume that $n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \ge 0$). If $d(v_2) = 6$, then $ch_1(v) \ge 4 - 5 \times \frac{2}{3} - \frac{5}{9} = \frac{1}{9}$ by R1 and R4; if $d(v_2) \ge 7$, then $ch_1(v_2) \ge \frac{d(v)-6}{3} > \frac{1}{9}$. Hence, v_2 could send at least $\frac{1}{9}$ to v (if $ch_1(v) < 0$) via

a nice path by R6, and $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{4}{9} + \frac{1}{9} = 0$ by R1, R3 and R6. The same results hold for v_3 . We now turn to the case $d(v_2) = d(v_3) = 5$. For simplicity, denote by f_6 , f_7 and f_8 the remaining faces incident with v_3 in clockwise. If $n_{5^+}(f_6) \ge 3$, then $c(v_3 \to f_6) \le \frac{4}{9}$ by R4, and thus $ch_1(v_3) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{4}{9} = \frac{1}{9}$ by R1 and R4. Otherwise, $n_{5^+}(f_6) = 2$. If $d(f_7) = 3$, then $n_{5^+}(f_8) \ge 2$ as $S_2 \nsubseteq G$; if $d(f_8) = 3$, then by S_{20} , $n_{5^+}(f_7) \ge 2$; if none of f_7 and f_8 are 3-faces, then by S_3 , $n_{5^+}(f_i) \ge 2$ for some $i \in \{7, 8\}$. In all cases, we have $ch_1(v_3) \ge 3 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} - \frac{4}{9} = \frac{2}{9}$ by R1 and R3. Thus v_3 could send at least $\frac{2}{9}$ to v (if $ch_1(v) < 0$) via a nice path by R6, and $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{4}{9} + \frac{2}{9} > 0$ by R1, R3 and R6.

(v) Suppose $n_4(v) \leq 1$. If $n_4(v) = 1$, then $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - \max\{\frac{4}{9} + \frac{1}{2}, 2 \times \frac{4}{9}\} = \frac{1}{18} > 0$ by R1 and R3. If $n_4(v) = 0$, then $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - 2 \times \frac{4}{9} = \frac{1}{9} > 0$ by R1 and R3. \square

Claim 2.13. For each vertex $v \in W_2$ with $f_3(v) = 2$ and $f_4(v) = 0$, $ch_2(v) \ge 0$.

Proof. Firstly, suppose that the two 3-faces are consecutive and denote them by f_1 and f_2 . Assume that there exists one 6⁺-face in $\{f_4, f_5, f_6\}$, then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Next we consider the situation where $d(f_i) = 5$ for each $i \in \{4, 5, 6\}$, see Figure $5(C_2)$.

If $d(v_i) \geq 5$ for some $i \in \{4,5\}$, then $\max\{c(v \to f_{i-1}), c(v \to f_i)\} \leq \frac{1}{2}$ by R3, and thus $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. Now let $d(v_4) = d(v_5) = 4$. Since $S_3 \not\subseteq G$, $n_{5^+}(f_i) \geq 2$ for some $i \in \{3,4\}$ and $n_{5^+}(f_j) \geq 2$ for some $j \in \{4,5\}$. If $i \neq j$, then $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. If i = j = 4, then we may assume that $n_{5^+}(f_3) = n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \geq 0$). Note that $f_3(v_k) \leq 1$ for each $k \in \{4,5\}$. If v_k is good for some $k \in \{4,5\}$, then $ch_1(v_k) \geq \frac{1}{3}$ by R1-R2. Hence, v_k sends at least $\frac{1}{3}$ to v(if $ch_1(v) < 0$) via a nice path by R6. Since $S_2, S_{12} \not\subseteq G$, we get that at least one vertex in $\{v_4, v_5\}$ is good, and we are done.

Secondly, suppose that the two 3-faces are not consecutive, say f_1 and f_3 are the 3-faces. By $S_{16} \not\subseteq G$, $\zeta_v(f_{3b}) \leq 1$. If $d(f_2) \geq 6$, then according to S_3 , we have that $ch_1(v) \geq 3-3 \times \frac{2}{3} - \frac{1}{2} - \frac{1}{3} - \frac{1}{9} = \frac{1}{18} > 0$ by R1, R3 and R5. If $d(f_4) \geq 6$ and $\zeta_v(f_{3b}) = 1$, then $n_{5^+}(f_2) \geq 2$ by $S_2 \not\subseteq G$, and so $c(v \to f_2) \leq \frac{1}{2}$ by R3. Thus $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - \frac{1}{2} - \frac{1}{3} - \frac{1}{9} = \frac{1}{18} > 0$ by R1, R3 and R5. In the following, we may assume $d(f_i) = 5$ for each $i \in \{2, 4, 5\}$, see Figure $5(C_3)$.

Assume $\zeta_v(f_{3b}) = 1$, and let v_1v_2 be the edge incident with a bad 5-face. By $S_2 \not\subseteq G$, we get $n_{5^+}(f_2) \ge 2$ and $n_{5^+}(f_5) \ge 2$, and so $c(v \to f_i) \le \frac{1}{2}$ for each $i \in \{2, 5\}$ by R3. If $f_3(v_i) \le 1$ for some $i \in [2]$, then v need not send any charge to the bad 5-face by R5 (since v_i sends $\frac{2}{3}$ to the bad 5-face), and thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. It remains to consider $f_3(v_i) = 2$ for each $i \in [2]$. If $n_{5^+}(f_4) \ge 2$, then $c(v \to f_4) \le \frac{1}{2}$ by R3, and thus $ch_1(v) \ge 3 - 2 \times \frac{2}{3} - 3 \times \frac{1}{2} - \frac{1}{9} = \frac{1}{18} > 0$ by R1, R3 and R5. Otherwise, $n_{5^+}(f_4) = 1$. We have that $n_{5^+}(f_2) \ge 3$ since $S_2 \not\subseteq G$, and $n_{6^+}(f_5) \ge 1$ or $n_{5^+}(f_5) \ge 3$ since $S_{28} \not\subseteq G$, and so $c(v \to f_i) \le \frac{4}{9}$ for each $i \in \{2, 5\}$. Hence, $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{4}{9} - \frac{1}{9} = 0$ by R1, R3 and R5.

Assume $\zeta_v(f_{3b}) = 0$. Since $S_3 \not\subseteq G$, we know that at least one of $f_i \in \{f_4, f_5\}$ satisfies $n_{5^+}(f_i) \ge 2$. If $n_{5^+}(f_i) \ge 2$ for each $i \in \{4, 5\}$, then $c(v \to f_i) \le \frac{1}{2}$ for each $i \in \{4, 5\}$ by R3, and thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. Otherwise we assume that $n_{5^+}(f_4) = 1$ (which means $n_{5^+}(f_5) \ge 2$), then $n_{5^+}(f_2) \ge 2$ by $S_2 \not\subseteq G$, and thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

Claim 2.14. For each vertex $v \in W_2$ with $f_3(v) = 2$ and $f_4(v) = 1$, $ch_2(v) \ge 0$.

Proof. There are two subcases to be considered, see Figure 6. Recall that v sends no charge to any bad 5-face by R5.

Figure 6: Configuration for 5-vertex v.

We consider the configuration D_1 first. (i) Suppose $n_4(v) = 5$, that is $d(v_i) = 4$ for each $i \in [5]$. Since $S_1 \not\subseteq G$, we obtain that $d(x) \ge 5$. If $d(f_i) = 5$ for $i \in \{4, 5\}$, then by $S_2 \not\subseteq G$, $n_{5^+}(f_i) \ge 2$. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \max\{2 \times \frac{1}{2}, \frac{1}{2} + \frac{1}{3}\} = 0$ by R1 and R3.

(ii) Suppose $n_4(v) = 4$. If $d(v_1) \ge 5$, then $d(x) \ge 5$ by $S_1 \nsubseteq G$, and $f_4 \ne (4, 4, 4, 4, 5)$ by $S_2 \nsubseteq G$. If $d(v_5) \ge 5$, then $d(x) \ge 5$ by $S_1 \nsubseteq G$. In both cases, $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \max\{2 \times \frac{1}{2}, \frac{1}{2} + \frac{1}{3}\} = 0$ by R1 and R3. At last, we study the case where $d(v_2) \ge 5$. If $f_{6^+}(v) \ge 1$, then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. We now turn to the situation $f_{6^+}(v) = 0$. In this situation, we may assume that $n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \ge 0$). Let us see v_5 . Note that $f_3(v_5) \le 1$. Denote by f_6 and f_7 the remaining faces incident with v_5 in clockwise. If v_5 is good, then v_5 sends at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6. Otherwise $d(f_6) = 3$ and f_7 is a bad 5-face, then by $S_2 \nsubseteq G$, we have $d(x_1) \ge 5$, see Figure 7(E_1). By the assumption, $d(v_2) \ge 5$. If $d(v_2) \ge 6$, then v sends at most $\frac{5}{9}$ to f_2 by R4; if $d(v_2) = 5$, then by $S_6 \nsubseteq G$, $d(x) \ge 5$, and v sends at most $\frac{5}{9}$ to f_2 by R3. On the other hand, if

 $d(x_1) \ge 6$, then v sends at most $\frac{4}{9}$ to f_4 by R3; if $d(x_1) = 5$, then by $S_7 \nsubseteq G$, $d(x_2) \ge 5$, and v sends at most $\frac{4}{9}$ to f_4 by R3. In conclusion, $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{4}{9} - \frac{5}{9} = 0$ by R1 and R3.

(iii) Suppose $n_4(v) = 3$, that is $n_{5^+}(v) = 2$. If the pair of two 5⁺-vertices fall in $\{(v_3, v_4), (v_3, v_5), (v_4, v_5)\}$, then by $S_1, S_2 \notin G$, we get $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \max\{\frac{1}{2} + \frac{4}{9}, 2 \times \frac{1}{2}\} = 0$ by R1 and R3. It remains to consider the pairs: $\{(v_1, v_4), (v_2, v_4), (v_2, v_3)\}$.

Assume $d(v_2) \ge 5$ and $d(v_4) \ge 5$. If $f_{6^+}(v) \ge 1$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \max\{\frac{2}{3} + \frac{1}{3}, \frac{1}{2} + \frac{1}{3}\} = 0$ by R1 and R3. It remains to discuss the case where $f_{6^+}(v) = 0$. Here, we can let $n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \ge 0$) and v_5 be not good (otherwise v_5 could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6 and $ch_2(v) \ge 0$). Denote by f_6 and f_7 the remaining faces incident with v_5 in clockwise. Note that $d(f_6) = 3$ and f_7 is a bad 5-face. By $S_2 \not\subseteq G$, we get $n_{5^+}(f_4) \ge 3$, and so $c(v \to f_4) \le \frac{4}{9}$. On the other hand, recall that $d(v_2) \ge 5$. If $d(v_2) \ge 6$, then v sends at most $\frac{5}{9}$ to f_2 by R3; if $d(v_2) = 5$, then $d(x) \ge 5$ holds because of $S_{21} \not\subseteq G$. Hence, $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{4}{9} - \frac{5}{9} = 0$ by R1 and R3.

Assume $d(v_2) \geq 5$ and $d(v_3) \geq 5$. If $f_{6^+}(v) = 1$, then $ch_1(v) \geq 3-3 \times \frac{2}{3} - \frac{5}{9} - \frac{1}{3} = \frac{1}{9} > 0$ by R1 and R3. Suppose that $f_{6^+}(v) = 0$. Since $S_3 \not\subseteq G$, $n_{5^+}(f_i) \geq 2$ holds for some $i \in \{4, 5\}$. If $n_{5^+}(f_i) \geq 2$ for each $i \in \{4, 5\}$, then $c(v \to f_i) \leq \frac{1}{2}$ for each $i \in \{4, 5\}$ by R3, and thus $ch_1(v) \geq 3 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} - \frac{5}{9} = \frac{1}{9} > 0$ by R1 and R3. Otherwise let $n_{5^+}(f_5) = 1$, that is $d(x_1) = d(x_2) = 4$, see Figure 7(E_2). If $d(x) \geq 5$, then $c(v \to f_2) \leq \frac{2}{3}$ by R3, and thus $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. Otherwise if d(x) = 4, then $f_3(v_5) \leq 1$ as f_2 is a 4-face and any two 4-faces in G are at distance at least 2. If v_5 is good, then v_5 sends at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6. Otherwise $f_3(v_5) = 1$ and v_5 is incident with a bad 5-face. Denote by f_6 and f_7 the faces incident with v_5 in clockwise. Since $S_2 \not\subseteq G$, we get $d(f_6) = 3$ and f_7 is a bad 5-face. If $d(z_2) = 5$, then $n_{5^+}(f_4) \geq 3$ by $S_{14} \not\subseteq G$, and so $c(v \to f_4) \leq \frac{4}{9}$. Otherwise $d(z_2) \geq 6$, in this situation $c(v \to f_4) \leq \frac{4}{9}$ by R3. Hence, $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R3.

Figure 7: Specified Configuration.

Finally, we consider the case where $d(v_1) \ge 5$ and $d(v_4) \ge 5$. (a). d(x) = 4. Let us start

to claim that v sends at most $\frac{8}{9}$ in total to $\{f_4, f_5\}$. Assume that $f_{6^+}(v) = 0$. If $d(v_1) \ge 6$, then we are done by R3. Otherwise if $d(v_1) = 5$, then $n_{5^+}(f_5) \ge 3$ holds because of $S_8 \nsubseteq G$, and so $c(v \to f_5) \le \frac{4}{9}$. The above arguments can also be applied to v_4 . So the same result holds for $f_{6^+}(v) \ge 1$, as claimed. Note that v_1 is symmetric to v_4 . So we only discuss v_4 in the following, and we would like to claim that v_4 could send at least $\frac{1}{9}$ to v (if $ch_1(v) < 0$) when $d(v_4) \ge 6$ via a nice path.

Assume $d(v_4) \ge 7$. By Claim 2.7, we have $ch_1(v_4) \ge \frac{5d(v)-36}{18} + \frac{1}{9} + \frac{2}{9} = \frac{5d(v)-30}{18} > \frac{1}{9}$. Assume $d(v_4) = 6$. Since $S_{45} \not\subseteq G$, $\zeta_{v_4}(f_{3b}) \le 1$. If $\zeta_{v_4}(f_{3b}) = 0$, then $ch_1(v_4) \ge \frac{5d(v)-36}{18} + 4 \times \frac{1}{9} \ge \frac{1}{9}$. Otherwise if $\zeta_{v_4}(f_{3b}) = 1$, then by $S_{43} \not\subseteq G$, we get $n_{5^+}(f_4) \ge 3$ and thus v_4 sends at most $\frac{4}{9}$ to f_4 by R4. Hence $ch_1(v_4) \ge \frac{5d(v)-36}{18} + 2 \times \frac{1}{9} + \frac{2}{9} \ge \frac{1}{9}$, and v_4 could send at least $\frac{1}{9}$ to v (if $ch_1(v) < 0$) via a nice path by R6, as claimed. So when $\min\{d(v_2), d(v_4)\} \ge 6$, v (if $ch_1(v) < 0$) could receive at least $\frac{2}{9}$ in total from $\{v_1, v_4\}$ via two nice paths by R6, and $ch_2(v) \ge 3 - 2 \times \frac{2}{3} - 1 - 2 \times \frac{4}{9} + 2 \times \frac{1}{9} = 0$ by R1, R3 and R6.

Figure 8: Specified Configuration.

Now we consider $\min\{d(v_2), d(v_4)\} = 5$. W.l.o.g., we assume $d(v_4) = 5$. Since $S_{17} \not\subseteq G$, $\zeta_{v_4}(f_{3b}) = 0$. Denote by f_6 , f_7 and f_8 the remaining faces incident with v_4 in clockwise. As $S_{10} \not\subseteq G$, $n_{5^+}(f_6) \ge 2$ when $d(f_6) = 5$. We may assume that $f_{6^+}(v_4) = 0$ (otherwise $ch_1(v_4) \ge 3 - \frac{2}{3} - \frac{1}{3} - \max\{\frac{2}{3} + 2 \times \frac{1}{2}, \frac{2}{3} + \frac{1}{2} + \frac{4}{9}\} > \frac{2}{9}$ by R1 and R3, and v_4 could send at least $\frac{2}{9}$ to v (if $ch_1(v) < 0$) via a nice path by R6. So $ch_2(v) \ge 0$). First, let $d(f_7) = 3$. If $n_{5^+}(f_8) = 1$, see Figure $8(F_1)$ (d(y) = 4), then by $S_8, S_{13} \not\subseteq G$, y can not be incident with a bad 5-face. Note that $f_3(y) \le 1$, thus y is good, and $ch_1(y) \ge \frac{1}{3}$. Hence, y could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6. Otherwise if $n_{5^+}(f_8) \ge 2$, then $ch_1(v_4) \ge 3 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} - \frac{4}{9} = \frac{2}{9}$ by R1 and R3. Second, let $d(f_8) = 3$. If $n_{5^+}(f_7) = 1$, see Figure $8(F_2)$ ($d(z_1) = 4$), then z_1 is good since $S_{13} \not\subseteq G$, and thus z_1 could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6. Otherwise if $n_{5^+}(f_7) \ge 2$, then $ch_1(v_4) \ge 3 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} - \frac{4}{9} = \frac{2}{9}$ by R1 and R3.

In conclusion, when $d(v_4) = 5$, v (if $ch_1(v) < 0$) could receive at least $\frac{2}{9}$ from one vertex in $\{v_4, y_1, z_1\}$ via a nice path by R6. Thus $ch_2(v) \ge 3 - 2 \times \frac{2}{3} - 1 - 2 \times \frac{4}{9} + \frac{2}{9} = 0$ by R1, R3 and R6.

(b). $d(x) \ge 5$. Then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

(iv) Suppose $n_4(v) = 2$. If the pair of two 4-vertices fall in $\{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_5)\}$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

Assume $d(v_1) = d(v_5) = 4$. If $f_{6^+}(v) \ge 1$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{1}{9} = \frac{1}{3} > 0$ by R1 and R3. It remains to consider $f_{6^+}(v) = 0$. If $n_{5^+}(f_5) \ge 2$, then $c(v \to f_5) \le \frac{1}{2}$ by R3, and thus $ch_1(v) \ge 3 - 2 \times \frac{2}{3} - \frac{5}{9} - 2 \times \frac{1}{2} = \frac{1}{9} > 0$ by R1 and R3. Otherwise $n_{5^+}(f_5) = 1$. We may let v_5 is not good (otherwise v_5 could send $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6, and thus $ch_2(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{1}{2} + \frac{1}{3} > 0$ by R1, R3 and R6). Denote by f_6 and f_7 the faces incident with v_5 in clockwise. Since $S_2 \nsubseteq G$, $d(f_6) = 3$ and f_7 is a bad 5-face. Moreover, by $S_2 \nsubseteq G$ again, $n_{5^+}(f_4) \ge 3$, and so $c(v \to f_4) \le \frac{4}{9}$. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R3.

Assume $d(v_2) = d(v_3) = 4$. (a). d(x) = 4. By the same arguments as the case $d(v_1) \ge 5$ and $d(v_4) \ge 5$, we have that v (if $ch_1(v) < 0$) could receive at least $\frac{2}{9}$ from $\{v_2, x\}$ via a nice path, and thus $ch_2(v) \ge 3 - 1 - 2 \times \frac{2}{3} - 2 \times \frac{4}{9} + \frac{2}{9} = 0$ by R1, R3 and R6. (b). $d(x) \ge 5$. Then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{4}{9} = \frac{1}{9} > 0$ by R1 and R3.

(v) Suppose $n_4(v) \leq 1$. If $n_4(v) = 1$, then $ch_1(v) \geq 3 - 2 \times \frac{2}{3} - \max\{\frac{1}{2} + \frac{4}{9} + \frac{5}{9}, \frac{2}{3} + 2 \times \frac{4}{9}, 2 \times \frac{1}{2} + \frac{5}{9}\} = \frac{1}{9} > 0$ by R1 and R3. If $n_4(v) = 0$, then $ch_1(v) \geq 3 - 2 \times \frac{2}{3} - 2 \times \frac{4}{9} - \frac{5}{9} = \frac{2}{9} > 0$ by R1 and R3.

Now we consider the configuration D_2 . (i) Suppose $n_4(v) = 5$. Since $S_2 \notin G$, $f_i \neq (4, 4, 4, 4, 5)$ for each $i \in \{2, 5\}$. By $S_1 \notin G$, we get $f_4 \neq (4, 4, 4, 4, 5)$, and so $c(v \to f_4) \leq \frac{1}{2}$ by R3. Thus $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - \max\{2 \times \frac{1}{2}, \frac{1}{2} + \frac{1}{3}\} = 0$ by R1 and R3.

(ii) Suppose $n_4(v) = 4$, that is $n_{5^+}(v) = 1$. Assume $d(v_1) \ge 5$, then $f_4 \ne (4, 4, 4, 4, 5)$ holds because of $S_1 \not\subseteq G$. Moreover, $f_2 \ne (4, 4, 4, 4, 5)$. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

Assume $d(v_2) \geq 5$, then $f_4 \neq (4, 4, 4, 5)$ holds by $S_1 \not\subseteq G$, and so $c(v \to f_4) \leq \frac{1}{2}$ by R3. If $f_{6^+}(v) \geq 1$, then $ch_1(v) \geq 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Now we discuss $d(f_2) = d(f_5) = 5$. We may assume that $n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$). On the other hand, we may assume that v_5 is not good (otherwise v_5 could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path and thus $ch_2(v) \geq 3 - 4 \times \frac{2}{3} - \frac{1}{2} + \frac{1}{3} > 0$). Denote by f_6 and f_7 the faces incident with v_5 in clockwise. Since $S_2 \not\subseteq G$, we have that $d(f_6) = 3$ and f_7 is a bad 5-face. By $S_{18} \not\subseteq G$, we know that $n_{6^+}(f_4) = 1$, and thus v sends at most $\frac{5}{9}$ to f_4 by R3. Next we claim that v sends at most $\frac{4}{9}$ to v. If $d(v_2) \ge 6$, then we are done by R3; if $d(v_2) = 5$, then $n_{5^+}(f_2) \ge 3$ by $S_{11} \not\subseteq G$, and so $c(v \to f_2) \le \frac{4}{9}$ by R3, as claimed. Hence, $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{4}{9} - \frac{5}{9} = 0$ by R1 and R3.

Assume $d(v_3) \geq 5$. (a). d(x) = 4. Since $S_2 \not\subseteq G$, $f_5 \neq (4, 4, 4, 4, 5)$. For brevity, denote by f_6 and f_7 the faces incident with v_5 in clockwise. We may assume that v_5 is not good (otherwise, v_5 sends at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path, and $ch_2(v) \geq$ $3 - 2 \times \frac{2}{3} - 1 - 2 \times \frac{1}{2} + \frac{1}{3} = 0$). Since $S_2 \not\subseteq G$, $d(f_7) = 3$ and f_6 is a bad 5-face, which is impossible because S_5 is reducible. (b). $d(x) \geq 5$. By $S_2 \not\subseteq G$, we get $f_5 \neq (4, 4, 4, 4, 5)$, so $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

Assume $d(v_4) \ge 5$. If $f_{6^+}(v) \ge 1$, then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Now we consider $f_{6^+}(v) = 0$. Notice that $n_{5^+}(f_2) \ge 2$ and $n_{5^+}(f_5) \ge 2$ holds because of $S_2 \nsubseteq G$, and so $c(v \to f_i) \le \frac{1}{2}$ for each $i \in \{2, 5\}$ by R3. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. Assume $d(v_5) \ge 5$, then by $S_2 \nsubseteq G$, we get $n_{5^+}(f_2) \ge 2$, and so $c(v \to f_2) \le \frac{1}{2}$ by R3. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$.

(iii) Suppose $n_4(v) = 3$, that is $n_{5^+}(v) = 2$. If the pair of two 5⁺-vertices fall in $\{(v_1, v_2), (v_2, v_5), (v_3, v_4), (v_3, v_5), (v_4, v_5)\}$, then by $S_2 \notin G$, $ch_1(v) \ge 3 - 2 \times \frac{2}{3} - \max\{2 \times \frac{1}{2} + \frac{5}{9}, 2 \times \frac{1}{2} + \frac{2}{3}\} = 0$ by R1 and R3.

Assume $d(v_2) \ge 5$ and $d(v_4) \ge 5$. If $f_{6^+}(v) \ge 1$, then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Next we discuss $f_{6^+}(v) = 0$. We may assume that $n_{5^+}(f_5) = 1$ (otherwise $ch_1(v) \ge 0$). (a). d(x) = 4. By $S_9 \nsubseteq G$, we get $d(v_2) \ge 6$, and then $c(v \to f_2) \le \frac{4}{9}$ by R3. By $S_{15} \nsubseteq G$, we know that $d(v_4) \ge 6$, and then $c(v \to f_4) \le \frac{5}{9}$ by R3. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R3. (b). $d(x) \ge 5$. Similarly as above, we have $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R3.

Assume $d(v_2) \geq 5$ and $d(v_3) \geq 5$. (a). d(x) = 4. Let y be the neighbor of v_5 which locates on f_5 . If d(y) = 4, then by $S_2 \not\subseteq G$, v_5 is good and thus v_5 could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6. When $d(f_5) \geq 6$, and we have $ch_2(v) \geq 3-1-2 \times \frac{2}{3}-\frac{1}{3}-\frac{4}{9}+\frac{1}{3}=\frac{2}{9}>0$ by R1 and R3. When $d(f_5) = 5$, $n_{5^+}(f_5) \geq 2$ holds because of $S_4 \not\subseteq G$, and we have $c(v \to f_5) \leq \frac{1}{2}$ by R3. Thus $ch_2(v) \geq 3-1-2 \times \frac{2}{3}-\frac{1}{2}-\frac{4}{9}+\frac{1}{3}=\frac{1}{18}>0$ by R1 and R3. It remains to consider $d(y) \geq 5$. Note that $f_5 \neq (4, 4, 4, 4, 5)$. Denote by f_8 and f_9 the faces incident with v_5 in clockwise, and f_6 , f_7 the remaining faces incident with x in clockwise, see Figure $7(E_3)$. We may assume that v_5 is not good (otherwise v_5 could send at least $\frac{1}{3}$ to v via a nice path and $ch_2(v) \geq 0$). We immediately have $d(f_9) = 3$ and f_8 is a bad 5-face. In this situation, $f_3(x) \leq 1$, and by $S_2 \not\subseteq G$, x is good. Thus x could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path and $ch_2(v) \geq 0$.

(b). $d(x) \ge 5$. If $f_{6^+}(v) \ge 1$, then $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. It

remains to discuss $f_{6^+}(v) = 0$. In this situation, we may assume that d(y) = 4 (otherwise $ch_2(v) \ge 3 - 3 \times \frac{2}{3} - \frac{1}{2} - \frac{4}{9} > 0$). Denote by f_6 and f_7 the remaining faces incident with v_5 in clockwise. Let v_5 be a vertex which is not good (otherwise v_5 could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path and $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{4}{9} + \frac{1}{3} > 0$). Note that $d(f_6) = 3$ and f_7 is a bad 5-face by $S_2 \not\subseteq G$. Since $S_{18} \not\subseteq G$, we have that $d(x) \ge 6$, and v sends at moat $\frac{5}{9}$ to f_4 by R3. Hence, $ch_2(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R3.

Assume $d(v_1) \ge 5$ and $d(v_3) \ge 5$. (a). d(x) = 4. Denote by f_6 , f_7 and f_8 the remaining faces incident with x in clockwise and f_9 another faces incident with v_5 . If v_5 is good, then v (if $ch_1(v) < 0$) could receive at least $\frac{1}{3}$ from v_5 via a nice path by R6. Now we assume v_5 is not good. Since $S_2 \nsubseteq G$, $d(f_9) = 3$ and f_8 is a bad 5-face. In this situation, x must be good by $S_2 \nsubseteq G$ again. Hence, v (if $ch_1(v) < 0$) could receive at least $\frac{1}{3}$ from x via a nice path by R6. Thus $ch_2(v) \ge 3 - 1 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} + \frac{1}{3} = 0$ by R1, R3 and R6. (b). $d(x) \ge 5$. Then $ch_2(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

(iv) Suppose $n_4(v) = 2$. If the pair of two 4-vertices fall in $\{(v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_3), (v_2, v_4), (v_2, v_5), (v_3, v_5)\}$, then $ch_2(v) \ge 3 - 2 \times \frac{2}{3} - \max\{2 \times \frac{1}{2} + \frac{5}{9}, \frac{2}{3} + \frac{1}{2} + \frac{4}{9}, \frac{2}{3} + \frac{5}{9} + \frac{4}{9}, \frac{2}{3} + 2 \times \frac{1}{2}\} = 0$ by R1 and R3.

Assume $d(v_1) = d(v_5) = 4$. If $f_{6^+}(v) \ge 1$, then $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Otherwise $f_{6^+}(v) = 0$, then we may assume that $n_{5^+}(f_5) = 1$ (otherwise $ch_2(v) \ge 0$). If $d(x) \ge 5$ or $d(v_4) \ge 6$, then $c(v \to f_4) \le \frac{4}{9}$ by R3, and thus $ch_2(v) \ge 3 - 3 \times \frac{2}{3} - \frac{4}{9} - \frac{5}{9} = 0$ by R1 and R3. So we consider d(x) = 4 and $d(v_4) = 5$. Denote by f_6 and f_7 the remaining faces incident with v_5 in clockwise. Since $S_2 \nsubseteq G$, v_5 is good. Hence, v_5 could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6, and $ch_2(v) \ge 3 - 4 \times \frac{2}{3} - \frac{4}{9} + \frac{1}{3} > 0$ by R1, R3 and R6.

Assume $d(v_4) = d(v_5) = 4$. (a). d(x) = 4. Denote by f_6 , f_7 the remaining faces incident with v_5 in clockwise. Since $S_2 \notin G$, $d(f_7) = 3$ and f_6 is a bad 5-face. We also have $n_{5^+}(f_5) \ge 3$ because of $S_2 \notin G$. Denote by f_8 , f_9 the remaining faces incident with x in clockwise. By $S_2 \notin G$, x is good and x could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path. Thus $ch_2(v) \ge 3 - 1 - 2 \times \frac{2}{3} - 2 \times \frac{4}{9} + \frac{1}{3} > 0$ by R1 and R3. (b). $d(x) \ge 5$. Then $ch_2(v) \ge 3 - 3 \times \frac{2}{3} - \frac{1}{2} - \frac{4}{9} = \frac{1}{18} > 0$ by R1 and R3.

(v) Suppose $n_4(v) \le 1$. If $n_4(v) = 1$, then $ch_2(v) \ge 3 - 2 \times \frac{2}{3} - \max\{\frac{1}{2} + \frac{5}{9} + \frac{4}{9}, \frac{2}{3} + 2 \times \frac{4}{9}, \frac{2}{3} + \frac{1}{2} + \frac{4}{9}\} = \frac{1}{18} > 0$ by R1 and R3. If $n_4(v) = 0$, then $ch_2(v) \ge 3 - 2 \times \frac{2}{3} - \frac{5}{9} - 2 \times \frac{4}{9} = \frac{2}{9} > 0$ by R1 and R3.

Claim 2.15. For each vertex $v \in W_2$ with $f_3(v) = 1$, $ch_2(v) \ge 0$.

Proof. W.l.o.g., let $d(f_1) = 3$.

Case 1. Suppose $f_4(v) = 0$. Assume that $\zeta_v(f_{3b}) = 0$ firstly. If $f_{6^+}(v) = 1$, then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3. Otherwise $f_{6^+}(v) = 0$. Since $S_3 \nsubseteq G$, there exists at least one 5-face f_i $(i \in \{2, 3, 4, 5\})$ such that $n_{5^+}(f_i) \ge 2$, and $c(v \to f_i) \le \frac{1}{2}$ by R3. If $n_{5^+}(f_1) = 3$, then $c(v \to f_i) \le \frac{1}{2}$ for each $i \in \{2, 5\}$ by R3, and thus $ch_1(v) \ge 3 - 2 \times \frac{2}{3} - 3 \times \frac{1}{2} = \frac{1}{6} > 0$ by R1 and R3. If $n_{5^+}(f_1) = 2$, say $d(v_1) \ge 5$, then we claim that v sends at most $\frac{10}{9}$ in total to $\{f_1, f_5\}$. Obviously, the claim holds when $d(v_1) \ge 6$; when $d(v_1) = 5$, then by $S_{11} \nsubseteq G$, either $n_{5^+}(f_1) \ge 2$ or $n_{5^+}(f_5) \ge 3$, as claimed. Hence, $ch_1(v) \ge 3 - 2 \times \frac{2}{3} - \frac{1}{2} - \frac{10}{9} = \frac{1}{18} > 0$ by R1 and R3. If $n_{5^+}(f_1) = 0$, that is $d(v_1) = d(v_2) = 4$, then by $S_2 \nsubseteq G$, $n_{5^+}(f_1) \ge 2$ and $n_{5^+}(f_5) \ge 2$, and so $c(v \to f_i) \le \frac{1}{2}$ for each $i \in \{2, 5\}$ by R3. Thus $ch_1(v) \ge 3 - 2 \times \frac{2}{3} - 3 \times \frac{1}{2} = \frac{1}{6} > 0$ by R1 and R3.

We now turn to the case $\zeta_v(f_{3b}) = 1$, which means that $d(v_1) = d(v_2) = 4$. Since $S_2, S_3 \not\subseteq G$, we get that $ch_1(v) \ge 3 - \frac{2}{3} - \frac{1}{2} - \max\{\frac{1}{3} + \frac{1}{2} + \frac{2}{3}, 2 \times \frac{1}{2} + \frac{2}{3}\} - \frac{1}{9} = \frac{1}{18} > 0$ by R1, R3 and R5.

Case 2. Suppose $f_4(v) = 1$ and let the other vertex on 4-face is x. Recall that v sends no charge to a bad 5-face (if it exists) which is incident with a (4, 4, v)-face by R5. By symmetry, we only need to consider the cases $d(f_2) = 4$ and $d(f_3) = 4$.

Subcase 2.1. $f_{6^+}(v) = 1$. (a). $n_{5^+}(f_i) = 1$ for some $i \in \{2,3\}$. Then we have $ch_1(v) \ge 3 - 1 - 3 \times \frac{2}{3} - \frac{1}{3} = -\frac{1}{3}$. If $ch_1(v) \ge 0$, then we are done. So $ch_1(v) < 0$, that is, v is poor. Clearly, if there is a good 4-vertex in N(v), then $ch_2(v) \ge -\frac{1}{3} + \frac{1}{3} = 0$ by Claim 2.6 and R6. Next we discuss the case that there is no good 4-vertex in N(v).

Assume that $d(f_2) = 4$, then $d(v_1) \ge 5$ as $S_1 \nsubseteq G$. If $d(f_3) \ge 6$, then we may assume that $d(v_5) = 4$ (otherwise if $d(v_5) \ge 5$, then $ch_1(v) \ge 3 - 1 - \frac{2}{3} - \frac{1}{3} - 2 \times \frac{1}{2} = 0$). Recall that $v_5 \in N(v)$ is not good. By $S_2, S_{23} \nsubseteq G$, we get that $n_{5^+}(f_4) \ge 2$, and then $c(v \to f_4) \le \frac{1}{2}$ by R3. Thus $ch_1(v) \ge 3 - 1 - \frac{1}{3} - \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. If $d(f_4) \ge 6$, then $n_{5^+}(f_3) \ge 2$ because of $S_4 \nsubseteq G$, and so $c(v \to f_3) \le \frac{1}{2}$ by R3. Thus $ch_1(v) \ge 3 - 1 - \frac{1}{3} - \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. If $d(f_5) \ge 6$, then we may assume that $d(v_4) = 4$ (otherwise $ch_1(v) \ge 0$) and $v_4 \in N(v)$ is not good. Similarly, by $S_2, S_{23} \nsubseteq G$, we get that $n_{5^+}(f_4) \ge 2$, and then $c(v \to f_4) \le \frac{1}{2}$ by R3. Thus $ch_1(v) \ge 3 - 1 - \frac{1}{3} - \frac{2}{3} - 2 \times \frac{1}{2} = 0$.

Assume $d(f_3) = 4$, then by $S_2, S_3 \not\subseteq G$, there is at least one $j \in \{2, 4, 5\}$ such that $f_j \neq (4, 4, 4, 4, 5)$, and so $c(v \to f_j) \leq \frac{1}{2}$. If $d(f_2) \geq 6$, then we may assume that $d(v_5) = 4$ (otherwise $ch_1(v) \geq 0$) and $v_5 \in N(v)$ is not good. Since $S_2, S_{23} \not\subseteq G$, we get that $n_{5^+}(f_5) \geq 2$, and $ch_1(v) \geq 3 - 1 - \frac{1}{3} - \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. If $d(f_4) \geq 6$, then by the similar arguments, $n_{5^+}(f_5) \geq 2$, and thus $ch_1(v) \geq 3 - 1 - \frac{1}{3} - \frac{2}{3} - 2 \times \frac{1}{2} = 0$. If $d(f_5) \geq 6$, then $n_{5^+}(f_2) \geq 2$ and $n_{5^+}(f_4) \geq 2$ hold because of $S_4 \not\subseteq G$, and so $c(v \to f_i) \leq \frac{1}{2}$ for each $i \in \{2, 4\}$ by R3. Thus $ch_1(v) \geq 3 - 1 - \frac{1}{3} - \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

(b). $n_{5^+}(f_i) \ge 2$ for some $i \in \{2, 3\}$. Then $ch_1(v) \ge 3 - 4 \times \frac{2}{3} - \frac{1}{3} = 0$ by R1 and R3.

Subcase 2.2. $f_{6^+}(v) = 0$. (a). $n_{5^+}(f_i) = 1$ for some $i \in \{2,3\}$. If $d(f_2) = 4$, then by $S_1 \not\subseteq G$, $d(v_1) \ge 5$ holds, and by $S_3 \not\subseteq G$, there is at least one face f_j $(j \in \{3,4\})$ satisfying $f_j \ne (4,4,4,4,5)$, and so $c(v \rightarrow f_j) \le \frac{1}{2}$ and $c(v \rightarrow f_5) \le \frac{1}{2}$ by R3. If $d(f_3) = 4$, then $f_i \ne (4,4,4,4,5)$ holds for each $i \in \{2,4\}$ by $S_4 \not\subseteq G$, and so $c(v \rightarrow f_i) \le \frac{1}{2}$. By the similar arguments as above, we may assume that each vertex in N(v) is not good (otherwise $ch_2(v) \ge 3 - 1 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} + \frac{1}{3} = 0$, and we are done).

Assume that $d(f_2) = 4$. For brevity, let $x_1 \in N(v_3)$ such that x_1 locates on f_3 , and denote by f_6 , f_7 the faces incident with v_3 in clockwise. Since $S_2 \notin G$, $d(f_7) = 3$ and f_6 is a bad 5-face, and $d(x_1) \geq 5$. Moreover, if $d(x_1) = 5$, then $n_{5^+}(f_3) \geq 3$ because of $S_{19} \notin G$. So v sends at most $\frac{4}{9}$ to f_3 by R3. However, x is good in this situation and $ch_1(x) \geq \frac{1}{3}$. Hence, x could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6, and $ch_2(v) \geq 3 - 1 - 2 \times \frac{2}{3} - \frac{1}{2} - \frac{4}{9} + \frac{1}{3} > 0$ by R1, R3 and R6.

Assume that $d(f_3) = 4$. Note that $v_3, v_4 \in N(v)$ are not good. By $S_2 \nsubseteq G$, x is good and $ch_1(x) \ge \frac{1}{3}$. Hence, x could send at least $\frac{1}{3}$ to v (if $ch_1(v) < 0$) via a nice path by R6, and $ch_2(v) \ge 3 - 1 - 2 \times \frac{2}{3} - 2 \times \frac{1}{2} + \frac{1}{3} = 0$ by R1, R3 and R6.

(b). $n_{5^+}(f_i) \ge 2$ for some $i \in \{2,3\}$. Similarly, we may assume that each vertex in N(v) is not good (otherwise $ch_2(v) \ge 3 - \frac{5}{9} - 4 \times \frac{2}{3} + \frac{1}{3} = \frac{1}{9} > 0$, and we are done). Assume $d(f_2) = 4$. Since $S_3 \not\subseteq G$, there exists at least one face f_i and f_j in $\{f_3, f_4\}$ and $\{f_4, f_5\}$, respectively such that $n_{5^+}(f_i) \ge 2$, $n_{5^+}(f_j) \ge 2$. If i = j = 4, that is $n_{5^+}(f_3) = n_{5^+}(f_5) = 1$, recall that both v_4 and v_5 are not good, then by $S_2, S_{12} \not\subseteq G$, there exists at least one face f_k $(k \in \{3, 5\})$ such that $n_{5^+}(f_k) \ge 2$, and thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. Otherwise if $i \ne j$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

Assume that $d(f_3) = 4$. If $d(v_5) = 5$, then $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3. Next we discuss $d(v_5) = 4$, and recall that $v_5 \in N(v)$ is not good. On the other hand, since $S_3 \nsubseteq G$, there exists at least one face f_i in $\{f_4, f_5\}$ such that $n_{5^+}(f_i) \ge 2$. We may also assume that $n_{5^+}(f_2) = 1$ (otherwise $ch_1(v) \ge 0$). If $n_{5^+}(f_4) \ge 2$, then by $S_{11} \nsubseteq G$, $d(v_1) \ge 6$, and thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{1}{2} - \frac{4}{9} = \frac{1}{18} > 0$ by R1 and R3. If $n_{5^+}(f_5) \ge 2$, then we are going to claim that $n_{5^+}(f_5) \ge 3$. Note that $d(v_3) = d(v_4) = d(v_5) = 4$, and we may assume none of them is rich (otherwise $ch_2(v) \ge 0$). By $S_2 \nsubseteq G$, we get $n_{5^+}(f_5) \ge 3$, as claimed. Recall that $n_{5^+}(f_3) \ge 2$, we get $d(x) \ge 5$. On the other hand, by $S_{16} \nsubseteq G$, we get $d(x) \ge 6$. Thus $ch_1(v) \ge 3 - 3 \times \frac{2}{3} - \frac{5}{9} - \frac{4}{9} = 0$ by R1 and R3.

Claim 2.16. For each vertex $v \in W_2$ with $f_3(v) = 0$, $ch_2(v) \ge 0$.

Proof. Assume that $f_4(v) = 0$, then by $S_3 \nsubseteq G$, there is at least one f_i $(i \in [5])$ satisfying

 $f_i \neq (4, 4, 4, 4, 5)$, and so $c(v \to f_i) \leq \frac{1}{2}$. Hence, $ch_1(v) \geq 3 - 3 \times \frac{2}{3} - \frac{1}{2} = 0$ by R1 and R3. Assume that $f_4(v) = 1$. W.l.o.g., let $f_1 = (v, v_1, x, v_2)$ be the 4-face.

Case 1. $n_{5^+}(f_1) = 1$. Assume that $f_{6^+}(v) = 1$. If $d(f_2) \ge 6$, then $n_{5^+}(f_5) \ge 2$ by $S_4 \nsubseteq G$, and $n_{5^+}(f_i) \ge 2$ for some $i \in \{3, 4\}$ by $S_3 \nsubseteq G$. Thus $ch_1(v) \ge 3 - 1 - \frac{2}{3} - \frac{1}{3} - 2 \times \frac{1}{2} = 0$ by R3. If $d(f_3) \ge 6$, then $n_{5^+}(f_2) \ge 2$ and $n_{5^+}(f_5) \ge 2$ by $S_4 \nsubseteq G$. Thus $ch_1(v) \ge 3 - 1 - \frac{2}{3} - \frac{1}{3} - 2 \times \frac{1}{2} = 0$ by R1 and R3.

Assume that $f_{6^+}(v) = 0$. Since $S_4 \nsubseteq G$, $n_{5^+}(f_2) \ge 2$ and $n_{5^+}(f_5) \ge 2$ hold. If $d(v_4) \ge 5$, then $ch_1(v) \ge 3 - 1 - 4 \times \frac{1}{2} = 0$ by R3. If $d(v_1) = 4$, then we may assume that v_4 is not good (otherwise $ch_2(v) \ge 0$). By $S_2, S_{23} \nsubseteq G$, we get that $n_{5^+}(f_3) \ge 2$ and $n_{5^+}(f_4) \ge 2$, and thus $ch_1(v) \ge 3 - 1 - 4 \times \frac{1}{2} = 0$ by R3.

Case 2. $n_{5^+}(f_1) \ge 2$. Then $ch_1(v) \ge 3 - \frac{2}{3} - \max\{2 \times \frac{2}{3} + \frac{1}{2} + \frac{1}{3}, 2 \times \frac{2}{3} + 2 \times \frac{1}{2}\} = 0$ by R3.

According to all above claims, we know that the minimum counterexample does not exist. $\hfill \square$

3 Proof of Theorem 1

Let G be a counterexample to Theorem 1 with fewest vertices and edges, that is, there is a list assignment L of G satisfying $|L(v)| \ge 4$ for any $v \in V(G)$ such that G is not L-colorable but any proper subgraph of G is L-colorable. Firstly, we present the well-known Combinatorial Nullstellensatz initiated by Alon which is essential to produce reducible subgraphs.

Lemma 3.1 ([1], Combinatorial Nullstellensatz). Let F be an arbitrary field, and let $f = f(x_1, \ldots, x_n)$ be a polynomial in $F[x_1, \ldots, x_n]$. Suppose the degree deg(f) of f is $\sum_{i=1}^n t_i$, where each t_i is a nonnegative integer, and suppose the coefficient of $\prod_{i=1}^n x_i^{t_i}$ in f is nonzero. Then, if C_1, \ldots, C_n are subsets of F with $|C_i| > t_i$, there are $c_1 \in C_1, c_2 \in C_2, \ldots, c_n \in C_n$ so that

$$f(c_1,\ldots,c_n)\neq 0.$$

If G has a vertex v of degree at most three, then we can extend an L-coloring φ of $G \setminus v$ to an L-coloring ϕ of G by setting $\phi(v) \in L(v) \setminus \{\varphi(u) : uv \in E(G)\}$, a contradiction. So $\delta(G) \geq 4$. By Lemma 2.1, G must contain a subgraph isomorphic to one of the configurations in \mathcal{S} (see Appendix B). Next, we prove that all these subgraphs do not exist, that is, all configurations S_1 - S_{47} in \mathcal{S} are reducible, which leads to a contradiction.

Lemma 3.2. S_1 - S_{47} in S are reducible.

Proof. By the minimality of G, there is an L-coloring of $G - S_i$ for each $i \in [47]$. Fix some i, say i_0 , there is an L-coloring φ of $G - S_{i_0}$. Let $S_{i_0} = \{x_0, x_1, \ldots, x_{n-1}\}$ and $C_{\varphi}(v) = \{\varphi(u) : uv \in E(G) \text{ and } u \in V(G - S_{i_0})\}$. Let $C_j = L(x_j) \setminus C_{\varphi}(x_j)$ for $j \in \{0, 1, \ldots, n-1\}$. Now we extend φ to G and let ϕ denote the coloring after all vertices in S_{i_0} are colored. Let $c_0, c_1, \ldots, c_{n-1}$ correspond to the colors of $x_0, x_1, \ldots, x_{n-1}$ respectively. If $c_i - c_j \neq 0$ for any $x_i x_j \in E(G)$, then ϕ is a proper L-coloring of G. Next let $P = P(x_0, x_1, \ldots, x_{n-1})$ be the following polynomial:

$$P(x_0, x_1, \dots, x_{n-1}) = \prod_{x_i x_j \in E(G)} (x_i - x_j).$$

That is, if there are $c_0 \in C_0, c_1 \in C_1, \ldots, c_{n-1} \in C_{n-1}$ such that $P(x_0, x_1, \ldots, x_{n-1}) \neq 0$, then we can extend φ to an *L*-coloring ϕ of *G* by choosing $x_0 = c_0, x_1 = c_1, \ldots, x_{n-1} = c_{n-1}$.

Based on Lemma 3.1, we present an algorithm in Appendix A which effectively calculates reducible configurations. Let us take S_1 as an example. Let $S_1 = \{x_0, x_1, \ldots, x_4\}$ such that $x_0x_1x_4$ is a triangle and $x_1x_2x_3x_4$ is a 4-face, where $d(x_i) = 4$ for each $i \in \{0, 1, 2, 3\}$ and $d(x_4) = 5$. Then

$$P(x_0, x_1, \dots, x_4) = (x_0 - x_1)(x_0 - x_4)(x_1 - x_2)(x_1 - x_4)(x_2 - x_3)(x_3 - x_4).$$

That is, input "vve = [(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4)]". Note that $|C_1| > 2$ and $|C_i| > 1$ for each $i \in \{0, 2, 3, 4\}$ as x_1 has one neighbor in $V(G - S_1)$ and each x_i has two neighbors in $V(G - S_1)$. Thus, we input "v_List = [1,2,1,1,1]". Through the computation of the algorithm in Appendix A, we get the 1st valid expansion is [1,2,1,1,1], that is, the coefficient of $x_0x_1^2x_2x_3x_4$ in P is nonzero. Therefore, S_1 is reducible by Lemma 3.1.

This completes the proof.

Acknowledgements

The authors would like to thank the reviewers for their valuable comments, which greatly improve the paper.

References

 N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999) 7-29.

- [2] N. Alon, M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992) 125-134.
- K. Appel, W. Haken, Every planar map is four colorable. Part I. Discharging, Illinois J. Math. 21 (1977) 429-490.
- [4] K. Appel, W. Haken, Every planar map is four colorable. Part II. Reducibility, Illinois J. Math. 21 (1977) 491-567.
- [5] V. Cohen-Addad, M. Hebdige, D. Král, Z. Li, E. Salgado, Steinberg's Conjecture is false, J. Combin. Theory Ser. B 122 (2017) 452-456.
- [6] Z. Dvořák, L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018) 38-54.
- [7] Z. Dvořák, 3-choosability of planar graphs with (≤ 4)-cycles far apart, J. Combin. Theory Ser. B 104 (2014) 28-59.
- [8] Z. Dvořák, D. Král, R. Thomas, Three-coloring triangle-free graphs on surfaces V. Coloring planar graphs with distant anomalies, arXiv:0911.0885 (2020).
- [9] Z. Dvořák, S. Norin, L. Postle, List coloring with requests, J. Graph Theory 92 (2019) 191-206.
- [10] P. Erdős, A. L. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1980) 125-157.
- B. Farzad, Planar graphs without 7-cycles are 4-choosable, SIAM J. Discrete Math. 23 (2009) 1179-1199.
- [12] G. Fijavž, M. Juvan, B. Mohar, R. Škrekovski, Planar graphs without cycles of specified lengths, Europ. J. Combinatorics 23 (2002) 377-388.
- [13] J. Kratochvíl, Z. Tuza, M. Voigt, Brooks-type theorems for choosability with separation, J. Graph Theory 27 (1998) 43-49.
- [14] P. Lam, W. Shiu, B. Xu, On structure of some plane graphs with applications to choosability, J. Combin. Theory Ser. B 82 (2001) 285-296.
- [15] P. Lam, B. Xu, J. Liu, The 4-choosability of plane graphs without 4-cycles, J. Combin. Theory Ser. B 76 (1999) 117-126.

- [16] R. Steinberg, The state of the three color problem, Ann. Discrete Math., Vol. 55, pp. 211-248, North-Holland, Amsterdam, 1993.
- [17] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994) 180-181.
- [18] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995), 101-107.
- [19] V.G. Vizing, Vertex colorings with given colors, Metody Diskretn. Analiz. Novosibirsk 29 (1976) 3-10 (in Russian).
- [20] M. Voigt, List colouring of planar graphs, Discrete Math. 120 (1993), 215-219.
- [21] M. Voigt, A not 3-choosable planar graph without 3-cycles, Discrete Math. 146 (1995), 325-328.
- [22] M. Voigt, A non-3-choosable planar graph without cycles of length 4 and 5, Discrete Math. 307 (2007) 1013-1015.
- [23] W. Wang, K. Li, The 4-choosability of planar graphs without 6-cycles, Australas. J. Combin. 24 (2001) 157-164.
- [24] W. Wang, K. Li, Choosability and edge choosability of planar graphs without 5-cycles, Appl. Math. Lett. 15 (2002) 561-565.
- [25] W. Wang, K. Li, Choosability and edge choosability of planar graphs without intersecting triangles, SIAM J. Discrete Math. 15 (2002) 538-545.

A Algorithm

```
# -*- coding: utf-8 -*-
#!/usr/bin/env python
import copy

def choosable(n,v_List,edges): # Determine whether satisfying \
Combinatorial Nullstellensatz, back to the remainder of the expansion!
    # n: the number of vertices, v_List[0..n-1]: |L(v)|-1, edges: |L(e)|
    zks={}
    zks['0'*n]=1
    len_edges=len(edges)
    for i in range(len_edges):
        v1,v2=edges[i]
```

```
List zks = []
         while zks:
             List zks.append(zks.popitem())
         while List_zks:
             a, b=List zks.pop()
             if ord(a[v1]) - ord("0") < v List[v1]:
                 a1=a[:v1]+chr(ord(a[v1])+1)+a[v1+1:]
                 if a1 in zks.keys():
                      zks[a1] = zks[a1] + b
                      if zks[a1] == 0:
                          del zks[a1]
                 else:
                      zks[a1]=b
             if ord(a[v2]) - ord("0") < v_List[v2]:
                 a2=a[:v2]+chr(ord(a[v2])+1)+a[v2+1:]
                 if a2 in zks.keys():
                      zks[a2]=zks[a2]-b
                      if zks[a2] = = 0:
                          del zks[a2]
                 else:
                      zks[a2]=-b
    return zks
\# The main program
def Comb Null(vve, v List):
    \# =
    \# List coloring.
    \# vve: Labelling vertices must start at 0. \setminus
    e.g. 3-cycle: vve = [(0, 1), (1, 2), (2, 0)]
    \# v_{\text{List}}: |L(v)|-1, must be integers. \setminus
    e.g. 3-cycle: v List = [1, 1, 1]
      Apply Combinatorics Nullstellensatz
    #
    v no=len(v List)
    zks=choosable(v no,v List, vve)
    \# Output part. If there are too many expansions that \setminus
    satisfy the criteria, we print up to 10 =
    size zks=len(zks)
    if size zks > 0:
         print ("\n total number of valid expansions= "+str(size zks)+",
         among them:")
         i = percent = 0
         for a in zks.keys():
             if i/size zks>=percent:
                 if i = 0:
                      print ("The 1st valid expansion is: [", end="")
                 elif i = 1:
                      print ("The 2nd valid expansion is: [", end="")
                 else:
                      print ("The "+str(i+1)+"th valid expansion is: [",end="")
```

```
else: print ("\n\n No valid expansion !!")
```

#Example

#Input

Output

The total number of valid expansions= 1, among them: # The 1st valid expansion is: [1, 2, 1, 1, 1]

B All configurations in S

