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4-choosability of planar graphs with 4-cycles far apart
via the Combinatorial Nullstellensatz*

Fan Yang! Yue Wang? Jian-liang Wu®

Abstract

By a well-known theorem of Thomassen and a planar graph depicted by Voigt, we
know that every planar graph is 5-choosable, and the bound is tight. In 1999, Lam,
Xu and Liu reduced 5 to 4 on Cy-free planar graphs. In the paper, by applying the
famous Combinatorial Nullstellensatz, we design an effective algorithm to deal with list
coloring problems. At the same time, we prove that a planar graph G is 4-choosable if
any two 4-cycles having distance at least 5 in GG, which extends the result of Lam et al.
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1 Introduction

All graphs considered in the paper are simple and finite. The concepts of list coloring and
choosability were introduced by Vizing [19] and independently by Erdds, Rubin and Taylor
[10]. Given a graph G, a list assignment L for G is a function that to each vertex v € V(G)
assigns a set L(v) of colors, and an L-coloring is a proper coloring ¢ such that ¢(v) € L(v)
for all v € V(G). We say that G is L-colorable if G has an L-coloring. Moreover, G is k-
choosable if G is L-colorable for every list assignment L with |L(v)| > k for each v € V(G).
List coloring is a fundamental object in graph theory with a wealth of results studying
various aspects and variants. A variety of mathematicians have suggested imposing slightly
stronger conditions in order to further explore the choosability of graphs, see [6l Ol 13]. The

distance of two vertices is the shortest length (number of edges) of paths between them, and
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the distance d(H;, Hs) of two subgraphs H; and Hs is the minimum of the distances between
vertices v; € V(H;y) and vy € V(Hy).

The classic Four Color Theorem claims that every planar graph is 4-colorable, which was
proved by Appel and Haken in 1976 |3, 4]. However, the result can not be extended to that
of list colorings as Voigt [20] found a planar graph which is not 4-choosable. Fortunately,
Thomassen [I7] proved that every planar graph is 5-choosable by induction on the number
of vertices. In order to further explore list coloring problems, forbidding certain structures
within a planar graph is a common restriction used in graph coloring. Notice that all 2-
choosable graphs have been characterised by Erdds, Rubin and Taylor [10]. So it remains
to determine whether a given planar graph is 3- or 4-choosable. In recent years, a number
of interesting results about the choosability of special planar graphs have been obtained.
Alon and Tarsi [2] proved that every planar bipartite graph is 3-choosable. Thomassen [I§]
showed every planar graph of girth at least 5 is 3-choosable, and there exist triangle-free
planar graphs which are not 3-choosable [21], so the bound 5 is tight. Very recently, Dvorak
[7] showed that every planar graph in which any two (< 4)-cycles have distance at least 26
is 3-choosable.

Steinberg’s Conjecture from 1976 states that every {Cj, Cs}-free planar graph is 3-
colorable, which was disproved by Cohen-Addad et al. [5]. Previously, Voigt [22] disproved
a list version of Steinberg’s Conjecture by giving a {Cy, C5}-free planar graph which is not
3-choosable. A graph G is said to be k-degenerate if every nonempty subgraph H of G has
a vertex of degree at most k in H. Note that the list chromatic number of a k-degenerate
graph is at most k + 1. It is simple to check that every triangle-free planar graph is 3-
degenerate, and so it is 4-choosable. In addition, it was proved that every Cy-free planar
graph is 4-choosable for k =4 in [15], for k£ =5 in [14] 24], for £ = 6 in [12| [14] 23], and for
k =7 in [II]. On the other hand, it is shown in [I4] that every planar graph in which any
two triangles have distance at least 2 is 4-choosable, and a conjecture was proposed in this
paper, which claims that every planar graph without adjacent triangles is 4-choosable (this
conjecture is still open so far). After that, Wang and Li [25] improved one of the results in
[14] by showing that each planar graph without intersecting triangles is 4-choosable.

Inspired by the improvements of the results about triangle-free planar graphs, we further
explore the picture when any two 4-cycles in a planar graph is far apart. A natural question
can be proposed as follows.

Problem A. Does there exist a constant d such that a planar graph G is 4-choosable if any
two 4-cycles have distance at least d in G7

We give a positive answer to this question with d = 5.



Theorem 1. If G is a planar graph such that any two 4-cycles have distance at least 5, then
G 1s 4-choosable.

2 A Structural Lemma

For any positive integer r, we write [r] for the set {1,...,7}. Given a plane graph G, we
denote its vertex set, edge set, face set by V(G), E(G), and F(G), respectively. For any
vertex v € V(G) (or any face f € F(G)), the degree of v (or f), denoted by d(v) (or d(f)), is
the number of edges incident with v (or the length of the boundary walk of f, where each cut
edge is counted twice). A vertex v is called a k-vertex (kT-vertex, or k~-vertex) if d(v) = k
(d(v) > k, or d(v) < k, respectively). Analogously, a k-face (k*-face, or k~-face) is a face of
degree k (at least k, or at most k, respectively). Moreover, we use A(G) and 6(G) to denote
the maximum degree and the minimum degree of GG, respectively.

We write f = (ug,...,u;) if uy,...,u, are the boundary vertices of f in the clockwise
order. Sometimes we replace u; with d(u;) for some i € [t] in f = (u1,...,u;) to describe
the face f. For example, f = (4,4,5,uy) denotes a 4-face with d(uy) = d(ug) = 4, d(uz) = 5.
For a vertex v and a face f, let fx(v), ni(v) and ng(f) denote the number of k-faces incident
with v, the number of k-vertices adjacent to v, and the number of k-vertices incident with f,
respectively. Let f = (vy,vq, v3,v4,v5) be a b-face, f is called bad if d(v;) = 4 for all i € [5].
For convenience, we use f5(v) to denote the number of bad 5-faces incident with a vertex v.
In addition, let ,(f35) denote the number of 3-faces f = (z,y,v) incident with v such that
d(z) = d(y) = 4 and xy locates on a bad 5-face. Below Figure [Il shows a 6-vertex v with

Cv(.f?:b) = 3.

Figure 1: d(v) = 6 and (,(f3) = 3.

A 4-vertex v with f3(v) + fs(v) < 1 of G is called good, whereas v is called bad if f3(v) =1
and fs,(v) = 1.



Lemma 2.1. Let G be a connected planar graph such that any two 4-cycles have distance at
least 5. Then

(a) G has a 3~ -vertez, or

(b) G contains one of the configurations Sy-Sy7, see Appendix B.

Proof. Let G be a counterexample to the lemma with |V (G)| + |F(G)| as small as possible.

Then 6(G) > 4 and G contains none of the configurations S;-Sy7 in Appendix B. Euler’s
formula |V(G)| — |E(G)| + |F(G)| = 2 can be expressed in the form

Y () =2)+ Y (=2) =4, (1)
veV(G) feF (@)
An initial charge chy on V(G)UF (G) is defined by letting chy(v) = d(v)—2 for each v € V(G)
and cho(f) = =2 for each f € F(G). Thus we have 3y ) p(q) cho(z) <0.

In the following, ¢(z — y) is used to denote the amount of charges transferred from an
2—3na(f)

n53+ NN
We define the following two rounds of discharging rules. The first round contains R1-R5.

element x to an element y. For brevity, let v =

Let v be a k-vertex, and let f be an ¢-face incident with v.
Rl. c(v— f)=2if¢=3,and c(v— f) =3 if (> 6.
R2. For k =4 and ¢ € {4,5}.
R2.1. Let Ty = {v; : d(v;) = 4 and f3(v;) < 1}. If f = (v1,v9,v3,v4,05) is a bad

5-face with f3(v) <1, then c¢(v — f) = 2 when |Ty| =1, and ¢(v — f) = 1 when
Ty > 2.

R2.2. ¢(v — f) = 5 otherwise.

R3. For k =5, c(v — f) = 2 if £ = 4 and ng+(f) = 1, c(v — f) = 5if £ =5 and
ne+(f) =1, and c(v — f) = 7 otherwise.

R4. Fork>6,c(v— f)=¢Fif {=4and ns(f) =1, c(v— f) =2 if =5 and n5(f) =1,
and c¢(v — f) = v otherwise.

R5. Let f = (v1,v9,v3,v4,05) be a bad 5-face with f3(v;) = 2 for each i € [5], and let

fi = (vi, vig1,u;). Then c(u; — f) = % if u; is not incident with any 4-cycle.

Let chi(x) be the new charge of x after applying R1-R5. A vertex v is called rich if
chy(v) > 0 while it is called poor if chi(v) < 0 and v is incident with a 4-cycle. Given a poor

vertex, we aim to get additional charge from rich vertices to keep it non-negative.
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Definition 2.2. Let u be a poor vertex with 5 < d(u) < 6, and v be a rich vertex. A nice
wv-path is a path connecting u and v of length at most two and the internal vertez (if any)

has degree at most 5 in G, see Figure[2.

v n v n
O——0 o /1 o
rich poor rich poor

Figure 2: Nice paths.

The second round R6 can be expressed as follows.

R6. Let u be a poor vertex, and vy, ..., v, be the rich vertices at distance at most 2 from

u. Then c(v; — u) = chy(v;) if G has a nice uv;-path.

Remark 2.3. Since the poor vertex is incident with a 4-cycle and any two 4-cycles have
distance at least 5, each rich vertex sends additional charge to at most one poor vertex. Note

that the new charge of every rich vertex still keeps non-negative after applying R6.

Let chs(x) be the final charge of = after applying R1-R6. For convenience, we say that
S; € G if G contains no subgraphs isomorphic to the configurations S; (1 < ¢ < 47) in
Appendix B. Our goal is to show that chs(z) > 0 for each z € V(G)U F(G) and so we find a
contradiction to (1), which implies that the minimum counterexample does not exist. Note
that cho(x) = chy(z) if R6 is not applied to x. Thus, we have that chy(f) = chy(f) for any
f € F(G) by R6 and chy(v) = chy(v) for any v with ch;(v) = 0. By Remark 23] we get
that cha(v) > 0 for each rich vertex. So if chy(z) > 0, then we have that chs(z) > 0 for each
z € V(G)UF(G).

Since G has no intersecting 4-cycles, we immediately have the following simple fact.

Fact 2.4. For each vertex v € V(G), f3(v) < (d(;)}.
Claim 2.5. For each face f € F(G), cha(f) = chy(f) > 0.

Proof. 1t d(f) = 3, then chi(f) > -2+ 3 x 2 = 0 by RL. If d(f) > 6, then chi(f) >
—2+6x 3 =0byRIL

Suppose that 4 < d(f) <5 and f is not a bad 5-face. By R2.2, f gets % from each of its
incident 4-vertices.
(i) If d(f) = 4, ns(f) = 1 and ng+(f) = 1, then f gets
from its incident 6*-vertex by R3 and R4.
(ii) If d(f) = 5, ns5(f) = 1 and ng+(f) = 1, then f gets 2 from its incident 5-vertex and

from its incident 5-vertex and

oot
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from its incident 6*-vertex by R3 and R4.

(iii) Otherwise, f gets v from each of its incident 5T-vertices by R3 and R4.

Thus, we have that chy(f) > —24+min{3x2+2+5, 2 x3+5+3, 3- n4(f)+2;i"(4g) ns+(f)} =
0.

Suppose that f is a bad 5-face. If there exists exactly one i (i € [5]) such that f3(v;) <1,
then f gets at least % from other incident vertices by R2.1, and so we have that chy(f) >
-2+ % + 4 x % = 0. If there exist at least two vertices, say v; and v;, such that fs(v;) <1
and f3(v;) <1, then f gets % from each of v; and v; by R2.1 and gets at least 1 from other

incident vertices by R2, and so we have that chy(f) > —2 + % X2+ 3 x % = 0. Hence, we

assume that each v; satisfies f3(v;) = 2. For brevity, denote by f; = (v, v;11,u;) the 3-face
sharing the edge v;v;41 with f, and let U = {uy, ug, us, ug, us}. Since So € G, we get that
d(u;) > 5 for each i € [5]. By the assumption of G, either at most one vertex in U lies on
a 4-cycle, or two vertices in U lie on the same 4-cycle. Let U* C U such that each vertex
in U* does not lie on any 4-cycle. Note that |[U*| > 3 and it follows that f receives at least
3 x ¢ from U* by R5. So we get that chy(f) = chi(f) > —2+5x 3 +3x s =0by R2.2. O

Claim 2.6. For each 4-vertex v, chy(v) > 0. In particular, for each good 4-vertex v, chy(v) >
1

5
Proof. Let v be a 4-vertex. If f3(v) + fs(v) < 2, then chy(v) > 2 —2x2—41x2=0by
R1 and R2. So suppose that f3(v) + f5,(v) > 3. By Fact B4 f3(v) < 2. As 55,55 € G, we
have that f5,(v) < 2 and if f5(v) = 2, then f3(v) = 0. It remains to consider the case that
f3(v) = 2 and f5(v)=1. By R2, v sends £ to each of other 4"-faces and 2 to each 3-face.
Thus, chy(v) >2—2x2—1x2=0.

Since f3(v)+ fs(v) < 1 holds for each good vertex v, we have that chy(v) > 2—3x3—2 =
5 by R1-R2. O

Claim 2.7. chy(v) > 0 if v is a TT-vertex, or a 6-vertex with fe+(v) > 1, or a 5-vertex with

fo+ (U) > 2

Proof. Let v be a vertex. Suppose d(v) is odd. Note that f3(v) < % by Fact 24 If
fa(v) = 2L then by R1 and R4, we have that chy(v) > d(v) — 2 — 2d(v) = 290 1f
f3(v) < % and fy(v) = 1, then by R1 and R4, we have that chy(v) > d(v) —2 -1 —
2(d(v)—1) = AT qf f( ) < % and f;(v) = 0, then by R1 and R4-R5, we have

3 3
1 _d(”)‘l) — MW% - particularly, if fer(v) > 2, then

that chi(v) > d(v) — 2 — 3d(v) — 3 2 18

) —
chi(v) > min { d(”;_7, 5d(11)8 } +2 x % = min {—d(”§_5, 75“”1)8_23 }

7~ X\




Suppose d(v) is even. Note that f3(v) < % by Fact Iﬂl If fa(v) = 1, then by R1 and
R4, we have that chy(v) > d(v) =2 -1 — %( (v) —1) = Q=T If f,(v) = 0, then by R1
and R4-R5, we have that chy(v) > d(v) —2 — 2d(v) — 5 <d(v)) — M, In particular, if
fe+(v) > 1, then chy(v) > min {%, 5d(1i)8 } +1=min {d(vg’ dv)=6 3d(v 1)8 30}.

Therefore, Claim 2.7 is true. O

Now it remains to consider the vertices of Wi = {v : d(v) = 6 and fs+(v) = 0} and

={v:d(wv) =5 and fg+(v) <1} by Claim 2.6 and 27

For v € Wy, let N(v) = {vy,...,u6} and let fi,..., fs be the faces incident with v in
clockwise such that v; and v;,; are incident with f;. In the following Claims 2.8H2.1T] we
show that chs(v) > 0 for each vertex v € Wj.

Claim 2.8. For each vertex v € Wy with f3(v) <2 and fi(v) =1, cha(v) > 0.

Proof. W.l.o.g., let f; be the 4-face, denoted by v;vvox. Note that v sends no charge to a bad
b-face (if it exists) which is incident with a (4, 4, v)-face by R5. According to R1 and R4, v
sends at most 1 to each 4-face and % to each 3-face and 5-face. Thus, chy(v) > 4—1— % X5 =
—%. If chi(v) > 0, then we are done. So suppose that ch;(v) < 0, that is, v is poor. Clearly,
if there is a good 4-vertex in N(v), then chy(v) >4 —1—2 x 5+ 3 = 0 by Claim and
R6. Next we only consider the case that there is no good 4-vertex in N(v).

Now we first claim that f; is not a (4,4, 4, 4, 6)-face for each i € {2,6} (that is, ns+(f;) >
2). Suppose to the contrary that for some i € {2,6}, f; is a (4,4,4,4,6)-face, say fo. As
S9, S5 & G, we get that f3(ve) + fsp(ve) < 1 and ve is a good 4-vertex, a contradiction.

Similarly, if fs is a (4,4, 4,4, 6)-face, then vy is a good 4-vertex, a contradiction.

Figure 3: Configurations for 6-vertex v with f;(v) = 1.

Case 1. nz+(f1) = 1.

Subcase 1.1. Assume that f5(v) < 1. We will show that there are at least three 5-
faces f; such that ns+(f;) > 2, which implies that c¢(v — f;) < 2 by R4, and so chy(v) >
4-1-2x2-3x32=0DbyRIL



(a) Suppose that f3(v) = 0. Since G has no intersecting 4-cycles, the remaining faces
incident with v are all 5-faces. By Say & G, there exists at least one i (1 € {3,4,5}) such
that ns+(f;) > 2. Note that ns+(f2) > 2 and ns+(fs) > 2, so we are done.

(b) Suppose that f3(v) = 1. By symmetry, three cases need to be considered (see Figure
B). In Ay, since S32 € G, we have that ns+(f3) > 2. In Ay, since Syy € G, we have that
ns+(f1) > 2 or ns+(fs5) > 2. In Aj, since Sy Z G, we have that ng+ (f3) > 2 or ns+ (f5) > 2.
Note that if f; is a 5-face, then ns+(f;) > 2 for i € {2,6}, so we are done.

Subcase 1.2. Assume that f3(v) = 2. There are four subcases to be considered.

Firstly, we suppose that d(f;) = d(fs;) = 3. Note that f3(v;) < 1 and v; is not good.
It implies that v; is bad. Since Sy, 53 € G, vix locates on the same bad 5-face. In this
situation, f3(x) < 1, and by R2.1, each of {v;,x} sends % to the bad 5-face. Thus, by R2
chi(u) >2—2 — 3 — 3 x 2= ¢ for each u € {v1,2}. Therefore, each of {vy, 2} sends % to v
(if chi(v) < 0) via a nice path by R6. Thus chy(v) > 0. The case that d(f2) = d(f5) = 3 is
similar as above.

Next, we suppose that d(f3) = d(fs) = 3. Since v; and vy are not good and S, S3 Z G,
vz locates on the same bad 5-face g; and vyx locates on the same bad 5-face go. By Ss € G,
we have that f3(x) = 0. Note that f3(v;) <1 for each i € [2]. It follows that |T'g;| > 2 and
|Tgs| > 2. Thus, chi(z) >2—2x 1 —2x 1 =1Dby Rl and R2. Hence, v (if chi(v) < 0)
could receive at least % from x via a nice path by R6, and chy(v) > 0.

It remains to consider the case where d(f2) = d(fs) = 3. Since Sz € G, we get that for
each i € {3,5}, ns+(f;) > 2 and c(v — f;) < 2 by R4. If ng+(fs) > 2, then chy(v) >4 —1—
2x 2 —3x2=0Dby Rl and R4. Now let ns+(fs) = 1, and denote by fy = (v, v4,y1, Yo, vs),
that is d(vy) = d(vs) = d(y1) = d(y2) = 4. Note that fs3(vs) = f3(vs) < 1. So we may
assume that both v, and vs are not good (otherwise v receives at least % from {vy, vs} and
che(v) > 0). Since Sy € G, vayr and vsys locate on two bad 5-faces, respectively. On the
other hand, notice that Sy, Sy7 € G, and then at least one j € {3,5} satisfying ns+(f;) > 3,
and so c(v — f;) < 5 for some j € {3,5} by R4. Thus chi(v) >4—-1-3x2-3-2=0
by R1 and R4.

Case 2. ns+(f1) > 2. Since S, S36 € G, there exists at least one i € {2,3,4,5,6} such
that ns+(f;) > 2, and we have c(v — f;) < 3 by R4. So chi(v) >4 —4x2—-I—2=0by
R1 and R4. O

Claim 2.9. For each vertex v € Wy with f3(v) < 2 and fi(v) =0, che(v) > 0.

Proof. Suppose that fi(v) = 0. If f3(v) =0, then chy(v) >4 —6 x 2 =0 by R1 and R4. If
f3(v) =1, then by S35 € G, either (,(fs) = 0 or there exists some ¢ such that ns+(f;) > 2,



and thus chy(v) > 4 —5 x 2 —max{2 + §, 2} = 0 by R1, R4-R5. Finally, we discuss the
case where f3(v) = 2. If the two 3-faces are consecutive, then chy(v) >4 —6x 2 =0 by R1
and R4. Otherwise if they are not consecutive, by the fact that Ss, S35 € G, we get that

chi(v) >4 —2x 3 —4x2-2x1=0byRI1, R4R5. O

Next we focus on the case f3(v) = 3. Since Sis € G, we get (,(fz) < 2.

Figure 4: Configurations for 6-vertex v with f3(v) = 3.

Recall that v sends no charge to a bad 5-face which is incident with a (4,4, v)-face by
R5.

Claim 2.10. For each vertex v € Wy with f3(v) = 3 and fi(v) = 1 (see Figure d(By)),
cha(v) > 0.

Proof. We divide the proof into four possibilities depending on ny(v) € {4,5,6} or ny(v) < 3.

(1) Suppose ny(v) = 6. (a). d(z) = 4. As Ss» € G, for each i € {4,6}, we have
ns+(fi) > 2, and so c(v — f;) < 2 by R4. If ng+(f;) > 2 or nz+(f;) > 3 for each i € {4,6},
then chy(v) >4 —3x 2 —1—2x 3 =0by Rl and R4. Assume ng(fs) =1 and ns+(fi) = 2.
Denote by fi1 = (v,v4,y1, Y2, v5). First, let d(y;) = 5 and d(y2) = 4. If f3(vy) = 1, then
according to Sos Q G, vy can not locate on a bad 5-face. Thus vy is good, and chy(vy) > % If
f3(v4) = 2, then by Sas, Su1, Sus € G, we have ¢y, (f3) = 0. Thus chy(y1) > 3-3x2—3—3 =
& by R1 and R3. In both cases, {vs,y:} could send at least 1z to v (if chy(v) < 0) via a
nice path by R6. Second, let d(y;) = 4 and d(y2) = 5. If f3(vs) =
locate on a bad 5-face by S3s € G. Thus vs is good, and chy(vs) > % If f3(vs) = 2, then
by Sss, Ss9, 512 € G, we have (,(fs) = 0. Thus chi(y2) > 3 — 3 x % — % — % = %8 by
R1 and R3. In both cases, {vs, 52} could send at least < to v (if chi(v) < 0) via a nice

1, then v5 can not

path by R6. In conclusion, v could receive at least % from {vy,vs,y1,y2}. By symmetry,

the same arguments also hold for the vertices on fg (i.e. {v1,vs,21,20}). If ng(fs) = 1 and



ns+(fe) = 2, then chy(v) >4 -3 x 2 —1-2x 3 +2x ;- =0by R1, R4 and R6. Otherwise
cha(v) >4—-3x2—-1-3—-1+L=0.

(b). d(z) > 5. Since Szo € G, ns+(f;) > 2 for some i € {4,6}, and c(v — f;) < 3 by R4.
Thus chy(v) >4 —4x 2 —T -3 =0by Rl and R4.

39 9
(ii) Suppose n4(v) = 5. By symmetry, we only need to consider three subcases: d(vy) > 5,

d(vy) > 5 and d(vs) > 5.
(a). d(x) = 4. Assume that d(v;) > 5. If d(vy) = 5, then nz+(fs) > 3 by S33 € G,
4
9

and we have c¢(v — f;) < 3 by R4. Thus chi(v) >4—-3x2—-1—-2—5=0by Rl and

R4. If d(vy) = 6, then chi(v)) >4 —4x 2 -1 —2—-2x$ = by RI, R4-R5 because of

S € G. If d(vy) > 7, then by Claim 27, chy(v1) > Sd(?s_% + % + 1—18 > %. Hence, when
d(v1) > 6, v (if chy(v) < 0) could receive at least -5 from vy via a nice path by R6. Thus
chy(v) >4 —3x2—-1—2— 3+ =0byR1, R4 and R6.

Assume that d(vy) > 5. Then ng+(f;) > 2 for some i € {4,6} by S3y € G, and we have
c(v — f;) <2 by R4. Thus chy(v) >4 —4x 2 -1 —2=0by Rl and R4.

Assume that d(vs) > 5. Since Sz G, ns+(fs) > 2 and ¢(v — fg) < 3 by R4. According
to Sy € G, either d(vs) > 6 or ng+(fs) > 3. If ns+(f4) > 3, then ¢(v — f4) < § by R4, and
thus chi(v) >4—-3x 2 —1—3—2 =0by Rl and R4; if d(vs) > 6, then by the similar
arguments as above, we have that v (if chi(v) < 0) could receive at least 75 from v via a
nice path by R6, and thus chy(v) >4 -3 x 2 —1— 2 — 1 + ;- =0 by R1, R4 and RG.

(b). d(z) > 5. In all three cases, it is easy to check that chy(v) >4 — 4 x 2 — max{ +
2.2+ 2} =0by Rl and R4.

(iii) Suppose n4(v) = 4. That is, ns+(v) = 2. If the pair of two 5T-vertices fall in

{(v1,v2), (v1,v3), (v2,03), (v2,v5), (V2,v6)}, then we have chy(v) >4 —4x 2 —max{I+3, 2+
g} = 0 by R1 and R4. By symmetry, it remains to discuss the following cases.

Assume that d(v;) > 5 and d(v4) > 5. (a). d(x) = 4. Note that v; and vy are symmetric
to some extent. If d(v;) > 6 and d(vy) > 6, then chy(v) > 4—-3x2—-1-2x1i =
by R1 and R4. If d(v;) = 5 for some i € {1,4}, then ns+(fs—2:) > 3 by S31 € G, and so
c(v = fs—2;) < § by R4. Thus chy(v) >4 -3 x 2 —1—max{j +35,2x 5} =+ >0byRI
and R4. (b). d(x) > 5. Then chy(v) 24—3x§—%—2xg:%>0by R1 and R4.

Assume that d(v;) > 5 and d(vs) > 5. (a). d(x) = 4. If d(v1) > 6 and d(vs) > 6,
then chy(v) >4 -3 x 2 —1—-2x 1 =0 by Rl and R4. If d(v;) = 5 for some i € {1,5},
then n5+(f%) > 3 by Sa,S533 € G, and so c¢(v — f%) < 2 by R4. Thus chi(v) >
4-3x2—-1—-max{3 +52x 3} =15z > 0by Rl and R4. (b). d(z) > 5. Then
chi(v) >4—-3x2—-2x3—-T=2>0byRI and R4.

Assume that d(v;) > 5 and d(vg) > 5. (a). d(z) = 4. Since Sz € G, we get nz+(fs) > 2,
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and c(v — f4) < 2 by R4. Then we have chi(v) >4—-3x2—-1—2—2=0Dby Rl and R4.
(b). d(z) > 5. Then we have chy(v) >4 —4x 2 -1 —2=1>0by Rl and R4.

Assume that d(vs) > 5 and d(vg) > 5. (a). d(x) = 4. If d(vs) > 6 and d(vg) > 6, then
chi(v) >4—-3x2—-1—-2x3=0by Rl and R4. If d(v;) = 5 and d(vy;_;) > 6 for some
i € {5,6}, then by S» ¢ G, we get that chy(v;) >3 -2 -2 x5 —max{3+i+3,2x2} =1
by R1, R3 and R5. Hence, v; could send at least % to v via a nice path by R6, and
cha(v) >4—-3x2—-1-3—-1+¢>0by Rl R4 and R6. If d(vs) = 5 and d(vs) = 5,
then there is at least one i € {4,6} such that ns+(f;) > 3 by S34 € G, and so ¢(v — f;) < 5
by R4. Hence, chi(v) >4 —-3x2—1—2—2=0by Rl and R4. (b). d(z) > 5. Then
chi(v) >4—-3x2—-1—-2x2=1>0byRI and R4.

(iv) Suppose ng(v) < 3. If ny(v) = 3, then we have chy(v) > 4 —3 x 2 —max{2 x 2 +
24241 242x5 144435245411 =0Dby Rl and R4. If ny(v) = 2, then we have
chi(v) >4 —-3x2—max{f+3+2,3x2 24342 1+2x3}=5>0byRlandR4. If
ng(v) =1, then we have chy(v) >4 -3 x 2 —max{2x 2 +35,2x 3+ 1} =15 > 0by Rl and

R4. If ny(v) =0, then we have chy(v) >4 -3 x 2 -2 —-2x 3=2>0by Rl and R4. O

Claim 2.11. For each vertex v € Wy with f3(v) =3 and fi(v) =0, chy(v) > 0.

Proof. 1f v is incident with a 4-cycle (see Figuredl(B,)), then v also sends no charge to a bad
5-face (if it exists) which is incident with a (4, 4, v)-face by R5. Thus chy(v) >4—6x 2 =0
by R1 and R4. Next we turn to the case that v is not incident with any 4-cycle, see Figure
4(Bs). Recall that (,(fs) < 2.

(i) Suppose ny(v) = 6. Then there are at least two faces f;, f; in {f2, fi1, fo} satisfying
fi # (4,4,4,4,6) and f; # (4,4,4,4,6) by S0 & G. Thus chy(v) > 4—4x2-2x2—2x1 =0
by R1 and R4-R5.

(ii) Suppose ny(v) = 5. By symmetry, say d(vi) > 5. Since Sso € G, we get ns+(f;) > 2
when d(f;) =5 for some ¢ € {2,4}, and so ¢(v — f;) < 2 by R4. Thus c¢hy(v) >4 —4 x 3 —
2 X 3 —2x § =0 by Rl and R4-R5.

(ili) Suppose n4(v) < 4. If ng(v) = 4, then chi(v) > 4 —max{4 x 2 +2 x 3 +2 x
§:0 X 2+ 241} =0by Rl and R4-R5. If ny(v) = 3, then chy(v) > 4 — max{4 x % +
T4+ +13x2+3x3+3} =2>0byRIl R4&R5. If ny(v) = 2, then chy(v) >

4-—max{3x2+2+2x 341 4x2+2x2} =2>0byRIL R4R5. If ny(v) = 1, then
we have chi(v) >4 —-3x2—-2x5—3=2>0by Rl and R4. If ny(v) = 0, then we have

chi(v) >4—-3x2—-3x3=2>0byRI and R4. O

For each vertex v € W, denote by f; (i € [5]) the faces incident with v. If d(f;) = 3
for some 4, then denote by f; = (v,v;,v;41). The following Claims imply that
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cha(v) > 0, for each vertex v € Wj.

Claim 2.12. For each vertex v € Wy with f5(v) = 3, cha(v) > 0.

Proof. In this case, fi(v) = 0 since G does not contain intersecting 4-cycles. Let fi, fo and fy
be the 3-faces incident with v. If d(f;) > 6 for some i € {3,5}, then chy(v) > 3—4x2—1 =0
by R1 and R3. Next, we consider the situation where d(f;) = 5 for each i € {3,5}, see Figure
BI(Ch).

cy Cy C3

Figure 5: Configurations for 5-vertex v.

(1) Suppose ny(v) = 5. Then ns+(f3) > 2 and ns+(fs) > 2 hold by Sy € G, and so
c(v — f;) < & for each i € {3,5} by R3. Thus chy(v) >3—-3x 2 —2x 1 =0by Rl and R3.

(ii) Suppose n4(v) = 4, that is ns+(v) = 1. By symmetry, there are only three cases need
to be considered: d(vy) > 5; d(ve) > 5; d(vg) > 5. In all three cases, since Sy € G, we have
chi(v) >3—3x2—2x3=0by Rl and R3.

(iii) Suppose ny(v) = 3, that is ns+(v) = 2. If the pair of two 5T-vertices fall in
{(v1,v2), (v1,03), (v1,04), (v1,05), (Vg,v5)}, then chi(v) >3 =3 % 2 —max{2x 1,5 +3} =0
by R1 and R3. By symmetry, it remains to consider the pair (vq,v4) with d(ve) > 5 and
d(vg) > 5. We may assume that ns+(f5) = 1 (otherwise chy(v) > 0). Since Sy € G,
d(vg) > 6. If d(vy) = 6, then by Sag, S35, 557 € G, there are at least two faces f incident
with v, such that ns+ (f) > 2, and so c(v — f) < 2. Thus chi(vy) >4 —4x2—-2x3=2
by R1 and R4. If d(vy) > 7, then chy(vqy) > w > 2. Hence, vy could send at least 2 to v
(if chy(v) < 0) via a nice path by R6, and cha(v) > 3—4x 2—1+2 >0 by R1, R3 and R6.

(iv) Suppose ny(v) = 2. If the pair of two 4-vertices fall in {(vy, va), (v1,v3), (v1,v4), (V2, V4),
(vs,v5)}, then chy(v) > 3—3x 2 —max{2x £, 3+3} = 0 by R1 and R3. By symmetry, it re-
mains to consider the pair (vi,vs) with d(v1) = d(vs) = 4. We may assume that ns+(f5) =1
(otherwise chy(v) > 0). If d(vs) = 6, then chy(v) > 4 —5x 2 — 3 = ¢ by Rl and R4; if
d(ve) > 7, then chy(vy) > d(vg’_ﬁ > £, Hence, vy could send at least § to v (if chy(v) < 0) via
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a nice path by R6, and che(v) > 3—4x 2 — 2+ 1 =0 by R1, R3 and R6. The same results
hold for v3. We now turn to the case d(vy) = d(v3) = 5. For simplicity, denote by fs, f7 and
fs the remaining faces incident with v3 in clockwise. If ng+(fs) > 3, then c(vs — f5) < g
by R4, and thus chy(v3) > 3—3 x 2 —2 x § = ¢ by Rl and R4. Otherwise, ns+(fs) = 2.
If d(f7) = 3, then ns+(fs) > 2 as Sy € G; if d(fs) = 3, then by Sy, ng+(fr) > 2; if none
of f; and fg are 3-faces, then by Ss, ns+(f;) > 2 for some ¢ € {7,8}. In all cases, we have
chi(vs) >3—2x 2—2x4—3=2Dby Rl and R3. Thus v3 could send at least 2 to v (if
chi(v) < 0) via a nice path by R6, and chs(v) >3 —4x 2 — 24+ 2 > 0 by R1, R3 and R6.
(v) Suppose ny(v) < 1. If ny(v) =1, then chy(v) > 3—-3x 2 —max{3+1,2x5} =& >0
by R1 and R3. If ny(v) = 0, then chy(v) >3 -3 x 2 —-2x5=%>0byRland R3. O

Claim 2.13. For each vertex v € Wy with f3(v) =2 and fy(v) =0, cha(v) > 0.

Proof. Firstly, suppose that the two 3-faces are consecutive and denote them by f; and fs.
Assume that there exists one 67-face in {fy, f5, fo}, then chy(v) >3 -4 x 2 -1 =0by Rl
and R3. Next we consider the situation where d(f;) = 5 for each i € {4,5,6}, see Figure
BI(Cs).

If d(v;) > 5 for some i € {4,5}, then max{c(v — fi_1),c(v — f;)} < & by R3, and
thus chi(v) > 3 -3 x 2 —-2x 1 =0Dby Rl and R3. Now let d(vs) = d(vs) = 4. Since
Sy € G, ns+(fi) > 2 for some ¢ € {3,4} and ns+(f;) > 2 for some j € {4,5}. If i # j, then
chi(v) > 3—-3x2—-2x 3 =0by Rl and R3. If i = j = 4, then we may assume that
ns+(f3) = ns+(fs) = 1 (otherwise chy(v) > 0). Note that f3(vy) < 1 for each k € {4,5}. If
vy, is good for some k € {4,5}, then chy(v;) > 1 by R1-R2. Hence, vj, sends at least 1 to v
(if chi(v) < 0) via a nice path by R6. Since Sz, S12 € G, we get that at least one vertex in
{vy,v5} is good, and we are done.

Secondly, suppose that the two 3-faces are not consecutive, say f; and f3 are the 3-
faces. By Si6 € G, (o(f3) < 1. If d(f2) > 6, then according to S3, we have that chy(v) >
3—3x2—1—-1-1 ==L >0byR1, R3and R5. If d(fy) > 6 and (,(f3) = 1, then nz+(f2) > 2

3-2 3 9
by Sy € G, and so c(v — fo) < 5 by R3. Thus chy(v) >3 -3 x 2 -1 -2 — == >0hy
R1, R3 and R5. In the following, we may assume d(f;) = 5 for each i € {2,4,5}, see Figure
B(Cs).

Assume (,(f3) = 1, and let vjvp be the edge incident with a bad 5-face. By S» € G,
we get ns+(f2) > 2 and ns+(f5) > 2, and so c(v — f;) < 3 for each i € {2,5} by R3. If
f3(v;) <1 for some i € [2], then v need not send any charge to the bad 5-face by R5 (since
v; sends 2 to the bad 5-face), and thus chy(v) > 3 -3 x 2 =2 x 3 = 0 by R1 and R3. It
remains to consider f3(v;) = 2 for each i € [2]. If ns+(fs) > 2, then c(v — f4) < 3 by R3,
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and thus chi(v) >3—-2x2—-3x1—1 =L >0byRI, R3 and R5. Otherwise, ns+(f1) = 1.
We have that ns+(fa) > 3 since So € G, and ng+(f5) > 1 or ns+(f5) > 3 since Sos € G, and
so c¢(v — f;) < 5 for each i € {2,5}. Hence, chi(v) >3—-3x 2 —2x5—4=0Dby Rl R3
and RS.

Assume (,(f3) = 0. Since S5 € G, we know that at least one of f; € {f4, f5} satisfies
ns+(fi) > 2. If ng+(f;) > 2 for each i € {4,5}, then c(v — f;) < 3 for each i € {4,5}
by R3, and thus chy(v) > 3 -3 x 2 —2x 3 = 0 by Rl and R3. Otherwise we assume

that ns+(f1) = 1 (which means ns+(f5) > 2), then ns+(f2) > 2 by So ¢ G, and thus
chi(v) >3—-3x2—2x1=0byRI and R3. O

Claim 2.14. For each vertex v € Wy with f3(v) =2 and fi(v) =1, cha(v) > 0.

Proof. There are two subcases to be considered, see Figure 6l Recall that v sends no charge
to any bad 5-face by R5.

Figure 6: Configuration for 5-vertex v.

We consider the configuration D, first. (i) Suppose n4(v) = 5, that is d(v;) = 4 for each
i € [5]. Since S; € G, we obtain that d(x) > 5. If d(f;) =5 for i € {4,5}, then by Sy € G,
ns+(fi) > 2. Thus chy(v) >3 -3 x 2 —max{2 x 3,3 + 3} =0 by R1 and R3.

(ii) Suppose ny(v) =4. If d(v1) > 5, then d(z) > 5 by S1 € G, and fy # (4,4,4,4,5) by
Sy & G. If d(vs) > 5, then d(z) > 5 by S; € G. In both cases, chy(v) > 3 —3 x 2 —max{2 x
1,2+ 1} =0by R1 and R3. At last, we study the case where d(vs) > 5. If fg+(v) > 1, then
chi(v) > 3—4x 2 —1=0by Rl and R3. We now turn to the situation fg+(v) = 0. In
this situation, we may assume that ns+(f5) = 1 (otherwise chy(v) > 0). Let us see vs. Note
that f3(vs) < 1. Denote by fs and f; the remaining faces incident with vs in clockwise. If
vs is good, then vs sends at least § to v (if chy(v) < 0) via a nice path by R6. Otherwise
d(fs) = 3 and f7 is a bad 5-face, then by Sy € G, we have d(x1) > 5, see Figure [l E}). By
the assumption, d(vs) > 5. If d(vs) > 6, then v sends at most 2 to f, by R4; if d(vs) = 5,
then by S € G, d(xz) > 5, and v sends at most 2 to fo by R3. On the other hand, if
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d(z1) > 6, then v sends at most 3 to f4 by R3; if d(z1) = 5, then by S; € G, d(z2) > 5, and
v sends at most 3 to f4 by R3. In conclusion, chy(v) > 3—3x 2 —5—3 =0by Rl and R3.

(iii) Suppose n4(v) = 3, that is ns+(v) = 2. If the pair of two 5T-vertices fall in
{(vs,v4), (v3,05), (va,v5)}, then by Sy, So € G, we get chy(v) > 3—3xZ—max{i+35,2xs} =0
by R1 and R3. It remains to consider the pairs: {(v1,vy), (v2,v4), (v2,v3)}.

Assume d(vz) > 5 and d(vg) > 5. If fe+(v) > 1, then chy(v) > 3—3x 2 —max{Z+3,1 +
5} = 0 by R1 and R3. It remains to discuss the case where fg+(v) = 0. Here, we can let
ns+(fs) = 1 (otherwise chy(v) > 0) and vs be not good (otherwise vs could send at least & to
v (if chy(v) < 0) via a nice path by R6 and cha(v) > 0). Denote by f and f; the remaining
faces incident with vs in clockwise. Note that d(fs) = 3 and f7 is a bad 5-face. By S, Q G,
we get ng+(fs) > 3, and so c(v — f1) < 5. On the other hand, recall that d(v,) > 5. If
d(vz) > 6, then v sends at most 2 to fo by R3; if d(vz) = 5, then d(z) > 5 holds because of
So1 € G. Hence, chy(v) Z3—3x§—§—820byR1 and R3.

Assume d(vs) > 5 and d(vs) > 5. If fg+(v) = 1, then chy(v) > 3—-3x2-2—1=1>0hy
R1 and R3. Suppose that fg+(v) = 0. Since Sz € G, ns+(fi;) > 2 holds for some i € {4,5}.
If ns+(f;) > 2 for each i € {4,5}, then c(v — f;) < % for cach i € {4,5} by R3, and thus
chi(v) >3—-2x2—-2x3—2=1>0by Rl and R3. Otherwise let ns+(f5) = 1, that
is d(z1) = d(z) = 4, see Figure [(E>). If d(z) > 5, then ¢(v — fo) < 2 by R3, and thus
chi(v) > 3—-3x2—2x1 =0 by Rl and R3. Otherwise if d(z) = 4, then f3(vs) < 1
as fy is a 4-face and any two 4-faces in G are at distance at least 2. If vy is good, then vj
sends at least 3 to v (if chy(v) < 0) via a nice path by R6. Otherwise f3(vs) = 1 and vs
is incident with a bad 5-face. Denote by fs and f; the faces incident with vs in clockwise.
Since Sy € G, we get d(fs) = 3 and f7 is a bad 5-face. If d(z2) = 5, then ns+(f1) > 3 by
S € G, and so c(v — fy) < 5. Otherwise d(z2) > 6, in this situation c(v — fi) < § by R3.

Hence, chy(v) >

Figure 7: Specified Configuration.

Finally, we consider the case where d(v1) > 5 and d(v4) > 5. (a). d(x) = 4. Let us start
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to claim that v sends at most § in total to {fs, f5}. Assume that fe+(v) = 0. If d(vy) > 6,
then we are done by R3. Otherwise if d(v;) = 5, then ns+(f5) > 3 holds because of Ss € G,
and so c(v — f5) < g. The above arguments can also be applied to v4. So the same result
holds for fg+(v) > 1, as claimed. Note that v; is symmetric to vy. So we only discuss vy in
the following, and we would like to claim that vy could send at least § to v (if chi(v) < 0)
when d(v4) > 6 via a nice path.

Assume d(vy) > 7. By Claim 27, we have chy(vy) > W +:+2= 5d(11)8_30 > 3.

Assume d(vy) = 6. Since Sys Z G, Coy (fap) < 1. Tf Gy (fzp) = 0, then chy(vy) > M= 1y 5

18
é > é. Otherwise if (,,(f3) = 1, then by Si3 € G, we get ns+(f4) > 3 and thus vy sends at

most % to f1 by R4. Hence chy(vy) > Sd(?s_% + 2 x é + % > %, and v4 could send at least

% to v (if chi(v) < 0) via a nice path by R6, as claimed. So when min{d(vs),d(v4)} > 6, v
(if chi(v) < 0) could receive at least 2 in total from {v;,v4} via two nice paths by R6, and

chy(v) >3—2x2—-1-2x5+42x3=0byRI1, R3 and R6.

Figure 8: Specified Configuration.

Now we consider min{d(vs),d(v4)} = 5. W.lo.g., we assume d(vs) = 5. Since S17 € G,
Co,(f3s) = 0. Denote by fg, fr and fg the remaining faces incident with v, in clockwise.
As S0 € G, ns+(fs) > 2 when d(fs) = 5. We may assume that fg:(vs) = 0 (otherwise
chi(vg)) >3—2—3 —max{3+2x 3,241+ 3} > 2 by Rl and R3, and v, could send
at least 2 to v (if chy(v) < 0) via a nice path by R6. So cha(v) > 0). First, let d(f7) = 3.
If ns+(fs) = 1, see Figure B(Fy) (d(y) = 4), then by Ss,S15 € G, y can not be incident
with a bad 5-face. Note that f3(y) < 1, thus y is good, and chy(y) > %
send at least 3 to v (if chi(v) < 0) via a nice path by R6. Otherwise if ng+(fs) > 2,
then chi(vy) > 3 —-2x 2 —-2x 1 —2 = 2 by Rl and R3. Second, let d(fs) = 3. If
ns+(f7) = 1, see Figure B(F3) (d(z1) = 4), then z; is good since S13 € G, and thus z; could

send at least 3 to v (if chi(v) < 0) via a nice path by R6. Otherwise if ns+(f7) > 2, then

Hence, y could
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chi(vg) >3—2x2—-2x1—2=2byRI and R3.

In conclusion, when d(vs) =5, v (if chy(v) < 0) could receive at least 2 from one vertex
in {v4, y1,21} via a nice path by R6. Thus chy(v) >3—-2x2—-1-2x 342 =0by R, R3
and R6.

(b). d(z) > 5. Then chy(v) >3 -3 x 2 —2x 1 =0Dby Rl and R3.

(iv) Suppose n4(v) = 2. If the pair of two 4-vertices fall in {(vq,v2), (v1,v3), (v1,v4),
(va2,v5)}, then chy(v) >3 —3x 2 —2x 3 =0 by Rl and R3.

Assume d(vy) = d(vs) = 4. If fe+(v) > 1, then chy(v) >3-3x2 -3 -2 =1>0byRI
and R3. It remains to consider fg+(v) = 0. If ng+(f5) > 2, then c(v — f5) < 3 by R3, and
thus chi(v) >3—-2x2—3—-2x1=1>0by Rl and R3. Otherwise ns+(f5) = 1. We may
let v5 is not good (otherwise vs could send 3 to v (if chy(v) < 0) via a nice path by R6, and
thus chy(v) >3 —-3x 2 —2—2+1>0by R1, R3 and R6). Denote by fs and f7 the faces
incident with vs in clockwise. Since Sy € G, d(fs) = 3 and f7 is a bad 5-face. Moreover, by
Sy € G again, ns+(fs) > 3, and so c(v — fi) < 3. Thus chy(v) >3 -3 x2—-32—-2=0hby
R1 and R3.

Assume d(vqy) = d(v3) = 4. (a). d(z) = 4. By the same arguments as the case d(v;) > 5
and d(vs) > 5, we have that v (if chy(v) < 0) could receive at least 2 from {vs, z} via a nice
path, and thus cho(v) > 3—1-2x 2 —2x 5+ 2 =0 by R1, R3 and R6. (b). d(z) > 5.
Then chy(v) >3 —-3x 2 —2x 5 =73 >0by Rl and R3.

(v) Suppose ng(v) < 1. If ny(v) =1, then chy(v) >3 —2x 2 —max{{ + 35+ 2,2 +2x
$.2x3+3} =4 > 0by Rl and R3. If ny(v) = 0, then chy(v) > 3—2x2-2x5-2=2>0

by R1 and R3.

Now we consider the configuration Ds. (i) Suppose ny(v) = 5. Since So € G, fi #
(4,4,4,4,5) for each ¢ € {2,5}. By S1 € G, we get fi # (4,4,4,4,5), and so c(v — f4) < %
by R3. Thus chi(v) >3 -3 x 2 —max{2 x 1,1 + 1} =0 by R1 and R3.

(ii) Suppose ny4(v) = 4, that is ng+(v) = 1. Assume d(vy) > 5, then f; # (4,4,4,4,5)
holds because of S; € G. Moreover, fy # (4,4,4,4,5). Thus chy(v) > 3 —3 X % —2x % =0
by R1 and R3.

Assume d(v2) > 5, then fy # (4,4,4,4,5) holds by S; € G, and so c(v — f1) < %

by R3. If fe+(v) > 1, then chi(v) > 3 —4 x 2 — % = 0 by Rl and R3. Now we discuss
d(f2) = d(f5) = 5. We may assume that ns+(f5) = 1 (otherwise chy(v) > 3—3x2-2x1 =0).
On the other hand, we may assume that vs is not good (otherwise vs could send at least %
to v (if chy(v) < 0) via a nice path and thus che(v) >3 —4 x 2 — 1 4 3 > 0). Denote by fg
and f7 the faces incident with v5 in clockwise. Since Sy € G, we have that d(fs) = 3 and f;

is a bad 5-face. By S15 € G, we know that ng+(fs) = 1, and thus v sends at most 2 to fy
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by R3. Next we claim that v sends at most 3 to v. If d(vs)
d(vg) = 5, then ns+(f2) > 3 by S11 € G, and so c¢(v — f3)
chi(v) >3—-3x2—42—2=0DbyR1and R3.

Assume d(vs) > 5. (a). d(z) = 4. Since Sy € G, f5 # (4,4,4,4,5). For brevity,

denote by fg and f7 the faces incident with v5 in clockwise. We may assume that vg is

6, then we are done by R3; if

% by R3, as claimed. Hence,

not good (otherwise, vs sends at least 3 to v (if chi(v) < 0) via a nice path, and chy(v) >
3—2x2—-1-2x3+5=0). Since S; € G, d(f7) = 3 and fs is a bad 5-face, which is
impossible because S5 is reducible. (b). d(z) > 5. By So € G, we get f5 # (4,4,4,4,5), so
chi(v) >3—-3x2—2x1=0by Rl and R3.

Assume d(vg) > 5. If fo+(v) > 1, then chy(v) >3 —4x 2 —1 =0by Rl and R3. Now
we consider fg+(v) = 0. Notice that ns+(f2) > 2 and ns+(f5) > 2 holds because of Sy € G,
and so ¢(v — f;) < 1 for each i € {2,5} by R3. Thus chi(v) >3—-3x 2 —-2x 3 =0byRI
and R3. Assume d(vs) > 5, then by S» € G, we get ns+(f2) > 2, and so c¢(v — f2) < 5 by
R3. Thus chi(v) >3 -3 x 2 —2x 3 =0.

(iii) Suppose ny(v) = 3, that is ns+(v) = 2. If the pair of two 5T-vertices fall in
{(v1,v2), (v2,5), (v3,04), (v3,05), (Va,v5)}, then by Sy € G, chi(v) > 3 —2 x 2 — max{2 x
5+2,2%x 542} =0by Rl and R3.

Assume d(vs) > 5 and d(vq) > 5. If fe+(v) > 1, then chy(v) > 3—4x2—1 =0 by Rl and
R3. Next we discuss fg+(v) = 0. We may assume that ns+ (f5) = 1 (otherwise chy(v) > 0).

by R1 and R3. (b). d(z) > 5. Similarly as above, we have c¢hy(v) >3—-3x2—-2—-2=0
by R1 and R3.

Assume d(vy) > 5 and d(vs) > 5. (a). d(x) = 4. Let y be the neighbor of vs which
locates on f5. If d(y) = 4, then by Sy € G, vs is good and thus vs could send at least
5 to v (if ¢hy(v) < 0) via a nice path by R6. When d(f5) > 6, and we have chy(v) >
3—1-2x2—1—5+1=2>0DbyRIland R3. When d(fs5) =5, ns+(f5) > 2 holds because

373
of Sy ¢ G, and we have c¢(v — f5) < 5 by R3. Thus chy(v) > 3—1-2x2—1—5+3 = >0
by R1 and R3. It remains to consider d(y) > 5. Note that f5 # (4,4,4,4,5). Denote by fs
and fy the faces incident with vy in clockwise, and fg, f; the remaining faces incident with
x in clockwise, see Figure [ £3). We may assume that vs is not good (otherwise vs could
send at least 3 to v via a nice path and chy(v) > 0). We immediately have d(fy) = 3 and fs
is a bad 5-face. In this situation, f3(z) <1, and by Sy € G, z is good. Thus x could send
at least 5 to v (if chy(v) < 0) via a nice path and chs(v) > 0.

(b). d(z) > 5. If fe+(v) > 1, then chy(v) > 3 —4x 2 —2

= 0 by R1 and R3. It
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remains to discuss fg+(v) = 0. In this situation, we may assume that d(y) = 4 (otherwise
chy(v) >3 -3 x 2 -1 —2>0). Denote by fs and f; the remaining faces incident with vs
in clockwise. Let vs be a vertex which is not good (otherwise vs could send at least é towv
(if chi(v) < 0) via a nice path and chy(v) > 3—4x 2 —2+1 > 0). Note that d(fs) = 3 and
f7 is a bad 5-face by S» ¢ G. Since S5 ¢ G, we have that d(z) > 6, and v sends at moat 3
to fi by R3. Hence, cho(v) >3 —3x 2 -3 —2=0by Rl and R3.

Assume d(v;) > 5 and d(v3) > 5. (a). d(x) = 4. Denote by fs, fr and fg the remaining
faces incident with = in clockwise and fq another faces incident with vs. If vs is good, then
v (if chy(v) < 0) could receive at least + from vs via a nice path by R6. Now we assume v;
is not good. Since Sy € G, d(fy) = 3 and fs is a bad 5-face. In this situation, x must be
good by Sy ¢ G again. Hence, v (if chy(v) < 0) could receive at least § from z via a nice
path by R6. Thus chy(v) >3—1—-2x 2 —-2x 3+ 3 =0by R1, R3 and R6. (b). d(x) > 5.
Then chy(v) >3 —3x 2 —2x £ =0 by Rl and R3.

v2), (v1,v3), (v1, va), (v2, v3),
(v2,v4), (v2,05), (V3,v5)}, then chy(v) > 3—2x 2 —max{2x 143, 2+5475,2+2+1, 24+2x1} =
0 by R1 and R3.

Assume d(v)) = d(vs) = 4. If fe+(v) > 1, then chy(v) > 3—4x 2 — 3 = 0 by R1 and
R3. Otherwise fg+(v) = 0, then we may assume that ns+(f5) = 1 (otherwise chy(v) > 0). If
d(x) > 5 or d(vy) > 6, thenc(v—>f4)< by R3, and thus chy(v )>3—3x§—%—8=0
by R1 and R3. So we consider d(z) = 4 and d(v4) = 5. Denote by fs and f; the remaining
faces incident with vy in clockwise. Since Sy SZ G, vy is good. Hence, vs could send at least
5 to v (if chi(v) < 0) via a nice path by R6, and chy(v) >3 —4x 2 — 5+ 3 >0 by R1, R3
and R6.

Assume d(v4) = d(vs) = 4. (a). d(x) = 4. Denote by fs, f7 the remaining faces incident
with v; in clockwise. Since Sy € G, d(f;) = 3 and fs is a bad 5-face. We also have

ns+(f5) > 3 because of S ¢ G. Denote by fs, fo the remaining faces incident with z in

(iv) Suppose n4(v) = 2. If the pair of two 4-vertices fall in {(vy,

clockwise. By Sy € G, x is good and x could send at least 3 to v (if chi(v) < 0) via a nice
path. Thus cho(v) >3 —-1—-2x2—-2x 5+ >0 by Rl and R3. (b). d(z) > 5. Then
chy(v) >3—3x2—3—25=1>0byRI and R3.

(v) Suppose ng(v) < 1. If ng(v) = 1, then chy(v) >3 —2x 2 —max{3 + 2+ 3,5 +2 X
4241441 =L > 0byRland R3. If ny(v) = 0, then chy(v) > 3—-2x2-3-2x3=2>0
by R1 and R3.

O

Claim 2.15. For each vertex v € Wy with f3(v) = 1, chy(v) > 0.

Proof. W.lo.g., let d(f1) =
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Case 1. Suppose fi(v) = 0. Assume that (,(f3,) = O firstly. If fg+(v) = 1, then chy(v) >
3—4x % —% = 0 by R1 and R3. Otherwise fg+(v) = 0. Since S3 € G, there exists at least one
5-face f; (i € {2,3,4,5}) such that ng+(f;) > 2, and c(v — f;) < L by R3. If ng+(f1) = 3,
then c(v — f;) < 5 for cach i € {2,5} by R3, and thus ch(v) > 3—-2x2—-3x 3 =¢>0by
R1 and R3. If ns+(f1) = 2, say d(v1) > 5, then we claim that v sends at most % in total to
{f1, fs}. Obviously, the claim holds when d(v;) > 6; when d(v;) = 5, then by S1; € G, either
ns+(f1) = 2 or ng+ (f5) > 3, as claimed. Hence, chy(v) > 3—2x2—3 -3 = = > 0by Rl and
R3. If ns+(f1) = 0, that is d(v1) = d(v) =4, then by Sy € G, ns+(f1) > 2 and nz+ (f5) > 2,
and so c(v — f;) < & for each i € {2,5} by R3. Thus chi(v) >3—-2x2—-3x4=1>0by
R1 and R3.

We now turn to the case (,(fs) = 1, which means that d(v;) = d(v2) = 4. Since
S, 83 € G, we get that chi(v) >3—2 -1 —max{s+1+2,2x3+2} -5 = >0byRI,
R3 and R5.

Case 2. Suppose f4(v) = 1 and let the other vertex on 4-face is x. Recall that v sends
no charge to a bad 5-face (if it exists) which is incident with a (4,4, v)-face by R5. By
symmetry, we only need to consider the cases d(fy) = 4 and d(f3) = 4.

Subcase 2.1. fg(v) = 1. (a). ns+(f;) = 1 for some ¢ € {2,3}. Then we have
chi(v) >3—1-3x2—1=—11If chy(v) > 0, then we are done. So chy(v) < 0, that is, v
is poor. Clearly, if there is a good 4-vertex in N(v), then chy(v) > —3 4 § = 0 by Claim
and R6. Next we discuss the case that there is no good 4-vertex in N(v).

Assume that d(f2) = 4, then d(v;) > 5as S; € G. If d(f3) > 6, then we may assume
that d(vs) = 4 (otherwise if d(vs) > 5, then chy(v) > 3—1—2 —3 —2 x 3 = 0). Recall that
vs € N(v) is not good. By Sz, 523 € G, we get that ns+(fy) > 2, and then c(v — fi) < 5 by
R3. Thus chy(v) >3 —-1—1—2—-2x1=0by Rl and R3. If d(fs) > 6, then ns+(f3) > 2
because of Sy € G, and so c(v — f3) < 3 by R3. Thus ¢hy(v) >3 —-1—-3—-2—-2x3=0
by R1 and R3. If d(f5) > 6, then we may assume that d(vy) = 4 (otherwise chy(v) > 0)
and vy € N(v) is not good. Similarly, by Ss, So3 € G, we get that ns+(fs) > 2, and then
c(v— f1) <3+ by R3. Thus chy(v) >3 —-1-1—-2-2x1=

Assume d(f3) = 4, then by 55,55 ¢ G, there is at least one j € {2,4,5} such that
fi # (4,4,4,4,5), and so c(v — f;) < L. If d(fs) > 6, then we may assume that d(vs) = 4
(otherwise chy(v) > 0) and vs € N(v) is not good. Since Sy, So3 € G, we get that ng+(f5) >
2, and chi(v) > 3—-1—1—2—-2x1 =0 by Rl and R3. If d(fs) > 6, then by the
similar arguments, ns+(f5) > 2, and thus chy(v) >3 —-1—%2 -2 -2 x 1 =0. If d(f;) > 6,
then ng+(f2) > 2 and nz+(fs) > 2 hold because of Sy € G, and so c(v — f;) < 3 for each
i € {2,4} by R3. Thus ¢hy(v) >3 —1—4%—2—2x 1 =0Dby Rl and R3.



(b). ms+(f;) > 2 for some i € {2,3}. Then chy(v) >3 —4x 2 —1=0Dby Rl and R3.

Subcase 2.2. fg+(v) = 0. (a). ns+(f;) = 1 for some i € {2,3}. If d(f2) = 4, then
by Si ¢ G, d(vi) > 5 holds, and by S3 € G, there is at least one face f; (j € {3,4})
satisfying f; # (4,4,4,4,5), and so c(v — f;) < 5 and c¢(v — f5) < 1 by R3. If d(f3) = 4,
then f; # (4,4,4,4,5) holds for each i € {2,4} by Sy € G, and so c(v — f;) < 3. By the
similar arguments as above, we may assume that each vertex in N(v) is not good (otherwise
cha(v) >3—1—-2x2—2x 3+ 3 =0, and we are done).

Assume that d(fy) = 4. For brevity, let x; € N(vs) such that z; locates on f3, and
denote by fs, fr the faces incident with vz in clockwise. Since Sy ¢ G, d(f;) = 3 and
fe is a bad 5-face, and d(z1) > 5. Moreover, if d(z;) = 5, then ng+(f3) > 3 because of
Si9 € G. So v sends at most % to f3 by R3. However, z is good in this situation and
chi(x) > 1. Hence, z could send at least & to v (if chi(v) < 0) via a nice path by R6, and
chy(v) >3—-1-2x2—35—2+1>0byRI1, R3 and R6.

Assume that d(f;) = 4. Note that vs, vy € N(v) are not good. By S» € G, z is good and
chi(x) > 1. Hence, = could send at least & to v (if chi(v) < 0) via a nice path by R6, and
chy(v) >3—-1-2x%x 2 —2x 34 =0by R1, R3 and R6.

(b). ns+(f;) > 2 for some i € {2,3}. Similarly, we may assume that each vertex in N(v)
is not good (otherwise chy(v) > 3 — 2 —4x 2+ 41 =1 >0, and we are done). Assume
d(fs) = 4. Since S3 € G, there exists at least one face f; and f; in {fs, f1} and {f4, f5},
respectively such that ns+(f;) > 2, ns+(f;) > 2. If i = j =4, that is ngs+(f3) = ns+(f5) = 1,
recall that both vy and vs are not good, then by Sy, Si9 SZ (G, there exists at least one face
fr (k€ {3,5}) such that ns+(fx) > 2, and thus chy(v) >3 -3 x 2 —2x 3 =0 by Rl and
R3. Otherwise if i # j, then chi(v) >3 -3 x 2 —2 x £ =0 by R1 and R3.

Assume that d(fs) = 4. If d(vs) = 5, then ¢hy(v) > 3 -3 x 2 =2 x 7 =0 by Rl and
R3. Next we discuss d(vs) = 4, and recall that vs € N(v) is not good. On the other hand,
since S3 ¢ G, there exists at least one face f; in {f4, fs} such that ns+(f;) > 2. We may also
assume that ns+(f2) = 1 (otherwise chy(v) > 0). If ns+ (f1) > 2, then by S1y € G, d(v1) > 6,
and thus chy(v) >3 -3 x 2 — 1 — 5 = i > 0 by Rl and R3. If ns+(f5) > 2, then we are
going to claim that ns+(f5) > 3. Note that d(v3) = d(vs4) = d(vs) = 4, and we may assume
none of them is rich (otherwise chy(v) > 0). By Sy € G, we get nz+(f5) > 3, as claimed.
Recall that ns+(f3) > 2, we get d(z) > 5. On the other hand, by Sis € G, we get d(x) > 6.
Thus chi(v) >3 —-3x 2 -2 —2=0by Rl and R3. O

Claim 2.16. For each vertex v € Wy with f3(v) =0, cha(v) > 0.

Proof. Assume that fi(v) = 0, then by S3 € G, there is at least one f; (i € [5]) satisfying

21



fi #(4,4,4,4,5), and so ¢(v — f;) < 1. Hence, chy(v) >3 -3 x 2 —
Assume that fy(v) =1. W.Lo.g., let fi = (v, v, x,v,) be the 4-face.

Case 1. nz+(f1) = 1. Assume that fe+ (v) = 1. If d(fa) > 6, then ns+(f5)
and ns+ (f;) > 2 forsome i € {3,4} by S3 € G. Thus chy (v) > 3—1—2—3—2X
d(fs) > 6, then ns+ (f2) > 2 and ng+(f5) > 2by Sy € G. Thus chy(v) > 3—1-2-1-2x1 =
by R1 and R3.

Assume that fe+(v) = 0. Since Sy € G, ns+(f2) > 2 and ns+(f5) > 2 hold. If d(vy) > 5,
then chi(v) >3 —1—4x 1 =0by R3. If d(v;) = 4, then we may assume that v, is not
good (otherwise chy(v) > 0). By S, Sag € G, we get that ns+(f3) > 2 and ns+(fs) > 2, and
thus chy(v) >3 —1—4x 3 =0 by R3.

Case 2. ns5+(f1) > 2. Then chy(v) >3 —2 —max{2 x 2+ 5 +3,2x2+2x 3} =0by
R3. O

=0 by R1 and R3.

1
2

According to all above claims, we know that the minimum counterexample does not

exist. O

3 Proof of Theorem [

Let GG be a counterexample to Theorem [[lwith fewest vertices and edges, that is, there is a list
assignment L of G satisfying |L(v)| > 4 for any v € V(G) such that G is not L-colorable but
any proper subgraph of GG is L-colorable. Firstly, we present the well-known Combinatorial

Nullstellensatz initiated by Alon which is essential to produce reducible subgraphs.

Lemma 3.1 ([I], Combinatorial Nullstellensatz). Let ' be an arbitrary field, and let f =
f(z1,...,x,) be a polynomial in Flxy,...,x,|. Suppose the degree deg(f) of f is > i ti,
where each t; is a nonnegative integer, and suppose the coefficient of [[i_, ' in f is nonzero.

Then, if C,...,C, are subsets of F with |C;| > t;, there are ¢; € C1,c5 € Cy, ... ¢, € C,
so that

fler, .o eq) #0.

If G has a vertex v of degree at most three, then we can extend an L-coloring ¢ of G \ v
to an L-coloring ¢ of G by setting ¢(v) € L(v)\{¢(u) : wv € E(G)}, a contradiction. So
d(G) > 4. By Lemma [2.]], G must contain a subgraph isomorphic to one of the configurations
in S (see Appendix [Bl). Next, we prove that all these subgraphs do not exist, that is, all

configurations S;-Sy7 in S are reducible, which leads to a contradiction.

Lemma 3.2. S;-S47 in S are reducible.
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Proof. By the minimality of G, there is an L-coloring of G —S; for each i € [47]. Fix some i,
say 1o, there is an L-coloring ¢ of G —S;,. Let S;, = {zo,21,...,2,-1} and Cy,(v) = {p(u) :
w € E(G) and u € V(G — S;,)}. Let C; = L(z;)\Cy(x;) for j € {0,1,...,n —1}. Now
we extend ¢ to G and let ¢ denote the coloring after all vertices in S;, are colored. Let
Co5C1, - - -, Cp—1 correspond to the colors of zy, x1, ..., x,—1 respectively. If ¢; — ¢; # 0 for any
x;z; € E(G), then ¢ is a proper L-coloring of G. Next let P = P(xg, 21,...,2,—1) be the

following polynomial:

P(zo,a1,. .. x0) =[] (i — =)
22 €E(G)

That is, if there are ¢y € Cy,c; € Cy,...,¢h_1 € C,—y such that P(zg,z1,...,2,-1) # 0,
then we can extend ¢ to an L-coloring ¢ of G by choosing xg = co, 21 =¢1,...,Tp_1 = Cp_1.

Based on Lemma [3.I], we present an algorithm in Appendix [A] which effectively calculates
reducible configurations. Let us take S as an example. Let S7 = {x¢, 1, ..., 24} such that
xor1y is a triangle and zyzox324 is a 4-face, where d(z;) = 4 for each i € {0,1,2,3} and
d(z4) = 5. Then

P(ZL’Q, L1y ,1'4) = (ZL’Q — 1'1)(1’0 — 1’4)(1'1 — [L’g)(l’l — ZL’4)([L’2 — 1'3)(113'3 — 1’4).

That is, input “vve = [(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4)]”. Note that |C}| > 2 and
|C;] > 1 for each i € {0,2,3,4} as x; has one neighbor in V(G — 51) and each z; has two
neighbors in V(G — Sy). Thus, we input “v_ List = [1,2,1,1,1|”. Through the computation
of the algorithm in Appendix [Al, we get the 1st valid expansion is [1,2,1,1,1], that is, the

coefficient of zox?xoz314 in P is nonzero. Therefore, S is reducible by Lemma 311 O

This completes the proof.
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A Algorithm

# —+— coding: utf—8 —x—
#!/usr /bin/env python
import copy

def choosable(n,v_ List,edges): # Determine whether satisfying \
Combinatorial Nullstellensatz , back to the remainder of the expansion!
# n: the number of vertices, v_List[0..n—1]: |L(v)|—1, edges: |L(e)]
zks={}
zks[’0 ’*n]=1
len edges=len (edges)
for i in range(len edges):
vl,v2=edges|[i]
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List zks=[]
while zks:
List zks.append (zks.popitem())
while List zks:
a,b=List zks.pop()
if ord(a[vl])—ord("0")<v_ List[vl]:
al=a[:vl]+chr(ord(a[vl])+1)+a[vl+1:]
if al in zks.keys():
zks [al]=zks[al]+Db
if zks[al]==0:
del zks[al]
else:
zks[al]=b
if ord(a[v2])—ord("0")<v_List[v2]:
a2=a[:v2]+chr(ord(a[v2])+1)+a[v2+1:]
if a2 in zks.keys():
zks[a2]=zks[a2]—Db
if zks[a2]==0:
del zks|[a2]
else:
zks [a2]=—b

return zks

# The main program
def Comb Null(vve, v_List):
#

# List coloring.

# vve: Labelling vertices must start at 0. \
e.g. 3—cycle: vve=[(0, 1),(1, 2),(2, 0)]

# v _List: |L(v)|—1, must be integers. \

e.g. 3—cycle: v_List=[1, 1, 1]

# Apply Combinatorics Nullstellensatz

v_no=len (v_List)
zks=choosable (v_no,v List, vve)

# Output part. If there are too many expansions that \
satisfy the criteria , we print up to 10
size zks=len (zks)

if size zks>0:

print ("\n\nThe total number of valid expansions= "+str (size zks)+",\
among them:")

i=percent = 0
for a in zks.keys():
if i/size zks>=percent:

if i = 0:

print ("The 1st valid expansion is: [",end="")
elif i = 1:

print ("The 2nd valid expansion is: [",end="")
else:

print ("The "+str(i+1)+"th valid expansion is: [",end="")
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for j in range(v_no—1):

print (str(ord(a[j])—ord("0"))+",",end="")
print (str (ord(a[v_no—1])—ord ("0"))+"]")
percent+=0.1

i+=1
else: print ("\n\n No valid expansion!!")

#Example

#Input

vve — [(Ov 1)’ (O’ 4)7 (17 2)7 (17 4)7 (27 3)7 (37 4)]
v_List = [1, 2,1, 1, 1]
Comb_ Null(vve, v_List)

# Output

# The total number of valid expansions= 1, among them:
# The 1st valid expansion is: [1,2,1,1,1]
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B All configurations in S
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