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4-choosability of planar graphs with 4-cycles far apart

via the Combinatorial Nullstellensatz∗

Fan Yang† Yue Wang‡ Jian-liang Wu§

Abstract

By a well-known theorem of Thomassen and a planar graph depicted by Voigt, we

know that every planar graph is 5-choosable, and the bound is tight. In 1999, Lam,

Xu and Liu reduced 5 to 4 on C4-free planar graphs. In the paper, by applying the

famous Combinatorial Nullstellensatz, we design an effective algorithm to deal with list

coloring problems. At the same time, we prove that a planar graph G is 4-choosable if

any two 4-cycles having distance at least 5 in G, which extends the result of Lam et al.

Key words: planar graphs, choosable, nice path, Combinatorial Nullstellensatz.

1 Introduction

All graphs considered in the paper are simple and finite. The concepts of list coloring and

choosability were introduced by Vizing [19] and independently by Erdős, Rubin and Taylor

[10]. Given a graph G, a list assignment L for G is a function that to each vertex v ∈ V (G)

assigns a set L(v) of colors, and an L-coloring is a proper coloring φ such that φ(v) ∈ L(v)

for all v ∈ V (G). We say that G is L-colorable if G has an L-coloring. Moreover, G is k-

choosable if G is L-colorable for every list assignment L with |L(v)| ≥ k for each v ∈ V (G).

List coloring is a fundamental object in graph theory with a wealth of results studying

various aspects and variants. A variety of mathematicians have suggested imposing slightly

stronger conditions in order to further explore the choosability of graphs, see [6, 9, 13]. The

distance of two vertices is the shortest length (number of edges) of paths between them, and
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the distance d(H1, H2) of two subgraphs H1 and H2 is the minimum of the distances between

vertices v1 ∈ V (H1) and v2 ∈ V (H2).

The classic Four Color Theorem claims that every planar graph is 4-colorable, which was

proved by Appel and Haken in 1976 [3, 4]. However, the result can not be extended to that

of list colorings as Voigt [20] found a planar graph which is not 4-choosable. Fortunately,

Thomassen [17] proved that every planar graph is 5-choosable by induction on the number

of vertices. In order to further explore list coloring problems, forbidding certain structures

within a planar graph is a common restriction used in graph coloring. Notice that all 2-

choosable graphs have been characterised by Erdős, Rubin and Taylor [10]. So it remains

to determine whether a given planar graph is 3- or 4-choosable. In recent years, a number

of interesting results about the choosability of special planar graphs have been obtained.

Alon and Tarsi [2] proved that every planar bipartite graph is 3-choosable. Thomassen [18]

showed every planar graph of girth at least 5 is 3-choosable, and there exist triangle-free

planar graphs which are not 3-choosable [21], so the bound 5 is tight. Very recently, Dvořák

[7] showed that every planar graph in which any two (≤ 4)-cycles have distance at least 26

is 3-choosable.

Steinberg’s Conjecture from 1976 states that every {C4, C5}-free planar graph is 3-

colorable, which was disproved by Cohen-Addad et al. [5]. Previously, Voigt [22] disproved

a list version of Steinberg’s Conjecture by giving a {C4, C5}-free planar graph which is not

3-choosable. A graph G is said to be k-degenerate if every nonempty subgraph H of G has

a vertex of degree at most k in H . Note that the list chromatic number of a k-degenerate

graph is at most k + 1. It is simple to check that every triangle-free planar graph is 3-

degenerate, and so it is 4-choosable. In addition, it was proved that every Ck-free planar

graph is 4-choosable for k = 4 in [15], for k = 5 in [14, 24], for k = 6 in [12, 14, 23], and for

k = 7 in [11]. On the other hand, it is shown in [14] that every planar graph in which any

two triangles have distance at least 2 is 4-choosable, and a conjecture was proposed in this

paper, which claims that every planar graph without adjacent triangles is 4-choosable (this

conjecture is still open so far). After that, Wang and Li [25] improved one of the results in

[14] by showing that each planar graph without intersecting triangles is 4-choosable.

Inspired by the improvements of the results about triangle-free planar graphs, we further

explore the picture when any two 4-cycles in a planar graph is far apart. A natural question

can be proposed as follows.

Problem A. Does there exist a constant d such that a planar graph G is 4-choosable if any

two 4-cycles have distance at least d in G?

We give a positive answer to this question with d = 5.
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Theorem 1. If G is a planar graph such that any two 4-cycles have distance at least 5, then

G is 4-choosable.

2 A Structural Lemma

For any positive integer r, we write [r] for the set {1, . . . , r}. Given a plane graph G, we

denote its vertex set, edge set, face set by V (G), E(G), and F (G), respectively. For any

vertex v ∈ V (G) (or any face f ∈ F (G)), the degree of v (or f), denoted by d(v) (or d(f)), is

the number of edges incident with v (or the length of the boundary walk of f , where each cut

edge is counted twice). A vertex v is called a k-vertex (k+-vertex, or k−-vertex) if d(v) = k

(d(v) ≥ k, or d(v) ≤ k, respectively). Analogously, a k-face (k+-face, or k−-face) is a face of

degree k (at least k, or at most k, respectively). Moreover, we use ∆(G) and δ(G) to denote

the maximum degree and the minimum degree of G, respectively.

We write f = (u1, . . . , ut) if u1, . . . , ut are the boundary vertices of f in the clockwise

order. Sometimes we replace ui with d(ui) for some i ∈ [t] in f = (u1, . . . , ut) to describe

the face f . For example, f = (4, 4, 5, u4) denotes a 4-face with d(u1) = d(u2) = 4, d(u3) = 5.

For a vertex v and a face f , let fk(v), nk(v) and nk(f) denote the number of k-faces incident

with v, the number of k-vertices adjacent to v, and the number of k-vertices incident with f ,

respectively. Let f = (v1, v2, v3, v4, v5) be a 5-face, f is called bad if d(vi) = 4 for all i ∈ [5].

For convenience, we use f5b(v) to denote the number of bad 5-faces incident with a vertex v.

In addition, let ζv(f3b) denote the number of 3-faces f = (x, y, v) incident with v such that

d(x) = d(y) = 4 and xy locates on a bad 5-face. Below Figure 1 shows a 6-vertex v with

ζv(f3b) = 3.

Figure 1: d(v) = 6 and ζv(f3b) = 3.

A 4-vertex v with f3(v) + f5b(v) ≤ 1 of G is called good, whereas v is called bad if f3(v) = 1

and f5b(v) = 1.

3



Lemma 2.1. Let G be a connected planar graph such that any two 4-cycles have distance at

least 5. Then

(a) G has a 3−-vertex, or

(b) G contains one of the configurations S1-S47, see Appendix B.

Proof. Let G be a counterexample to the lemma with |V (G)|+ |E(G)| as small as possible.

Then δ(G) ≥ 4 and G contains none of the configurations S1-S47 in Appendix B. Euler’s

formula |V (G)| − |E(G)|+ |F (G)| = 2 can be expressed in the form

∑

v∈V (G)

(dG(v)− 2) +
∑

f∈F (G)

(−2) = −4. (1)

An initial charge ch0 on V (G)∪F (G) is defined by letting ch0(v) = d(v)−2 for each v ∈ V (G)

and ch0(f) = −2 for each f ∈ F (G). Thus we have
∑

z∈V (G)∪F (G) ch0(z) < 0.

In the following, c(x → y) is used to denote the amount of charges transferred from an

element x to an element y. For brevity, let γ =
2− 1

3
n4(f)

n
5+

(f)
.

We define the following two rounds of discharging rules. The first round contains R1-R5.

Let v be a k-vertex, and let f be an ℓ-face incident with v.

R1. c(v → f) = 2
3

if ℓ = 3, and c(v → f) = 1
3

if ℓ ≥ 6.

R2. For k = 4 and ℓ ∈ {4, 5}.

R2.1. Let Tf = {vi : d(vi) = 4 and f3(vi) ≤ 1}. If f = (v1, v2, v3, v4, v5) is a bad

5-face with f3(v) ≤ 1, then c(v → f) = 2
3

when |Tf | = 1, and c(v → f) = 1
2

when

|Tf | ≥ 2.

R2.2. c(v → f) = 1
3

otherwise.

R3. For k = 5, c(v → f) = 5
9

if ℓ = 4 and n6+(f) = 1, c(v → f) = 4
9

if ℓ = 5 and

n6+(f) = 1, and c(v → f) = γ otherwise.

R4. For k ≥ 6, c(v → f) = 7
9

if ℓ = 4 and n5(f) = 1, c(v → f) = 5
9

if ℓ = 5 and n5(f) = 1,

and c(v → f) = γ otherwise.

R5. Let f = (v1, v2, v3, v4, v5) be a bad 5-face with f3(vi) = 2 for each i ∈ [5], and let

fi = (vi, vi+1, ui). Then c(ui → f) = 1
9

if ui is not incident with any 4-cycle.

Let ch1(x) be the new charge of x after applying R1-R5. A vertex v is called rich if

ch1(v) > 0 while it is called poor if ch1(v) < 0 and v is incident with a 4-cycle. Given a poor

vertex, we aim to get additional charge from rich vertices to keep it non-negative.
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Definition 2.2. Let u be a poor vertex with 5 ≤ d(u) ≤ 6, and v be a rich vertex. A nice

uv-path is a path connecting u and v of length at most two and the internal vertex (if any)

has degree at most 5 in G, see Figure 2.

Figure 2: Nice paths.

The second round R6 can be expressed as follows.

R6. Let u be a poor vertex, and v1, . . . , vℓ be the rich vertices at distance at most 2 from

u. Then c(vi → u) = ch1(vi) if G has a nice uvi-path.

Remark 2.3. Since the poor vertex is incident with a 4-cycle and any two 4-cycles have

distance at least 5, each rich vertex sends additional charge to at most one poor vertex. Note

that the new charge of every rich vertex still keeps non-negative after applying R6.

Let ch2(x) be the final charge of x after applying R1-R6. For convenience, we say that

Si 6⊆ G if G contains no subgraphs isomorphic to the configurations Si (1 ≤ i ≤ 47) in

Appendix B. Our goal is to show that ch2(z) ≥ 0 for each z ∈ V (G)∪F (G) and so we find a

contradiction to (1), which implies that the minimum counterexample does not exist. Note

that ch2(x) = ch1(x) if R6 is not applied to x. Thus, we have that ch2(f) = ch1(f) for any

f ∈ F (G) by R6 and ch2(v) = ch1(v) for any v with ch1(v) = 0. By Remark 2.3, we get

that ch2(v) ≥ 0 for each rich vertex. So if ch1(z) ≥ 0, then we have that ch2(z) ≥ 0 for each

z ∈ V (G) ∪ F (G).

Since G has no intersecting 4-cycles, we immediately have the following simple fact.

Fact 2.4. For each vertex v ∈ V (G), f3(v) ≤ ⌈d(v)
2
⌉.

Claim 2.5. For each face f ∈ F (G), ch2(f) = ch1(f) ≥ 0.

Proof. If d(f) = 3, then ch1(f) ≥ −2 + 3 × 2
3
= 0 by R1. If d(f) ≥ 6, then ch1(f) ≥

−2 + 6× 1
3
= 0 by R1.

Suppose that 4 ≤ d(f) ≤ 5 and f is not a bad 5-face. By R2.2, f gets 1
3

from each of its

incident 4-vertices.

(i) If d(f) = 4, n5(f) = 1 and n6+(f) = 1, then f gets 5
9

from its incident 5-vertex and 7
9

from its incident 6+-vertex by R3 and R4.

(ii) If d(f) = 5, n5(f) = 1 and n6+(f) = 1, then f gets 4
9

from its incident 5-vertex and 5
9
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from its incident 6+-vertex by R3 and R4.

(iii) Otherwise, f gets γ from each of its incident 5+-vertices by R3 and R4.

Thus, we have that ch1(f) ≥ −2+min{1
3
×2+ 5

9
+ 7

9
, 1
3
×3+ 4

9
+ 5

9
, 1
3
·n4(f)+

2− 1

3
n4(f)

n
5+

(f)
·n5+(f)} =

0.

Suppose that f is a bad 5-face. If there exists exactly one i (i ∈ [5]) such that f3(vi) ≤ 1,

then f gets at least 4
3

from other incident vertices by R2.1, and so we have that ch1(f) ≥

−2 + 2
3
+ 4 × 1

3
= 0. If there exist at least two vertices, say vi and vj, such that f3(vi) ≤ 1

and f3(vj) ≤ 1, then f gets 1
2

from each of vi and vj by R2.1 and gets at least 1 from other

incident vertices by R2, and so we have that ch1(f) ≥ −2 + 1
2
× 2 + 3 × 1

3
= 0. Hence, we

assume that each vi satisfies f3(vi) = 2. For brevity, denote by fi = (vi, vi+1, ui) the 3-face

sharing the edge vivi+1 with f , and let U = {u1, u2, u3, u4, u5}. Since S2 * G, we get that

d(ui) ≥ 5 for each i ∈ [5]. By the assumption of G, either at most one vertex in U lies on

a 4-cycle, or two vertices in U lie on the same 4-cycle. Let U∗ ⊆ U such that each vertex

in U∗ does not lie on any 4-cycle. Note that |U∗| ≥ 3 and it follows that f receives at least

3× 1
9

from U∗ by R5. So we get that ch2(f) = ch1(f) ≥ −2+5× 1
3
+3× 1

9
= 0 by R2.2.

Claim 2.6. For each 4-vertex v, ch1(v) ≥ 0. In particular, for each good 4-vertex v, ch1(v) ≥
1
3
.

Proof. Let v be a 4-vertex. If f3(v) + f5b(v) ≤ 2, then ch1(v) ≥ 2 − 2
3
× 2 − 1

3
× 2 = 0 by

R1 and R2. So suppose that f3(v) + f5b(v) ≥ 3. By Fact 2.4, f3(v) ≤ 2. As S2, S3 6⊆ G, we

have that f5b(v) ≤ 2 and if f5b(v) = 2, then f3(v) = 0. It remains to consider the case that

f3(v) = 2 and f5b(v)=1. By R2, v sends 1
3

to each of other 4+-faces and 2
3

to each 3-face.

Thus, ch1(v) ≥ 2− 2
3
× 2− 1

3
× 2 = 0.

Since f3(v)+f5b(v) ≤ 1 holds for each good vertex v, we have that ch1(v) ≥ 2− 1
3
×3− 2

3
=

1
3

by R1-R2.

Claim 2.7. ch1(v) ≥ 0 if v is a 7+-vertex, or a 6-vertex with f6+(v) ≥ 1, or a 5-vertex with

f6+(v) ≥ 2.

Proof. Let v be a vertex. Suppose d(v) is odd. Note that f3(v) ≤ d(v)+1
2

by Fact 2.4. If

f3(v) = d(v)+1
2

, then by R1 and R4, we have that ch1(v) ≥ d(v) − 2 − 2
3
d(v) = d(v)−6

3
. If

f3(v) ≤ d(v)−1
2

and f4(v) = 1, then by R1 and R4, we have that ch1(v) ≥ d(v) − 2 − 1 −
2
3
(d(v)− 1) = d(v)−7

3
. If f3(v) ≤ d(v)−1

2
and f4(v) = 0, then by R1 and R4-R5, we have

that ch1(v) ≥ d(v) − 2 − 2
3
d(v) − 1

9

(

d(v)−1
2

)

= 5d(v)−35
18

. Particularly, if f6+(v) ≥ 2, then

ch1(v) ≥ min
{

d(v)−7
3

,
5d(v)−35

18

}

+ 2× 1
3
= min

{

d(v)−5
3

,
5d(v)−23

18

}

.
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Suppose d(v) is even. Note that f3(v) ≤
d(v)
2

by Fact 2.4. If f4(v) = 1, then by R1 and

R4, we have that ch1(v) ≥ d(v) − 2 − 1 − 2
3
(d(v)− 1) = d(v)−7

3
. If f4(v) = 0, then by R1

and R4-R5, we have that ch1(v) ≥ d(v) − 2 − 2
3
d(v) − 1

9

(

d(v)
2

)

= 5d(v)−36
18

. In particular, if

f6+(v) ≥ 1, then ch1(v) ≥ min
{

d(v)−7
3

,
5d(v)−36

18

}

+ 1
3
= min

{

d(v)−6
3

,
5d(v)−30

18

}

.

Therefore, Claim 2.7 is true.

Now it remains to consider the vertices of W1 = {v : d(v) = 6 and f6+(v) = 0} and

W2 = {v : d(v) = 5 and f6+(v) ≤ 1} by Claim 2.6 and 2.7.

For v ∈ W1, let N(v) = {v1, . . . , v6} and let f1, . . . , f6 be the faces incident with v in

clockwise such that vi and vi+1 are incident with fi. In the following Claims 2.8-2.11, we

show that ch2(v) ≥ 0 for each vertex v ∈ W1.

Claim 2.8. For each vertex v ∈ W1 with f3(v) ≤ 2 and f4(v) = 1, ch2(v) ≥ 0.

Proof. W.l.o.g., let f1 be the 4-face, denoted by v1vv2x. Note that v sends no charge to a bad

5-face (if it exists) which is incident with a (4, 4, v)-face by R5. According to R1 and R4, v

sends at most 1 to each 4-face and 2
3

to each 3-face and 5-face. Thus, ch1(v) ≥ 4−1− 2
3
×5 =

−1
3
. If ch1(v) ≥ 0, then we are done. So suppose that ch1(v) < 0, that is, v is poor. Clearly,

if there is a good 4-vertex in N(v), then ch2(v) ≥ 4 − 1 − 2
3
× 5 + 1

3
= 0 by Claim 2.6 and

R6. Next we only consider the case that there is no good 4-vertex in N(v).

Now we first claim that fi is not a (4, 4, 4, 4, 6)-face for each i ∈ {2, 6} (that is, n5+(fi) ≥

2). Suppose to the contrary that for some i ∈ {2, 6}, fi is a (4, 4, 4, 4, 6)-face, say f2. As

S2, S3 6⊆ G, we get that f3(v2) + f5b(v2) ≤ 1 and v2 is a good 4-vertex, a contradiction.

Similarly, if f6 is a (4, 4, 4, 4, 6)-face, then v1 is a good 4-vertex, a contradiction.

Figure 3: Configurations for 6-vertex v with f4(v) = 1.

Case 1. n5+(f1) = 1.

Subcase 1.1. Assume that f3(v) ≤ 1. We will show that there are at least three 5-

faces fi such that n5+(fi) ≥ 2, which implies that c(v → fi) ≤ 5
9

by R4, and so ch1(v) ≥

4− 1− 2× 2
3
− 3× 5

9
= 0 by R1.

7



(a) Suppose that f3(v) = 0. Since G has no intersecting 4-cycles, the remaining faces

incident with v are all 5-faces. By S24 6⊆ G, there exists at least one i (i ∈ {3, 4, 5}) such

that n5+(fi) ≥ 2. Note that n5+(f2) ≥ 2 and n5+(f6) ≥ 2, so we are done.

(b) Suppose that f3(v) = 1. By symmetry, three cases need to be considered (see Figure

3). In A1, since S32 6⊆ G, we have that n5+(f3) ≥ 2. In A2, since S24 6⊆ G, we have that

n5+(f4) ≥ 2 or n5+(f5) ≥ 2. In A3, since S27 6⊆ G, we have that n5+(f3) ≥ 2 or n5+(f5) ≥ 2.

Note that if fi is a 5-face, then n5+(fi) ≥ 2 for i ∈ {2, 6}, so we are done.

Subcase 1.2. Assume that f3(v) = 2. There are four subcases to be considered.

Firstly, we suppose that d(f2) = d(f4) = 3. Note that f3(v1) ≤ 1 and v1 is not good.

It implies that v1 is bad. Since S2, S3 6⊆ G, v1x locates on the same bad 5-face. In this

situation, f3(x) ≤ 1, and by R2.1, each of {v1, x} sends 1
2

to the bad 5-face. Thus, by R2

ch1(u) ≥ 2− 2
3
− 1

2
− 1

3
× 2 = 1

6
for each u ∈ {v1, x}. Therefore, each of {v1, x} sends 1

6
to v

(if ch1(v) < 0) via a nice path by R6. Thus ch2(v) ≥ 0. The case that d(f2) = d(f5) = 3 is

similar as above.

Next, we suppose that d(f3) = d(f5) = 3. Since v1 and v2 are not good and S2, S3 6⊆ G,

v1x locates on the same bad 5-face g1 and v2x locates on the same bad 5-face g2. By S2 6⊆ G,

we have that f3(x) = 0. Note that f3(vi) ≤ 1 for each i ∈ [2]. It follows that |Tg1| ≥ 2 and

|Tg2| ≥ 2. Thus, ch1(x) ≥ 2 − 2 × 1
2
− 2 × 1

3
= 1

3
by R1 and R2. Hence, v (if ch1(v) < 0)

could receive at least 1
3

from x via a nice path by R6, and ch2(v) ≥ 0.

It remains to consider the case where d(f2) = d(f6) = 3. Since S32 * G, we get that for

each i ∈ {3, 5}, n5+(fi) ≥ 2 and c(v → fi) ≤
5
9

by R4. If n5+(f4) ≥ 2, then ch1(v) ≥ 4− 1−

2× 2
3
− 3× 5

9
= 0 by R1 and R4. Now let n5+(f4) = 1, and denote by f4 = (v, v4, y1, y2, v5),

that is d(v4) = d(v5) = d(y1) = d(y2) = 4. Note that f3(v4) = f3(v5) ≤ 1. So we may

assume that both v4 and v5 are not good (otherwise v receives at least 1
3

from {v4, v5} and

ch2(v) ≥ 0). Since S2 * G, v4y1 and v5y2 locate on two bad 5-faces, respectively. On the

other hand, notice that S2, S47 * G, and then at least one j ∈ {3, 5} satisfying n5+(fj) ≥ 3,

and so c(v → fj) ≤
4
9

for some j ∈ {3, 5} by R4. Thus ch1(v) ≥ 4 − 1 − 3 × 2
3
− 5

9
− 4

9
= 0

by R1 and R4.

Case 2. n5+(f1) ≥ 2. Since S2, S36 6⊆ G, there exists at least one i ∈ {2, 3, 4, 5, 6} such

that n5+(fi) ≥ 2, and we have c(v → fi) ≤
5
9

by R4. So ch1(v) ≥ 4 − 4× 2
3
− 7

9
− 5

9
= 0 by

R1 and R4.

Claim 2.9. For each vertex v ∈ W1 with f3(v) ≤ 2 and f4(v) = 0, ch2(v) ≥ 0.

Proof. Suppose that f4(v) = 0. If f3(v) = 0, then ch2(v) ≥ 4 − 6× 2
3
= 0 by R1 and R4. If

f3(v) = 1, then by S35 * G, either ζv(f3b) = 0 or there exists some i such that n5+(fi) ≥ 2,

8



and thus ch1(v) ≥ 4 − 5 × 2
3
− max{5

9
+ 1

9
, 2
3
} = 0 by R1, R4-R5. Finally, we discuss the

case where f3(v) = 2. If the two 3-faces are consecutive, then ch1(v) ≥ 4− 6× 2
3
= 0 by R1

and R4. Otherwise if they are not consecutive, by the fact that S30, S35 * G, we get that

ch1(v) ≥ 4− 2× 5
9
− 4× 2

3
− 2× 1

9
= 0 by R1, R4-R5.

Next we focus on the case f3(v) = 3. Since S46 * G, we get ζv(f3b) ≤ 2.

Figure 4: Configurations for 6-vertex v with f3(v) = 3.

Recall that v sends no charge to a bad 5-face which is incident with a (4, 4, v)-face by

R5.

Claim 2.10. For each vertex v ∈ W1 with f3(v) = 3 and f4(v) = 1 (see Figure 4(B1)),

ch2(v) ≥ 0.

Proof. We divide the proof into four possibilities depending on n4(v) ∈ {4, 5, 6} or n4(v) ≤ 3.

(i) Suppose n4(v) = 6. (a). d(x) = 4. As S32 * G, for each i ∈ {4, 6}, we have

n5+(fi) ≥ 2, and so c(v → fi) ≤
5
9

by R4. If n6+(fi) ≥ 2 or n5+(fi) ≥ 3 for each i ∈ {4, 6},

then ch1(v) ≥ 4− 3× 2
3
− 1− 2× 1

2
= 0 by R1 and R4. Assume n6(f4) = 1 and n5+(f4) = 2.

Denote by f4 = (v, v4, y1, y2, v5). First, let d(y1) = 5 and d(y2) = 4. If f3(v4) = 1, then

according to S25 * G, v4 can not locate on a bad 5-face. Thus v4 is good, and ch1(v4) ≥
1
3
. If

f3(v4) = 2, then by S25, S41, S44 * G, we have ζy1(f3b) = 0. Thus ch1(y1) ≥ 3−3× 2
3
− 4

9
− 1

2
=

1
18

by R1 and R3. In both cases, {v4, y1} could send at least 1
18

to v (if ch1(v) < 0) via a

nice path by R6. Second, let d(y1) = 4 and d(y2) = 5. If f3(v5) = 1, then v5 can not

locate on a bad 5-face by S38 * G. Thus v5 is good, and ch1(v5) ≥
1
3
. If f3(v5) = 2, then

by S38, S39, S42 * G, we have ζy2(f3b) = 0. Thus ch1(y2) ≥ 3 − 3 × 2
3
− 4

9
− 1

2
= 1

18
by

R1 and R3. In both cases, {v5, y2} could send at least 1
18

to v (if ch1(v) < 0) via a nice

path by R6. In conclusion, v could receive at least 1
18

from {v4, v5, y1, y2}. By symmetry,

the same arguments also hold for the vertices on f6 (i.e. {v1, v6, z1, z2}). If n6(f6) = 1 and
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n5+(f6) = 2, then ch2(v) ≥ 4− 3× 2
3
− 1− 2× 5

9
+ 2× 1

18
= 0 by R1, R4 and R6. Otherwise

ch2(v) ≥ 4− 3× 2
3
− 1− 5

9
− 1

2
+ 1

18
= 0.

(b). d(x) ≥ 5. Since S30 * G, n5+(fi) ≥ 2 for some i ∈ {4, 6}, and c(v → fi) ≤
5
9

by R4.

Thus ch1(v) ≥ 4− 4× 2
3
− 7

9
− 5

9
= 0 by R1 and R4.

(ii) Suppose n4(v) = 5. By symmetry, we only need to consider three subcases: d(v1) ≥ 5,

d(v2) ≥ 5 and d(v5) ≥ 5.

(a). d(x) = 4. Assume that d(v1) ≥ 5. If d(v1) = 5, then n5+(f6) ≥ 3 by S33 6⊆ G,

and we have c(v → fi) ≤
4
9

by R4. Thus ch1(v) ≥ 4 − 3 × 2
3
− 1 − 5

9
− 4

9
= 0 by R1 and

R4. If d(v1) = 6, then ch1(v1) ≥ 4 − 4 × 2
3
− 1

2
− 5

9
− 2 × 1

9
= 1

18
by R1, R4-R5 because of

S40 * G. If d(v1) ≥ 7, then by Claim 2.7, ch1(v1) ≥
5d(v)−36

18
+ 1

9
+ 1

18
≥ 1

18
. Hence, when

d(v1) ≥ 6, v (if ch1(v) < 0) could receive at least 1
18

from v1 via a nice path by R6. Thus

ch2(v) ≥ 4− 3× 2
3
− 1− 5

9
− 1

2
+ 1

18
= 0 by R1, R4 and R6.

Assume that d(v2) ≥ 5. Then n5+(fi) ≥ 2 for some i ∈ {4, 6} by S30 * G, and we have

c(v → fi) ≤
5
9

by R4. Thus ch1(v) ≥ 4− 4× 2
3
− 7

9
− 5

9
= 0 by R1 and R4.

Assume that d(v5) ≥ 5. Since S32 6⊆ G, n5+(f6) ≥ 2 and c(v → f6) ≤
5
9

by R4. According

to S26 * G, either d(v5) ≥ 6 or n5+(f4) ≥ 3. If n5+(f4) ≥ 3, then c(v → f4) ≤
4
9

by R4, and

thus ch1(v) ≥ 4 − 3 × 2
3
− 1 − 5

9
− 4

9
= 0 by R1 and R4; if d(v5) ≥ 6, then by the similar

arguments as above, we have that v (if ch1(v) < 0) could receive at least 1
18

from v5 via a

nice path by R6, and thus ch2(v) ≥ 4− 3× 2
3
− 1− 5

9
− 1

2
+ 1

18
= 0 by R1, R4 and R6.

(b). d(x) ≥ 5. In all three cases, it is easy to check that ch1(v) ≥ 4 − 4 × 2
3
−max{7

9
+

5
9
, 5
9
+ 2

3
} = 0 by R1 and R4.

(iii) Suppose n4(v) = 4. That is, n5+(v) = 2. If the pair of two 5+-vertices fall in

{(v1, v2), (v1, v3), (v2, v3), (v2, v5), (v2, v6)}, then we have ch1(v) ≥ 4− 4× 2
3
−max{7

9
+ 5

9
, 2
3
+

5
9
} = 0 by R1 and R4. By symmetry, it remains to discuss the following cases.

Assume that d(v1) ≥ 5 and d(v4) ≥ 5. (a). d(x) = 4. Note that v1 and v4 are symmetric

to some extent. If d(v1) ≥ 6 and d(v4) ≥ 6, then ch1(v) ≥ 4 − 3 × 2
3
− 1 − 2 × 1

2
= 0

by R1 and R4. If d(vi) = 5 for some i ∈ {1, 4}, then n5+(f8−2i) ≥ 3 by S31 6⊆ G, and so

c(v → f8−2i) ≤
4
9

by R4. Thus ch1(v) ≥ 4− 3 × 2
3
− 1−max{1

2
+ 4

9
, 2× 4

9
} = 1

18
> 0 by R1

and R4. (b). d(x) ≥ 5. Then ch1(v) ≥ 4− 3× 2
3
− 7

9
− 2× 5

9
= 1

9
> 0 by R1 and R4.

Assume that d(v1) ≥ 5 and d(v5) ≥ 5. (a). d(x) = 4. If d(v1) ≥ 6 and d(v5) ≥ 6,

then ch1(v) ≥ 4 − 3 × 2
3
− 1 − 2 × 1

2
= 0 by R1 and R4. If d(vi) = 5 for some i ∈ {1, 5},

then n5+(f 13−i
2

) ≥ 3 by S26, S33 6⊆ G, and so c(v → f 13−i
2

) ≤ 4
9

by R4. Thus ch1(v) ≥

4 − 3 × 2
3
− 1 − max{1

2
+ 4

9
, 2 × 4

9
} = 1

18
> 0 by R1 and R4. (b). d(x) ≥ 5. Then

ch1(v) ≥ 4− 3× 2
3
− 2× 5

9
− 7

9
= 1

9
> 0 by R1 and R4.

Assume that d(v1) ≥ 5 and d(v6) ≥ 5. (a). d(x) = 4. Since S32 * G, we get n5+(f4) ≥ 2,
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and c(v → f4) ≤
5
9

by R4. Then we have ch1(v) ≥ 4− 3× 2
3
− 1− 5

9
− 4

9
= 0 by R1 and R4.

(b). d(x) ≥ 5. Then we have ch1(v) ≥ 4− 4× 2
3
− 7

9
− 4

9
= 1

9
> 0 by R1 and R4.

Assume that d(v5) ≥ 5 and d(v6) ≥ 5. (a). d(x) = 4. If d(v5) ≥ 6 and d(v6) ≥ 6, then

ch1(v) ≥ 4 − 3 × 2
3
− 1 − 2 × 1

2
= 0 by R1 and R4. If d(vi) = 5 and d(v11−i) ≥ 6 for some

i ∈ {5, 6}, then by S2 * G, we get that ch1(vi) ≥ 3− 2
3
− 2× 4

9
−max{2

3
+ 1

2
+ 1

9
, 2× 2

3
} = 1

9

by R1, R3 and R5. Hence, vi could send at least 1
9

to v via a nice path by R6, and

ch2(v) ≥ 4 − 3 × 2
3
− 1 − 5

9
− 1

2
+ 1

9
> 0 by R1, R4 and R6. If d(v5) = 5 and d(v6) = 5,

then there is at least one i ∈ {4, 6} such that n5+(fi) ≥ 3 by S34 6⊆ G, and so c(v → fi) ≤
4
9

by R4. Hence, ch1(v) ≥ 4 − 3 × 2
3
− 1 − 5

9
− 4

9
= 0 by R1 and R4. (b). d(x) ≥ 5. Then

ch1(v) ≥ 4− 3× 2
3
− 7

9
− 2× 5

9
= 1

9
> 0 by R1 and R4.

(iv) Suppose n4(v) ≤ 3. If n4(v) = 3, then we have ch1(v) ≥ 4 − 3 × 2
3
−max{2 × 5

9
+

7
9
, 2
3
+ 4

9
+ 7

9
, 2
3
+ 2× 5

9
, 1 + 4

9
+ 5

9
, 4
9
+ 5

9
+ 7

9
} = 0 by R1 and R4. If n4(v) = 2, then we have

ch1(v) ≥ 4− 3× 2
3
−max{7

9
+ 4

9
+ 5

9
, 3× 5

9
, 2
3
+ 4

9
+ 5

9
, 1 + 2× 4

9
} = 1

9
> 0 by R1 and R4. If

n4(v) = 1, then we have ch1(v) ≥ 4− 3× 2
3
−max{2× 5

9
+ 4

9
, 2× 4

9
+ 7

9
} = 4

9
> 0 by R1 and

R4. If n4(v) = 0, then we have ch1(v) ≥ 4− 3× 2
3
− 5

9
− 2× 4

9
= 5

9
> 0 by R1 and R4.

Claim 2.11. For each vertex v ∈ W1 with f3(v) = 3 and f4(v) = 0, ch2(v) ≥ 0.

Proof. If v is incident with a 4-cycle (see Figure 4(B2)), then v also sends no charge to a bad

5-face (if it exists) which is incident with a (4, 4, v)-face by R5. Thus ch1(v) ≥ 4− 6× 2
3
= 0

by R1 and R4. Next we turn to the case that v is not incident with any 4-cycle, see Figure

4(B3). Recall that ζv(f3b) ≤ 2.

(i) Suppose n4(v) = 6. Then there are at least two faces fi, fj in {f2, f4, f6} satisfying

fi 6= (4, 4, 4, 4, 6) and fj 6= (4, 4, 4, 4, 6) by S30 * G. Thus ch1(v) ≥ 4−4× 2
3
−2× 5

9
−2× 1

9
= 0

by R1 and R4-R5.

(ii) Suppose n4(v) = 5. By symmetry, say d(v1) ≥ 5. Since S30 * G, we get n5+(fi) ≥ 2

when d(fi) = 5 for some i ∈ {2, 4}, and so c(v → fi) ≤
5
9

by R4. Thus ch1(v) ≥ 4− 4× 2
3
−

2× 5
9
− 2× 1

9
= 0 by R1 and R4-R5.

(iii) Suppose n4(v) ≤ 4. If n4(v) = 4, then ch1(v) ≥ 4 − max{4 × 2
3
+ 2 × 5

9
+ 2 ×

1
9
, 5 × 2

3
+ 4

9
+ 1

9
} = 0 by R1 and R4-R5. If n4(v) = 3, then ch1(v) ≥ 4 − max{4 × 2

3
+

4
9
+ 5

9
+ 1

9
, 3 × 2

3
+ 3 × 5

9
+ 1

9
} = 2

9
> 0 by R1, R4-R5. If n4(v) = 2, then ch1(v) ≥

4 − max{3 × 2
3
+ 4

9
+ 2 × 5

9
+ 1

9
, 4 × 2

3
+ 2 × 5

9
} = 2

9
> 0 by R1, R4-R5. If n4(v) = 1, then

we have ch1(v) ≥ 4− 3× 2
3
− 2 × 4

9
− 5

9
= 5

9
> 0 by R1 and R4. If n4(v) = 0, then we have

ch1(v) ≥ 4− 3× 2
3
− 3× 4

9
= 2

3
> 0 by R1 and R4.

For each vertex v ∈ W2, denote by fi (i ∈ [5]) the faces incident with v. If d(fi) = 3

for some i, then denote by fi = (v, vi, vi+1). The following Claims 2.12-2.16 imply that
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ch2(v) ≥ 0, for each vertex v ∈ W2.

Claim 2.12. For each vertex v ∈ W2 with f3(v) = 3, ch2(v) ≥ 0.

Proof. In this case, f4(v) = 0 since G does not contain intersecting 4-cycles. Let f1, f2 and f4

be the 3-faces incident with v. If d(fi) ≥ 6 for some i ∈ {3, 5}, then ch1(v) ≥ 3−4× 2
3
− 1

3
= 0

by R1 and R3. Next, we consider the situation where d(fi) = 5 for each i ∈ {3, 5}, see Figure

5(C1).

Figure 5: Configurations for 5-vertex v.

(i) Suppose n4(v) = 5. Then n5+(f3) ≥ 2 and n5+(f5) ≥ 2 hold by S2 * G, and so

c(v → fi) ≤
1
2

for each i ∈ {3, 5} by R3. Thus ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

(ii) Suppose n4(v) = 4, that is n5+(v) = 1. By symmetry, there are only three cases need

to be considered: d(v1) ≥ 5; d(v2) ≥ 5; d(v4) ≥ 5. In all three cases, since S2 6⊆ G, we have

ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

(iii) Suppose n4(v) = 3, that is n5+(v) = 2. If the pair of two 5+-vertices fall in

{(v1, v2), (v1, v3), (v1, v4), (v1, v5), (v4, v5)}, then ch1(v) ≥ 3− 3× 2
3
−max{2× 1

2
, 4
9
+ 1

2
} = 0

by R1 and R3. By symmetry, it remains to consider the pair (v2, v4) with d(v2) ≥ 5 and

d(v4) ≥ 5. We may assume that n5+(f5) = 1 (otherwise ch1(v) ≥ 0). Since S22 6⊆ G,

d(v2) ≥ 6. If d(v2) = 6, then by S29, S35, S37 * G, there are at least two faces f̃ incident

with v2 such that n5+(f̃) ≥ 2, and so c(v → f̃) ≤ 5
9
. Thus ch1(v2) ≥ 4 − 4 × 2

3
− 2 × 5

9
= 2

9

by R1 and R4. If d(v2) ≥ 7, then ch1(v2) ≥
d(v)−6

3
> 2

9
. Hence, v2 could send at least 2

9
to v

(if ch1(v) < 0) via a nice path by R6, and ch2(v) ≥ 3− 4× 2
3
− 1

2
+ 2

9
> 0 by R1, R3 and R6.

(iv) Suppose n4(v) = 2. If the pair of two 4-vertices fall in {(v1, v2), (v1, v3), (v1, v4), (v2, v4),

(v4, v5)}, then ch1(v) ≥ 3−3× 2
3
−max{2× 1

2
, 4
9
+ 1

2
} = 0 by R1 and R3. By symmetry, it re-

mains to consider the pair (v1, v5) with d(v1) = d(v5) = 4. We may assume that n5+(f5) = 1

(otherwise ch1(v) ≥ 0). If d(v2) = 6, then ch1(v) ≥ 4 − 5 × 2
3
− 5

9
= 1

9
by R1 and R4; if

d(v2) ≥ 7, then ch1(v2) ≥
d(v)−6

3
> 1

9
. Hence, v2 could send at least 1

9
to v (if ch1(v) < 0) via
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a nice path by R6, and ch2(v) ≥ 3− 4× 2
3
− 4

9
+ 1

9
= 0 by R1, R3 and R6. The same results

hold for v3. We now turn to the case d(v2) = d(v3) = 5. For simplicity, denote by f6, f7 and

f8 the remaining faces incident with v3 in clockwise. If n5+(f6) ≥ 3, then c(v3 → f6) ≤
4
9

by R4, and thus ch1(v3) ≥ 3 − 3 × 2
3
− 2 × 4

9
= 1

9
by R1 and R4. Otherwise, n5+(f6) = 2.

If d(f7) = 3, then n5+(f8) ≥ 2 as S2 * G; if d(f8) = 3, then by S20, n5+(f7) ≥ 2; if none

of f7 and f8 are 3-faces, then by S3, n5+(fi) ≥ 2 for some i ∈ {7, 8}. In all cases, we have

ch1(v3) ≥ 3 − 2 × 2
3
− 2 × 1

2
− 4

9
= 2

9
by R1 and R3. Thus v3 could send at least 2

9
to v (if

ch1(v) < 0) via a nice path by R6, and ch2(v) ≥ 3− 4× 2
3
− 4

9
+ 2

9
> 0 by R1, R3 and R6.

(v) Suppose n4(v) ≤ 1. If n4(v) = 1, then ch1(v) ≥ 3−3× 2
3
−max{4

9
+ 1

2
, 2× 4

9
} = 1

18
> 0

by R1 and R3. If n4(v) = 0, then ch1(v) ≥ 3− 3× 2
3
− 2× 4

9
= 1

9
> 0 by R1 and R3.

Claim 2.13. For each vertex v ∈ W2 with f3(v) = 2 and f4(v) = 0, ch2(v) ≥ 0.

Proof. Firstly, suppose that the two 3-faces are consecutive and denote them by f1 and f2.

Assume that there exists one 6+-face in {f4, f5, f6}, then ch1(v) ≥ 3− 4× 2
3
− 1

3
= 0 by R1

and R3. Next we consider the situation where d(fi) = 5 for each i ∈ {4, 5, 6}, see Figure

5(C2).

If d(vi) ≥ 5 for some i ∈ {4, 5}, then max{c(v → fi−1), c(v → fi)} ≤ 1
2

by R3, and

thus ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and R3. Now let d(v4) = d(v5) = 4. Since

S3 6⊆ G, n5+(fi) ≥ 2 for some i ∈ {3, 4} and n5+(fj) ≥ 2 for some j ∈ {4, 5}. If i 6= j, then

ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and R3. If i = j = 4, then we may assume that

n5+(f3) = n5+(f5) = 1 (otherwise ch1(v) ≥ 0). Note that f3(vk) ≤ 1 for each k ∈ {4, 5}. If

vk is good for some k ∈ {4, 5}, then ch1(vk) ≥
1
3

by R1-R2. Hence, vk sends at least 1
3

to v

(if ch1(v) < 0) via a nice path by R6. Since S2, S12 * G, we get that at least one vertex in

{v4, v5} is good, and we are done.

Secondly, suppose that the two 3-faces are not consecutive, say f1 and f3 are the 3-

faces. By S16 * G, ζv(f3b) ≤ 1. If d(f2) ≥ 6, then according to S3, we have that ch1(v) ≥

3−3× 2
3
− 1

2
− 1

3
− 1

9
= 1

18
> 0 by R1, R3 and R5. If d(f4) ≥ 6 and ζv(f3b) = 1, then n5+(f2) ≥ 2

by S2 * G, and so c(v → f2) ≤
1
2

by R3. Thus ch1(v) ≥ 3− 3× 2
3
− 1

2
− 1

3
− 1

9
= 1

18
> 0 by

R1, R3 and R5. In the following, we may assume d(fi) = 5 for each i ∈ {2, 4, 5}, see Figure

5(C3).

Assume ζv(f3b) = 1, and let v1v2 be the edge incident with a bad 5-face. By S2 * G,

we get n5+(f2) ≥ 2 and n5+(f5) ≥ 2, and so c(v → fi) ≤ 1
2

for each i ∈ {2, 5} by R3. If

f3(vi) ≤ 1 for some i ∈ [2], then v need not send any charge to the bad 5-face by R5 (since

vi sends 2
3

to the bad 5-face), and thus ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and R3. It

remains to consider f3(vi) = 2 for each i ∈ [2]. If n5+(f4) ≥ 2, then c(v → f4) ≤
1
2

by R3,
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and thus ch1(v) ≥ 3−2× 2
3
−3× 1

2
− 1

9
= 1

18
> 0 by R1, R3 and R5. Otherwise, n5+(f4) = 1.

We have that n5+(f2) ≥ 3 since S2 * G, and n6+(f5) ≥ 1 or n5+(f5) ≥ 3 since S28 * G, and

so c(v → fi) ≤
4
9

for each i ∈ {2, 5}. Hence, ch1(v) ≥ 3 − 3 × 2
3
− 2 × 4

9
− 1

9
= 0 by R1, R3

and R5.

Assume ζv(f3b) = 0. Since S3 6⊆ G, we know that at least one of fi ∈ {f4, f5} satisfies

n5+(fi) ≥ 2. If n5+(fi) ≥ 2 for each i ∈ {4, 5}, then c(v → fi) ≤ 1
2

for each i ∈ {4, 5}

by R3, and thus ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and R3. Otherwise we assume

that n5+(f4) = 1 (which means n5+(f5) ≥ 2), then n5+(f2) ≥ 2 by S2 * G, and thus

ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

Claim 2.14. For each vertex v ∈ W2 with f3(v) = 2 and f4(v) = 1, ch2(v) ≥ 0.

Proof. There are two subcases to be considered, see Figure 6. Recall that v sends no charge

to any bad 5-face by R5.

Figure 6: Configuration for 5-vertex v.

We consider the configuration D1 first. (i) Suppose n4(v) = 5, that is d(vi) = 4 for each

i ∈ [5]. Since S1 * G, we obtain that d(x) ≥ 5. If d(fi) = 5 for i ∈ {4, 5}, then by S2 * G,

n5+(fi) ≥ 2. Thus ch1(v) ≥ 3− 3× 2
3
−max{2× 1

2
, 1
2
+ 1

3
} = 0 by R1 and R3.

(ii) Suppose n4(v) = 4. If d(v1) ≥ 5, then d(x) ≥ 5 by S1 * G, and f4 6= (4, 4, 4, 4, 5) by

S2 * G. If d(v5) ≥ 5, then d(x) ≥ 5 by S1 * G. In both cases, ch1(v) ≥ 3−3× 2
3
−max{2×

1
2
, 1
2
+ 1

3
} = 0 by R1 and R3. At last, we study the case where d(v2) ≥ 5. If f6+(v) ≥ 1, then

ch1(v) ≥ 3 − 4 × 2
3
− 1

3
= 0 by R1 and R3. We now turn to the situation f6+(v) = 0. In

this situation, we may assume that n5+(f5) = 1 (otherwise ch1(v) ≥ 0). Let us see v5. Note

that f3(v5) ≤ 1. Denote by f6 and f7 the remaining faces incident with v5 in clockwise. If

v5 is good, then v5 sends at least 1
3

to v (if ch1(v) < 0) via a nice path by R6. Otherwise

d(f6) = 3 and f7 is a bad 5-face, then by S2 * G, we have d(x1) ≥ 5, see Figure 7(E1). By

the assumption, d(v2) ≥ 5. If d(v2) ≥ 6, then v sends at most 5
9

to f2 by R4; if d(v2) = 5,

then by S6 * G, d(x) ≥ 5, and v sends at most 5
9

to f2 by R3. On the other hand, if
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d(x1) ≥ 6, then v sends at most 4
9

to f4 by R3; if d(x1) = 5, then by S7 * G, d(x2) ≥ 5, and

v sends at most 4
9

to f4 by R3. In conclusion, ch1(v) ≥ 3− 3× 2
3
− 4

9
− 5

9
= 0 by R1 and R3.

(iii) Suppose n4(v) = 3, that is n5+(v) = 2. If the pair of two 5+-vertices fall in

{(v3, v4), (v3, v5), (v4, v5)}, then by S1, S2 * G, we get ch1(v) ≥ 3−3×2
3
−max{1

2
+4

9
, 2×1

2
} = 0

by R1 and R3. It remains to consider the pairs: {(v1, v4), (v2, v4), (v2, v3)}.

Assume d(v2) ≥ 5 and d(v4) ≥ 5. If f6+(v) ≥ 1, then ch1(v) ≥ 3−3× 2
3
−max{2

3
+ 1

3
, 1
2
+

1
3
} = 0 by R1 and R3. It remains to discuss the case where f6+(v) = 0. Here, we can let

n5+(f5) = 1 (otherwise ch1(v) ≥ 0) and v5 be not good (otherwise v5 could send at least 1
3

to

v (if ch1(v) < 0) via a nice path by R6 and ch2(v) ≥ 0). Denote by f6 and f7 the remaining

faces incident with v5 in clockwise. Note that d(f6) = 3 and f7 is a bad 5-face. By S2 * G,

we get n5+(f4) ≥ 3, and so c(v → f4) ≤ 4
9
. On the other hand, recall that d(v2) ≥ 5. If

d(v2) ≥ 6, then v sends at most 5
9

to f2 by R3; if d(v2) = 5, then d(x) ≥ 5 holds because of

S21 * G. Hence, ch1(v) ≥ 3− 3× 2
3
− 4

9
− 5

9
= 0 by R1 and R3.

Assume d(v2) ≥ 5 and d(v3) ≥ 5. If f6+(v) = 1, then ch1(v) ≥ 3−3× 2
3
− 5

9
− 1

3
= 1

9
> 0 by

R1 and R3. Suppose that f6+(v) = 0. Since S3 * G, n5+(fi) ≥ 2 holds for some i ∈ {4, 5}.

If n5+(fi) ≥ 2 for each i ∈ {4, 5}, then c(v → fi) ≤
1
2

for each i ∈ {4, 5} by R3, and thus

ch1(v) ≥ 3 − 2 × 2
3
− 2 × 1

2
− 5

9
= 1

9
> 0 by R1 and R3. Otherwise let n5+(f5) = 1, that

is d(x1) = d(x2) = 4, see Figure 7(E2). If d(x) ≥ 5, then c(v → f2) ≤
2
3

by R3, and thus

ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and R3. Otherwise if d(x) = 4, then f3(v5) ≤ 1

as f2 is a 4-face and any two 4-faces in G are at distance at least 2. If v5 is good, then v5

sends at least 1
3

to v (if ch1(v) < 0) via a nice path by R6. Otherwise f3(v5) = 1 and v5

is incident with a bad 5-face. Denote by f6 and f7 the faces incident with v5 in clockwise.

Since S2 * G, we get d(f6) = 3 and f7 is a bad 5-face. If d(z2) = 5, then n5+(f4) ≥ 3 by

S14 * G, and so c(v → f4) ≤
4
9
. Otherwise d(z2) ≥ 6, in this situation c(v → f4) ≤

4
9

by R3.

Hence, ch1(v) ≥ 3− 3× 2
3
− 5

9
− 4

9
= 0 by R1 and R3.

Figure 7: Specified Configuration.

Finally, we consider the case where d(v1) ≥ 5 and d(v4) ≥ 5. (a). d(x) = 4. Let us start
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to claim that v sends at most 8
9

in total to {f4, f5}. Assume that f6+(v) = 0. If d(v1) ≥ 6,

then we are done by R3. Otherwise if d(v1) = 5, then n5+(f5) ≥ 3 holds because of S8 * G,

and so c(v → f5) ≤
4
9
. The above arguments can also be applied to v4. So the same result

holds for f6+(v) ≥ 1, as claimed. Note that v1 is symmetric to v4. So we only discuss v4 in

the following, and we would like to claim that v4 could send at least 1
9

to v (if ch1(v) < 0)

when d(v4) ≥ 6 via a nice path.

Assume d(v4) ≥ 7. By Claim 2.7, we have ch1(v4) ≥ 5d(v)−36
18

+ 1
9
+ 2

9
= 5d(v)−30

18
> 1

9
.

Assume d(v4) = 6. Since S45 6⊆ G, ζv4(f3b) ≤ 1. If ζv4(f3b) = 0, then ch1(v4) ≥
5d(v)−36

18
+4×

1
9
≥ 1

9
. Otherwise if ζv4(f3b) = 1, then by S43 * G, we get n5+(f4) ≥ 3 and thus v4 sends at

most 4
9

to f4 by R4. Hence ch1(v4) ≥
5d(v)−36

18
+ 2 × 1

9
+ 2

9
≥ 1

9
, and v4 could send at least

1
9

to v (if ch1(v) < 0) via a nice path by R6, as claimed. So when min{d(v2), d(v4)} ≥ 6, v

(if ch1(v) < 0) could receive at least 2
9

in total from {v1, v4} via two nice paths by R6, and

ch2(v) ≥ 3− 2× 2
3
− 1− 2× 4

9
+ 2× 1

9
= 0 by R1, R3 and R6.

Figure 8: Specified Configuration.

Now we consider min{d(v2), d(v4)} = 5. W.l.o.g., we assume d(v4) = 5. Since S17 * G,

ζv4(f3b) = 0. Denote by f6, f7 and f8 the remaining faces incident with v4 in clockwise.

As S10 * G, n5+(f6) ≥ 2 when d(f6) = 5. We may assume that f6+(v4) = 0 (otherwise

ch1(v4) ≥ 3 − 2
3
− 1

3
− max{2

3
+ 2 × 1

2
, 2
3
+ 1

2
+ 4

9
} > 2

9
by R1 and R3, and v4 could send

at least 2
9

to v (if ch1(v) < 0) via a nice path by R6. So ch2(v) ≥ 0). First, let d(f7) = 3.

If n5+(f8) = 1, see Figure 8(F1) (d(y) = 4), then by S8, S13 * G, y can not be incident

with a bad 5-face. Note that f3(y) ≤ 1, thus y is good, and ch1(y) ≥ 1
3
. Hence, y could

send at least 1
3

to v (if ch1(v) < 0) via a nice path by R6. Otherwise if n5+(f8) ≥ 2,

then ch1(v4) ≥ 3 − 2 × 2
3
− 2 × 1

2
− 4

9
= 2

9
by R1 and R3. Second, let d(f8) = 3. If

n5+(f7) = 1, see Figure 8(F2) (d(z1) = 4), then z1 is good since S13 * G, and thus z1 could

send at least 1
3

to v (if ch1(v) < 0) via a nice path by R6. Otherwise if n5+(f7) ≥ 2, then
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ch1(v4) ≥ 3− 2× 2
3
− 2× 1

2
− 4

9
= 2

9
by R1 and R3.

In conclusion, when d(v4) = 5, v (if ch1(v) < 0) could receive at least 2
9

from one vertex

in {v4, y1, z1} via a nice path by R6. Thus ch2(v) ≥ 3− 2× 2
3
− 1− 2× 4

9
+ 2

9
= 0 by R1, R3

and R6.

(b). d(x) ≥ 5. Then ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

(iv) Suppose n4(v) = 2. If the pair of two 4-vertices fall in {(v1, v2), (v1, v3), (v1, v4),

(v2, v5)}, then ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

Assume d(v1) = d(v5) = 4. If f6+(v) ≥ 1, then ch1(v) ≥ 3− 3× 2
3
− 5

9
− 1

9
= 1

3
> 0 by R1

and R3. It remains to consider f6+(v) = 0. If n5+(f5) ≥ 2, then c(v → f5) ≤
1
2

by R3, and

thus ch1(v) ≥ 3− 2× 2
3
− 5

9
− 2× 1

2
= 1

9
> 0 by R1 and R3. Otherwise n5+(f5) = 1. We may

let v5 is not good (otherwise v5 could send 1
3

to v (if ch1(v) < 0) via a nice path by R6, and

thus ch2(v) ≥ 3− 3× 2
3
− 5

9
− 1

2
+ 1

3
> 0 by R1, R3 and R6). Denote by f6 and f7 the faces

incident with v5 in clockwise. Since S2 * G, d(f6) = 3 and f7 is a bad 5-face. Moreover, by

S2 * G again, n5+(f4) ≥ 3, and so c(v → f4) ≤
4
9
. Thus ch1(v) ≥ 3− 3 × 2

3
− 5

9
− 4

9
= 0 by

R1 and R3.

Assume d(v2) = d(v3) = 4. (a). d(x) = 4. By the same arguments as the case d(v1) ≥ 5

and d(v4) ≥ 5, we have that v (if ch1(v) < 0) could receive at least 2
9

from {v2, x} via a nice

path, and thus ch2(v) ≥ 3 − 1 − 2 × 2
3
− 2 × 4

9
+ 2

9
= 0 by R1, R3 and R6. (b). d(x) ≥ 5.

Then ch1(v) ≥ 3− 3× 2
3
− 2× 4

9
= 1

9
> 0 by R1 and R3.

(v) Suppose n4(v) ≤ 1. If n4(v) = 1, then ch1(v) ≥ 3− 2× 2
3
−max{1

2
+ 4

9
+ 5

9
, 2
3
+ 2×

4
9
, 2× 1

2
+ 5

9
} = 1

9
> 0 by R1 and R3. If n4(v) = 0, then ch1(v) ≥ 3−2× 2

3
−2× 4

9
− 5

9
= 2

9
> 0

by R1 and R3.

Now we consider the configuration D2. (i) Suppose n4(v) = 5. Since S2 * G, fi 6=

(4, 4, 4, 4, 5) for each i ∈ {2, 5}. By S1 * G, we get f4 6= (4, 4, 4, 4, 5), and so c(v → f4) ≤
1
2

by R3. Thus ch1(v) ≥ 3− 3× 2
3
−max{2× 1

2
, 1
2
+ 1

3
} = 0 by R1 and R3.

(ii) Suppose n4(v) = 4, that is n5+(v) = 1. Assume d(v1) ≥ 5, then f4 6= (4, 4, 4, 4, 5)

holds because of S1 * G. Moreover, f2 6= (4, 4, 4, 4, 5). Thus ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0

by R1 and R3.

Assume d(v2) ≥ 5, then f4 6= (4, 4, 4, 4, 5) holds by S1 * G, and so c(v → f4) ≤ 1
2

by R3. If f6+(v) ≥ 1, then ch1(v) ≥ 3 − 4 × 2
3
− 1

3
= 0 by R1 and R3. Now we discuss

d(f2) = d(f5) = 5. We may assume that n5+(f5) = 1 (otherwise ch1(v) ≥ 3−3× 2
3
−2× 1

2
= 0).

On the other hand, we may assume that v5 is not good (otherwise v5 could send at least 1
3

to v (if ch1(v) < 0) via a nice path and thus ch2(v) ≥ 3− 4× 2
3
− 1

2
+ 1

3
> 0). Denote by f6

and f7 the faces incident with v5 in clockwise. Since S2 * G, we have that d(f6) = 3 and f7

is a bad 5-face. By S18 * G, we know that n6+(f4) = 1, and thus v sends at most 5
9

to f4
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by R3. Next we claim that v sends at most 4
9

to v. If d(v2) ≥ 6, then we are done by R3; if

d(v2) = 5, then n5+(f2) ≥ 3 by S11 * G, and so c(v → f2) ≤
4
9

by R3, as claimed. Hence,

ch1(v) ≥ 3− 3× 2
3
− 4

9
− 5

9
= 0 by R1 and R3.

Assume d(v3) ≥ 5. (a). d(x) = 4. Since S2 * G, f5 6= (4, 4, 4, 4, 5). For brevity,

denote by f6 and f7 the faces incident with v5 in clockwise. We may assume that v5 is

not good (otherwise, v5 sends at least 1
3

to v (if ch1(v) < 0) via a nice path, and ch2(v) ≥

3 − 2 × 2
3
− 1 − 2 × 1

2
+ 1

3
= 0). Since S2 * G, d(f7) = 3 and f6 is a bad 5-face, which is

impossible because S5 is reducible. (b). d(x) ≥ 5. By S2 * G, we get f5 6= (4, 4, 4, 4, 5), so

ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

Assume d(v4) ≥ 5. If f6+(v) ≥ 1, then ch1(v) ≥ 3 − 4 × 2
3
− 1

3
= 0 by R1 and R3. Now

we consider f6+(v) = 0. Notice that n5+(f2) ≥ 2 and n5+(f5) ≥ 2 holds because of S2 * G,

and so c(v → fi) ≤
1
2

for each i ∈ {2, 5} by R3. Thus ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1

and R3. Assume d(v5) ≥ 5, then by S2 * G, we get n5+(f2) ≥ 2, and so c(v → f2) ≤
1
2

by

R3. Thus ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0.

(iii) Suppose n4(v) = 3, that is n5+(v) = 2. If the pair of two 5+-vertices fall in

{(v1, v2), (v2, v5), (v3, v4), (v3, v5), (v4, v5)}, then by S2 * G, ch1(v) ≥ 3 − 2 × 2
3
− max{2 ×

1
2
+ 5

9
, 2× 1

2
+ 2

3
} = 0 by R1 and R3.

Assume d(v2) ≥ 5 and d(v4) ≥ 5. If f6+(v) ≥ 1, then ch1(v) ≥ 3−4× 2
3
− 1

3
= 0 by R1 and

R3. Next we discuss f6+(v) = 0. We may assume that n5+(f5) = 1 (otherwise ch1(v) ≥ 0).

(a). d(x) = 4. By S9 * G, we get d(v2) ≥ 6, and then c(v → f2) ≤
4
9

by R3. By S15 * G,

we know that d(v4) ≥ 6, and then c(v → f4) ≤
5
9

by R3. Thus ch1(v) ≥ 3−3× 2
3
− 5

9
− 4

9
= 0

by R1 and R3. (b). d(x) ≥ 5. Similarly as above, we have ch1(v) ≥ 3 − 3 × 2
3
− 5

9
− 4

9
= 0

by R1 and R3.

Assume d(v2) ≥ 5 and d(v3) ≥ 5. (a). d(x) = 4. Let y be the neighbor of v5 which

locates on f5. If d(y) = 4, then by S2 * G, v5 is good and thus v5 could send at least
1
3

to v (if ch1(v) < 0) via a nice path by R6. When d(f5) ≥ 6, and we have ch2(v) ≥

3−1−2× 2
3
− 1

3
− 4

9
+ 1

3
= 2

9
> 0 by R1 and R3. When d(f5) = 5, n5+(f5) ≥ 2 holds because

of S4 * G, and we have c(v → f5) ≤
1
2

by R3. Thus ch2(v) ≥ 3−1−2× 2
3
− 1

2
− 4

9
+ 1

3
= 1

18
> 0

by R1 and R3. It remains to consider d(y) ≥ 5. Note that f5 6= (4, 4, 4, 4, 5). Denote by f8

and f9 the faces incident with v5 in clockwise, and f6, f7 the remaining faces incident with

x in clockwise, see Figure 7(E3). We may assume that v5 is not good (otherwise v5 could

send at least 1
3

to v via a nice path and ch2(v) ≥ 0). We immediately have d(f9) = 3 and f8

is a bad 5-face. In this situation, f3(x) ≤ 1, and by S2 * G, x is good. Thus x could send

at least 1
3

to v (if ch1(v) < 0) via a nice path and ch2(v) ≥ 0.

(b). d(x) ≥ 5. If f6+(v) ≥ 1, then ch2(v) ≥ 3 − 4 × 2
3
− 1

3
= 0 by R1 and R3. It
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remains to discuss f6+(v) = 0. In this situation, we may assume that d(y) = 4 (otherwise

ch2(v) ≥ 3 − 3 × 2
3
− 1

2
− 4

9
> 0). Denote by f6 and f7 the remaining faces incident with v5

in clockwise. Let v5 be a vertex which is not good (otherwise v5 could send at least 1
3

to v

(if ch1(v) < 0) via a nice path and ch2(v) ≥ 3− 4× 2
3
− 4

9
+ 1

3
> 0). Note that d(f6) = 3 and

f7 is a bad 5-face by S2 * G. Since S18 * G, we have that d(x) ≥ 6, and v sends at moat 5
9

to f4 by R3. Hence, ch2(v) ≥ 3− 3× 2
3
− 5

9
− 4

9
= 0 by R1 and R3.

Assume d(v1) ≥ 5 and d(v3) ≥ 5. (a). d(x) = 4. Denote by f6, f7 and f8 the remaining

faces incident with x in clockwise and f9 another faces incident with v5. If v5 is good, then

v (if ch1(v) < 0) could receive at least 1
3

from v5 via a nice path by R6. Now we assume v5

is not good. Since S2 * G, d(f9) = 3 and f8 is a bad 5-face. In this situation, x must be

good by S2 * G again. Hence, v (if ch1(v) < 0) could receive at least 1
3

from x via a nice

path by R6. Thus ch2(v) ≥ 3− 1− 2× 2
3
− 2× 1

2
+ 1

3
= 0 by R1, R3 and R6. (b). d(x) ≥ 5.

Then ch2(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

(iv) Suppose n4(v) = 2. If the pair of two 4-vertices fall in {(v1, v2), (v1, v3), (v1, v4), (v2, v3),

(v2, v4), (v2, v5), (v3, v5)}, then ch2(v) ≥ 3−2× 2
3
−max{2× 1

2
+ 5

9
, 2
3
+ 1

2
+ 4

9
, 2
3
+ 5

9
+ 4

9
, 2
3
+2× 1

2
} =

0 by R1 and R3.

Assume d(v1) = d(v5) = 4. If f6+(v) ≥ 1, then ch2(v) ≥ 3 − 4 × 2
3
− 1

3
= 0 by R1 and

R3. Otherwise f6+(v) = 0, then we may assume that n5+(f5) = 1 (otherwise ch2(v) ≥ 0). If

d(x) ≥ 5 or d(v4) ≥ 6, then c(v → f4) ≤
4
9

by R3, and thus ch2(v) ≥ 3− 3 × 2
3
− 4

9
− 5

9
= 0

by R1 and R3. So we consider d(x) = 4 and d(v4) = 5. Denote by f6 and f7 the remaining

faces incident with v5 in clockwise. Since S2 * G, v5 is good. Hence, v5 could send at least
1
3

to v (if ch1(v) < 0) via a nice path by R6, and ch2(v) ≥ 3− 4× 2
3
− 4

9
+ 1

3
> 0 by R1, R3

and R6.

Assume d(v4) = d(v5) = 4. (a). d(x) = 4. Denote by f6, f7 the remaining faces incident

with v5 in clockwise. Since S2 * G, d(f7) = 3 and f6 is a bad 5-face. We also have

n5+(f5) ≥ 3 because of S2 * G. Denote by f8, f9 the remaining faces incident with x in

clockwise. By S2 * G, x is good and x could send at least 1
3

to v (if ch1(v) < 0) via a nice

path. Thus ch2(v) ≥ 3 − 1 − 2 × 2
3
− 2 × 4

9
+ 1

3
> 0 by R1 and R3. (b). d(x) ≥ 5. Then

ch2(v) ≥ 3− 3× 2
3
− 1

2
− 4

9
= 1

18
> 0 by R1 and R3.

(v) Suppose n4(v) ≤ 1. If n4(v) = 1, then ch2(v) ≥ 3− 2× 2
3
−max{1

2
+ 5

9
+ 4

9
, 2
3
+ 2×

4
9
, 2
3
+ 1

2
+ 4

9
} = 1

18
> 0 by R1 and R3. If n4(v) = 0, then ch2(v) ≥ 3−2× 2

3
− 5

9
−2× 4

9
= 2

9
> 0

by R1 and R3.

Claim 2.15. For each vertex v ∈ W2 with f3(v) = 1, ch2(v) ≥ 0.

Proof. W.l.o.g., let d(f1) = 3.
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Case 1. Suppose f4(v) = 0. Assume that ζv(f3b) = 0 firstly. If f6+(v) = 1, then ch1(v) ≥

3−4× 2
3
− 1

3
= 0 by R1 and R3. Otherwise f6+(v) = 0. Since S3 * G, there exists at least one

5-face fi (i ∈ {2, 3, 4, 5}) such that n5+(fi) ≥ 2, and c(v → fi) ≤
1
2

by R3. If n5+(f1) = 3,

then c(v → fi) ≤
1
2

for each i ∈ {2, 5} by R3, and thus ch1(v) ≥ 3−2× 2
3
−3× 1

2
= 1

6
> 0 by

R1 and R3. If n5+(f1) = 2, say d(v1) ≥ 5, then we claim that v sends at most 10
9

in total to

{f1, f5}. Obviously, the claim holds when d(v1) ≥ 6; when d(v1) = 5, then by S11 * G, either

n5+(f1) ≥ 2 or n5+(f5) ≥ 3, as claimed. Hence, ch1(v) ≥ 3−2× 2
3
− 1

2
− 10

9
= 1

18
> 0 by R1 and

R3. If n5+(f1) = 0, that is d(v1) = d(v2) = 4, then by S2 * G, n5+(f1) ≥ 2 and n5+(f5) ≥ 2,

and so c(v → fi) ≤
1
2

for each i ∈ {2, 5} by R3. Thus ch1(v) ≥ 3− 2× 2
3
− 3× 1

2
= 1

6
> 0 by

R1 and R3.

We now turn to the case ζv(f3b) = 1, which means that d(v1) = d(v2) = 4. Since

S2, S3 * G, we get that ch1(v) ≥ 3− 2
3
− 1

2
−max{1

3
+ 1

2
+ 2

3
, 2× 1

2
+ 2

3
}− 1

9
= 1

18
> 0 by R1,

R3 and R5.

Case 2. Suppose f4(v) = 1 and let the other vertex on 4-face is x. Recall that v sends

no charge to a bad 5-face (if it exists) which is incident with a (4, 4, v)-face by R5. By

symmetry, we only need to consider the cases d(f2) = 4 and d(f3) = 4.

Subcase 2.1. f6+(v) = 1. (a). n5+(fi) = 1 for some i ∈ {2, 3}. Then we have

ch1(v) ≥ 3− 1− 3× 2
3
− 1

3
= −1

3
. If ch1(v) ≥ 0, then we are done. So ch1(v) < 0, that is, v

is poor. Clearly, if there is a good 4-vertex in N(v), then ch2(v) ≥ −1
3
+ 1

3
= 0 by Claim 2.6

and R6. Next we discuss the case that there is no good 4-vertex in N(v).

Assume that d(f2) = 4, then d(v1) ≥ 5 as S1 * G. If d(f3) ≥ 6, then we may assume

that d(v5) = 4 (otherwise if d(v5) ≥ 5, then ch1(v) ≥ 3− 1− 2
3
− 1

3
− 2× 1

2
= 0). Recall that

v5 ∈ N(v) is not good. By S2, S23 * G, we get that n5+(f4) ≥ 2, and then c(v → f4) ≤
1
2

by

R3. Thus ch1(v) ≥ 3− 1− 1
3
− 2

3
− 2× 1

2
= 0 by R1 and R3. If d(f4) ≥ 6, then n5+(f3) ≥ 2

because of S4 * G, and so c(v → f3) ≤
1
2

by R3. Thus ch1(v) ≥ 3 − 1 − 1
3
− 2

3
− 2 × 1

2
= 0

by R1 and R3. If d(f5) ≥ 6, then we may assume that d(v4) = 4 (otherwise ch1(v) ≥ 0)

and v4 ∈ N(v) is not good. Similarly, by S2, S23 * G, we get that n5+(f4) ≥ 2, and then

c(v → f4) ≤
1
2

by R3. Thus ch1(v) ≥ 3− 1− 1
3
− 2

3
− 2× 1

2
= 0.

Assume d(f3) = 4, then by S2, S3 * G, there is at least one j ∈ {2, 4, 5} such that

fj 6= (4, 4, 4, 4, 5), and so c(v → fj) ≤
1
2
. If d(f2) ≥ 6, then we may assume that d(v5) = 4

(otherwise ch1(v) ≥ 0) and v5 ∈ N(v) is not good. Since S2, S23 * G, we get that n5+(f5) ≥

2, and ch1(v) ≥ 3 − 1 − 1
3
− 2

3
− 2 × 1

2
= 0 by R1 and R3. If d(f4) ≥ 6, then by the

similar arguments, n5+(f5) ≥ 2, and thus ch1(v) ≥ 3− 1− 1
3
− 2

3
− 2 × 1

2
= 0. If d(f5) ≥ 6,

then n5+(f2) ≥ 2 and n5+(f4) ≥ 2 hold because of S4 * G, and so c(v → fi) ≤
1
2

for each

i ∈ {2, 4} by R3. Thus ch1(v) ≥ 3− 1− 1
3
− 2

3
− 2× 1

2
= 0 by R1 and R3.
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(b). n5+(fi) ≥ 2 for some i ∈ {2, 3}. Then ch1(v) ≥ 3− 4× 2
3
− 1

3
= 0 by R1 and R3.

Subcase 2.2. f6+(v) = 0. (a). n5+(fi) = 1 for some i ∈ {2, 3}. If d(f2) = 4, then

by S1 * G, d(v1) ≥ 5 holds, and by S3 * G, there is at least one face fj (j ∈ {3, 4})

satisfying fj 6= (4, 4, 4, 4, 5), and so c(v → fj) ≤
1
2

and c(v → f5) ≤
1
2

by R3. If d(f3) = 4,

then fi 6= (4, 4, 4, 4, 5) holds for each i ∈ {2, 4} by S4 * G, and so c(v → fi) ≤
1
2
. By the

similar arguments as above, we may assume that each vertex in N(v) is not good (otherwise

ch2(v) ≥ 3− 1− 2× 2
3
− 2× 1

2
+ 1

3
= 0, and we are done).

Assume that d(f2) = 4. For brevity, let x1 ∈ N(v3) such that x1 locates on f3, and

denote by f6, f7 the faces incident with v3 in clockwise. Since S2 * G, d(f7) = 3 and

f6 is a bad 5-face, and d(x1) ≥ 5. Moreover, if d(x1) = 5, then n5+(f3) ≥ 3 because of

S19 * G. So v sends at most 4
9

to f3 by R3. However, x is good in this situation and

ch1(x) ≥
1
3
. Hence, x could send at least 1

3
to v (if ch1(v) < 0) via a nice path by R6, and

ch2(v) ≥ 3− 1− 2× 2
3
− 1

2
− 4

9
+ 1

3
> 0 by R1, R3 and R6.

Assume that d(f3) = 4. Note that v3, v4 ∈ N(v) are not good. By S2 * G, x is good and

ch1(x) ≥
1
3
. Hence, x could send at least 1

3
to v (if ch1(v) < 0) via a nice path by R6, and

ch2(v) ≥ 3− 1− 2× 2
3
− 2× 1

2
+ 1

3
= 0 by R1, R3 and R6.

(b). n5+(fi) ≥ 2 for some i ∈ {2, 3}. Similarly, we may assume that each vertex in N(v)

is not good (otherwise ch2(v) ≥ 3 − 5
9
− 4 × 2

3
+ 1

3
= 1

9
> 0, and we are done). Assume

d(f2) = 4. Since S3 * G, there exists at least one face fi and fj in {f3, f4} and {f4, f5},

respectively such that n5+(fi) ≥ 2, n5+(fj) ≥ 2. If i = j = 4, that is n5+(f3) = n5+(f5) = 1,

recall that both v4 and v5 are not good, then by S2, S12 * G, there exists at least one face

fk (k ∈ {3, 5}) such that n5+(fk) ≥ 2, and thus ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and

R3. Otherwise if i 6= j, then ch1(v) ≥ 3− 3× 2
3
− 2× 1

2
= 0 by R1 and R3.

Assume that d(f3) = 4. If d(v5) = 5, then ch1(v) ≥ 3 − 3 × 2
3
− 2 × 1

2
= 0 by R1 and

R3. Next we discuss d(v5) = 4, and recall that v5 ∈ N(v) is not good. On the other hand,

since S3 * G, there exists at least one face fi in {f4, f5} such that n5+(fi) ≥ 2. We may also

assume that n5+(f2) = 1 (otherwise ch1(v) ≥ 0). If n5+(f4) ≥ 2, then by S11 * G, d(v1) ≥ 6,

and thus ch1(v) ≥ 3 − 3 × 2
3
− 1

2
− 4

9
= 1

18
> 0 by R1 and R3. If n5+(f5) ≥ 2, then we are

going to claim that n5+(f5) ≥ 3. Note that d(v3) = d(v4) = d(v5) = 4, and we may assume

none of them is rich (otherwise ch2(v) ≥ 0). By S2 * G, we get n5+(f5) ≥ 3, as claimed.

Recall that n5+(f3) ≥ 2, we get d(x) ≥ 5. On the other hand, by S16 * G, we get d(x) ≥ 6.

Thus ch1(v) ≥ 3− 3× 2
3
− 5

9
− 4

9
= 0 by R1 and R3.

Claim 2.16. For each vertex v ∈ W2 with f3(v) = 0, ch2(v) ≥ 0.

Proof. Assume that f4(v) = 0, then by S3 * G, there is at least one fi (i ∈ [5]) satisfying
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fi 6= (4, 4, 4, 4, 5), and so c(v → fi) ≤
1
2
. Hence, ch1(v) ≥ 3 − 3× 2

3
− 1

2
= 0 by R1 and R3.

Assume that f4(v) = 1. W.l.o.g., let f1 = (v, v1, x, v2) be the 4-face.

Case 1. n5+(f1) = 1. Assume that f6+(v) = 1. If d(f2) ≥ 6, then n5+(f5) ≥ 2 by S4 * G,

and n5+(fi) ≥ 2 for some i ∈ {3, 4} by S3 * G. Thus ch1(v) ≥ 3−1− 2
3
− 1

3
−2× 1

2
= 0 by R3. If

d(f3) ≥ 6, then n5+(f2) ≥ 2 and n5+(f5) ≥ 2 by S4 * G. Thus ch1(v) ≥ 3−1− 2
3
− 1

3
−2× 1

2
= 0

by R1 and R3.

Assume that f6+(v) = 0. Since S4 * G, n5+(f2) ≥ 2 and n5+(f5) ≥ 2 hold. If d(v4) ≥ 5,

then ch1(v) ≥ 3 − 1 − 4 × 1
2
= 0 by R3. If d(v1) = 4, then we may assume that v4 is not

good (otherwise ch2(v) ≥ 0). By S2, S23 * G, we get that n5+(f3) ≥ 2 and n5+(f4) ≥ 2, and

thus ch1(v) ≥ 3− 1− 4× 1
2
= 0 by R3.

Case 2. n5+(f1) ≥ 2. Then ch1(v) ≥ 3− 2
3
−max{2× 2

3
+ 1

2
+ 1

3
, 2× 2

3
+ 2× 1

2
} = 0 by

R3.

According to all above claims, we know that the minimum counterexample does not

exist.

3 Proof of Theorem 1

Let G be a counterexample to Theorem 1 with fewest vertices and edges, that is, there is a list

assignment L of G satisfying |L(v)| ≥ 4 for any v ∈ V (G) such that G is not L-colorable but

any proper subgraph of G is L-colorable. Firstly, we present the well-known Combinatorial

Nullstellensatz initiated by Alon which is essential to produce reducible subgraphs.

Lemma 3.1 ([1], Combinatorial Nullstellensatz). Let F be an arbitrary field, and let f =

f(x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree deg(f) of f is
∑n

i=1 ti,

where each ti is a nonnegative integer, and suppose the coefficient of
∏n

i=1 x
ti
i in f is nonzero.

Then, if C1, . . . , Cn are subsets of F with |Ci| > ti, there are c1 ∈ C1, c2 ∈ C2, . . . , cn ∈ Cn

so that

f(c1, . . . , cn) 6= 0.

If G has a vertex v of degree at most three, then we can extend an L-coloring ϕ of G \ v

to an L-coloring φ of G by setting φ(v) ∈ L(v)\{ϕ(u) : uv ∈ E(G)}, a contradiction. So

δ(G) ≥ 4. By Lemma 2.1, G must contain a subgraph isomorphic to one of the configurations

in S (see Appendix B). Next, we prove that all these subgraphs do not exist, that is, all

configurations S1-S47 in S are reducible, which leads to a contradiction.

Lemma 3.2. S1-S47 in S are reducible.
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Proof. By the minimality of G, there is an L-coloring of G−Si for each i ∈ [47]. Fix some i,

say i0, there is an L-coloring ϕ of G− Si0. Let Si0 = {x0, x1, . . . , xn−1} and Cϕ(v) = {ϕ(u) :

uv ∈ E(G) and u ∈ V (G − Si0)}. Let Cj = L(xj)\Cϕ(xj) for j ∈ {0, 1, . . . , n − 1}. Now

we extend ϕ to G and let φ denote the coloring after all vertices in Si0 are colored. Let

c0, c1, . . . , cn−1 correspond to the colors of x0, x1, . . . , xn−1 respectively. If ci − cj 6= 0 for any

xixj ∈ E(G), then φ is a proper L-coloring of G. Next let P = P (x0, x1, . . . , xn−1) be the

following polynomial:

P (x0, x1, . . . , xn−1) =
∏

xixj∈E(G)

(xi − xj).

That is, if there are c0 ∈ C0, c1 ∈ C1, . . . , cn−1 ∈ Cn−1 such that P (x0, x1, . . . , xn−1) 6= 0,

then we can extend ϕ to an L-coloring φ of G by choosing x0 = c0, x1 = c1, . . . , xn−1 = cn−1.

Based on Lemma 3.1, we present an algorithm in Appendix A which effectively calculates

reducible configurations. Let us take S1 as an example. Let S1 = {x0, x1, . . . , x4} such that

x0x1x4 is a triangle and x1x2x3x4 is a 4-face, where d(xi) = 4 for each i ∈ {0, 1, 2, 3} and

d(x4) = 5. Then

P (x0, x1, . . . , x4) = (x0 − x1)(x0 − x4)(x1 − x2)(x1 − x4)(x2 − x3)(x3 − x4).

That is, input “vve = [(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4)]”. Note that |C1| > 2 and

|Ci| > 1 for each i ∈ {0, 2, 3, 4} as x1 has one neighbor in V (G − S1) and each xi has two

neighbors in V (G − S1). Thus, we input “v_List = [1,2,1,1,1]”. Through the computation

of the algorithm in Appendix A, we get the 1st valid expansion is [1,2,1,1,1], that is, the

coefficient of x0x
2
1x2x3x4 in P is nonzero. Therefore, S1 is reducible by Lemma 3.1.

This completes the proof.
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A Algorithm

# −∗− coding : utf −8 −∗−

#!/ usr /bin/env python

import copy

de f choosab le (n , v_List , edges ) : # Determine whether s a t i s f y i n g \

Combinator ia l Nu l l s t e l l e n s a t z , back to the remainder o f the expans ion !

# n : the number o f v e r t i c e s , v_List [ 0 . . n−1] : | L(v )| −1 , edges : | L( e ) |

zks={}

zks [ ’ 0 ’∗ n]=1

len_edges=len ( edges )

f o r i in range ( len_edges ) :

v1 , v2=edges [ i ]
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List_zks =[ ]

whi l e zks :

List_zks . append ( zks . popitem ( ) )

whi l e List_zks :

a , b=List_zks . pop ( )

i f ord ( a [ v1 ])−ord ("0")<v_List [ v1 ] :

a1=a [ : v1]+ chr ( ord ( a [ v1 ])+1)+a [ v1+1: ]

i f a1 in zks . keys ( ) :

zks [ a1]= zks [ a1]+b

i f zks [ a1 ]==0:

de l zks [ a1 ]

e l s e :

zks [ a1]=b

i f ord ( a [ v2 ])−ord ("0")<v_List [ v2 ] :

a2=a [ : v2]+ chr ( ord ( a [ v2 ])+1)+a [ v2+1: ]

i f a2 in zks . keys ( ) :

zks [ a2]= zks [ a2]−b

i f zks [ a2 ]==0:

de l zks [ a2 ]

e l s e :

zks [ a2]=−b

return zks

# The main program

def Comb_Null ( vve , v_List ) :

# ==========================================================================

# Li s t c o l o r i n g .

# vve : Labe l l i n g v e r t i c e s must s t a r t at 0 . \

e . g . 3−c y c l e : vve =[(0 , 1 ) , ( 1 , 2 ) , ( 2 , 0 ) ]

# v_List : | L(v )| −1 , must be i n t e g e r s . \

e . g . 3−c y c l e : v_List =[1 , 1 , 1 ]

# Apply Combinator ics Nu l l s t e l l e n s a t z =======================================================

v_no=len ( v_List )

zks=choosab le (v_no , v_List , vve )

# Output part . I f the r e are too many expans ions that \

s a t i s f y the c r i t e r i a , we pr in t up to 10 =======================

size_zks=len ( zks )

i f s ize_zks >0:

pr in t ("\n\nThe t o t a l number o f v a l i d expans ions= "+s t r ( s i ze_zks )+" ,\

among them : " )

i=percent = 0

f o r a in zks . keys ( ) :

i f i / s ize_zks>=percent :

i f i == 0 :

pr in t ("The 1 s t v a l i d expans ion i s : [ " , end="")

e l i f i == 1 :

pr in t ("The 2nd va l i d expans ion i s : [ " , end="")

e l s e :

p r in t ("The "+s t r ( i +1)+"th va l i d expans ion i s : [ " , end="")
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f o r j in range (v_no−1):

p r in t ( s t r ( ord ( a [ j ])− ord ("0"))+" ," , end="")

pr in t ( s t r ( ord ( a [ v_no−1])−ord ("0"))+" ]")

percent+=0.1

i+=1

e l s e : p r in t ("\n\n No va l i d expans ion ! ! " )

#Example

#Input

vve = [ ( 0 , 1 ) , (0 , 4 ) , (1 , 2 ) , (1 , 4 ) , (2 , 3 ) , (3 , 4 ) ]

v_List = [ 1 , 2 , 1 , 1 , 1 ]

Comb_Null ( vve , v_List )

# Output

# The t o t a l number o f v a l i d expans ions= 1 , among them :

# The 1 s t v a l i d expans ion i s : [ 1 , 2 , 1 , 1 , 1 ]
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B All configurations in S
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