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Abstract - The problem addressed in this paper is from a chemotherapy production and de-
livery environment, where production and delivery are strongly connected problems. Independent
jobs have to be prepared by pharmacy technicians working in parallel. These jobs represent pouches
of injectable chemotherapy preparations. The production process corresponds to a classic parallel
machine scheduling problem. Then, the jobs must be delivered to the patients by a given due date.
Only one person ensures all the deliveries, making several trips between the pharmacy production
unit and the patient locations. We model this step as a multi-trip traveling salesman problem,
where only one salesman can make more than one trip. The objective to minimize is the maximum
tardiness of delivery. In addition to the constraints that link the two problems, some constraints
related to the chemical stability of chemotherapy drugs have to be taken into account: The time
between the production starting time and the date the treatment is administered to the patient
(here, the delivery time) cannot exceed the stability duration, as the drug may otherwise become
dangerous or ineffective for the patient. Due to these constraints, the problem is more difficult to
solve. The proposed resolution method in this paper is a Benders decomposition-based heuristic
that makes it possible to find feasible solutions and lower bounds. The advantage of the Benders
decomposition approach is that this method exploits the structure of the problem, which can be
easily decomposed into two stages. Computational experiments are conducted, and a comparison
with a direct exact resolution shows the efficiency of this approach.

Keywords: scheduling ; Benders decomposition ; transportation ; chemotherapy.

1 Introduction

Research in the field of Supply Chain Management has received a great deal of interest in the last
two decades. An important segment of the supply chain literature deals with the integration of
production and distribution problems; the reduction in costs can be significant for companies if
these problems are considered simultaneously. Most of the papers in this literature consider these
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integrated problems at a tactical or strategic level. At the strategic level, the production problem
consists in defining the location of factories and production quantities per period of time. The
distribution problem consists in designing the distribution network, i.e., the location of warehouses
and retailers, and assigning production to sites. Most of the time, inventory costs play an important
role and have an impact on the cost functions that must be minimized. The reader interested in
these models can read the survey paper by Sarmiento and Nagi [Sarmiento and Nagi, 1999], the
survey paper by Erenguc, Simpson, and Vakharia [Erenguc at al., 1999] and the review by Vidal
and Goetschalckx [Vidal and Goetschalckx, 1997] or refer to [Fahimnia et al., 2012] for a specific
resolution approach. A general framework for solving a coordinated production and transport
scheduling problem in the supply chain is proposed by Bonfill, Espuna and Puigjaner [Bonfill
et al., 2008]. [Amaro and Barbosa-Póvoa., 2008] propose a mixed-integer linear programming
formulation for the optimal scheduling of industrial supply chains, taking into account the supply
chains topology, the processes, the operability requirements and the different transportation policies
and market conditions. To reduce storage costs and delivery lead times, a cross-docking strategy
can be implemented [Dondo et al., 2011]. It consists in receiving the products at the inbound
docks, quickly sorting the products based on customer demand and loading the products directly
into outbound trucks for delivery. A recent survey is available in [Van Belle et al., 2012]. According
to [Dondo and Cerda., 2014], some products are better suited to cross-docking like, refrigerated
pharmaceuticals products.

We consider in this paper an integrated production and distribution scheduling problem at the
operational level, i.e., production scheduling and vehicle routing integrated problems. The products
that enter into the production process have a limited lifespan and have to be delivered before a given
deadline, after their production is started. Furthermore, a delivery due date is associated to each
product. This study is a continuation and extension of previous works dealing with the production
planning and tracking of chemotherapy drugs for cancer treatment in the bio-pharmaceutical unit
of the Oncology Clinic of the Hospital Center of Tours (France) (see [Kergosien and al., 2011] and
[Mazier and al., 2010]). The entire production process of chemotherapy preparations is described
in [Kergosien and al., 2011]. Software for production planning support has been developed and is
used in the production center. The software treats only the scheduling problem without considering
the distribution phase.

We model the production of the preparations as a classic uniform parallel machines scheduling
problem. In our case, a machine corresponds to a pharmacy technician and a job to a chemotherapy
preparation (a pouch for injection). A set of parallel machines have to perform a set of jobs and the
machines are uniform, i.e., each machine has its own processing speed. A machine can process only
one job at a time. Each job is characterized by a processing time and must be processed on a single
machine. Each job has to be delivered to the patient at a desired time for the injection fixed by the
doctor called the delivery due date. For the distribution part, only one delivery man is available
to deliver the preparations to the patients. The routing problem can be defined as a multi-trip
traveling salesman problem with a single salesman, or more generally as a multi-trip vehicle routing
problem with a single vehicle of unlimited capacity. The objective of the problem is to minimize
the maximum tardiness of delivery, which is related to the delivery due date. Another important
element is the stability constraint of the chemotherapy drugs. For such drugs, the duration between
the production starting time and the time of delivery for injection cannot exceed the stability time;
otherwise, the drug may become dangerous or ineffective. In such a case, the drug is destroyed.
This type of constraint makes the general problem harder to solve.

Because of the problem structure, a decomposition into two sub-problems seems to be an inter-
esting approach. Among these kinds of approaches, Benders decompositions [Benders, 1962] have
already demonstrated their efficiency in solving such difficult problems in the literature.
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There is a vast amount of literature dealing with individual problems of production scheduling
and vehicle routing, but the integrated approach to both problems at an operational level (in-
tegrated scheduling and vehicle routing) has only been addressed to a large extent in the recent
literature. Most papers consider simple delivery considerations, i.e. no consideration of a vehicle
routing problem and only direct deliveries or vehicles with capacities equal to one or two jobs or with
only one or two destinations. In [Chen, 2004], the author proposes an integration of production and
distribution operations at the tactical and operational levels. Several models are identified depend-
ing on the level decisions and the structure of production-distribution integration. According to
this paper, our problem is in the category of the ”operational EPD (explicit production-distribution)
model” plus ”integration of production and outbound transportation” and ”finite horizon with mul-
tiple time periods”, identified as class 5. This survey is extended in [Chen, 2010], where Z-L.
Chen proposes a unified notation for such integrated problems, as well as an overview of different
resolution approaches. In [Geismar at al., 2008], the authors consider a plant with a constant pro-
duction rate for a single product with limited lifespan (constant maximum delay between delivery
and production completion). Customers have different location sites and different demands to be
satisfied. The objective is to minimize the makespan for satisfying all the demands. One vehicle
with limited capacity is used. The authors propose lower bounds for the makespan. Then, they
consider a particular case where the permutation of customers is given and propose a polynomial
time algorithm. A memetic algorithm is proposed for the general problem. In [Lee and Chen, 2001],
the authors study a machine scheduling problem with two types of transportation consideration.
The first one considers the transportation times of jobs from one machine to another. In the second
one, jobs have to be processed on a set of machines (parallel or series machines), and then the jobs
must be delivered to customers. However, the transportation time to customers is assumed to be
the same for each job. For these two types of models, the authors propose complexity analysis
and polynomial or pseudo-polynomial resolution algorithms. In [Chen et al., 2009], H-K. Chen,
C-F. Hsueh and M-S. Chang propose a nonlinear mathematical model for an integrated scheduling
and vehicle routing problem with time windows and perishable food products. The demands are
stochastic, the revenue of the supplier is uncertain and the objective is to maximize its expected
total profit. Despite some common characteristics, this problem is quite unlike ours. In [Ullrich,
2013], C.A. Ullrich considers an integrated production and outbound distribution problem with the
objective of minimizing total lateness. The scheduling problem is a parallel machine scheduling
problem with machine-dependent ready times, and a fleet of heterogeneous vehicles are considered
for the vehicle routing problem. Jobs have to be delivered in time windows. The author proposes
an MILP formulation, decomposition heuristics and a genetic algorithm. The first decomposition
approach first solves a vehicle routing problem, then a parallel machine scheduling problem, and
finally another vehicle routing problem. The second decomposition approach first solves a parallel
machine scheduling problem and then a vehicle routing problem. This problem is somewhat similar
to the problem that we consider except that we consider maximum lateness as an objective function
and we have to consider the perishability of the jobs. This aspect is the main topic of [Amorim,
2013], where perishability aspects in supply chain management are analyzed comprehensively. A
review of the work published on modeling perishability for production and distribution planning is
performed, with one part dedicated to integrated approaches. In this part, few papers are identi-
fied, and [Chen et al., 2009] is the most relevant to our study.

Some recent papers show similarities to our study. In [Cakici et al., 2015], the authors consider
a parallel machine scheduling problem in which jobs are scheduled on the machines, assigned to
batches (only jobs destined for the same customer can be batched together for delivery) and de-
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livered by a single vehicle with limited capacity. The objective is to minimize the total weighted
delivery time. The problem is decomposed into sub-problems: machine scheduling, batch assign-
ment and batch sequencing. An MILP formulation is proposed as well as heuristic algorithms. The
problem shows similarities to our problem except for the definition of batches and the objective
function, and in addition to the fact that there is no perishability constraint. In [Viergutz and
Knust, 2014], C. Viergutz and S. Knust consider a single production facility modeled by a single
machine. After completion, jobs have to be delivered before a given deadline (perishability) and
within a time window to customers by a single vehicle. Because of limited resources, not all cus-
tomers may be supplied, and the problem is to find a selection of customers in order to maximize
the total satisfied demand. The authors propose a branch-and-bound algorithm. In [Lee et al.,
2014], the authors consider the case of production and delivery of medical treatments requiring
radioactive substances with a half-life of minutes. The scheduling problem is treated as a special
type of bin packing problem (machines are cyclotrons with different capacities). A fleet of hetero-
geneous vehicles is available for delivery, but split deliveries are forbidden. The authors propose
a MILP formulation and heuristic algorithms. In [Belo-Filho et al., 2015], the authors consider a
facility with parallel production lines, where perishable jobs are produced and have to be delivered
to distinct customers in given time windows. Several vehicles are available; they can deliver jobs to
different customers in a single trip. Sequence-dependent setup times and costs are considered, and
the objective is to minimize production and transportation costs. The authors propose an MILP
formulation of the problem, two heuristic algorithms and an adaptive large neighborhood search
framework.

This paper is organized as follows. In Section 2, the problem extracted from the chemotherapy
production context is described in detail, notations are introduced and an integer linear program-
ming formulation of the problem is given. A table of notations is given in the appendix. The
proposed Benders decomposition-based heuristic is presented in Section 3. Computational experi-
ments are reported in Section 4. Finally, we conclude the study and propose directions for further
research.

2 Problem description and notations

The process for receiving a chemotherapy treatment by injection – as it is done in France – is the
following. After having examined a patient (to evaluate the appropriateness of treatment), the
oncologist sends an electronic prescription to the bio-pharmaceutical unit where the chemotherapy
preparation is produced. The prescription information specifies the type of medical chemotherapy
preparation that will be administered to the patient, the exact dosage and the time schedule of
administration. A production line is composed of a sterilizer and an isolator, where a pharmacy
technician realizes the chemotherapy preparations for injection. Once the product is processed,
a control is performed (a sample of the preparation is tested). Depending on the date of admin-
istration prescribed by the doctor, the drug must be stored in a refrigerator at a recommended
temperature or be immediately delivered.

We can model the whole problem as follows, with only one assumption to simplify the problem
(regarding the control process, described later). A set of n jobs have to be scheduled without
interruption on m uniform parallel machines. Each job Jj , j ∈ {1, ..., n} is characterized by:

• a release date rj the execution of job Jj cannot start before this date that represents the date
of treatment validation by the doctor, after an examination of the patient.
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• a processing time pj that depends on the type of chemotherapy preparation to realize. This
duration corresponds to an assignment to a machine with a production rate equal to 1.

• a stability time stj if the administration of Jj is subject to a stability constraint. After the
starting time of its production, the job has to be delivered before stj time units.

• a due date or delivery due date dj is the desired date of the administering the treatment
corresponding to job Jj .

The problem consists in assigning all the jobs to m uniform parallel machines and defining their
starting time (or their sequence). Each machine Mi can process at most one job at a time without
preemption, and a job is processed by only one machine. Since the pharmacy technicians do not
have the same experiences and skills, each machine Mi has a production rate (yield) denoted by
si, and pj × si is the time needed to process Jj on machine Mi.

Before the next step, which consists in delivering the preparations, each job has to be controlled.
This operation is the same for all jobs (same duration) and can be performed by several persons.
To simplify the problem, it is assumed that each job can be analyzed directly after its production,
with no waiting time. Since this control time is short in comparison with processing time, it sticks
to reality. Each control takes pA time units. We denote by Cj the production completion time of
job Jj . Therefore, a job Jj that is completed at time Cj is ready for delivery at time Cj + pA.

The finished jobs have to be gathered into batches.
For the multi-trip traveling salesman problem, there is only one delivery man, who is supposed

to be available at all times. Each trip or route starts and ends at the same depot, which is the
pharmacy production unit, and each preparation has to be delivered. The route of any given batch
can only start when all the jobs of the batch have been completed and controlled. The capacity of
the delivery man is considered unlimited. We denote by ttj1,j2 , ∀j1, j2 ∈ {0, ..., n}, the travel time
between site j1 and site j2, where site j ∈ {1, ..., n} corresponds to job Jj and site 0 corresponds
to the pharmacy production unit.

A solution to the global problem is the assignment of jobs to the machines, the sequence of
jobs on each machine, the composition of batches of delivery, and for each batch, the sequence
of delivery. We denote by Dj the delivery completion time of Jj . The objective function of the
problem is to minimize the maximum tardiness which is given by:

Tmax = max
j∈{1,...,n}

(0, Dj − dj)

Integer Linear Programming formulation

An integer linear programming model for the problem, noted ILP, is the following. We consider
one list L of jobs for delivery, and routes are defined from this list. We define the following binary
variables.

yij1,j2 =

{
1 if job Jj1 is scheduled before Jj2 on machine Mi

0 otherwise

∀j1, j2 ∈ {0, ..., n+ 1}, j1 6= j2, ∀i ∈ {1, ...,m}

Note that jobs J0 and Jn+1 are considered dummy jobs that are scheduled in the first and last
position, respectively, on each machine.
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xj,k =

{
1 if job Jj is in position k in list L
0 otherwise

∀j ∈ {1, ..., n}, ∀k ∈ {1, ..., n}

Nk =

{
1 if a new tour starts in L with the job at position k
0 otherwise

∀k ∈ {1, ..., n}

We define the following continuous variables.

• Sj starting time of processing job Jj , ∀j ∈ {1, ..., n},

• Dj delivery completion time of Jj , ∀j ∈ {1, ..., n},

• tk starting time of the tour delivering the job in position k, ∀k ∈ {1, ..., n}

• Tmax the maximum tardiness of delivery.

The objective function is to minimize maximum tardiness.

Minimize Tmax (1)

The following constraints concern the scheduling problem.
On machine Mi, the first and last dummy jobs have only one predecessor and successor (∀i ∈

{1, ...,m}):

n+1∑
j=1

yi0,j = 1 (2)

n∑
j=0

yij,n+1 = 1 (3)

A job cannot start processing before its release date (∀j ∈ {1, ..., n}):

Sj ≥ rj (4)

If job Jj1 is scheduled before Jj2 on machine Mi (∀j1, j2 ∈ {1, ..., n}, j1 6= j2, ∀i ∈ {1, ...,m}),
we have the following constraints. Note that pj1si is the duration of Jj1 on machine Mi and M is
a high value.

Sj2 ≥ Sj1 + pj1si −M(1− yij1,j2) (5)

All jobs Jj must be scheduled (∀j ∈ {1, ..., n}):

m∑
i=1

n∑
j′=0
j′ 6=j

yij′,j = 1 (6)
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If job Jj is assigned to machine Mi, this job has one predecessor and one successor (∀i ∈
{1, ...,m}, ∀j ∈ {1, ..., n}):

n∑
j′=0
j′ 6=j

yij′,j =
n+1∑
j′=1
j′ 6=j

yij,j′ (7)

The following constraints concern the relation between the scheduling and routing problems.
If job Jj is in position k in list L, the tour cannot start before the completion time of Jj

(∀j ∈ {1, ..., n}, ∀k ∈ {1, ..., n}):

tk ≥ Sj + pA + pj

m∑
i=1

si

n∑
j′=0
j′ 6=j

yij′,j −M(1− xj,k) (8)

The following constraints concern the routing problem.
A job Jj is in one position in list L, and there is only one job per position in L:

n∑
k=1

xj,k = 1 ∀j ∈ {1, ..., n} (9)

n∑
j=1

xj,k = 1 ∀k ∈ {1, ..., n} (10)

If job Jj is in position k in L, Jj cannot be delivered before the starting time of the tour plus
the transportation time from site 0 to site j (∀j ∈ {1, ..., n}, ∀k ∈ {1, ..., n}):

Dj ≥ tk + tt0,j −M(1− xj,k) (11)

If Jj1 and Jj2 are consecutive in list L, with Jj1 in position k and Jj2 in position k+ 1 (∀j1, j2 ∈
{1, ..., n}, j1 6= j2, ∀k ∈ {1, ..., n− 1}), then:

Dj2 ≥ Dj1 + ttj1,j2 −M(2− xj1,k − xj2,k+1) (12)

The route of the job in position k + 1 cannot start before the route of the job in position k
(∀k ∈ {1, ..., n− 1}):

tk ≤ tk+1 (13)

If the position k+1 in L does not correspond to a new tour, the start time of the job in position
k + 1 is the same as for the job in position k (∀k ∈ {1, ..., n− 1}):

tk ≥ tk+1 −MNk+1 (14)

If a new route starts with the job in position k + 1 in L, the start time of this route is greater
than the delivery time of the jobs of tour k plus the transportation time to site 0 (∀j ∈ {1, ..., n},
∀k ∈ {1, ..., n− 1}):

tk+1 ≥ Dj + ttj,0 −M(2−Nk+1 − xj,k) (15)

Each job has to be delivered before its stability time expires (∀j ∈ {1, ..., n}):

Dj ≤ Sj + stj (16)
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The objective function is (∀j ∈ {1, ..., n}):

Tmax ≥ Dj − dj (17)

This ILP model contains m(n+2)2+n2+n binary variables and 3n+1 continuous variables and
m(n2 + n+ 2) + n3 + 2n2 + 7n− 2 constraints. Some cuts can be added to facilitate the resolution
of the model.

Several ILP formulations of the problem have been tested, by changing several types of vari-
ables (i.e., using position-based variables or sequence-based variables for the routing part or the
scheduling part). Preliminary computational experiments on 90 small instances showed that this
model is the most efficient.

To apply a classical Benders decomposition, the problem requires a certain substructure, in
particular when some variables are fixed; the resulting sub-problem has to be a linear programming
problem. Since the most important decision variables are binary, this model cannot be used as it
is for the classical Benders decomposition method.

3 Solution approach

Benders decomposition is based on a partition of the variables into two sets X and Y . A master
problem considers only the set of variables Y , and a sub-problem tests if the solution of the master
problem also satisfies the remaining constraints by finding values for variables X. If such a solution
cannot be found, a “Benders cut” is added to the master problem, and the process is iterated. Once
a feasible solution of the sub-problem is found, this solution may not lead to the optimal solution
for the original problem. In this case, an optimality Benders cut is added to the master problem,
and the process is iterated; otherwise, the original problem is solved.

The solution approach that we propose is a hybridization of a classical Benders decomposition
algorithm and a heuristic dedicated to this combined routing and scheduling problem. Before
introducing the general algorithm, we present the classical Benders decomposition scheme and
then the Benders decomposition that is applied to our problem. In the end, the general hybrid
algorithm is described, as well as several improvement techniques.

3.1 Benders decomposition

First, we succinctly present the classical Benders decomposition algorithm, and then its application
to our problem. Since some assumptions have to be made, the resulting algorithm presented in this
section gives only a lower bound of the problem, from which we can deduce an upper bound.

3.1.1 Classical algorithm

Let P be an integer programming problem modeled as follows. x is a vector of continuous variables
and y is a vector of integer variables, which can take a value in the set Dy. f is a linear function,
g is a mapping, c and a are vectors, and A is a matrix.

Problem P : Minimize f(y) + cx

Subject to : g(y) +Ax ≥ a
y ∈ Dy, x ≥ 0
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If we consider a feasible assignment y∗ for the y variables, the following problem has to be
solved to find the values of the x variables (we call this problem the slave problem SP ):

Problem SP : Minimize cx

Subject to : Ax ≥ a− g(y∗)

x ≥ 0

Consider the dual problem of the slave problem, denoted DSP (u are the dual variables):

Problem DSP : Maximize u(a− g(y∗))

Subject to : uA ≤ c
u ≥ 0

The main concept of the Benders decomposition is to find an assignment of variables y in a
master problem MP and then check if a feasible solution exists for the slave problem and if this
solution with the assignment of y leads to the optimal solution for the original problem P . If no
feasible solution is found, an infeasibility Benders cut is added to the master problem. Otherwise,
an optimality Benders cut is added to the master problem. Both types of Benders cuts are intended
to avoid some assignments of variables y. The master problem MP is defined as follows:

Problem MP : Minimize z

Subject to : z ≥ f(y) + u∗i (a− g(y)) ∀i ∈ I
u∗j (a− g(y)) ≤ 0 ∀j ∈ J
u ≥ 0

with I the set of iterations where the solution of SP does not lead to the optimal solution for
P , J the set of iterations where SP is not feasible, and u∗i the values of the variables of DSP . The
general algorithm is the following.

To apply this method to our problem, we consider the production scheduling part as the slave
problem and the delivery part as the master problem. However, the issue is that the slave problem
should be a linear program (solvable in polynomial time to optimality), but the scheduling problem
considered on uniform parallel machines is NP-hard and cannot be modeled as a linear program.
To overcome this difficulty, we decided to relax the constraint of non-preemption in order to make
the problem solvable in polynomial time. Therefore, the obtained method makes it possible to find
a lower bound of the problem. This lower bound is used to find a feasible solution, thanks to an
additional heuristic (see Section 3.2). There are two main reasons for choosing the production part
of the problem as the slave problem. First, the quality of the relaxation of the production part
is better than the quality of the relaxation of the distribution part. Thus, the Benders cuts are
more efficient and the lower bound is better. Second, the Benders decomposition is better when the
master problem has relatively few integer variables. In addition, the number of binary variables is
larger in the production scheduling part than in the distribution part.

Thus, the ILP model is decomposed into two models. The first model that represents the
slave problem finds a solution to the scheduling problem. It corresponds to variables yij1,j2 and to
constraints (2) to (7). The second model that represents the master problem solves the routing
problem. It corresponds to variables xj,k and Nk and constraints (9) to (17).
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Algorithm 1 General Benders algorithm

1: End← false
2: while End 6= true do
3: Solve the master problem MP
4: if MP is infeasible then
5: return ”problem P is infeasible”; End← true
6: else if MP is unbounded then
7: return ”problem P is unbounded”; End← true
8: else
9: let (y∗, z∗) the optimal solution

10: end if
11: Solve the dual slave problem DSP
12: if DSP is infeasible then
13: return ”problem P is infeasible or unbounded”
14: else if DSP is feasible with u∗ as optimal solution such as z∗ < f(y∗) +u∗(a− g(y∗)) then
15: add z ≥ f(y) + u∗(a− g(y)) to MP
16: else if DSP is feasible with u∗ as optimal solution such as z∗ ≥ f(y∗) +u∗(a− g(y∗)) then
17: return (x∗, y∗) as the optimal solution of P ; End← true
18: else if DSP is unbounded then
19: there is an extreme direction u∗ such that u∗(a− g(y∗)) > 0, add the cut u∗(a− g(y)) ≤ 0

to MP
20: end if
21: end while

3.1.2 The slave problem

The slave problem is a uniform parallel machine scheduling problem with preemption. At this step,
a solution of the master problem is given, and thus the following elements are known:

• the order in which the jobs are delivered σk denotes the index of the job in position k in list
L.

• the date pdk at which the job Jσk in position k is ready for control and delivery; these dates
can be considered pseudo due dates for the scheduling problem.

• the delivery time Dk of the job in position k; from this date, we deduce a new release date
for the job delivered in position k in list L, noted Rk = max(rσk , Dσk − stσk). This release
date takes the stability time of Jσk into account.

• Pk the processing time of the job delivered in position k in list L, i.e. pσk .

In this problem, each machine has its production rate, and we assume that preemption is al-
lowed. To each job is associated a release date, a processing time and a due date. The linear
programming model of the slave problem is based on the model of [Lawler and Labetoulle, 1978].
In this model, the tasks are indexed in their increasing due date order, which is implicitly the case
in our model because the jobs are indexed in their delivery position increasing order. Some elements
are added to the original model in order to integrate the production rate of the machines and the
release dates. Note that the method presented in [Brucker, 2007] based on a max flow computation
cannot be used in our slave problem; in this method, it is necessary to perform a pre-processing
step on the data, which cannot be executed during the Benders decomposition process. This step
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consists in ordering and mixing all different “release dates - values” (Rk) and “due dates - values”
(pdk) in order to obtain several consecutive time intervals that will be used as nodes in the flow
network. The decision variables correspond to the quantity of jobs processed on each time interval.
However, the Benders cuts that are used in the master problem are based on the dual variables of
the flow, which are associated to unknown time intervals for the master problem.

Consider ptli,k ≥ 0, ∀l ∈ {1, ..., n}, ∀i ∈ {1, ...,m}, ∀k ∈ {1, ..., n}, the continuous variables that
represent the total amount of time that machine Mi works on the job at position k during time
period [pdl−1, pdl] (note that l = 0 corresponds to a dummy job for which pd0 = P0 = R0 = 0).
The slave problem consists in finding a feasible solution that respects the following constraints.

Slave problem : Find ptli,k

Subject to :

m∑
i=1

k∑
l=1

ptli,k
si
≥ Pk ∀k ∈ {1, ..., n} (18)

1

maxj∈{1..n} pj

m∑
i=1

ptli,k
si
≤ Alk ∀l ∈ {1, ..., n} ∀k ∈ {l + 1, ..., n} (19)

m∑
i=1

ptli,k ≤ pdl − pdl−1 ∀l ∈ {1, ..., n} ∀k ∈ {l, ..., n} (20)

n∑
k=l

ptli,k ≤ pdl − pdl−1 ∀l ∈ {1, ..., n} ∀i ∈ {1, ...m} (21)

The constraints (18) state that at least the total amount of time Pk for the job in position k is
processed. The aim of constraints (19) is to take into account the release date of a job. Alk is equal
to 1 if Rk < pdl and 0 otherwise. If the release date of a task σk is greater than pdl, no quantity
of job Jσk can be scheduled on any machine before pdl. The weakness of this model is when the
release date Rk belongs to a period [pdl−1, pdl]. With these constraints, the period [pdl−1, Rk] may
contain some quantity of job Jσk , although it should be impossible. Unfortunately, as far as we
know, it is not possible with this model to take the release dates into account in a precise way.
In any case, since we are looking for a lower bound, this assumption is not an issue. Constraints
(20) guarantee that for each period and each job, the quantity on the machines should not exceed
the width of the period. Constraints (21) state that for each period and each machine, the total
duration of each job cannot exceed the length of the period.

The dual of the slave problem is represented by the following objective function:

Maximize
n∑
k=1

uk(−Pk) +
n∑
l=1

n∑
k=l+1

slk(A
l
k) +

n∑
l=1

n∑
k=l

vlk(pdl − pdl−1) +
n∑
l=1

m∑
i=1

wli(pdl − pdl−1) (22)

with uk, s
l
k, v

l
p and wli the dual variables.

Since this is only a feasibility problem, the Benders cuts to add to the master problem, when
the dual of the slave problem is unbounded are as follows:

n∑
k=1

uk(−Pk) +

n∑
l=1

n∑
k=l+1

slk(A
l
k) +

n∑
l=1

(pdl − pdl−1)(
n∑
k=l

vlk +

m∑
i=1

wli) ≤ 0 (23)
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with uk, s
l
k, v

l
k and wli the values of the dual variables that represent the extreme direction (note

that Pk, Rk, pdk and Alk are variables for the master problem).

3.1.3 The master problem

As presented in Section 2, the integer linear programming model of the master problem is also based
on a sequence of jobs, noted L, sorted by their delivery position. The master problem consists in
finding this sequence, the number of trips, when they appear in this sequence and the departure
time of each trip. The definitions of variables xj,k, Nk, Dj , tk and Tmax in the previous model are
unchanged. The master problem is also linked to the slave problem and the Benders cuts, thanks
to the following variables:

• pdk, ∀k ∈ {1, ..., n}: expected finishing time of the job at position k (ready for control and
delivery).

• Pk, ∀k ∈ {1, ..., n}: processing time of the job in position k.

• Rk, ∀k ∈ {1, ..., n}: release date at which the job in position k is available for processing on
machines, considering the release time and the stability time.

• Ak′k , ∀k, k′ ∈ {1, ..., n} :

{
1 if Rk < pdk′ ,
0 otherwise (Rk ≥ pdk′).

The model of the master problem, without the Benders cuts as defined in (23), is the following:

Master problem : Minimize Tmax

Subject to : (9) to (15), (17) (24)

tk ≥
n∑
j=1

r′jxj,k ∀k ∈ {1, ..., n} (25)

LBTmax ≤ Tmax ≤ UBTmax (26)

Rk + Pk ≤ pdk ∀k ∈ {1, ..., n} (27)

pdk = tk − pA ∀k ∈ {1, ..., n} (28)

Pk =

n∑
j=1

pjxj,k ∀k ∈ {1, ..., n} (29)

Rk ≥
n∑
j=1

rjxj,k ∀k ∈ {1, ..., n} (30)

Rk ≥ dj − stj −M(1− xj,k) ∀k, ∀j ∈ {1, ..., n} (31)

Ak
′
k ≥

pdk′ −Rk
M

∀k, k′ ∈ {1, ..., n} , k 6= k′ (32)

Ak
′
k < 1 +

pdk′ −Rk
M

∀k, k′ ∈ {1, ..., n} , k 6= k′ (33)

The first part of the model uses the same constraints as for the delivery part in the ILP model
((9) to (15) and (17)). Even if the starting times of trips are strongly connected to the slave problem
and to the Benders cuts, constraints (25) guarantee that the starting time of a trip is at least equal
to the maximum of the earliest ready times of the jobs in that trip. These earliest ready times for
delivery, noted r′j , depend on the release dates, processing times on the fastest machine and the
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time to analyze: r′j = rj + mini∈{1,...,m} sipj + pA. Constraints (26) bound the Tmax with a lower
bound LBTmax and an upper bound UBTmax . Constraints (27) ensure that there is enough time to
process the job at position k between Rk and pdk. Constraints (28) define the variables pdk with
the starting times of trips, and constraints (29) define the variables Pk according to the position
of each job. Constraints (30) and (31) determine a global release date of each job according to the
initial release date and the stability time. Finally, constraints (32) and (33) define the Boolean
variables Ak

′
k .

Note that when a solution is found, there is no guarantee that the variables Rk are set to their
smallest possible values. This may be restrictive for the slave problem. Thus, before solving the
slave problem, the variables Rk are set to their smallest possible values (respecting all the con-
straints) and the variables Ak

′
k are updated.

The master problem resolution step is the most time consuming. Thus, some pre-processing
and cut generation are used in order to accelerate the resolution. The first set of cuts are intuitive:

r′j + tt0,j ≤ Dj ∀j ∈ {1, ..., n} (34)

tk + 2 min
j∈{1,...,n}

(tt0,j)Nk+1 ≤ tk+1 ∀k ∈ {1, ..., n− 1} (35)

n∑
j=1

r′jxj,k ≤ tk′ ∀k ∈ {1, ..., n− 1} ∀k′ ∈ {k + 1, ..., n} (36)

tk +
n∑
j=1

(tt0,j − dj)xj,k ≤ Tmax ∀k ∈ {1, ..., n} (37)

Constraints (34) state that each preparation cannot be delivered before r′j + tt0,j time units,
assuming that there is no waiting time between the end of the analysis and the starting time of the
job delivery. Constraints (35) imply a minimum travel time between the starting time of the trip
delivering the preparation at position k and the trip delivering the preparation at position k + 1,
if a new trip starts at position k+ 1. Constraints (36) state that if a job Jj is delivered in position
k, all starting times of the next trips, k′ > k, are greater than r′j . Finally, constraints (37) make it
possible to deduce a lower bound of the maximum tardiness if a job Jj is delivered at position k.
This lower bound is based on an estimated delivery time that is equal to the starting time of the
trip delivering the job Jj plus the travel time to directly deliver Jj .

The last part of pre-processing and cut generation is based on the following reasoning. Let α
be the sequence of jobs sorted in r′j increasing order and β the sequence of jobs sorted in (dj− tt0,j)
increasing order, and let αk and βk represent the index of the job at position k in α and β,
respectively. Based on the α sequence, the starting time of the trip delivering the job at position
k cannot be lower than the kth smaller completion time of the production stage, i.e.:

r′αk
≤ tk ∀k ∈ {1, ..., n} (38)

From these lower bounds on the trip starting times and an upper bound of the maximum tardiness
UBTmax , we can set some variables xj,k to 0 as follows:

∀l ∈ {1, ..., n} ∀j ∈ {1, ..., n} : if r′αl
+ tt0,j − dj ≥ UBTmax then ∀k ∈ {l, ..., n} : xj,k = 0 (39)

This pre-processing generation needs to have a good upper bound for the Tmax (presented in
the next section). The main idea is to deduce which jobs cannot be placed too late in the sequence,
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i.e., those that would increase the maximum tardiness of the best solution found. The same idea
can be generalized for the criterion Tmax by adding the following cuts:

∀l ∈ {1, ..., n} ∀j ∈ {1, ..., n} such that r′αl
+ tt0,j − dj > 0, ∀k ∈ {l, ..., n} : xj,k ≤

⌊
Tmax

r′αl
+ tt0,j − dj

⌋
(40)

Based on the same idea, it is possible to reverse the reasoning by using list β instead of α. In
this case, the goal is to deduce which preparation should not be placed too early in the sequence
because it would cause a delivery of another preparation to be too late.

∀l ∈ {1, ..., n} ∀j ∈ {1, ..., n} : if r′j + tt0,β[l] − dβ[l] ≥ UBTmax then ∀k ∈ {1, ..., l} : xj,k = 0 (41)

∀l ∈ {1, ..., n} ∀j ∈ {1, ..., n} such that r′j + tt0,β[l] − dβ[l] > 0, ∀k ∈ {1, ..., l} : xj,k ≤

⌊
Tmax

r′j + tt0,β[l] − dβ[l]

⌋
(42)

3.2 The Benders decomposition-based heuristic

This section presents the Benders decomposition-based heuristic that is based on the Benders decom-
position algorithm with the master and slave problem previously detailed. The general algorithm
is first presented, and four important steps of the algorithm are then described.

3.2.1 General algorithm

Algorithm 2 describes the main steps of the Benders decomposition-based heuristic (BDH). First,
two initial procedures are executed, which compute a lower bound and some initial Benders cuts
(detailed later). The main loop contains the iteration procedure for the resolution of the master
and slave problem as in any classic Benders decomposition algorithm, except for lines 7 and 8
and lines 12 to 22. An upper bound is computed using a heuristic algorithm (lines 7 and 8) that
returns a feasible solution (detailed later). It consists in finding a solution for the production
part without constraint relaxation (i.e., preemption is not allowed) from a current solution of the
master problem (the delivery part). Finally, lines 12 to 22 are executed when a solution is found
for the slave problem. If this lower bound is equal to the upper bound, the algorithm returns the
optimal solution. Otherwise, another iteration is executed to explore new solutions as a result of
the heuristic algorithm of line 7. However, if the set of Benders cut do not change, the same upper
bound of the previous iteration is found. To avoid useless iteration, when a solution is found for the
slave problem (and no Benders cut is added), an active Benders cut is removed in order to reiterate
between the master problem and the slave problem and to find new solutions for the master problem
and for the heuristic algorithm. If no active Benders cut appears in the last resolution of the master
problem, the algorithm returns the best solution found. The BDH finishes after NB ITE MAX
deletions of an active Benders cut.

3.2.2 Lower bound computation

The lower bound computation described by Algorithm 3 is based on a dichotomic search, assuming
that the preparations can be delivered directly after their analysis and the constraint of stability
is relaxed. To solve the scheduling problem, the ILP model of the slave problem is used.
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Algorithm 2 General algorithm

1: LB ← Compute a lower bound
2: UB ← High value
3: Add initial Benders cuts using the relaxed master problem
4: i← 0
5: while i ≤ NB ITE MAX do
6: Solve the master problem
7: UBheur ← Find an upper bound using a heuristic algorithm
8: UB ← min(UB,UBheur)
9: Solve the slave problem

10: if the slave problem has not a feasible solution then
11: Add a Benders cut
12: else
13: LB ← the result of the previous resolution of the master problem
14: if UB = LB then
15: return UB (optimal solution)
16: else
17: if There is at least one active Benders cut then
18: Remove one active Benders cut selected randomly
19: i← i+ 1
20: else
21: return UB
22: end if
23: end if
24: end if
25: end while

Algorithm 3 Lower bound computation algorithm

1: LLB ← 0
2: ULB ← High value
3: LB ← (LLB + ULB)/2
4: while LLB 6= ULB do
5: for k ∈ {1, .., n} do
6: pdp ← dk + LB − tt0k − pA
7: end for
8: Solve the slave problem considering that the jobs are sorted in pdp increasing order
9: if the slave problem has a feasible solution then

10: ULB ← LB
11: LB ← (LLB + ULB)/2
12: else
13: LLB ← LB
14: LB ← (LLB + ULB)/2
15: end if
16: end while
17: return LB
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3.2.3 Initial Benders cuts

A famous technique to accelerate the Benders decomposition algorithm is to generate a set of initial
cuts from the linear programming relaxation of the master problem [McDaniel and Devine, 1977].
It consists in iteratively solving the linear programming relaxation of the master problem and the
slave problem in the same way as the Benders decomposition algorithm until an optimal solution is
found. Each iteration where the slave problem has no feasible solution gives an initial Benders cut.
The advantage of this technique is that the iteration process is quite fast since two LP problems
are solved, but the number of iterations can be large before finding an optimal solution. Thus, the
number of iterations is limited to 2n. This phase may also improve the lower bound.

3.2.4 Tabu Search heuristic to build a feasible solution

The heuristic builds a feasible solution for the scheduling problem from a solution of the master
problem. The scheduling problem is the same as for the slave problem, but preemption is not
allowed. The heuristic also considers the maximum tardiness to minimize. Batch composition and
sequences of delivery are known, and a direct coding is implemented: A solution of the scheduling
problem is represented by a sequence of jobs on each machine and is evaluated according to the
solution of the master problem. Depending on how the jobs are scheduled on the machines, the
starting time of the trips and the delivery times of the jobs can be deduced, which gives the maxi-
mum tardiness.

The scheduling problem is solved using a Tabu Search heuristic [Glover, 1986] in order to provide
a sufficiently quick and efficient solution. Its structure is classic; solutions are explored in the search
space one by one. The Tabu Search uses a neighborhood search procedure to iteratively move from
one solution to another by choosing the best solution that is not tabu until a stopping criterion is
reached. In our case, the stopping criterion is a number of iterations without improvement, denoted
by Itetabu.

A list algorithm has been developed to build an initial solution. All jobs are ordered in a list
in their batch delivery order (i.e., the set of jobs of the first batch delivery are scheduled first in
the list and so on). For each batch, the jobs with a stability time constraint are ordered first in rj
non decreasing order, and the remaining jobs in a second part in rj non decreasing order. Jobs are
scheduled in this order in the time slot minimizing the maximum tardiness (because of the release
times, the schedule may have some idle times, and several insertion positions are tested).

The neighborhood operator used in the Tabu Search is the INSERT operator that consists in
removing a job from one position in the sequence on a machine and inserting it at another position
on the same machine, or on another machine. To build the set of neighbors, all jobs are tested on all
possible positions. Only feasible solutions are considered (solutions violating stability constraints
are removed). If no feasible solution exists in the neighborhood, the process is restarted after
emptying the tabu list.

The tabu list contains a set of forbidden moves and has a limited size noted as Sizetabu. A move
is defined by the job number and the last assigned machine number. If the tabu list contains a move
defined by a job Jj and a machine Mi, all insertions of the job Jj on machine Mi are prohibited
during neighborhood construction. However, a tabu move can be accepted using aspiration criteria.
The aspiration criterion consists in allowing a tabu move when the result gives a new solution with
an objective value better than the current best-known solution.
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4 Computational experiments

In this section, the performances of the Benders decomposition-based heuristic (BDH) are evaluated
on pseudo-real instances. The algorithms are implemented in C++ language. Tests have been
performed on an Intel(R) Core(TM)2 CPU T7200 @ 2.00GHz with 2G of Ram, and CPLEX 12.5
is used as an MILP solver.

4.1 Instances

To evaluate the efficiency of the method, a set of random data are created, corresponding to the
real activity of the chemotherapy production unit of the Oncology Clinic of the hospital complex
of Tours. This activity is very similar to many other units of chemotherapy production. The pa-
rameters of generation were also chosen in order to make instances difficult to solve. For example,
if the processing times of chemotherapy preparations are large in comparison with the travel times
between the delivery sites, the delivery part of the problem will be easy. It is sufficient to solve
the scheduling problem, and then finding the trips of delivery is easy. Similarly, too big values for
the travel times in comparison with the processing times makes the scheduling problem easy. Most
of the time, only one trip will be necessary, and the delivery part of the problem comes down to
solving a Traveling Salesman Problem. Therefore, instances were generated to balance the difficulty
between the two problems (e.g., we can observe in the optimal solutions several trips with always
more than two preparations per batch).

We generated a total of 18 sets of instances. Each set contains 10 instances and is characterized
by the number of machines m, the number of jobs n and the mean parameter µ of the normal
distribution used to generate the processing times on machine M1 (see Table 1): The number of
machines is equal to 2 or 3, the speed of machine Mi belongs to {1, 1.1} if m = 2 and to {1, 1.05, 1.1}
if m = 3. n belongs to {20, 25, 30, 35, 40}. The generation of the processing times follows a normal
distribution of mean equal to µ ∈ {20, 25, 30} time units (minutes) and a standard deviation of
15. Each control takes pA = 5 time units. The release dates rj are randomly generated in a

specified time interval [0, 0.15nµ
∑
si

m2 ] in order to avoid too much empty space in the scheduling
part. Each chemotherapy preparation has a probability equal to 0.15 of being constrained by a
stability time stj . In this case, stj is set to pj + pA + tt0,j + A, with A a random value generated
using a normal distribution of mean 15 and standard deviation of 5. The due date dj is derived by
adding a randomly drawn value from a normal distribution of mean 35 and standard deviation of
20 to rj + pj + pA + tt0j . Each job has a destination service that is randomly selected among 10
sites. These sites are placed at random locations in an area of 12 × 12 time units, the production
service is located at coordinate (0, 6) (traveling times ttj1,j2 are given by the Euclidean distances).

4.2 Results

To evaluate the efficiency of the Benders decomposition-based heuristic (BDBH), two MILP models
have been implemented and tested. The first one is the integer linear programming model (ILP)
described in Section 2. The resolution of this model makes it possible to obtain either the optimal
solution or an upper bound and a lower bound. To make the comparison equitable, the cuts (25),
(34) to (37), (38), (40) and (42) are added to this model to improve computational efficiency, as
well as the lower bound described in Section 3.2.2. The second mathematical model aims to find
the lower bound of the Benders decomposition. This model, called the Relaxed-Integer Linear Pro-
gramming model (R-ILP), is therefore composed of two models: the model of the master problem
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Instance types BDBH ILP R-ILP

n m µ #UB #LB UB − LB #IteBD CPU #UB CPU #LB CPU

20 2 20 10 10 20.8 25.5 357.2 10 1557.5 10 507.6
20 2 25 10 10 26.3 48.6 417.1 10 1595.0 10 200.0
20 2 30 10 10 18.5 11.8 174.4 9 1474.8 10 105.5

25 2 20 10 10 31.7 9.7 434.6 9 1800.1 10 1184.7
25 2 25 10 10 28.5 15.4 373.6 9 1683.1 10 686.2
25 2 30 10 10 19.3 9.7 168.8 7 1800.7 10 537.2

30 2 20 10 10 35.4 28.8 863.1 6 1678.3 8 1456.3
30 2 25 10 10 31.4 24.3 828.0 5 1641.0 9 1378.6
30 2 30 10 10 27.4 16.4 684.0 6 1719.7 10 983.2

35 2 20 10 10 34.0 8.7 1516.7 0 - 5 1698.8
35 2 25 10 10 32.8 25.0 1394.1 0 - 3 1757.0
35 2 30 10 10 27.7 15.3 1159.6 2 1800.0 4 1567.5

40 2 20 6 10 47.5 3.2 1800.0 0 - 0 -
40 2 25 6 10 30.5 1.3 1772.1 0 - 1 1800.0
40 2 30 8 10 45.5 5.7 1551.0 1 1800.0 0 -

40 3 20 2 10 60.0 1.1 1800.0 0 - 0 -
40 3 25 2 10 33.5 1.3 1800.0 0 - 0 -
40 3 30 1 10 49.0 1.5 1800.0 0 - 2 1616.0

Table 1: Number of UB and LB and average CPU time.

and the model of the slave problem. For each resolution method, the time limit was set to 30
minutes.

For each method, the first part of the results is given in Table 1. Each line represents a set
of 10 instances, described by the three first columns. The next five columns show the number of
times an upper bound (#UB) and a lower bound (#LB) are found by BDBH, the mean deviation
between the upper bounds and the lower bounds (UB − LB), the average number of iterations by
the Benders decomposition without removing one active Benders cut (#IteBD) and the average
CPU time (in seconds). Finally, the last columns give the number of times an upper bound is found
by ILP, a lower bound is found by R-ILP, and the average CPU times.

Table 1 shows that BDBH is more efficient than the other methods. It is able to find upper
bounds and lower bounds for all instances for n ≤ 35, whereas the ILP and R-ILP methods en-
counter difficulties for instances with more than 25 jobs. The quality of these upper bounds and
lower bounds are compared in another table. Moreover, BDBH needs less CPU time than the other
methods on average. Most of the time, ILP cannot find an optimal solution due to the problem
complexity and model size. The CPU time of BDBH and R-ILP are similar for small instances
(n = 20), but for larger instances, the first method has a CPU time lower than the second one.
However BDBH also takes time to compute the upper bounds. From n = 40, the resolution of
the master problem of BDBH requires too much computation time, and the number of iterations
of the heuristics greatly decreased. Finally, the CPU time of BDBH increases when the value
of µ decreases. This is explained by relationships between the value of µ and the complexity of
the routing part. Indeed, if the values of µ are small, the scheduling part is not really restrictive
in comparison with the routing part, which is more CPU consuming. We can observe that the
upper bound is rarely equal to the lower bound (only in a few small instances). Since the lower
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Instance types LBBDBH LBBDBH LBBDBH
> = <

n m µ LBILP LBILP LBILP
20 2 20 0 9 1
20 2 25 0 9 1
20 2 30 2 7 1

25 2 20 3 7 0
25 2 25 1 9 0
25 2 30 3 7 0

30 2 20 4 6 0
30 2 25 3 7 0
30 2 30 3 7 0

35 2 20 6 4 0
35 2 25 10 0 0
35 2 30 7 3 0

40 2 20 10 0 0
40 2 25 7 3 0
40 2 30 9 1 0

40 3 20 4 6 0
40 3 25 6 4 0
40 3 30 3 7 0

Table 2: Comparison of lower bounds of BDBH and ILP

bound is given by relaxing the scheduling part (preemption is allowed), it is logical to obtain a
value lower than the upper bound, for which the scheduling part is not relaxed (preemption is
not allowed). If the lower bound were often equal to the upper bound (i.e. preemption constraint
has no impact), it would mean that the scheduling part is easy to solve for such instances, and
only the routing part is difficult. We can also notice that the difference between the upper bound
and the lower bound increases when the mean parameter µ (of the normal distribution used to
generate the processing times) decreases. This is due to the same reason: When this parameter
decreases, the scheduling part becomes easier to solve, and the quality of the lower bound increases.

Tables 2 and 3 compare the quality of the lower bounds between BDBH and ILP, and between
BDBH and R-ILP for each type of instance. Column ’LBBDBH > LBILP ’ of Table 2 (respectively
Table 3) indicates the number of instances where the lower bound of BDBH is better than the
lower bound of ILP (respectively R-ILP). The next column shows the number of instances where
both lower bounds are equal and the next column the number of instances where the lower bound
of BDBH is worse than the lower bound of ILP (respectively R-ILP). If a method cannot find a
lower bound, we consider that the lower bound is equal to 0.

The results presented in Table 2 show that BDBH is clearly able to find better lower bounds
than ILP and with shorter computation times (see Table 1). However, when both methods find a
lower bound (which does not appear frequently), the difference is not very large. Moreover, for in-
stances with n ≥ 30 jobs, ILP finds a lower bound and an upper bound a few instances and does not
return any lower bound or any solution in most of the cases. The number of cases where the lower
bounds are equal is not null because the lower bound is set to 0 when a method cannot find a lower
bound. The same interpretation of results can be done for Table 3; BDBH outperforms R-ILP, find-
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Instance types LBBDBH LBBDBH LBBDBH
> = <

n m µ LBR−ILP LBR−ILP LBR−ILP
20 2 20 0 10 0
20 2 25 0 9 1
20 2 30 0 10 0

25 2 20 2 8 0
25 2 25 0 10 0
25 2 30 0 10 0

30 2 20 2 8 0
30 2 25 1 9 0
30 2 30 0 10 0

35 2 20 4 6 0
35 2 25 8 2 0
35 2 30 5 5 0

40 2 20 10 0 0
40 2 25 6 4 0
40 2 30 9 1 0

40 3 20 4 6 0
40 3 25 6 4 0
40 3 30 3 6 1

Table 3: Comparison of lower bounds of BDBH and R-ILP

ing better lower bounds. There is therefore an interest in using the Benders decomposition method.

The results on the quality of the upper bounds are reported in Table 4. Column UBBDBH <
UBILP gives the number of instances where the upper bound of BDBH is better than the upper
bound of ILP. The next column shows the number of instances where both upper bounds are equal
and the next column the number of instances where the upper bound of BDBH is worse than the
upper bound of ILP. If a method cannot find an upper bound, we consider that the upper bound is
equal to the same high value. To assess the gap between the upper bounds found by both methods,
we distinguish between two cases:

• instances for which both methods find an upper bound and BDBH dominates; we compute

GAP1 =
UBILP − UBBDBH

UBILP

and we indicate by #Inst the number of instances where the case occurs.

• instances for which both methods find an upper bound and ILP dominates; we compute

GAP2 =
UBBDBH − UBILP

UBBDBH

and we indicate by #Inst the number of instances where the case occurs.

Table 4 shows that for small instances (n = 20), ILP seems to dominate the BDBH. However,
this trend is reversed from instances with n > 20. Moreover, as the size of instances grows, the
gap between the methods increases. This is not surprising because the size of the ILP model is too
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Instance types UBBDBH UBBDBH UBBDBH
< = > GAP1 (#Inst.) GAP2 (#Inst.)

n m µ UBILP UBILP UBILP
20 2 20 5 0 5 42.1% (5) 54.1% (5)
20 2 25 3 2 5 33.7% (3) 63.8% (5)
20 2 30 4 1 5 32.4% (3) 54.4% (5)

25 2 20 10 0 0 66.1% (9) -
25 2 25 10 0 0 69.3% (9) -
25 2 30 10 0 0 86.5% (7) -

30 2 20 10 0 0 81.4% (6) -
30 2 25 10 0 0 88.7% (5) -
30 2 30 10 0 0 94% (6) -

35 2 20 10 0 0 - -
35 2 25 10 0 0 - -
35 2 30 10 0 0 95.2% (2) -

40 2 20 6 4 0 - -
40 2 25 6 4 0 - -
40 2 30 8 1 1 - -

40 3 20 2 8 0 - -
40 3 25 2 8 0 - -
40 3 30 1 9 0 - -

Table 4: Upper bound of BDBH and ILP

important for CPLEX solver. For instances with n ≥ 40, BDBH also has difficulties finding upper
bounds; thus both methods are equivalent for these instances. This weakness of BDBH is due to
the resolution of the master problem that requires too much CPU time. The number of iterations
for this method is thus greatly reduced.

5 Conclusion

This paper presents and formulates an optimization problem from a chemotherapy production and
delivery environment, where production and delivery are strongly connected problems. This prob-
lem combines a uniform parallel machines scheduling problem and a multi-trip traveling salesman
problem with only one salesman. Furthermore, some jobs have a limited lifespan and have to be
delivered after the production process starts within a given delay. The objective is to build a
schedule and route planning respecting the constraints so that the maximum tardiness of delivery
is minimized. To solve this problem, a Benders decomposition is proposed and a Tabu Search
heuristic is used to derive an approximate solution. Finally, feasible solutions and lower bounds
are obtained. To evaluate the efficiency of the method, two models are developed and solved using
a commercial solver. The first one models the whole problem, and the second models a relaxed
problem to find lower bounds. Computational experiments are conducted to compare the upper
and lower bounds found by the proposed method and the exact resolution of both models. Results
show that the Benders decomposition-based heuristic makes it possible to find better lower and
upper bounds in reasonable computation times up to medium-sized instances with 40 jobs.

Several research perspectives can be considered. First, the heuristic used to build a feasible
solution (the Tabu Search) can be improved: Instead of considering that the routing solution part
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is fixed, we can consider that some modifications can be allowed (for example, move a job in a
trip to another one in order to adapt the routing solution to the production solution). Another
research perspective is to consider several vehicles instead of only one to have a more general
model. However, this will increase the complexity of the master problem. Finally, a last research
perspective would be to take into account the dynamic aspect of the original problem from the
study case (medical drugs production). In the original problem, a job can be canceled during the
production process. This case may happen when a patient is not able to receive his treatment for
medical reasons. A possible adaptation of the method to a dynamic context can use the rolling
horizon method with a sub-horizon for each event (i.e., when data change).

Acknowledgments

This work was supported by the financial support of the ANR ATHENA project, grant ANR-13-
BS02-0006 of the French Agence Nationale de la Recherche.

Appendix

References
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