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Uncertain bidding zone configurations: the role of expectations
for transmission and generation capacity expansion

Mirjam Ambrosius1, Jonas Egerer1, Veronika Grimm1, Adriaan H. van
der Weijde2

Abstract. Ongoing policy discussions on the reconfiguration of bidding zones
in European electricity markets induce uncertainty about the future market
design. This paper deals with the question of how this uncertainty affects
market participants and their long-run investment decisions in generation and
transmission capacity. Generalizing the literature on pro-active network ex-
pansion planning, we propose a stochastic multilevel model which incorporates
generation capacity investment, network expansion, and market operation, tak-
ing into account uncertainty about the future bidding zone configuration. Using
a stylized two-node network, we disentangle different effects that uncertainty
has on market outcomes. If there is a possibility that future bidding zone
configurations provide improved regional price signals, welfare gains materialize
even if the change does not actually take place. As a consequence, welfare gains
of an actual change of the bidding zone configuration are substantially lower
due to those anticipatory effects. Additionally, we show substantial distribu-
tional effects in terms of both expected gains and risks, between producers and
consumers and between different generation technologies.

1. Introduction

The need for decarbonization of the electricity system, together with structural
changes in electricity demand and generation costs, is driving significant investment
in new and upgraded electricity transmission and generation capacity. Transmission
and generation investment projects have long lead times and lifespans, and are
therefore subject to significant levels of risk and uncertainty about among others,
future costs, demand levels and patterns, and regulation.

In response, planning methods have evolved to explicitly consider how optimal
investment decisions should be made under uncertainty. These include stochastic
optimization models, which seek to identify decisions that are optimal given the
full range of possible future market conditions (for an overview, see Conejo et al.
2010, Möst and Keles 2010, Oliveira and Costa 2018, and, more generally, Powell
2019), and robust optimization models, which optimize decisions such that the worst
possible outcomes are still feasible (Ruiz and Conejo 2015). These methods have
been applied to a wide range of markets, uncertainties and decisions, including
generation expansion planning (e.g., Rebennack 2014), integrated resource planning
(see Krishnan et al. 2016 for an overview), and pro-active transmission planning
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(e.g., van der Weijde and Hobbs 2012; Muñoz et al. 2014). The results of these
applications clearly show that uncertainty is a key driver of transmission and
generation investment.

The uncertainties that existing studies consider are all parametric as they affect
investment or operational costs, or constrain decision variables. Parametric uncer-
tainties are easily included in stochastic or robust models using scenario sets or
distributions. However, there are also uncertainties that cannot be parametrically
incorporated into the model, for example uncertainty regarding the energy policy
framework or future regulation. For the modelling, this means that it is not pa-
rameters that are subject to uncertainty, but the model formulation itself. Such
structural uncertainties are more difficult to incorporate in a model such that it can
be translated into an equivalent deterministic model. This is particularly true for
structural regulatory uncertainty concerning market design, such as the existence
of day-ahead or intraday markets, balancing mechanisms, a joint consideration of
transmission and generation expansion, or as in our case, the configuration of bidding
zones. These structural regulatory uncertainties are particularly important, as they
are highly idiosyncratic and therefore impossible to hedge perfectly (Ehrenmann
and Smeers 2011). Also note that structural regulatory uncertainty is never resolved,
as in most legal systems policy makers cannot be bound by the decisions of their
predecessors. Despite all this, structural regulatory uncertainties have received little
attention and few methods are available to model and quantify them. This paper is
a first attempt to do so in electricity markets.

One of the sources of structural regulatory uncertainty in electricity markets,
particularly in Europe, is the future of zonal market designs. Liberalized electricity
markets in Europe currently often operate within national bidding zones. Under
zonal pricing, there is a single electricity price in each country, with pre-determined
trade capacities implicitly or explicitly auctioned to allow cross-border trade while
controlling between-country congestion. Transmission constraints within countries
are not accounted for within the market, but are resolved by system operators after
market outcomes are announced, usually through cost-based balancing mechanisms
or countertrading in balancing markets.

In the short-term, this means that traded quantities might not always be techni-
cally feasible in the existing transmission network. The resulting network congestion
has to be resolved by the transmission system operator (TSO) via redispatch, i.e., by
instructing some generators to increase or decrease their production. This is costly,
and depending on redispatch mechanisms may incentivize non-competitive behavior.
In a cost-based redispatch mechanism, as implemented e.g., in Austria, Switzerland
or Germany, producers that are called to ramp up production during redispatch
receive their additional variable production costs that occur due to the increase of
their production as a compensation. Consequently, they are exactly kept indifferent
between being called for redispatch or not. Producers that are asked to decrease
their production upon redispatch keep their revenues from spot market trading but
have to pay their saved variable production cost to the TSO. Consequently, also
those producers’ profits are unaffected by the redispatch operation. Cost-based
redispatch thus does not alter profits of firms and consequently does not affect
incentives at the spot market stage. Other countries such as Denmark, Finland,
Norway, Sweden and the United Kingdom apply so-called market-based redispatch.
This means that node specific redispatch prices are determined endogenously in
a separate redispatch market environment. In contrast to cost-based redispatch,
prices in market-based redispatch often exceed variable production costs. This
allows for additional profits if market-based redispatch is in place, which results in
additional long-term investment distortions. For instance, a supplier located at an
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export-constrained node may be able to realize an increase in its profits by strategic
oversupply, anticipating that it is compensated for the electricity that cannot sell
into the other node (increase-decrease game), see Holmberg and Lazarczyk 2015;
Dijk and Willems 2011; Grimm et al. 2018. In either case, the lack of locational
investment signals within zones might result in inefficient investment in power plants,
additional transmission investment, and higher redispatch costs. With a growing
share of renewables in electricity markets worldwide, network congestion and thus
costs for congestion management are increasing in most markets.

Most large US markets have already adopted nodal (or: locational marginal)
pricing mechanisms. In these markets, market operators determine the least-cost set
of dispatch decisions for all generators on the system, considering at least a linearized
representation of all transmission constraints. A price is then calculated for each node,
which reflects the marginal cost of electricity in that specific location. Holmberg and
Lazarczyk (2015) study the theoretical effects of zonal and nodal pricing. They find
that a zonal market with market-based redispach leads to distortions in investment
due to missing price signals and possible profits for generators in the redispatch
market. These distortions disappear when introducing a nodal market, as all
transmission constraints are included in the market, making redispatch redundant.

In Europe, the discussion about a reconfiguration of current bidding zones is
ongoing, both in regulatory and academic spheres (e.g., Grimm et al. 2019; Felling
and Weber 2018; Ambrosius et al. 2018; ENTSO-E 2018; Bertsch et al. 2017; Egerer
et al. 2016; Grimm et al. 2016b; Plancke et al. 2016; Trepper et al. 2015; CMA
2015; Frontier Economics and Consentec 2011). This debate, though necessary, is a
key source of structural regulatory uncertainty. The effects of this uncertainty have
not been studied. Many recent studies have attempted to estimate the benefits of
adopting nodal pricing and other structural market design changes in European
electricity markets, e.g., van der Weijde and Hobbs (2011) show how nodal pricing
reduces redispatch costs, and Neuhoff et al. (2013) estimate the potential total
reduction in system costs resulting from a change to nodal pricing in Europe.
These studies usually assume that market design changes happen overnight. As the
European zonal pricing debate shows, however, market design changes are usually
preceded by long periods of uncertainty, during which different options are suggested
and debated, and during which it is unclear which, or even whether, changes will
come about. There is, therefore, a need to understand how these types of structural
regulatory uncertainty affect investment decisions and market operation.

This paper is a first attempt to address the issue of structural regulatory uncer-
tainty in electricity markets. We specifically consider the structural uncertainty
caused by the European zonal pricing debate, but our methodological approach
and qualitative conclusions carry over to other types of regulatory uncertainty. We
generalize existing methods for stochastic pro-active or anticipative transmission
planning by including uncertainty about future bidding zone configurations. Pro-
active transmission planning (Sauma and Oren 2006) anticipates that generation
capacity investment and production is affected by network investment as well as
congestion management. It has been applied in a mixed-integer optimization model
(Pozo et al. 2013) and in case studies on Germany (Kemfert et al. 2016) and the US
(Spyrou et al. 2017). In our approach, market participants at the investment stage do
not know whether the market will consist of one or multiple bidding zones; instead,
they assign a probability to each scenario. We analyze this uncertainty about the
future bidding zone configuration in a small two-node example, to qualitatively
explore the results and their main drivers. In scenarios where a zonal market is
realized, we assume cost-based redispatch after spot-market trading, i.e., redispatch
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is profit-neutral for each individual generation company. Distortions in generation
investment result only from missing regional price signals in the spot market.

Uncertainty about future framework conditions and in particular regulatory
uncertainty have repeatedly been cited as the reason why too little is invested
in electricity generation capacity. For situations with imperfect competition or
information asymmetries, Holmberg and Wolak (2018) have shown that uncertainty
can actually have positive welfare effects. Our results show that, also in a situation
with perfect competition but imperfect regional price signals, the mere possibility
of an improved configuration of bidding zones, and thus enhanced locational price
signals, can have significant positive welfare effects. This has two implications: Even
if there is a low probability that the framework conditions will be adjusted, this can
have an immediate impact on investment decisions and thus on welfare. This is
especially true if generation investment and operational cost differ only moderately
across locations. Hence, it is at least as important to understand market participants’
expectations about the future bidding zone configuration, as it is to determine what
markets might actually look like. Second, due to anticipatory effects under regulatory
uncertainty, the welfare effect of an actual change in the market design may be
moderate. Beyond a clear separation of anticipatory effects and the effect of the
actual change of the market design, we also show important distributional effects,
between producers and consumers and between market participants located in
different regions. Also, risk is not distributed equally but predominantly affects
generators with high investment costs. In this context, it is finally important to be
aware that a rigorous analysis of politicians’ attempts to use regulatory uncertainty
to induce desirable (efficiency enhancing) behavior would require even more complex
analysis of the interplay of the regulator and the regulated firms and thus goes
beyond the scope of this paper.

The paper is organized as follows. The next two sections introduce the methodol-
ogy. Section 4 describes a two-node example and Section 5 provides results including
regulatory uncertainty. Section 6 discusses the main results and Section 7 concludes.

2. Modeling investment incentives under regulatory uncertainty

In this section, we introduce the underlying setting for our stochastic trilevel
market model accounting for regulatory uncertainties. The setting follows the multi-
level approach of Grimm et al. (2016a), where the regulator decides on network
capacity, while firms decide on investment in generation capacity and production in
a competitive market environment.

2.1. Timeline. To be able to capture this situation in a feasible model, we consider
a sequence of long-term and short-term decisions. The timing of a suitable stylized
game is illustrated in Figure 1. First, the TSO decides on welfare maximizing
transmission capacity expansion in anticipation of the subsequent decisions taken by
private firms and its own redispatch quantities. This is sometimes called anticipative
or pro-active transmission planning (Pozo et al. 2013). Additionally, the TSO can
invest in backup capacity to balance infeasible spot market solutions, anticipating
the actual need of backup capacity after spot market trading in each operating point.
This is followed by generation capacity investment of private generation companies.
They take this decision under a profit maximization objective and in anticipation
of marginal revenues earned during spot market trading over the lifetime of the
respective unit. Investments in transmission and generation capacity are long-term
decisions, which are only taken once, and have to be taken for several years in advance.
The TSO and private firms cannot be sure what the bidding zone configuration will
look like by the time of commissioning. All long-term decisions are therefore taken
under uncertainty about the future bidding zone configuration, i.e., in our specific
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case, there exists uncertainty about the exact number of bidding zones. The TSO
and private investors assign probabilities to all possible events. These probabilities
are subjective and expectations are the same for all market participants. Market
participants maximize the expected values of welfare and profits, respectively. After
all market participants have taken long-term decisions under uncertainty, one of the
possible bidding zone configuration scenarios is realized, i.e., the number of bidding
zones is known to all market participants. Now, electricity is traded in multiple
periods at the spot markets, whereby intra-zonal network capacity is neglected,
while inter-zonal network capacity is taken into account. In case market results
are not feasible in the physical network, the TSO carries out cost-based redispatch.
This means that the TSO can call power plants in the import-constrained regions to
increase production, and instruct plants in the export-constrained regions to reduce
production. Producers are then compensated based on their variable production
costs. The TSO is required to minimize costs that occur due to redispatch. In
case traded quantities are still infeasible even after cost-based redispatch, the TSO
can furthermore make use of backup capacity and increase production in import-
constrained areas. An extension of this model could be to consider the possibility
of a future implementation of nodal prices as another scenario. For nodal pricing,
redispatch would not be necessary as network constraints are represented correctly
during spot market trading with a representation of physical transmission flows and
no distortions occur for investment decisions (Holmberg and Lazarczyk 2015).

One bidding zone: P (k = 1)

More bidding zones: P (k > 1)

Uncertainty on future bidding zone configuration Certainty on future bidding zone configuration

One network
investment plan:

TSO decides on:
• Network investment
• Backup investment

One generation
investment plan:

Private generation
companies decide on

investments in
power plant capacity

Spot market
with one zonal price

Redispatch of
generation levels and

backup operation

Spot market with
zonal prices and

quantities for implicit
auctioning of cross-
zonal trade capacity

Re-dispatch of
generation levels and

backup operation

time

Figure 1. Timing of decisions under uncertainty

2.2. Translation to a trilevel model. In the following we sketch how this setting
can be translated into a stochastic trilevel model.

Level 1. At the first level, the TSO decides on transmission capacity expansion as
well as investment in backup capacity under uncertainty about the future bidding
zone configuration as to maximize expected welfare, anticipating all subsequent
levels. The amount of backup capacity is determined so that feasibility is achieved
in each scenario, i.e., the TSO builds the maximum capacity that is needed across
all scenarios.

Level 2. At the second level, generation capacity investment and spot market trading
in multiple periods by private firms is modeled. These decisions can be considered
jointly at one level due to (i) the assumption of perfect competition and (ii) the
absence of time interdependencies such as load-changing costs or storage constraints.
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Hence, there are no interdependencies between the different subsequent periods of
spot market trading. We can therefore solve all periods of spot market trading
jointly at level 2, before determining cost-based redispatch at level 3. Note that (i)
and (ii) are common assumptions in the electricity market modelling literature (cf.
e.g., Boucher and Smeers 2001, Daxhelet and Smeers 2007, Grimm et al. 2016a).
The assumptions ensure computational tractability and allow a clear cut analysis
due to uniqueness of the respective equilibria. We are aware of the fact that these
assumptions might not hold in general. For example, it has been shown that
uniqueness of equilibria cannot be guaranteed in the case of strategic behavior of
firms (cf. Zöttl 2010) and for intertemporal dependencies, such as the representation
of electricity storage (cf. Grübel et al. 2019).

Level 3. At the third level, cost-based redispatch takes place, which is determined
by the TSO. Cost-minimizing redispatch problems of all periods are determined
jointly at the third level due to the absence of intertemporal dependencies.

Model interdependencies. As the TSO anticipates all subsequent levels, spot market
behavior by private firms and redispatch decisions are part of the TSO’s optimization
problem. The first level therefore depends on the decisions of the second and third
level, whereas the second level only depends on the line investment decisions taken
at the first level. Note that due to the assumption of cost-based redispatch, third-
level decisions of the TSO do not affect the profits of private firms and thus their
investment and production decisions at the second level. Investment in backup
capacity also does not affect spot market outcomes, as backup capacity is only
ramped up by the TSO in case redispatch of private generation capacity is not
sufficient to alleviate network congestion. The third level depends on decisions from
the first and second level. The dependencies of the trilevel model are illustrated in
Figure 2.

Level 3

Level 2

Level 1

Figure 2. Dependencies of the three-level model: Green, solid
arcs denote dependencies on continuous variables, the red, dashed
arc denotes dependencies on discrete variables.

Grimm et al. (2016a) show that the deterministic trilevel market model can be
reformulated as a bilevel model, aggregating the first level (transmission capacity
expansion and backup capacity) and the third level (redispatch), exploiting the
weak coupling of the three levels as described previously. We explain how this
reformulation can be applied to the stochastic model in Section 3.6.

3. The trilevel market model

In this section, we explain in detail how we model the interaction of the market
participants as described above. We first explain how uncertainty about the future
bidding zone design is implemented, continue with the basic technical model setup
and a detailed description of each level, before concluding the chapter with a
discussion on the solution approach.
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3.1. Modeling uncertainty. To account for regulatory uncertainty within the
decision process, we make use of a stochastic optimization approach as described in
Birge and Louveaux (2011). This means that we consider a set of decisions that
have to be taken without full information on a random event. After realization of
the uncertain event, full information about the random event is received and the
remaining variables are decided upon. These variables can be determined optimally
for each realization of the uncertain event. In the literature, uncertainty is usually
integrated in the form of an uncertain realization of parameters such as costs,
demand or production quantities (van der Weijde and Hobbs 2012; Baringo and
Conejo 2013; Ehrenmann and Smeers 2011). In our case, however, uncertainty
refers to different realizations of bidding zone configurations, i.e., the spot market
is divided into an uncertain number of bidding zones. To model this structural
uncertainty, we introduce the discrete scenario set S, which includes a finite number
of possible bidding zone scenarios s. More specifically, each scenario represents a
certain zonal configuration with a given number and location of zones. Each of
these scenarios s ∈ S occurs with a probability πs ∈ [0, 1]. This probability indicates
the expectation of market participants about the realization of a certain bidding
zone configuration. Short-term variables such as spot market trading and redispatch
are determined optimally for each scenario s ∈ S after the regulator has decided
on the zonal configuration of the market. Long-term variables, such as investment
decisions in transmission and generation capacity, in contrast, have to be made
under uncertainty by taking into account the expected value of the random events.
All restrictions including uncertain parameters have to be feasible for all scenarios
s ∈ S, i.e., the solution is then robust with respect to feasibility.

3.2. Basic economic and technical setup. In this section, we introduce the
basic setup for our model. We consider an electricity transmission network G,
consisting of nodes N and transmission lines L ⊆ N × N . The set of lines L is
furthermore divided into existing lines Lex and candidate lines Lnew. The decision
about investment in candidate transmission line l ∈ Lnew is taken by the TSO and
denoted by zl ∈ {0, 1}. We assume that transmission investment is a naturally
discrete decision. Line investment cost are denoted by cinv

l > 0. We further account
for different bidding zones Zs := {Z1, . . . , Z|Zs|}, which form a partition of the node
set N = Z1∪ . . .∪Z|Zs|, where number and configuration of bidding zones depend on
scenario s ∈ S. Lines that connect nodes of different zones are called inter-zonal lines
and denoted by Linter

s . Note that the set of inter-zonal lines depends on scenario
s ∈ S, as a line can be an inter-zonal line for some zonal configurations, while
it is not for others. The specific capacity of each line is denoted by f̄l and their
susceptance by Bl. We further denote sets of in- and outgoing lines by δin

N ′ and δout
N ′ ,

respectively. The time horizon is discretized to a set of equidistant operating points
t ∈ T , with T = {1, . . . , |T |} and time steps τ = ti+1 − ti for all i = 1, . . . , |T | − 1.
Flows through line l in operation point t ∈ T and scenario s ∈ S are denoted by
ft,l,s. We model real power flows via a lossless direct current (DC) approximation
(Schweppe et al. 1988). Demand at each node n ∈ N is denoted by dt,n and modeled
as a continuous, strictly decreasing and linear demand function pt,n,s = pt,n,s(dt,n,s).
As a result, the gross consumer surplus is a strictly concave quadratic function:∫ dt,n,s

0
pt,n,s(ξ) dξ.

Depending on the slope of the demand function, this aggregation of electricity
demand can represent systems with various levels of price sensitivity of demand.
In particular, the actual degree of demand response to prices is determined via
the choice on the point elasticity of demand (see Section 4). Note that prices and
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demand are dependent of the zonal configuration, and thus indirectly depend on
the realization of the random bidding zone configuration. At each node n ∈ N ,
we introduce a finite set of generators Gall

n . For simplicity, all generators of the
same technology that are located at the same node are aggregated. Firms can
invest in generators g ∈ Gpriv

n ⊆ Gall
n with capacity ȳg at investment cost cinv

g > 0.
Additionally, the TSO can invest in backup generators g ∈ Gbu

n ⊆ Gall
n , which can

be used in case generation redispatch of private firms does not suffice to alleviate
network congestion. In summary, Gall

n = Gpriv
n ∪Gbu

n . Furthermore, all generators
have variable cost cvar

g > 0. For every generator g ∈ Gpriv
n , n ∈ N , generated

quantities are denoted by yt,g,s and depend on the zonal configuration s ∈ S. The
availability factor αg ∈ [0, 1] denotes power generation per unit of capacity. We
denote production quantities that belong to the spot market and redispatch level by
the super-index “spot” and “redi”, respectively.

Note that investments are taken for a certain time frame T and thus investment
costs have to be scaled to fit the respective timeline.

3.3. First-level problem: transmission line expansion and investment in
backup capacity. At the first level, the regulator decides about optimal transmis-
sion capacity investment and investment in backup capacity as to maximize welfare.
Welfare is given by the difference of gross consumer surplus and total system costs,
i.e., variable costs of production and investment costs for generation capacity and
transmission line expansion. The decisions about transmission line expansion and
generation capacity investment have to be taken under uncertainty before one of the
possible bidding zone scenarios occurs. As an alternative bidding zone configuration
influences the outcomes of spot market trading and thus welfare levels, the TSO
takes into account the expected value of the latter to account for uncertainty. We
obtain the following first-level objective:

ψ1 :=
∑
s∈S

πs
∑
n∈N

∑
t∈T

τ

∫ dt,n,s

0
pt,n,s(ξ) dξ −

∑
g∈Gall

n

cvar
g yredi

t,g,s


−
∑

l∈Lnew

cinv
l zl −

∑
n∈N

∑
g∈Gall

n

cinv
g ȳg.

The first-level problem thus reads
max

zl,ȳg,g∈Gbu
n

ψ1 (1)

s.t. zl ∈ {0, 1} for all l ∈ Lnew. (2)

3.4. Second-level problem: generation investment and spot market trad-
ing. At the second level, we model investment in generation capacity and spot
market trading by private firms. These decisions are taken to maximize individual
profits. We assume perfectly competitive markets, i.e., all companies are price takers.
This is a common assumption in electricity market modeling (Boucher and Smeers
2001; Daxhelet and Smeers 2007; Grimm et al. 2016a). In the absence of strategic
behavior, profit maximization of each firm yields a welfare-maximizing outcome
(Grimm and Zoettl 2013). We can thus consider the outcome-equivalent welfare
maximization problem. Decisions about investment in generation capacity are taken
under uncertainty, taking into consideration the expected value of spot market
outcomes. The investment decision is based on the expected spot market outcomes,
where the different bidding zone configurations enter the objective function with
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their respective probabilities. The second-level objective thus reads:

ψ2 :=
∑
s∈S

πs
∑
n∈N

∑
t∈T

τ

∫ dt,n,s

0
pt,n,s(ξ) dξ −

∑
g∈Gpriv

n

cvar
g yspot

t,g,s

−∑
n∈N

∑
g∈Gpriv

n

cinv
g ȳg.

(3)

The production yspot
t,g,s of each generator g ∈ G is restricted by its capacity limit

ȳg and it is possible to restrict investment in generation capacity up to a maximum
capacity ȳub

g :

yspot
t,g,s ≤ αg ȳg for all n ∈ N, g ∈ Gpriv

n , t ∈ T, s ∈ S (4)
ȳg ≤ ȳub

g for all n ∈ N, g ∈ Gpriv
n , t ∈ T, s ∈ S. (5)

When deciding about investment in generation capacity and production quantities
during spot market trading, firms only receive regional price signals in case inter-
zonal lines are congested. Intra-zonal lines are neglected during spot market trading.
As a result, in a market setup where all nodes form a single bidding zone, no
transmission capacities are considered and thus firms do not receive any regional
price signals. However, in a scenario where the market is split into two or more
bidding zones, firms can receive zonal price signals in case of constraints on the inter-
zonal trade capacity. We account for this structural uncertainty by implementing
a zonal version of Kirchhoff’s first law, where the number and configuration of
inter-zonal lines depend on the respective bidding zone scenario:∑

n∈N∩Zk

dt,n,s =
∑

n∈N∩Zk

∑
g∈Gpriv

n

yspot
t,g,s +

∑
l∈δin

Zk
(L)

f spot
t,l,s −

∑
l∈δout

Zk
(L)

f spot
t,l,s (6)

for all Zk ∈ Zs, t ∈ T, s ∈ S. Equation (6) coincides with standard market clearing
in case there is only one zone. In case of several zones where at least one zone
contains more than one node, equation (6) requires market clearing in each zone.
This formulation allows for our structural uncertainty about the future bidding zone
configuration to be incorporated.

Flows on inter-zonal lines are restricted by the trade capacity, which is the thermal
capacity of each line, scaled with a security factor βl ∈ [0, 1]:

− βlf̄l ≤ f spot
t,l,s ≤ βlf̄l for all l ∈ Linter

s ∩ Lex, t ∈ T, s ∈ S (7)

− zlβlf̄l ≤ f spot
t,l,s ≤ zlβlf̄l for all l ∈ Linter

s ∩ Lnew, t ∈ T, s ∈ S. (8)
Note that Kirchhoff’s second law is not considered at the spot market level.

Finally, we impose variable bounds on demand and production quantities:
yspot
t,g,s ≥ 0 for all n ∈ N, g ∈ Gpriv

n , t ∈ T, s ∈ S (9)
dt,n,s ≥ 0 for all n ∈ N, t ∈ T, s ∈ S. (10)

To summarize, at level two we consider the welfare maximizing generation investment
decisions under uncertainty and deterministic, scenario-dependent supply decisions,
where supply is constrained by generation capacities and inter-zonal transmission
capacities. We thus obtain the following second-level problem:

max
yspot

t,g,s,dt,n,s,ȳg

ψ2 s.t. (6), (7)–(10). (11)

We end up with a concave-quadratic maximization problem with linear constraints.
All discrete variables that appear at the second level are decided upon in the first
level.

Note that it is also possible to consider a nodal design as a possible scenario.
Then, Kirchhoff’s first and second law would need to be accounted for in level 2.
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3.5. Third-level problem: cost-optimal redispatch. At the third level, cost-
based redispatch is carried out at minimum costs, i.e., the TSO reallocates spot
market supply to ensure feasibility with respect to transmission constraints. This
is done for each scenario, after the bidding zone configuration has been decided
upon. Only in case reallocation of spot market supply does not suffice to resolve
infeasibilities, the TSO has the possibility to ramp up backup generation capacity
to ensure feasibility. Total redispatch costs are given by

ψ3,s :=
∑
n∈N

∑
t∈T

τ
∑
g∈Gall

n

cvar
g

(
yredi
t,g,s − y

spot
t,g,s
)
.

During redispatch, generation volumes can be altered by the TSO. These are
short-run decisions and thus depend on the respective bidding zone scenario s ∈ S.

Trade flows need to account for Kirchhoff’s first law, ensuring power balance at
each node:

dt,n,s =
∑

g∈Gpriv
n

yredi
t,g,s +

∑
l∈δin

n (L)

f redi
t,l,s −

∑
l∈δout

n (L)

f redi
t,l,s (12)

for all n ∈ N, t ∈ T, s ∈ S.
Besides Kirchhoff’s first law as given in equation (12), redispatch also has to

account for Kirchhoff’s second law, which determines the distribution of residual
load at one node across its adjacent transmission lines. This is modeled according
to the linear DC-lossless approach developed by Schweppe et al. (1988), which
determines voltage angles θt,n,s, t ∈ T, n ∈ N, s ∈ S:

f redi
t,l,s −Bl(θt,n,s − θt,j,s) = 0 for all l = (n, j) ∈ Lex, t ∈ T, s ∈ S (13)
−Ml(1− zl) ≤ f redi

t,l,s −Bl(θt,n,s − θt,j,s) ≤Ml(1− zl) (14)
for all l = (n, j) ∈ Lnew, t ∈ T, s ∈ S, where Ml is a sufficiently large number.

To obtain unique physical solutions, we fix the voltage angle at an arbitrary node
n̂ ∈ N :

θt,n̂,s = 0 for all t ∈ T, s ∈ S. (15)
Furthermore, the power flow on all lines is restricted by the thermal capacity:

− f̄l ≤ f redi
t,l,s ≤ f̄l for all l ∈ Lex, t ∈ T, s ∈ S (16)

− zlf̄l ≤ f redi
t,l,s ≤ zlf̄l for all l ∈ Lnew, t ∈ T, s ∈ S. (17)

Applying generation capacity limits and variable bounds analogously to level two,
we obtain the following third-level problem formulation:

min
yredi

t,g,s

ψ3,s s.t. (4), (9), (12), (13)–(17), (18)

where we replaced yspot
t,g,s in (4) and (9) by the redispatch variables yredi

t,g,s and the set
Gpriv
n by Gall

n . We obtain a linear minimization problem over linear constraints.

3.6. Model discussion and solution approach. Considering all three levels, we
obtain a mixed-integer nonlinear trilevel optimization model. In this section, we
describe how we transform the model to an equivalent bilevel problem and solve the
reformulated model to global optimality. Figure 3 illustrates the general structure
of the model in technical terms, where Xi and Wi,s are deterministic and random
variables, respectively, of level i, and Ωi and Ψi,s denote the feasible sets of Xi and
Wi,s, respectively, of level i.
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Figure 3. Schematic representation of the trilevel market model
max
X1

ψ1(X1, X2) + Es [ψ1(W2,s,W3,s)]

s.t. X1 ∈ Ω1,

max
X2,W2,s

ψ2(X2) + Es [ψ2(W2,s)]

s.t. (X1, X2) ∈ Ω2,

W2,s ∈ Ψ2,s for all s ∈ S,
min
W3,s

ψ3,s(W2,s,W3,s)

s.t. (W2,s,W3,s) ∈ Ψ3,s for all s ∈ S

In general, such multilevel mixed-integer nonlinear models are intractable (Dempe
et al. 2015). To be able to solve instances of relevant sizes, problem-tailored solution
approaches need to be developed. Therefore, we exploit the specific problem
structure of our model to reformulate the trilevel market model as an equivalent
mixed-integer bilevel model with concave-quadratic objectives at both levels. We
adapt the reformulation used for a similar setting in Grimm et al. (2016a) to apply
it to the stochastic model formulation. This reformulation builds upon the weak
coupling of the trilevel model as described in Section 2.2. Level 2 only depends on
discrete line investment variables of the first level for two reasons: first, only the
TSO carries out investment in and dispatch of backup capacity, in case redispatch
of private generation capacity does not suffice. Thus, backup does not affect spot
market decisions. Second, we assume cost-based redispatch, which means that firms
do not receive additional rents in the third stage. Consequently, the interconnection
of level 2 and 3 is purely driven by line investment variables from level 1.

We exploit this weak coupling by decomposing our model in the following way:
we fix line investment variables in the second level and solve it for every possible
realization of line investment scenarios.

Note that uniqueness of the solution for given line investment is not ensured in
case generation technologies have the same investment and production costs (Grimm
et al. 2017). In order to ensure a unique solution of the level 2 problem, we apply
the following tie-breaking rule: in case several generators in one bidding zone have
the same investment and production costs, investment in this technology across
all nodes in the zone is divided proportionally to the maximum capacity allowed
at node n ∈ N . In case there is no upper limit, investment is simply divided up
equally across all nodes in the respective zone. Analogously, production is divided
proportionally to the capacity at node n ∈ N in case there are generators with the
same variable production cost in one zone.

We then insert spot market outcomes into level 1 and 3 to compute the remaining
first- and third level solutions that do not affect spot market outcomes. We thus
end up with a master problem consisting of the first and the third level with a
reduced number of variables, and a single-level sub-problem consisting of level 2. We
now show how the master problem can be transformed into a single-level problem
and thus be solved efficiently. To this end, we use the following model property.
Consider the objective functions ψ1 and ψ3,s of level 1 and 3, respectively. It holds
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that

ψ1 =
∑
s∈S

πs

−ψ3,s +
∑
n∈N

∑
t∈T

(∫ dt,n,s

0
pt,n,s(ξ) dξ −

∑
g∈Gall

n

cvar
g yspot

t,g,s

)
−
∑
n∈N

∑
g∈Gall

n

cinv
g ȳg −

∑
l∈Lnew

cinv
l zl.

(19)

Equation (19) reveals that the objective functions of level 1 and 3 differ by a term
that only depends on first- and second-level variables, i.e., line investment and
spot market variables. More explicitly, this implies that the first- and the third-
level problems have affine equivalent objective functions and thus have identical
optimization directions. Therefore, we can reformulate the original trilevel model
into the following equivalent bilevel model:

max ψ1(X1, X2) + Es [ψ1(W2,s,W3,s)] (20)
s.t. X1 ∈ Ω1, (W2,s,W3,s) ∈ Ψ3,s for all s ∈ S,

(X1, X2,W2,s) ∈ argmax{ψ2(X2) + Es [ψ2(W2,s)] : (X1, X2) ∈ Ω2,

W2,s ∈ Ψ2,s for all s ∈ S}.
As shown in (20), the master- and the sub-problem are only coupled by transmission
line investment. Fixing these variables yields decoupled models that can be solved
separately. As line investment zl ∈ {0, 1}, l ∈ Lnew is discrete, we iterate over all
possible line investment scenarios.1 The detailed reformulated bilevel problem can
be found in Appendix B.

4. Two-node example

The model as well as the iterative solution method described in Section 3 have
been implemented in General Algebraic Modeling System (GAMS) Release 25.1.3
(GAMS Development Corporation 2018). All models that need to be solved are
either mixed-integer quadratic programs or linear programs and were solved with
Gurobi 8.1.0 (Gurobi Optimization 2019).

In this section, the effect of regulatory uncertainty on investment decisions, welfare
levels, electricity prices, distribution of rents, and expected profits is addressed in
a stylized two-node example. We consider two possible scenarios on bidding zone
configuration: one, in which the market consists of a single bidding zone, including
both nodes; and a second scenario, in which the market is divided into two bidding
zones and each node represents one of the two zones. Note that for our case with
only two nodes, a division into two bidding zones is equivalent to nodal pricing,
as each node represents exactly one zone and there are no loop flows. There is
regulatory uncertainty for market participants regarding which of the two bidding
zone configurations will be implemented. This uncertainty is parameterized through
a common probability distribution of market participants over the possible designs
of bidding zones. To show the effect of regulatory uncertainty in a system with
different levels of renewables investment, we set up two sets of input data with a
low and high CO2 allowance price, respectively:

i) case A with a moderate CO2 allowance price of 15 e/t,
ii) case B with a higher CO2 allowance price of 35 e/t.

1In a slightly modified setting, Grimm et al. (2019) furthermore propose replacing the result-
ing bilevel problem by an equivalent single-level problem using a Karush-Kuhn-Tucker (KKT)
reformulation for the lower level (Dempe and Zemkoho 2013), which can be solved with standard
solvers. It has been shown, however, that this approach leads to a numerically more complicated
single-level model with long computation times, which was also the case for our model setup. Note
that, as both methods yield globally optimal solutions, the same results are obtained in both cases.
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Note that in each case, both nodes face the same allowance price.

4.1. Operating points for demand and generation. Applying a greenfield
approach, we do not account for any existing capacity. All quantitative values in
the two-node example refer to a system peak demand of 1 MW, whereof node 1 has
a demand share of 30% compared to 70% at node 2 (see Figure 4). The temporal
resolution has 400 operating points, which occur at different frequency and scale
to one representative year: there are two seasons (winter and summer) with forty
different demand levels each, t1 (highest winter peak) to t40 (lowest winter off-peak)
and t41 (highest summer peak) to t80 (lowest summer off-peak). These multiply with
five different availability levels for wind power, w1 (highest) to w5 (lowest). Table 1
states the respective frequency of the operating points, while Table 4 in Appendix A
provides a reference demand level, a reference price, and an availability factor for
wind power for each operating point. Linear demand functions at each node are
then derived for each operating point with the help of reference demand, reference
price, and a point elasticity of demand (ε = −0.1). They allow for a limited amount
of aggregated demand response to electricity prices. This represents an increasing
flexibility of demand in the medium-term time perspective of the investment model,
as it is the case for real world applications, where e.g., industrial electricity demand
exhibits some degree of price elasticity.

Table 1. Structure of operating points with respective frequency

No Entries (frequency)
Seasons 2 winter (0.5), summer (0.5)
Hours 40 t1–t40 (0.0125)
Wind 5 w1 (0.05), w2 (0.2), w3 (0.5), w4 (0.2), w5 (0.05)

4.2. Economic parameters for generation technologies. The economic pa-
rameters in Figure 4 state the annualized investment costs cinv

c > 0 and variable
generation costs cvar

c ≥ 0 of wind power and conventional power stations fired by coal
and natural gas (i.e., combined-cycle gas turbines (CCGT) and gas turbines (GT))
in case c ∈ {A,B}.2,3 Coal and wind power plants have the highest fixed costs,
followed by CCGT and GT. The assumption of worse wind conditions at node 2
is represented with a markup on investment costs, whereas both nodes have equal
availability factors (i.e., the same generation pattern) for one operating point.

The different levels of the CO2 prices affect the variable generation costs of
conventional power plants, whereas wind power always has variable costs of zero.
We further assume that coal is more expensive at node 2 (e.g., due to an additional
markup for regional coal transport), resulting in higher variable costs of coal
generation compared to node 1. In case A, the conventional technology with lowest
variable generation costs is coal, followed by CCGT, and GT. In case B, which

2To calculate annualized investment costs, we assume overnight investment costs of
1 600 Te/MW for coal, 1 000 Te/MW for CCGT, 500 Te/MW for GT, and 1 200 Te/MW
for wind at node 1 (1 440 Te/MW at node 2 including a markup of +20%). We further assume
depreciation periods of 40 years for coal and CCGT and 30 years for GT and wind power plants
and an interest rate of 5%. As an alternative to load shedding, the TSO has the possibility to
contract capacity of GT outside the spot market at the same investment and variable costs.

3Variable generation costs of conventional technologies follow these assumptions: a hard coal
price of 85.0 e/t (about 10.4 e/MWhth), a natural gas price of 21 e/MWhth, and a price for
CO2 emission allowances of 15 e/t for case A and 35 e/t for case B. Efficiency factors are 45% for
coal, 55% for CCGT, and 35% for GT, resulting in specific CO2 emissions of 800 g/kWhel for coal,
340 g/kWhel for CCGT, and 535 g/kWhel for GT.
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implies a higher CO2 price, generation companies choose between CCGT (always
being more profitable than coal), GT, and wind power plants.

Figure 4. Illustration of two-node example with annualized
investment costs cinv

g and variable generation costs cvar
g

Wind:
cinv = 78 000 e/MW
cvar = 0 e/MWh

Coal:
cinv = 93 000 e/MW
cvar

A = 35 e/MWh
cvar

B = 51 e/MWh

Wind:
cinv = 93 000 e/MW
cvar = 0 e/MWh

Coal:
cinv = 93 000 e/MW
cvar

A = 38 e/MWh
cvar

B = 54 e/MWh

CCGT:
cinv = 58 000 e/MW
cvar

A = 43 e/MWh
cvar

B = 50 e/MWh

GT:
cinv = 32 000 e/MW
cvar

A = 68 e/MWh
cvar

B = 79 e/MWh

CCGT:
cinv = 58 000 e/MW
cvar

A = 43 e/MWh
cvar

B = 50 e/MWh

GT:
cinv = 32 000 e/MW
cvar

A = 68 e/MWh
cvar

B = 79 e/MWh

1

Demand share: 0.3

2

Demand share: 0.7

4.3. Network expansion. The TSO can invest in line capacity between node 1
and node 2 in incremental steps of 0.01 MW. Annualized fixed costs for transmission
investment of 1 MW are 25,000 e.

5. Results

In the following, we discuss to what extent regulatory uncertainty affects level
and distribution of investments, welfare, prices, and profits. We take the perspective
that one bidding zone is in place and there is uncertainty about whether or not it
will be split into two zones in the future. Of course, the reasoning would also be
possible vice versa with the possibility to reduce the number of bidding zones.4 We
evaluate the model for a discrete set of probabilities that market participants (the
TSO and private investors) assume for the implementation of two bidding zones,
i.e., P (k = 2) ∈ {0, 0.1, . . . , 1}. In order to keep runtimes short, we do not increase
the resolution any further, as this would not significantly change the results. Market
participants expect the implementation of either one or two bidding zones, i.e.,
P (k = 1) + P (k = 2) = 1. When P (k = 2) = 0.0, market participants are certain
to see one bidding zone in the future, whereas for P (k = 2) = 1.0, they are certain
that two bidding zones will be in place.

4An example are the entry-exit zones in European gas markets with an ongoing development of
bidding zone reductions.
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5.1. Investment in generation and transmission.

Result 1. Expectations that the market design changes from one to two bidding
zones affect the location as well as the technology of generation capacity and also
the level of transmission capacity. Consequently, not only the implementation but
also the expectation of zonal reconfiguration has quantifiable economic effects.

Figure 5 (case A) and Figure 6 (case B) give an overview on decisions on
investment in generation and transmission capacity for different probabilities. At
this point, results only depend on the expectation to end up with either one or
two bidding zones and not on the later choice on the bidding zone design by the
regulator.

For P (k = 2) = 0.0, Kirchhoff’s first law [Equation (6)] coincides with the standard
market clearing condition. This means that potentially congested transmission lines
between node 1 and node 2 are not considered during spot market trading and
thus no regional price signals are provided. The lack of locational price signals
has effects on both investments in generation and transmission capacity. While
it directly affects investments in generation capacity, it has an indirect impact
on investments in transmission capacity. In particular, the TSO anticipates that
generators will assume unlimited transmission capacity when they take investment
decisions and thus, potentially misallocate generation facilities. Therefore, the
TSO builds more transmission capacity, accounting for the fact that there is no
mechanism to direct investments in generation capacity to supply-constrained regions.
The regulator maximizes social welfare [Equation (1)] without having an impact
on the optimization problem of private firms [Equation (11)]. Gas-fired power
plants are equally distributed across both nodes according to the tie-breaking rule
described in Section 3.6. This is an exogenous assumption following their equal
investment and variable production cost throughout all nodes. In contrast, wind
power plants have regionally differentiated investment costs and coal power plants
have regionally differentiated variable costs. In expectation of one bidding zone,
generation companies invest in wind and coal capacity only at node 1 due to their
lower nodal costs. While case A sees a combination of coal and wind power, the
higher CO2 price in case B leads to more investment in wind power and CCGT but
none in coal-fired power plants. Overall investment in generation capacity is higher
in case B (2.23 MW) compared to case A (1.58 MW) due to the low guaranteed
availability of wind capacity.

For P (k = 2) = 1.0, Equation (6) requires market clearing in each zone. This
means that all lines between node 1 and node 2 are considered as inter-zonal
transmission lines in Equation (6) and locally differentiated spot market prices
reflect spatial scarcities. The TSO anticipates that its investment decision on the
level of transmission capacity [Equation (1)] alters investment decisions of generation
companies in their profit maximization problem [Equation (11)]. As a result, the
TSO reduces its investment in transmission capacity to about 55% of the initial level.
With the expectation of two bidding zones, generation investment in gas-fired power
plants shifts to a large extent to node 2 and increases for CCGT, while investment
in coal and wind power plants decreases at node 1. Further, node 2 receives a small
share of investment in coal capacity (case A) and wind capacity (case B).

For case A, Figure 5 summarizes investment decisions for different values of
P (k = 2).5 We observe that assigning even a relatively small probability to two
bidding zones provides incentives for the relocation of most gas-fired generation ca-
pacity to node 2. The reason is that gas-fired power plants have the same investment
and variable costs at both nodes. Therefore, even a very low probability for the

5For 0 < P (k = 2) < 1, the TSO contracts backup capacity of about 0.01 MW at node 2.
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occurrence of two bidding zones eliminates the indifference and incentivizes a shift of
investment to node 2, where electricity prices are higher in the case of two bidding
zones. The majority of coal and all wind power plants, which have a more favorable
cost structure at node 1, are located at node 1 for all P (k = 2) ∈ {0, 0.1, . . . , 1}. For
an increasing probability up to P (k = 2) ≤ 0.6, coal and wind capacity at node 1
slightly decreases compared to the benchmark (P (k = 2) = 0.0), while more CCGT
capacity is built at node 2. Only for P (k = 2) ≥ 0.7, generation companies invest
in small amounts of coal capacity at node 2. In general, the capacity of coal and
wind power plants decreases for higher probabilities P (k = 2), while CCGT capacity
increases, leading not only to a different locational distribution, but also to a change
in technology.

The relocation of generation capacity closer to load centers at node 2, already for
P (k = 2) = 0.1, goes along with significant reductions in transmission investment.
Except for the initial reduction from 0.61 MW to 0.45 MW at P (k = 2) = 0.1 and
a small step with the relocation of some coal capacity to node 2 at P (k = 2) = 0.7,
transmission capacity decreases steadily for increasing P (k = 2), reaching 0.35 MW
at P (k = 2) = 1.0.

Figure 5. Generation and network capacity (case A)
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(b) Transmission investment

In case B (Figure 6), wind power is the technology with lowest average generation
costs and generation companies invest in 1.43 MW of wind power plants at node 1 for
P (k = 2) = 0.0. Due to its varying availability, the installed wind capacity does not
supply the entire electricity demand in all operating points, resulting in additional
investment in CCGT and GT capacity. Compared to case A, higher overall CCGT
investment leads to more generation capacity at node 2 after tie-breaking investment
to both nodes at P (k = 2) = 0.0. Together with the complementary character in
the utilization of network capacity for wind and CCGT at node 1, this allows for
lower investment in transmission capacity.

Compared to case A, low probabilities for P (k = 2) only have a minor impact
on investment in generation and transmission capacity. Some gas-fired capacity is
relocated to node 2 but the effect is less prominent. For increasing P (k = 2), wind
capacity at node 1 constantly reduces to 1.30 MW at P (k = 2) = 0.7, decreasing
overall installed generation capacity. At P (k = 2) = 0.8, a structural change takes
place as investment in wind power capacity at node 2 (0.24 MW) replaces some wind
power capacity at node 1 (0.31 MW). Even higher P (k = 2) imply an additional,
yet small relocation of wind power from node 1 to node 2, resulting in total wind
power capacity of 1.24 MW for P (k = 2) = 1.0.
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Transmission investment decreases monotonically, yet on limited scale from
0.50 MW to 0.43 MW until P (k = 2) = 0.7 and only at P (k = 2) = 0.8 it substan-
tially decreases to 0.27 MW. Again, higher probabilities P (k = 2) entail an altered
regional distribution and a change in technology for generation investment with less
wind and more CCGT in the generation mix.

Altogether, we find that a higher probability for the implementation of two
bidding zones leads to more efficient investment in generation capacity and thus
less need for transmission capacity. The results illustrate that not only the actual
implementation of locational prices has an efficiency-enhancing effect, as it has been
shown by Holmberg and Lazarczyk (2015). We illustrate that already the possibility
that locational prices are implemented in the future can have substantial effects on
investment decisions.

Figure 6. Generation and network capacity (case B)
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5.2. Market results.

Result 2. In case of regulatory uncertainty, a perceived positive probability of zonal
reconfiguration from one to two bidding zones leads to welfare gains independently
from the regulator’s ultimate decision on the zonal configuration. This is mainly
due to more efficient long-run investment decisions that anticipate a possible change
of the bidding zone configuration. Importantly, this anticipation effect reduces
possible additional welfare gains upon the actual implementation of two bidding
zones considerably.

Welfare effects. Figure 7 illustrates welfare changes after the implementation of
one or two bidding zones as compared to a benchmark scenario, where one zone
is anticipated and also implemented. General results for both cases are, that
introducing two bidding zones without any anticipation by market participants
yields comparably low welfare gains. A strictly positive expectation of two bidding
zones by the TSO and generation companies leads to a higher welfare level, in which
case the implementation of two bidding zones yields additional welfare gains. Highest
welfare levels result from P (k = 2) = 1.0 and k = 2, due to the right assumption of
the TSO and generation companies on the implemented bidding zone design, when
deciding on investment, combined with a more efficient market dispatch after the
implementation of two bidding zones. This result is in line with previous findings
in the literature about the beneficial effects of the implementation of regionally
differentiated price signals (cf. e.g., Holmberg and Lazarczyk 2015).

For case A, even a relatively low probability for implementing two zones already
leads to high welfare gains, mainly due a more efficient relocation of CCGT and
GT capacity (at no additional cost) and less network investment. Probabilities
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P (k = 2) > 0.1 lead to additional monotonically increasing welfare gains with
respect to the benchmark scenario. We also observe that for a given probability
P (k = 2), welfare gains with respect to the benchmark case are relatively similar
for k = 1 and k = 2. This indicates that most welfare gains result from changes in
transmission and generation investment (taken under uncertainty), while the later
decision by the regulator for either one or two bidding zones has limited effects on
welfare.

In case B, welfare gains from investment decisions are significantly lower than
in case A (with respect to the benchmark case), as investment for P (k = 2) = 0.0
is already more efficient with higher levels of gas-fired capacity at node 2 and less
network investment. Instead, the welfare gains following the implementation of
two zones (k = 2) are several times higher than in case A for a given probability
P (k = 2) > 0. This illustrates that welfare gains only partly occur due to a more
efficient location of generation capacity, and a large part depends on regionally
efficient market results during spot market trading.

Figure 7. Welfare for implementation one and two bidding zones
A value of 1 e/MWh translates into annual welfare gains of 1 million e for
1 TWh in annual electricity demand
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Spot market prices. With higher expectations for two bidding zones, average spot
market prices mostly increase (Figure 8) while network fees decrease (Figure 9).
The reason is that for k = 2, inter-zonal trade flows are restricted by Equation (16)
and Equation (17). This means that in case of a congestion, prices in the import-
constrained area increase.

With the implementation of one bidding zone (k=1), investment decisions (taken
in anticipation of two bidding zones) increase electricity spot market prices by almost
2 e/MWh in both cases for high values of P (k = 2). While consumers in case A
can more than compensate the additional expenses in the spot market with lower
network fees for low P (k = 2), this does not hold for higher probabilities and in
case B.

With the implementation of two bidding zones (k=2), spot market prices are
1-2 e/MWh lower (higher) at node 1 (node 2) compared to the implementation of
one bidding zone. Reasons are the change from technologies with lower variable
production cost at node 1 to technologies with higher variable costs closer to the
demand center at node 2 and a reduction in network investment. This leads to
network constraints and zonal price differences in some operating points. The
general price trend is upwards for an increasing expectation to see two bidding
zones. Exceptions are, that node 1 sees a drop in average spot market prices for
low P (k = 2) and prices at node 2 start to decrease for high P (k = 2) which
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reduces price spreads. Compared to the benchmark scenario, network fees decline
steeply for low P (k = 2) ≤ 0.2, reach even negative levels for higher P (k = 2) by
collecting congestion rents on trade between the two zones, and settle at 0 e/MWh
for P (k = 2) = 1.

Figure 8. Average, demand-weighted spot market prices
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Figure 9. Additional network fees including network costs,
balancing cost, and network congestion rents
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5.3. Distributional effects.
Result 3. Regulatory uncertainty leads to distributional effects (as compared to the
case without regulatory uncertainty) that are due to its effect on investment decisions
and, thus, market outcomes. In particular, generation technologies with relatively
high investment costs are prone to economic risk.

Stakeholder rents. Figures 10–11 show the different welfare components in more
detail. With the implementation of one bidding zone, consumer surplus decreases
and producer surplus increases with higher probabilities for P (k = 2). The reason
is the change in technology from coal and wind at node 1 to CCGT at node 2 (see
Section 5.1) at higher probabilities for two bidding zones. Electricity generation
becomes more expensive (prices go up) while overall costs for transmission infras-
tructure and redispatch decreases (positive other welfare gains). In case B, the
positive other effects only realize at P (k = 2) ≥ 0.8, when some wind is relocated to
node 2 and transmission investment decreases.

With the implementation of two bidding zones, prices at node 1 decrease and
consumer surplus is higher (producer surplus lower) than in the benchmark case
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P (k = 2) = 0.0. In contrast, consumer surplus is lower (producer surplus higher) at
node 2 than in the benchmark case, as prices go up due to investment in generation
capacity with higher variable cost. Losses for consumers at node 2 and producers at
node 1 are significantly higher than gains by consumers at node 1 and producers at
node 2. Also, as producers adapt to two bidding zones with higher P (k = 2), welfare
losses mostly allocate to consumers at node 2. On the other hand, most welfare
gains materialize in lower network and redispatch costs (other) and a significant
amount of congestion rents (CR).

The general distributional effects are the same for case A and case B, although
in case A it is more pronounced due to higher price differences with the initial
relocation of gas-fired power plants for low P (k = 2). Distribution effects are also
generally lower if stakeholders anticipate a zonal design correctly and with a high
probability.

Figure 10. Welfare distribution in case A
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(b) Realization: Two zones

Figure 11. Welfare distribution in case B
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(b) Realization: Two zones

Technology profits. Generation companies make their investment decision according
to their probability distribution on the expected bidding zone configuration. Under
the assumption of perfect competition, investments in all technologies at both nodes
receive zero profits in market equilibrium. This no longer holds for investments
under uncertainty after the implementation of either one or two bidding zones.
Table 2 for case A and Table 3 for case B provide profits and losses by technology
for different probabilities.

For a positive expectation of market participants to see two bidding zones and
the later implementation of one bidding zone, technologies make a profit at node 1
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and a loss at node 2. Vice versa, some technologies make losses at node 1 and profits
at node 2 with the implementation of two bidding zones. For each technology at
one node, the sum of profits and losses multiplied with the respective probabilities
P (k = 1) and P (k = 2) result in an expected profit of zero.

For the implementation of one bidding zone in case A, coal and wind generators
are better off at node 1 as compared to the benchmark, whereas coal and CCGT
at node 2 are worse off (and vice versa for two bidding zones). Most exposed is
wind, followed by coal at node 1, coal at node 2, and CCGT at node 2. In case B,
wind power is exposed to uncertainty with almost twice the possible profits and
losses than in case A, while there is no effect on CCGT capacity at both nodes. The
results indicate that price differences due to network constraints do not occur in
operating points with peak prices as not GT but technologies with lower variable
costs are exposed to risks. In case A this includes wind, coal, and CCGT while in
case B it only affects wind.

Table 2. Generators’ profit for uncertain bidding zones (case A)

e/MWh One zone Two zones
P(k=2) windn1 coaln1 coaln2 CCGTn2 windn1 coaln1 coaln2 CCGTn2

0.0 0.00 0.00 - 0.00 -0.28 -0.14 - 0.49
0.1 0.14 0.14 - -0.15 -1.30 -1.27 - 1.09
0.2 0.31 0.29 - -0.28 -1.26 -1.22 - 0.89
0.3 0.50 0.46 - -0.38 -1.18 -1.13 - 0.71
0.4 0.73 0.65 - -0.46 -1.09 -1.03 - 0.55
0.5 0.98 0.86 - -0.51 -0.98 -0.91 - 0.41
0.6 1.27 1.08 - -0.54 -0.85 -0.76 - 0.29
0.7 1.77 1.43 -1.23 -0.57 -0.76 -0.66 0.41 0.20
0.8 2.01 1.53 -1.22 -0.60 -0.50 -0.41 0.25 0.12
0.9 2.22 1.59 -1.20 -0.65 -0.25 -0.19 0.11 0.06
1.0 2.22 1.57 -1.23 -0.62 0.00 0.00 0.00 0.00

Table 3. Generators’ profit for uncertain bidding zones (case B)

e/MWh One zone Two zones
P(k=2) windn1 windn2 windn1 windn2

0.0 0.00 - -1.67 -
0.1 0.22 - -1.98 -
0.2 0.64 - -2.59 -
0.3 1.03 - -2.43 -
0.4 1.47 - -2.23 -
0.5 1.70 - -1.72 -
0.6 2.18 - -1.47 -
0.7 2.69 - -1.17 -
0.8 4.10 -3.91 -1.05 0.95
0.9 3.98 -4.03 -0.45 0.43
1.0 3.82 -4.31 0.00 0.00
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6. Discussion

The observations above highlight several key insights. First of all, our analysis
shows that expectations about the future bidding zone configuration are crucially
important. In some cases, even a small probability of a change in the bidding
zone configuration is enough to significantly change investment levels and realize a
significant part of the benefits of an actual bidding zone configuration change. This
is particularly true if generation investment and operational costs are not highly
location-dependent, because in this case, a small probability of price divergence
will tip the balance in favor of one location. If the costs of generation are location-
dependent, as they are for, e.g., wind generators, this effect is much less pronounced.
In this case, a significant probability of diverging prices is necessary to overcome cost
difference between the different locations. In addition, if the available generation
capacity varies over time, as it does for most renewables, a probability of a change in
the bidding zone configuration also has less of an impact on welfare, as in this case
a more efficient distribution of investment is not enough – the actual change to a
bidding zone configuration which allows for a more efficient dispatch has significant
additional benefits.

Although expectations about the bidding zone configuration change welfare, they
also have distributional effects. In the short term, an increase in the perceived
probability of a change in bidding zones generally decreases consumer surplus, as it
leads to higher prices. However, this is offset by a decrease in network costs, which
are usually indirectly paid for by consumers in the longer run. Different expectations
also influence how the additional gains from an actual change in bidding zones are
distributed among consumers and producers at different locations. There are also
distributional effects between different generation technologies. Generators with
higher investment costs are most exposed to our type of regulatory uncertainty.

Our analysis also shows that bidding zone uncertainty can have a positive effect
on welfare and system efficiency. This is only the case if there is probability that the
future bidding zone configuration provides improved regional price signals. It is also
not universally true; for instance, if investors are risk averse, structural regulatory
uncertainty may discourage investment to the point where welfare is negatively
affected. Nevertheless, as we have shown above, there is a possibility that regulatory
uncertainty increases welfare.

Importantly, this does not mean regulatory uncertainty can be used as a long-term
policy tool, as expectations cannot consistently diverge from reality. It is, however,
something that policy makers and regulators should be aware of, as regulatory
uncertainty can have a significant impact on markets. In our particular example,
if market participants believe that there is a nonzero probability of a change from
uniform to zonal pricing, part of the benefits from this change are already realized,
regardless of whether or not it actually happens. This implies that the actual
benefits of a change in bidding zones may be lower than expected. Importantly, it
also implies that as long as policy makers are themselves unsure about policies that
increase market efficiency, they should not try to shut down the wide debate about
these, as this debate may already have positive effects.

Naturally, our approach has limitations: i) including intertemporal dependencies
(e.g., ramp limits, minimum up and down times) in the model setup could result in
some additional investment in GT together with lower CCGT and wind capacity.
Nonetheless, we do not expect significant changes in the central model results. This
is due to the fact that including intertemporal dependencies would have a similar
effect for all scenarios, which means that conclusions about the overall direction of
the results are retained; ii) we have considered a small network with two nodes. Our
approach of decoupling model stages and fixing different line investment decisions
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to reach the global optimal solution might result in combinatorial challenges for
a network topology with a much larger number of nodes. However, larger-scale
problems can be solved by employing pre-processing of spatial investment patterns, a
reduction of possible candidate lines for transmission investment consistent with the
lumpy character of real-world line investment (cf. Spyrou et al. 2017), a higher degree
in parallelization of model runs, advanced binary search algorithms as suggested
in Grimm et al. 2016b, or other decomposition approaches such as ADMM (cf.
Boyd et al. 2011). In case a larger network is considered, there are naturally
many possibilities for future delineations of bidding zones. In this case, it would
be reasonable to assume that market participants assign higher probabilities to
more efficient bidding zone configurations, anticipating the regulator to prefer these.
However, there could also be situations where a suboptimal zonal configuration is
considered as most likely, e.g., if optimal zones do not coincide with jurisdictional
borders. There exists an extensive literature that studies the optimal delineation of
bidding zones in electricity markets, such as, e.g., Ambrosius et al. 2018, Bjørndal
and Jörnsten 2007, Green 2007, and Bjørndal and Jørnsten 2001. On a larger
network, one would assume that market participants assign a higher probability to
the implementation of such an optimal zonal configuration; iii) in our model setup,
the future bidding zone configuration is the only source of uncertainty. In the real
world, there is additional uncertainty about a wide range of other variables and
structures. There are also other market inefficiencies. All of this means that the
additional effect of regulatory uncertainty may be smaller. In addition, we assume
that market participants are risk-neutral. In reality, market participants are likely
to be risk averse, which will increase the impact of uncertainty on investment levels
and spatial distributions. Therefore, a natural next step for future research would
be to consider risk-averse market participants in a similar setting. In the literature,
there are different approaches to do this, such as robust optimization approaches (cf.
Ben-Tal and Nemirovski 2002), value at risk (cf. Duffie and Pan 1997), or conditional
value at risk (cf. Rockafellar, Uryasev, et al. 2000). Although our model provides
the flexibility to include the aspect of risk aversion, it is necessary to first thoroughly
analyze equilibria and the role of risk trading in such an environment; iv) finally,
in our model, we only have one investment stage. This may overstate the impact
of uncertainty on investment, as compared to a situation in which investments are
made continuously, with options to wait or adjust.

All these issues are worth investigating further. Nevertheless, we expect our
qualitative findings to carry over to larger, more complex, and more realistic settings.

7. Conclusion

In this paper, we have developed a novel method for including structural regulatory
uncertainty about the future bidding zone configuration in a multilevel electricity
market model with transmission and generation investment and have applied it to a
stylized two-node example studying the effect of uncertainty on market outcomes.

This analysis yields various insights. First, our qualitative results show that some
of the welfare gain from a switch to a more efficient bidding zone configuration
might already be realized before the actual implementation, if market participants
anticipate the change. Market participants’ beliefs about future bidding zones should
therefore not be ignored in the discussion on bidding zone topology. Second, even
small probabilities for the expectation of a change in bidding zones can lead to more
efficient generation and transmission investment. The welfare gains increase with
higher expectations of a switch to a more efficient system. Third, we observe that
risk is not distributed equally between market participants: in general, generators
with high investment costs carry the risk of investing not the right quantity and in



24 M. AMBROSIUS, J. EGERER, V. GRIMM, A.H. V.D. WEIJDE

the wrong locations, while generators with lower investment costs are not affected
negatively by uncertainty.

When considering implementing a change to a more efficient bidding zone config-
uration, policy makers should be aware of the fact that part of the welfare gains
might already have been realized due to a period of uncertainty preceding the actual
implementation. At the same time, deliberately inducing uncertainty cannot be used
as a policy tool by the regulators in the long run, as expectations and realizations
cannot indefinitely diverge.

To adequately assess and disentangle the different effects of uncertainty, we have
applied our model to a small network with simplifying assumptions. Future work
could address a more realistic representation of an existing electricity system, to
quantify results and verify that they carry over to real-world networks.

Acknowledgments

This research has been performed as part of the Energie Campus Nürnberg (EnCN)
and is supported by funding of the Bavarian State Government and the Emerging
Field Initiative (EFI) of the Friedrich-Alexander-Universität Erlangen-Nürnberg
through the project “Sustainable Business Models in Energy Markets” and by the
Emerging Talents Initiative (ETI) of the Friedrich-Alexander-Universität Erlangen-
Nürnberg for Jonas Egerer. We also thank the Deutsche Forschungsgemeinschaft
for their support within project B08 in the “Sonderforschungsbereich/Transregio
154 Mathematical Modelling, Simulation and Optimization using the Example
of Gas Networks”. The project received funding by the Dr. Theo and Friedl
Schöller Research Center through a Schöller Fellowship for A.H. van der Weijde.
Additional support came from the UK Engineering and Physical Sciences Research
Council through grant number EP/P001173/1 (CESI). We thank Anton Schindler
for assistance with the model development.

References

Ambrosius, Mirjam, Veronika Grimm, Thomas Kleinert, Frauke Liers, Martin
Schmidt, and Gregor Zöttl (2018). “Endogenous Price Zones and Investment
Incentives in Electricity Markets: An Application of Multilevel Optimization
with Graph Partitioning.” In: Optimization Online. Preprint. url: http://www.
optimization-online.org/DB_FILE/2018/10/6868.pdf.

Baringo, Luis and Antonio J. Conejo (2013). “Risk-Constrained Multi-Stage Wind
Power Investment.” In: IEEE Transactions on Power Systems 28.1, pp. 401–411.
doi: 10.1109/TPWRS.2012.2205411.

Ben-Tal, Aharon and Arkadi Nemirovski (2002). “Robust optimization–methodology
and applications.” In: Mathematical Programming 92.3, pp. 453–480. doi: 10.
1007/s101070100286.

Bertsch, Joachim, Tom Brown, Simeon Hagspiel, and Lisa Just (2017). “The relevance
of grid expansion under zonal markets.” In: The Energy Journal 38.5. doi:
10.5547/01956574.38.5.jber.

Birge, John R. and François Louveaux (2011). Introduction to Stochastic Program-
ming. Springer Series in Operations Research and Financial Engineering. New
York, NY: Springer New York. doi: 10.1007/978-1-4614-0237-4.

Bjørndal, Mette and Kurt Jörnsten (2007). “Benefits from coordinating congestion
management—The Nordic power market.” In: Energy Policy 35.3, pp. 1978–1991.
doi: 10.1016/j.enpol.2006.06.014.

Bjørndal, Mette and Kurt Jørnsten (2001). “Zonal Pricing in a Deregulated Electric-
ity Market.” In: The Energy Journal 22.1, pp. 51–73. doi: 10.5547/issn0195-
6574-ej-vol22-no1-3.

http://www.optimization-online.org/DB_FILE/2018/10/6868.pdf
http://www.optimization-online.org/DB_FILE/2018/10/6868.pdf
http://dx.doi.org/10.1109/TPWRS.2012.2205411
http://dx.doi.org/10.1007/s101070100286
http://dx.doi.org/10.1007/s101070100286
http://dx.doi.org/10.5547/01956574.38.5.jber
http://dx.doi.org/10.1007/978-1-4614-0237-4
http://dx.doi.org/10.1016/j.enpol.2006.06.014
http://dx.doi.org/10.5547/issn0195-6574-ej-vol22-no1-3
http://dx.doi.org/10.5547/issn0195-6574-ej-vol22-no1-3


UNCERTAIN BIDDING ZONE CONFIGURATIONS 25

Boucher, Jacqueline and Yves Smeers (2001). “Alternative Models of Restructured
Electricity Systems, Part 1: No Market Power.” In: Operations Research 49.6,
pp. 821–838. doi: 10.1287/opre.49.6.821.10017.

Boyd, Stephen, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein (2011).
“Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers.” In: Foundations and Trends in Machine Learning 3.1,
pp. 1–122. doi: 10.1561/2200000016.

CMA (2015). Locational Pricing in the Electricity Market in Great Britain. Com-
petition and Markets Authority, London. url: https://assets.publishing.
service.gov.uk/media/54eb5da5ed915d0cf7000010/Locational_pricing.
pdf.

Conejo, Antonio J., Miguel Carrión, and Juan M. Morales (2010). Decision Mak-
ing Under Uncertainty in Electricity Markets. Vol. 153. International Series in
Operations Research & Management Science. Boston, MA: Springer US. doi:
10.1007/978-1-4419-7421-1.

Daxhelet, Olivier. and Yves Smeers (2007). “The EU regulation on cross-border
trade of electricity: A two-stage equilibrium model.” In: European Journal of
Operational Research 181.3, pp. 1396–1412. doi: 10.1016/j.ejor.2005.12.040.

Dempe, Stephan, Vyacheslav Kalashnikov, Gerardo A. Pérez-Valdés, and Nataliya
Kalashnykova (2015). Bilevel Programming Problems. Energy Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-45827-3.

Dempe, Stephan and Alain B. Zemkoho (2013). “The bilevel programming problem:
reformulations, constraint qualifications and optimality conditions.” en. In: Math-
ematical Programming 138.1-2, pp. 447–473. doi: 10.1007/s10107-011-0508-5.

Dijk, Justin and Bert Willems (2011). “The effect of counter-trading on competition
in electricity markets.” en. In: Energy Policy 39.3, pp. 1764–1773. doi: 10.1016/
j.enpol.2011.01.008.

Duffie, Darrell and Jun Pan (1997). “An Overview of Value at Risk.” en. In: The
Journal of Derivatives 4.3, pp. 7–49. doi: 10.3905/jod.1997.407971.

Egerer, Jonas, Jens Weibezahn, and Hauke Hermann (2016). “Two price zones for
the German electricity market — Market implications and distributional effects.”
In: Energy Economics 59, pp. 365–381. doi: 10.1016/j.eneco.2016.08.002.

Ehrenmann, Andreas and Yves Smeers (2011). “Generation Capacity Expansion
in a Risky Environment: A Stochastic Equilibrium Analysis.” en. In: Operations
Research 59.6, pp. 1332–1346. doi: 10.1287/opre.1110.0992.

ENTSO-E (2018). First edition of the bidding zone review. url: https://docstore.
entsoe.eu/Documents/News/bz-review/2018-03_First_Edition_of_the_
Bidding_Zone_Review.pdf.

Felling, Tim and Christoph Weber (2018). “Consistent and robust delimitation of
price zones under uncertainty with an application to Central Western Europe.”
In: Energy Economics 75, pp. 583–601. doi: 10.1016/j.eneco.2018.09.012.
(Visited on 12/09/2019).

Frontier Economics and Consentec (2011). Relevance of established national bid-
ding areas for European power market integration – an approach to welfare
oriented evaluation. url: https://www.bundesnetzagentur.de/SharedDocs/
Downloads/EN/Areas/ElectricityGas/Special%20Topics/StudyPriceZone/
StudyPriceZoneLong.pdf?__blob=publicationFile&v=3.

GAMS Development Corporation (2018). General Algebraic Modeling System
(GAMS) Release 27.1.0.

Green, Richard (2007). “Nodal pricing of electricity: how much does it cost to
get it wrong?” In: Journal of Regulatory Economics 31.2, pp. 125–149. doi:
10.1007/s11149-006-9019-3.

http://dx.doi.org/10.1287/opre.49.6.821.10017
http://dx.doi.org/10.1561/2200000016
https://assets.publishing.service.gov.uk/media/54eb5da5ed915d0cf7000010/Locational_pricing.pdf
https://assets.publishing.service.gov.uk/media/54eb5da5ed915d0cf7000010/Locational_pricing.pdf
https://assets.publishing.service.gov.uk/media/54eb5da5ed915d0cf7000010/Locational_pricing.pdf
http://dx.doi.org/10.1007/978-1-4419-7421-1
http://dx.doi.org/10.1016/j.ejor.2005.12.040
http://dx.doi.org/10.1007/978-3-662-45827-3
http://dx.doi.org/10.1007/s10107-011-0508-5
http://dx.doi.org/10.1016/j.enpol.2011.01.008
http://dx.doi.org/10.1016/j.enpol.2011.01.008
http://dx.doi.org/10.3905/jod.1997.407971
http://dx.doi.org/10.1016/j.eneco.2016.08.002
http://dx.doi.org/10.1287/opre.1110.0992
https://docstore.entsoe.eu/Documents/News/bz-review/2018-03_First_Edition_of_the_Bidding_Zone_Review.pdf
https://docstore.entsoe.eu/Documents/News/bz-review/2018-03_First_Edition_of_the_Bidding_Zone_Review.pdf
https://docstore.entsoe.eu/Documents/News/bz-review/2018-03_First_Edition_of_the_Bidding_Zone_Review.pdf
http://dx.doi.org/10.1016/j.eneco.2018.09.012
https://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/Areas/ElectricityGas/Special%20Topics/StudyPriceZone/StudyPriceZoneLong.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/Areas/ElectricityGas/Special%20Topics/StudyPriceZone/StudyPriceZoneLong.pdf?__blob=publicationFile&v=3
https://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/Areas/ElectricityGas/Special%20Topics/StudyPriceZone/StudyPriceZoneLong.pdf?__blob=publicationFile&v=3
http://dx.doi.org/10.1007/s11149-006-9019-3


26 M. AMBROSIUS, J. EGERER, V. GRIMM, A.H. V.D. WEIJDE

Grimm, Veronika, Thomas Kleinert, Frauke Liers, Martin Schmidt, and Gregor Zöttl
(2019). “Optimal price zones of electricity markets: a mixed-integer multilevel
model and global solution approaches.” en. In: Optimization Methods and Software
34.2, pp. 406–436. doi: 10.1080/10556788.2017.1401069.

Grimm, Veronika, Alexander Martin, Martin Schmidt, Martin Weibelzahl, and
Gregor Zöttl (2016a). “Transmission and generation investment in electricity
markets: The effects of market splitting and network fee regimes.” In: European
Journal of Operational Research 254.2, pp. 493–509. doi: 10.1016/j.ejor.2016.
03.044.

Grimm, Veronika, Alexander Martin, Christian Sölch, Martin Weibelzahl, and Gregor
Zöttl (2018). “Market-Based Redispatch May Result in Inefficient Dispatch.” en.
In: SSRN Electronic Journal. doi: 10.2139/ssrn.3120403.

Grimm, Veronika, Alexander Martin, Martin Weibelzahl, and Gregor Zöttl (2016b).
“On the long run effects of market splitting: Why more price zones might decrease
welfare.” In: Energy Policy 94, pp. 453–467. doi: 10.1016/j.enpol.2015.11.010.

Grimm, Veronika, Lars Schewe, Martin Schmidt, and Gregor Zöttl (2017). “Unique-
ness of market equilibrium on a network: A peak-load pricing approach.” In:
European Journal of Operational Research 261.3, pp. 971–983. doi: 10.1016/j.
ejor.2017.03.036.

Grimm, Veronika and Gregor Zoettl (2013). “Investment incentives and electricity
spot market competition.” In: Journal of Economics & Management Strategy
22.4, pp. 832–851.

Grübel, Julia, Thomas Kleinert, Vanessa Krebs, Galina Orlinskaya, Lars Schewe,
Martin Schmidt, and Johannes Thürauf (2019). “On Electricity Market Equilibria
with Storage: Modeling, Uniqueness, and a Distributed ADMM.” en. In: Computers
& Operations Research, p. 104783. doi: 10.1016/j.cor.2019.104783.

Gurobi Optimization (2019). Gurobi Optimizer Reference Manual. url: http :
//www.gurobi.com.

Holmberg, Pär and Ewa Lazarczyk (2015). “Comparison of congestion management
techniques: Nodal, zonal and discriminatory pricing.” In: Energy Journal 36.2,
pp. 145–166. doi: 10.5547/01956574.36.2.7.

Holmberg, Pär and Frank A. Wolak (2018). “Comparing auction designs where
suppliers have uncertain costs and uncertain pivotal status.” en. In: The RAND
Journal of Economics 49.4, pp. 995–1027. doi: 10.1111/1756-2171.12259.

Kemfert, Claudia, Friedrich Kunz, and Juan Rosellón (2016). “A welfare analysis of
electricity transmission planning in Germany.” en. In: Energy Policy 94, pp. 446–
452. doi: 10.1016/j.enpol.2016.04.011.

Krishnan, Venkat, Jonathan Ho, Benjamin F. Hobbs, Andrew L. Liu, James D. Mc-
Calley, Mohammad Shahidehpour, and Qipeng P. Zheng (2016). “Co-optimization
of electricity transmission and generation resources for planning and policy analy-
sis: review of concepts and modeling approaches.” In: Energy Systems 7.2, pp. 297–
332. doi: 10.1007/s12667-015-0158-4.

Möst, Dominik and Dogan Keles (2010). “A survey of stochastic modelling approaches
for liberalised electricity markets.” en. In: European Journal of Operational
Research 207.2, pp. 543–556. doi: 10.1016/j.ejor.2009.11.007.

Muñoz, Francisco D., Benjamin F. Hobbs, Jonathan L. Ho, and Saamrat Kasina
(2014). “An Engineering-Economic Approach to Transmission Planning Under
Market and Regulatory Uncertainties: WECC Case Study.” In: IEEE Transactions
on Power Systems 29.1, pp. 307–317. doi: 10.1109/TPWRS.2013.2279654.

Neuhoff, Karsten, Julian Barquin, Janusz W. Bialek, Rodney Boyd, Chris J. Dent,
Francisco Echavarren, Thilo Grau, Christian von Hirschhausen, Benjamin F.
Hobbs, Friedrich Kunz, Christian Nabe, Georgios Papaefthymiou, Christoph

http://dx.doi.org/10.1080/10556788.2017.1401069
http://dx.doi.org/10.1016/j.ejor.2016.03.044
http://dx.doi.org/10.1016/j.ejor.2016.03.044
http://dx.doi.org/10.2139/ssrn.3120403
http://dx.doi.org/10.1016/j.enpol.2015.11.010
http://dx.doi.org/10.1016/j.ejor.2017.03.036
http://dx.doi.org/10.1016/j.ejor.2017.03.036
http://dx.doi.org/10.1016/j.cor.2019.104783
http://www.gurobi.com
http://www.gurobi.com
http://dx.doi.org/10.5547/01956574.36.2.7
http://dx.doi.org/10.1111/1756-2171.12259
http://dx.doi.org/10.1016/j.enpol.2016.04.011
http://dx.doi.org/10.1007/s12667-015-0158-4
http://dx.doi.org/10.1016/j.ejor.2009.11.007
http://dx.doi.org/10.1109/TPWRS.2013.2279654


UNCERTAIN BIDDING ZONE CONFIGURATIONS 27

Weber, and Hannes Weigt (2013). “Renewable electric energy integration: Quan-
tifying the value of design of markets for international transmission capacity.” In:
Energy Economics 40, pp. 760–772. doi: 10.1016/j.eneco.2013.09.004.

Oliveira, Fernando S. and Manuel L.G. Costa (2018). “Capacity expansion under
uncertainty in an oligopoly using indirect reinforcement-learning.” In: European
Journal of Operational Research 267.3, pp. 1039–1050. doi: 10.1016/j.ejor.
2017.11.013.

Plancke, Glenn, Cedric De Jonghe, and Ronnie Belmans (2016). “The implications of
two German price zones in a european-wide context.” In: 2016 13th International
Conference on the European Energy Market (EEM). Porto, Portugal: IEEE, pp. 1–
5. doi: 10.1109/EEM.2016.7521290.

Powell, Warren B. (2019). “A unified framework for stochastic optimization.” In:
European Journal of Operational Research 275.3, pp. 795–821. doi: 10.1016/j.
ejor.2018.07.014.

Pozo, David, Javier Contreras, and Enzo Sauma (2013). “If you build it, he will
come: Anticipative power transmission planning.” en. In: Energy Economics 36,
pp. 135–146. doi: 10.1016/j.eneco.2012.12.007.

Rebennack, Steffen (2014). “Generation expansion planning under uncertainty with
emissions quotas.” In: Electric Power Systems Research 114, pp. 78–85. doi:
10.1016/j.epsr.2014.04.010.

Rockafellar, R Tyrrell, Stanislav Uryasev, et al. (2000). “Optimization of conditional
value-at-risk.” In: Journal of risk 2, pp. 21–42. doi: 10.21314/JOR.2000.038.

Ruiz, Carlos and Antonio J. Conejo (2015). “Robust transmission expansion plan-
ning.” en. In: European Journal of Operational Research 242.2, pp. 390–401. doi:
10.1016/j.ejor.2014.10.030.

Sauma, Enzo E. and Shmuel S. Oren (2006). “Proactive planning and valuation of
transmission investments in restructured electricity markets.” en. In: Journal of
Regulatory Economics 30.3, pp. 261–290. doi: 10.1007/s11149-006-9003-y.

Schweppe, Fred C., Michael C. Caramanis, Richard D. Tabors, and Roger E. Bohn
(1988). Spot pricing of electricity. Springer Science & Business Media. doi:
10.1007/978-1-4613-1683-1.

Spyrou, Evangelia, Jonathan L. Ho, Benjamin F. Hobbs, Randell M. Johnson, and
James D. McCalley (2017). “What are the Benefits of Co-Optimizing Transmission
and Generation Investment? Eastern Interconnection Case Study.” In: IEEE
Transactions on Power Systems 32.6, pp. 4265–4277. doi: 10.1109/TPWRS.2017.
2660249.

Trepper, Katrin, Michael Bucksteeg, and Christoph Weber (2015). “Market splitting
in Germany – New evidence from a three-stage numerical model of Europe.” In:
Energy Policy 87, pp. 199–215. doi: 10.1016/j.enpol.2015.08.016.

van der Weijde, Adriaan Hendrik and Benjamin F. Hobbs (2011). “Locational-based
coupling of electricity markets: benefits from coordinating unit commitment and
balancing markets.” In: Journal of Regulatory Economics 39.3, pp. 223–251. doi:
10.1007/s11149-011-9145-4.

– (2012). “The economics of planning electricity transmission to accommodate
renewables: Using two-stage optimisation to evaluate flexibility and the cost
of disregarding uncertainty.” In: Energy Economics 34.6, pp. 2089–2101. doi:
10.1016/j.eneco.2012.02.015.

Zöttl, Gregor (2010). “A framework of Peak Load Pricing with strategic firms.” In:
Operations Research 58.6, pp. 1637–1649. doi: 10.1287/opre.1100.0836.

http://dx.doi.org/10.1016/j.eneco.2013.09.004
http://dx.doi.org/10.1016/j.ejor.2017.11.013
http://dx.doi.org/10.1016/j.ejor.2017.11.013
http://dx.doi.org/10.1109/EEM.2016.7521290
http://dx.doi.org/10.1016/j.ejor.2018.07.014
http://dx.doi.org/10.1016/j.ejor.2018.07.014
http://dx.doi.org/10.1016/j.eneco.2012.12.007
http://dx.doi.org/10.1016/j.epsr.2014.04.010
http://dx.doi.org/10.21314/JOR.2000.038
http://dx.doi.org/10.1016/j.ejor.2014.10.030
http://dx.doi.org/10.1007/s11149-006-9003-y
http://dx.doi.org/10.1007/978-1-4613-1683-1
http://dx.doi.org/10.1109/TPWRS.2017.2660249
http://dx.doi.org/10.1109/TPWRS.2017.2660249
http://dx.doi.org/10.1016/j.enpol.2015.08.016
http://dx.doi.org/10.1007/s11149-011-9145-4
http://dx.doi.org/10.1016/j.eneco.2012.02.015
http://dx.doi.org/10.1287/opre.1100.0836


28 M. AMBROSIUS, J. EGERER, V. GRIMM, A.H. V.D. WEIJDE

Appendix A. Assumptions for two-node example

Table 4. 80 operating points for demand with reference demand
and reference price as well as a probability of 1.25% each (winter:
t1–t40 and summer: t41–t80). Five times (w1–w5) the 80 operating
points for different wind availability (winter/summer) and with
different probabilities.

Winter/Summer Ref Demand Ref price w1 w2 w3 w4 w5
[MW] [EUR/MWh] 5% 20% 50% 20% 5%

t1 / t41 1.0000 / 0.9500 250 / 100
t2 / t42 0.9750 / 0.9250 175 / 75
t3 / t43 0.9500 / 0.9000 100 / 65
t4 / t44 0.9250 / 0.8750 75 / 45
t5 / t45 0.9136 / 0.8636 70 / 40
t6 / t46 0.9023 / 0.8523 65 / 40
t7 / t47 0.8909 / 0.8409 50 / 40
t8 / t48 0.8795 / 0.8295 45 / 40
t9 / t49 0.8682 / 0.8182 40 / 40

t10 / t50 0.8568 / 0.8068 40 / 40
t11 / t51 0.8455 / 0.7955 40 / 40
t12 / t52 0.8341 / 0.7841 40 / 40
t13 / t53 0.8227 / 0.7727 40 / 40
t14 / t54 0.8114 / 0.7614 40 / 40
t15 / t55 0.8000 / 0.7500 40 / 40
t16 / t56 0.7886 / 0.7386 40 / 40
t17 / t57 0.7773 / 0.7273 40 / 40
t18 / t58 0.7659 / 0.7159 40 / 40
t19 / t59 0.7545 / 0.7045 40 / 40
t20 / t60 0.7432 / 0.6932 40 / 40 0.81/ 0.52/ 0.22/ 0.07/ 0.02/
t21 / t61 0.7318 / 0.6818 40 / 40 0.46 0.34 0.14 0.04 0.01
t22 / t62 0.7205 / 0.6705 40 / 40
t23 / t63 0.7091 / 0.6591 40 / 40
t24 / t64 0.6977 / 0.6477 40 / 40
t25 / t65 0.6864 / 0.6364 40 / 40
t26 / t66 0.6750 / 0.6250 40 / 40
t27 / t67 0.6636 / 0.6136 40 / 40
t28 / t68 0.6523 / 0.6023 40 / 40
t29 / t69 0.6409 / 0.5909 40 / 40
t30 / t70 0.6295 / 0.5795 40 / 40
t31 / t71 0.6182 / 0.5682 40 / 40
t32 / t72 0.6068 / 0.5568 40 / 40
t33 / t73 0.5955 / 0.5455 40 / 40
t34 / t74 0.5841 / 0.5341 40 / 40
t35 / t75 0.5727 / 0.5227 40 / 40
t36 / t76 0.5614 / 0.5114 40 / 40
t37 / t77 0.5500 / 0.5000 40 / 40
t38 / t78 0.5250 / 0.4750 40 / 40
t39 / t79 0.5000 / 0.4500 40 / 40
t40 / t80 0.4750 / 0.4250 40 / 40
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Appendix B. The reduced Twolevel Power Market Model

B.1. Spot Market Level: Optimal Generation Investment and Spot Mar-
ket Behavior.

max
∑
s∈S

πs
∑
n∈N

∑
t∈T

τ

∫ dt,n,s

0
pt,n,s(ξ) dξ +

∑
g∈Gpriv

n

cvar
g yspot

t,g,s

−∑
n∈N

∑
g∈Gpriv

n

cinv
g ȳg

s.t. Generation Capacity Limits (GCL):
yspot
t,g,s ≤ αgτ ȳg for all n ∈ N, g ∈ Gpriv

n , t ∈ T, s ∈ S
ȳg ≤ ȳub

g for all n ∈ N, g ∈ Gpriv
n , t ∈ T, s ∈ S

Zonal Kirchhoff’s First Law (ZKFL):∑
n∈N∩Zk

dt,n,s =
∑

n∈N∩Zk

∑
g∈Gpriv

n

yspot
t,g,s +

∑
l∈δin

Zk
(L)

f spot
t,l,s −

∑
l∈δout

Zk
(L)

f spot
t,l,s for all Zk ∈ Zs, t ∈ T, s ∈ S

Market Coupling Flow Restrictions (MCF):
− βlf̄l ≤ f spot

t,l,s ≤ βlf̄l for all l ∈ Linter
s ∩ Lex, t ∈ T, s ∈ S

− zlβlf̄l ≤ f spot
t,l,s ≤ zlβlf̄l for all l ∈ Linter

s ∩ Lnew, t ∈ T, s ∈ S.
Variable Restrictions (VR):
yspot
t,g,s ≥ 0 for all n ∈ N, g ∈ Gpriv

n , t ∈ T, s ∈ S
dt,n,s ≥ 0 for all n ∈ N, t ∈ T, s ∈ S
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B.2. Redispatch Level: Optimal Transmission Investment and Optimal
Cost-based Redispatch.

max
∑
s∈S

πs
∑
n∈N

∑
t∈T

τ

∫ dt,n,s

0
pt,n,s(ξ) dξ −

∑
g∈Gall

n

cvar
g yredi

t,g,s


−
∑

l∈Lnew

cinv
l zl −

∑
n∈N

∑
g∈Gall

n

cinv
g ȳg

s.t. Kirchhoff’s First Law (KFL):

dt,n,s =
∑
g∈Gall

n

yredi
t,g,s +

∑
l∈δin

n (L)

f redi
t,l,s −

∑
l∈δout

n (L)

f redi
t,l,s for all n ∈ N, t ∈ T, s ∈ S

Kirchhoff’s Second Law (KSL):
f redi
t,l,s −Bl(θt,n,s − θt,j,s) = 0 for all l = (n, j) ∈ Lex, t ∈ T, s ∈ S
−Ml(1− zl) ≤ f redi

t,l,s −Bl(θt,n,s − θt,j,s) ≤Ml(1− zl) for all l = (n, j) ∈ Lnew, t ∈ T, s ∈ S
Voltage Phase Angle of Reference Node (VPA):
θt,n̂,s = 0 for all t ∈ T, s ∈ S
Transmission Flow Limits (TFL):
− f̄l ≤ f redi

t,l,s ≤ f̄l for all l ∈ Lex, t ∈ T, s ∈ S
− zlf̄l ≤ f redi

t,l,s ≤ zlf̄l for all l ∈ Lnew, t ∈ T, s ∈ S
Generation Capacity Limits (GCL):
yredi
t,g,s ≤ αgτ ȳg for all n ∈ N, g ∈ Gall

n , t ∈ T, s ∈ S
Variable Restrictions (VR):
yredi
t,g,s ≥ 0 for all n ∈ N, g ∈ Gall

n , t ∈ T, s ∈ S
zl ∈ {0, 1} for all l ∈ Lnew
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Appendix C. Notation and Symbols

Table 5. Sets

Symbol Description
G Transmission network
N Set of nodes of the transmission network
T Set of time periods
S Set of all considered scenarios
Zs Set of zones in scenario s ∈ S
Gall
n Set of all generation technologies at node n ∈ N

Gpriv
n Set of private generation technologies at node n ∈ N

Gbu
n Set of backup generators at node n ∈ N

Lex Set of all existing transmission lines (set of arcs of graph G)
Lnew Set of all candidate transmission lines
Linter

s Set of all inter-zonal transmission lines in scenario s ∈ S

Table 6. Variables

Symbol Description Unit
dt,n,s Demand of node n ∈ N in time period t and scenario s ∈ S MW
pt,n,s Electricity price at node n ∈ N in time period t ∈ T and scenario s ∈ S e/MWh
ȳg Installed generation capacity of generator g ∈ Gall

n , n ∈ N MW
yt,g,s Power generation of generator g ∈ Gall

n , n ∈ N in scenario s ∈ S MW
ft,l,s Power flow on line l ∈ Lex ∪ Lnew in time period t and s ∈ S MW
θt,n,s Voltage angle at node n ∈ N in time period t and s ∈ S rad
zl Decision variable for candidate line l ∈ Lnew —

Table 7. Parameters

Symbol Description Unit
cinv
g Investment cost of candidate generation technology g ∈ Gall

n , n ∈ N e/MW
cvar
g Variable cost of generation technology g ∈ Gall

n , n ∈ N e/MWh
cinv
l Investment cost of candidate transmission line l ∈ Lnew e

Bl DC power flow scaled susceptance of line l ∈ Lex ∪ Lnew A/V
f̄l Maximum power flow on line l ∈ Lex ∪ Lnew MW
Ml Parameter for linearization of Kirchhoff’s second law for line l ∈ L —
τ Length between two consecutive time periods t, t+ 1 ∈ T h
αg Equivalent availability parameter of generator g ∈ Gall

n , n ∈ N —
πs Probability of scenario s ∈ S —
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