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MARKOV DECISION PROCESSES WITH RECURSIVE RISK MEASURES

NICOLE BÄUERLE AND ALEXANDER GLAUNER

Abstract. In this paper, we consider risk-sensitive Markov Decision Processes (MDPs) with
Borel state and action spaces and unbounded cost under both finite and infinite planning hori-
zons. Our optimality criterion is based on the recursive application of static risk measures.
This is motivated by recursive utilities in the economic literature, has been studied before for
the entropic risk measure and is extended here to an axiomatic characterization of suitable risk
measures. We derive a Bellman equation and prove the existence of Markovian optimal policies.
For an infinite planning horizon, the model is shown to be contractive and the optimal policy
to be stationary. Moreover, we establish a connection to distributionally robust MDPs, which
provides a global interpretation of the recursively defined objective function. Monotone models
are studied in particular.
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1. Introduction

In this paper, we extend Markov Decision Processes (MDPs) to a recursive application of
static risk measures. Our framework is such that it is applicable for a wide range of practical
models. In particular we consider Borel state and action spaces, unbounded cost functions and
rather general risk measures.

In standard MDP theory we are concerned with minimizing the expected discounted cost of
a controlled dynamic system over a finite or infinite time horizon. The expectation has the
nice property that it can be iterated which yields a recursive solution theory for these kind of
problems, see e.g. the textbooks by [24, 17, 9] for a mathematical treatment. However, there are
applications where the simple expectation, which does not reflect the true risk of a decision, might
not be the best choice to evaluate decisions. In particular when the management of cash flows
is concerned, economists prefer to use dynamic utilities to compare their performance. An early
axiomatic treatment of a dynamic utility which takes into account the revealed information is
[21]. Later, the focus was more on an extension of static risk measures to dynamic risk measures.
We mention here the following axiomatic approaches [15, 25, 13, 34] just to name some of them.
These approaches do not consider a control. For an overview up to 2011 see [1]. Later, besides the
axiomatic characterization another important aspect has been time-consistency of the dynamic
risk measures, see e.g. [11, 10] for the situation without control and [31, 30] for the situation
with control. In the latter reference it is shown that the only time-consistent risk measures are
those which iterate static ones. See also [19] for different ways to apply dynamic risk measures.

Approaches to establish a theory for controlled dynamic risk measures have before been pre-
sented in [27, 32, 12, 3]. [27] is an axiomatic approach. The paper restricts to bounded random
variables for the infinite time horizon and uses Markov risk measures to obtain time-consistency.
However, some assumptions are indirect properties of the risk measures (see e.g. Theorem 2 in
this paper). In [32] so-called risk maps are considered and weighted norm spaces are used to
treat unbounded rewards. Concepts like sub- and uppermodules are needed to prove the main
theorems. [12] also treats unbounded cost problems but restricts to coherent risk measures.
Moreover, some assumptions on the existence of limits are made because the Fatou property
of risk measures is not exploited there. The note [3] restricts the discussion to entropic risk
measures.
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There are also papers which apply recursive risk measures in specific problems. E.g. in [20]
a convex combination of expectation and Expected Shortfall is used to tackle the problem of
electric vehicle charging in a dynamic decision framework. The authors there compare true risk
and expectation with the standard MDP problem. [28] investigate dynamic pricing problems
with dynamic Expected Shortfall and also compare their findings to the standard MDP. [6]
consider optimal dividend payments under dynamic entropic risk measures and [7] optimal
growth models under dynamic entropic risk measures. In [33] sampling-based algorithms for
coherent risk measures are constructed.

In this paper now we restrict to a recursive application of static risk measures and use un-
bounded cost functions. The risk measures may be rather general and we state the needed
properties for every result. In contrast to the earlier literature our assumptions are in most
cases assumptions on the model data alone. We also treat the important case of monotone
models where comonotonicity of the risk measures is crucial.

In more detail the structure of our paper is as follows: In the next section, we summarize
some important concepts of risk measures. We consider in particular distortion risk measures.
In Section 3, we introduce our Markov Decision model. The finite-horizon optimization problem
is then considered in Section 4. The aim is to minimize recursive risk measures over a finite time
horizon. We show here that for proper coherent risk measures with the Fatou property local
bounding functions are sufficient for the well-posedness of the optimization problem. Otherwise
global bounding function may be necessary. Under some continuity and compactness conditions
on the MDP data we show that an optimal policy exists which is Markovian and the value of
the problem can be computed recursively. In Section 5, we consider the problem with an infinite
time horizon. Here the first result, which states a fixed point property of the value function
and the existence of an optimal stationary policy, is under the condition of coherence of the risk
measure. In Section 6, we briefly discuss the relation to distributionally robust MDP. In Section
7, we consider MDP with monotonicity properties. Here we can work with semicontinuous
model data. Another special case arises when the cost function is bounded from below. Then,
under the monotonicity assumptions the monetary risk measure does not have to be coherent
but comonotonic additive to obtain the same results. In the last section, we illustrate our results
with some examples: We show that in a monotone recursive Value-at-Risk model, the optimal
policy is myopic. Moreover, we consider stopping problems, casino games and a cash balance
problem where structural properties of the standard MDP formulation still hold.

2. Risk Measures

Let a probability space (Ω,A,P) and a real number p ∈ [1,∞) be fixed. With q ∈ (1,∞] we
denote the conjugate index satisfying 1

p
+ 1

q
= 1 under the convention 1

∞
= 0. Henceforth, Lp =

Lp(Ω,A,P) denotes the vector space of real-valued random variables which have an integrable
p-th moment. We follow the convention of the actuarial literature that positive realizations
of random variables represent losses and negative ones gains. A risk measure is a functional
ρ : Lp → R̄. The following properties will be important.

Definition 2.1. A risk measure ρ : Lp → R̄ is

a) law-invariant if ρ(X) = ρ(Y ) for X,Y with the same distribution.
b) monotone if X ≤ Y implies ρ(X) ≤ ρ(Y ).
c) translation invariant if ρ(X +m) = ρ(X) +m for all m ∈ R.
d) normalized if ρ(0) = 0.
e) finite if ρ(Lp) ⊆ R.
f) comonotonic additive if ρ(X + Y ) = ρ(X) + ρ(Y ) for all comonotonic X,Y .
g) positive homogeneous if ρ(λX) = λρ(X) for all λ ∈ R+.
h) convex if ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for λ ∈ [0, 1].
i) subadditive if ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y .
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j) said to have the Fatou property, if for every sequence {Xn}n∈N ⊆ Lp with |Xn| ≤ Y P-a.s.
for some Y ∈ Lp and Xn → X P-a.s. for some X ∈ Lp it holds

lim inf
n→∞

ρ(Xn) ≥ ρ(X).

A risk measure is called monetary if it is monotone and translation invariant. It appears to
be consensus in the literature that these two properties are a necessary minimal requirement
for any risk measure. Monetary risk measures which are additionally positive homogeneous
and subadditive are referred to as coherent. Further, note that positive homogeneity implies
normalization and makes convexity and subadditivity equivalent. The Fatou property means
that the risk measure is lower semicontinuous w.r.t. dominated convergence.

Lemma 2.2 (Theorem 7.24 in [26]). Finite and convex monetary risk measures have the Fatou
property.

Coherent risk measures satisfy a triangular inequality.

Lemma 2.3 (Prop. 6 in [23]). For a coherent risk measure ρ and X,Y ∈ Lp it holds

|ρ(X) − ρ(Y )| ≤ ρ(|X − Y |).

We denote by M1(Ω,A,P) the set of probability measures on (Ω,A) which are absolutely
continuous with respect to P and define

Mq
1(Ω,A,P) =

{

Q ∈ M1(Ω,A,P) :
dQ

dP
∈ Lq(Ω,A,P)

}

.

Recall that an extended real-valued convex functional is called proper if it never attains −∞
and is strictly smaller than +∞ in at least one point. Coherent risk measures have the following
dual or robust representation.

Proposition 2.4 (Theorem 7.20 in [26]). A functional ρ : Lp → R̄ is a proper coherent risk
measure with the Fatou property if and only if there exists a subset Q ⊆ Mq

1(Ω,A,P) such that

ρ(X) = sup
Q∈Q

EQ[X], X ∈ Lp.

The supremum is attained since the subset Q ⊆ Mq
1(Ω,A,P) can be chosen σ(Lq, Lp)-compact

and the functional Q 7→ EQ[X] is σ(Lq, Lp)-continuous.

With the dual representation we can derive a complementary inequality to subadditivity.

Lemma 2.5. A proper coherent risk measure with the Fatou property ρ : Lp → R̄ satisfies

ρ(X + Y ) ≥ ρ(X) − ρ(−Y ) for all X,Y ∈ Lp.

Proof. By Proposition 2.4 it holds for X,Y ∈ Lp

ρ(X + Y ) = sup
Q∈Q

EQ[X + Y ] = sup
Q∈Q

(

EQ[X] + EQ[Y ]
)

≥ sup
Q∈Q

EQ[X] + inf
Q∈Q

EQ[Y ] = ρ(X)− sup
Q∈Q

EQ[−Y ]

= ρ(X)− ρ(−Y ). �

In the following, FX(x) = P(X ≤ x) denotes the distribution function, SX(x) = 1−FX (x), x ∈
R, the survival function and F−1

X (u) = inf{x ∈ R : FX(x) ≥ u}, u ∈ [0, 1], the quantile function
of a random variable X. Many established risk measures belong to the large class of distortion
risk measures.

Definition 2.6. a) An increasing function g : [0, 1] → [0, 1] with g(0) = 0 and g(1) = 1 is
called distortion function.
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b) The distortion risk measure w.r.t. a distortion function g is defined by ρg : Lp → R̄,

ρg(X) =

∫ ∞

0
g(SX(x)) dx−

∫ 0

−∞

1− g(SX(x)) d x

whenever at least one of the integrals is finite.

Distortion risk measures have many of the properties introduced in Definition 2.1, see e.g.
[29].

Lemma 2.7. a) Distortion risk measures are law invariant, monotone, translation invari-
ant, normalized, positive homogeneous and comonotonic additive.

b) A distortion risk measure is subadditive if and only if the distortion function g is concave.

There is an alternative representation of distortion risk measures in terms of Lebesgue-Stieltjes
integrals based on the quantile function in lieu of the survival function of the risk X.

Remark 2.8. For a distortion risk measure ρg with left-continuous distortion function g it holds

ρg(X) =

∫ 1

0
F−1
X (u) d ḡ(u), (2.1)

where ḡ(u) = 1 − g(1 − u), u ∈ [0, 1], is the dual distortion function, cf. [14]. For a continuous
concave distortion function g : [0, 1] → [0, 1], the dual distortion function ḡ : [0, 1] → [0, 1] is
continuous convex and can be written as ḡ(x) =

∫ x

0 φ(s) d s for an increasing right-continuous
function φ : [0, 1] → R+, which is called spectrum. By the properties of the Lebesgue-Stieltjes
integral, (2.1) can then be written as

ρg(X) = ρφ(X) =

∫ 1

0
F−1
X (u)φ(u) d u. (2.2)

Therefore, distortion risk measures with continuous concave distortion function are referred to
as spectral risk measures. Note that continuity of g is an additional requirement only in 0, since
an increasing concave function on [0, 1] is already continuous on (0, 1].

Due to Hölder’s inequality, spectral risk measures ρφ : Lp → R̄ with spectrum φ ∈ Lq fulfill

|ρφ(X)| =

∣

∣

∣

∣

∫ 1

0
F−1
X (u)φ(u) d u

∣

∣

∣

∣

≤

∫ 1

0
|F−1

X (u)|φ(u) d u =
(

E|F−1
X (U)|p

)
1
p
(

E|φ(U)|q
)

1
q < ∞,

where U ∼ U([0, 1]) is arbitrary. Hence, they have the Fatou property by Lemma 2.2.

Example 2.9. The most widely used risk measure in finance and insurance Value-at-Risk

VaRα(X) = F−1
X (α), α ∈ (0, 1),

is a distortion risk measure with distortion function g(u) = 1(1−α,1](u). Since the distortion
function is not concave, Value-at-Risk is not coherent and especially not a spectral risk measure.
The lack of coherence can be overcome by using Expected Shortfall

ESα(X) =
1

1− α

∫ 1

α

F−1
X (u) d u, α ∈ [0, 1).

The corresponding distortion function g(u) = min{ u
1−α

, 1} is concave and Expected Shortfall

thus coherent. It is also spectral with φ(u) = 1
1−α

1[α,1](u). Due to the bounded spectrum, ES
has the Fatou property. The well-known entropic risk measure

ργ(X) =
1

γ
logE

[

eγX
]

, γ > 0,

is an example of a law-invariant and convex monetary risk measure which does not belong to
the distortion class. For random variables with existing moment-generating function it has the
Fatou property directly by dominated convergence.
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To the best of our knowledge, it has surprisingly not been investigated in the literature whether
Value-at-Risk has the Fatou property.

Lemma 2.10. Value-at-Risk has the Fatou property.

Proof. Assume the contrary. Then there exists a sequence {Xn}n∈N ⊆ Lp with |Xn| ≤ Y P-a.s.
for some Y ∈ Lp and Xn → X P-a.s. for some X ∈ Lp such that

lim inf
n→∞

VaRα(Xn) < VaRα(X).

I.e. there is an ǫ > 0 such that for every δ ∈ (0, ǫ)

lim inf
n→∞

F−1
Xn

(α) ≤ F−1
X (α)− δ.

Hence, there exists a subsequence {F−1
XNk

(α)}k∈N such that for all k ∈ N and δ ∈ (0, ǫ)

F−1
Xnk

(α) ≤ F−1
X (α) − δ

or equivalently by the properties of generalized inverses α ≤ FXnk
(F−1

X (α) − δ). Since FX has

at most countably many discontinuities, we can choose δ0 ∈ (0, ǫ) such that F−1
X (α) − δ0 is a

point of continuity of FX . Then, by the definition of convergence in distribution

α ≤ lim
k→∞

FXnk
(F−1

X (α)− δ0) = FX(F−1
X (α) − δ0).

Again by the properties of generalized inverses, this is equivalent to F−1
X (α) ≤ F−1

X (α) − δ0, a
contradiction. �

3. The Markov Decision Model

We consider the following standard Markov Decision Process with general Borel state and
action spaces. The state space E is a Borel space with Borel σ-algebra B(E) and the action
space A is a Borel space with Borel σ-Algebra B(A). The possible state-action combinations at
time n form a measurable subset Dn of E×A such that Dn contains the graph of a measurable
mapping E → A. The x-section of Dn,

Dn(x) = {a ∈ A : (x, a) ∈ Dn},

is the set of admissible actions in state x ∈ E at time n. Note that the sets Dn(x) are non-
empty. We assume that the dynamics of the MDP are given by measurable transition functions
Tn : Dn×Z → E and depend on disturbances Z1, Z2, . . . which are independent random elements
on a common probability space (Ω,A,P) with values in a measurable space (Z,Z). When the
current state is xn, the controller chooses action an ∈ Dn(xn) and zn+1 is the realization of
Zn+1, then the next state is given by

xn+1 = Tn(xn, an, zn+1).

The one-stage cost function cn : Dn × E → R gives the cost cn(x, a, x
′) for choosing action

a if the system is in state x at time n and the next state is x′. The terminal cost function
cN : E → R gives the cost cN (x) if the system terminates in state x.

The model data is supposed to have the following continuity and compactness properties.

Assumption 3.1. (i) The sets Dn(x) are compact and E ∋ x 7→ Dn(x) are upper semicon-
tinuous, i.e. if xk → x and ak ∈ Dn(xk), k ∈ N, then (ak) has an accumulation point in
Dn(x).

(ii) The transition functions Tn are continuous in (x, a).
(iii) The one-stage cost functions cn and the terminal cost function cN are lower semicontinu-

ous.
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Under a finite planning horizon N ∈ N, we consider the model data for n = 0, . . . , N −1. The
decision model is called stationary if D, T do not depend on n, the disturbances are identically
distributed, the one-stage cost functions are of the form cn = βnc, and the terminal cost function
is βN cN , where β ∈ (0, 1] is a discount factor. In that case, Z denotes a representative of the
disturbance distribution. For a non-stationary model one may think of the discount factor being
included in the cost functions. If the model is stationary and the terminal cost is zero, we allow
for an infinite time horizon N = ∞.

For n ∈ N0 we denote by Hn the set of feasible histories of the decision process up to time n

hn =

{

x0, if n = 0,

(x0, a0, x1, . . . , xn), if n ≥ 1,

where ak ∈ Dk(xk) for k ∈ N0. In order for the controller’s decisions to be implementable, they
must be based on the information available at the time of decision making, i.e. be functions of
the history of the decision process.

Definition 3.2. a) A measurable mapping dn : Hn → A with dn(hn) ∈ Dn(xn) for every
hn ∈ Hn is called decision rule at time n. A finite sequence π = (d0, . . . , dN−1) is called
N -stage policy and a sequence π = (d0, d1, . . . ) is called policy.

b) A decision rule at time n is called Markov if it depends on the current state only, i.e.
dn(hn) = dn(xn) for all hn ∈ Hn. If all decision rules are Markov, the (N -stage) policy is
called Markov.

c) An (N -stage) policy π is called stationary if π = (d, . . . , d) or π = (d, d, . . . ), respectively,
for some Markov decision rule d.

With Π ⊇ ΠM ⊇ ΠS we denote the sets of all policies, Markov policies and stationary policies.
It will be clear from the context if N -stage or infinite stage policies are meant. An admissible
policy always exists as D contains the graph of a measurable mapping.

Since risk measures are defined as real-valued mappings of random variables, we will work
with a functional representation of the decision process. The law of motion does not need to be
specified explicitly. We define for an initial state x0 ∈ E and a policy π ∈ Π

Xπ
0 = x0, Xπ

n+1 = T (Xπ
n , dn(H

π
n ), Zn+1).

Here, the process (Hπ
n )n∈N0 denotes the history of the decision process viewed as a random

element, i.e.

Hπ
0 = x0, Hπ

1 =
(

Xπ
0 , d0(X

π
0 ),X

π
1

)

, . . . , Hπ
n = (Hπ

n−1, dn−1(H
π
n−1),X

π
n ).

Under a Markov policy the recourse on the random history of the decision process is not needed.

4. Cost Minimization under a Finite Planning Horizon

For a finite planning horizon N ∈ N, we consider the non-stationary decision model. In the
classical context of the risk-neutral expected cost criterion, the value of a policy π ∈ Π at time
n = 0, . . . , N given hn ∈ Hn is defined as

Vnπ(hn) = Enhn

[

N−1
∑

k=n

ck(X
π
k , dk(H

π
k ),X

π
k+1) + cN (Xπ

N )

]

, n = 0, . . . , N,

where Enhn
is the conditional expectation given Hπ

n = hn. Under suitable integrability condi-
tions, Vnπ satisfies the value iteration

Vnπ(hn) = E

[

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+ Vn+1π

(

hn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

]

,

see e.g. Theorem 2.3.4 in [9]. In order to take risk-sensitive preferences of the controller into
account, the approach here is to replace the factorization of conditional expectation in the value
iteration by a risk measure, meaning that static risk measures are recursively applied at each
stage. In the special case of the entropic risk measure, this approach has been studied by [3] in
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an abstract setting and by [6, 7] in applications to optimal dividend payments and stochastic
optimal growth. Their choice of the risk measure is motivated by the fact that the entropic
risk measure coincides with the certainty equivalent of an exponential utility function. In the
economic literature, recursive utilities have been widely studied. For a literature overview we
refer the reader to [22].

Let p ∈ [1,∞) with conjugate index q ∈ [1,∞] and let ρ0, . . . , ρN−1 : Lp(Ω,A,P) → R̄

be monetary risk measures. We define the value of a policy π = (d0, . . . , dN−1) ∈ Π at time
n = 0, . . . , N given history hn ∈ Hn recursively as

VNπ(hN ) = cN (xN ),

Vnπ(hn) = ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+Vn+1π

(

hn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

.

In the special case that the one-stage cost functions cn do not depend on the next state of the
decision process, the value of a policy simplifies to

Vnπ(hn) = cn(xn, dn(hn)) + ρn
(

Vn+1π(hn, dn(hn),X
π
n+1)

)

, hn ∈ Hn,

due to the translation invariance of monetary risk measures.

Remark 4.1. For the recursive definition of the policy values to be meaningful, we need to
make sure that the risk measures are applied to elements of Lp(Ω,A,P). This has two aspects:
integrability will be ensured by Assumption 4.2, but first of all Vnπ needs to be a measurable
function for all π ∈ Π and n = 0, . . . , N . For most risk measures with practical relevance, this
is fulfilled:

• In the risk-neutral case, i.e. for ρ = E, and also for the entropic risk measure ργ the
measurability is obvious.

• For distortion risk measures, the measurability is guaranteed, too. To see this, we proceed
backwards. For N there is noting to show and if Vn+1π is measurable, the function

f(hn, z) = cn
(

xn, dn(hn), Tn(xn, dn(hn), z)
)

+Vn+1π

(

hn, dn(hn), Tn(xn, dn(hn), z)

is measurable as a composition of measurable maps. Then, Fubini’s theorem yields that
the survival function of f(hn, Zn+1)

S(t|hn) =

∫

1{f(hn, Zn+1(ω)) > t}P(dω)

is measurable. A distortion function g is increasing and hence measurable. So again by
Fubini’s theorem we obtain the measurability of

Vnπ(hn) = ρg(f(hn, Zn+1)) =

∫ ∞

0
g(S(t|hn)) d t−

∫ 0

−∞

1− g(S(t|hn)) d t

since the integrands are non-negative and compositions of measurable maps.
• For proper coherent risk measures with the Fatou property one can insert the dual rep-
resentation of Proposition 2.4. Then, an optimal measurable selection argument as in
Theorem 3.6 in [5] yields the measurability.

Throughout, it is implicitly assumed that the risk measures are chosen such that all policy values
are measurable.

The value functions are given by

Vn(hn) = inf
π∈Π

Vnπ(hn), hn ∈ Hn,

for n = 0, . . . , N and the controller’s optimization objective is

V0(x) = inf
π∈Π

V0π(x), x ∈ E.

In order to have well-defined value functions, we need some finiteness conditions instead of the
usual integrability conditions. Moreover, we require some basic properties for the risk measures.
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Assumption 4.2. (i) There exist
¯
ǫ, ǭ ≥ 0 with

¯
ǫ+ ǭ = 1 and measurable functions

¯
b : E →

(−∞,−
¯
ǫ] and b̄ : E → [ǭ,∞) such that it holds for all policies π ∈ Π and all n = 0, . . . , N

¯
b(xn) ≤ Vnπ(hn) ≤ b̄(xn), hn ∈ Hn.

(ii) We define b : E → [1,∞), b(x) = b̄(x) −
¯
b(x). For all n = 0, . . . , N − 1 and (x̄, ā) ∈

Dn there exists an ǫ > 0 and measurable functions Θx̄,ā
n,1,Θ

x̄,ā
n,2 : Z → R+ such that

Θx̄,ā
n,1(Zn+1),Θ

x̄,ā
n,2(Zn+1) ∈ Lp(Ω,A,P) and

|cn(x, a, Tn(x, a, z))| ≤ Θx̄,ā
n,1(z), b(Tn(x, a, z)) ≤ Θx̄,ā

n,2(z)

for all z ∈ Z and (x, a) ∈ Bǫ(x̄, ā) ∩ Dn. Here, Bǫ(x̄, ā) is the closed ball around (x̄, ā)
w.r.t. an arbitrary product metric on E ×A.

(iii) The monetary risk measures ρ0, . . . , ρN−1 : Lp(Ω,A,P) → R̄ are law invariant and have
the Fatou property.

¯
b, b̄ are called (global) lower and upper bounding function, respectively, while b is referred to

as (global) bounding function. Since
¯
b is non-positive and b̄ is non-negative it holds

¯
b(xn) ≤ −V −

nπ(hn) ≤ Vnπ(hn) ≤ V +
nπ(hn) ≤ b̄(xn), hn ∈ Hn,

and consequently |Vnπ(hn)| ≤ b(xn). Bold print is used to distinguish these global bounding
functions from the usual local (stage-wise) bounding functions used for risk-neutral MDP. Such
local bounding functions can be introduced for the risk-sensitive recursive optimality criterion,
too, if the risk measures have additional properties. Note that without any further properties
on the risk measure we cannot construct global bounding functions from local ones.

Lemma 4.3. Let ρ0, . . . , ρN−1 be proper coherent risk measures with the Fatou property. If
there exist

¯
ǫ, ǭ ≥ 0 with

¯
ǫ+ ǭ = 1, measurable functions

¯
b : E → (−∞,−

¯
ǫ], b̄ : E → [ǭ,∞) and a

constant α ∈ (0, 1) such that

ρn
(

cn(x, a, Tn(x, a, Zn+1))
)

≥
¯
b(x), ρn

(

−
¯
b(Tn(x, a, Zn+1))

)

≤ −α
¯
b(x),

ρn
(

cn(x, a, Tn(x, a, Zn+1))
)

≤ b̄(x), ρn
(

b̄(Tn(x, a, Zn+1))
)

≤ αb̄(x),

for all n = 0, . . . , N − 1 and (x, a) ∈ Dn as well as
¯
b(x) ≤ cN (x) ≤ b̄(x) for all x ∈ E, then

¯
b =

1

1− α¯
b, b̄ =

1

1− α
b̄ and b =

1

1− α
b

are global bounding functions satisfying Assumption 4.2 (i).

Proof. We proceed by backward induction. At time N we have

¯
b(xN ) ≤

¯
b(xN ) ≤ cN (xN ) ≤ b̄(xN ) ≤ b̄(xN ), hN ∈ HN .

Assuming the assertion holds for time n+ 1 it follows for time n:

Vnπ(hn) = ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+ Vn+1π

(

hn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

≥ ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+
1

1− α¯
b
(

Tn(xn, dn(hn), Zn+1)
)

)

≥ ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

−
1

1− α
ρn

(

−
¯
b
(

Tn(xn, dn(hn), Zn+1)
)

)

≥
¯
b(xn) +

α

1− α¯
b(xn) =

¯
b(xn).
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The second inequality is by Lemma 2.5. Regarding the upper bounding function one can argue
similarly using the subadditivity of ρn instead.

Vnπ(hn) = ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+ Vn+1π

(

hn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

≤ ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+
1

1− α
b̄
(

Tn(xn, dn(hn), Zn+1)
)

)

≤ ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

+
1

1− α
ρn

(

b̄
(

Tn(xn, dn(hn), Zn+1)
)

)

≤ b̄(xn) +
α

1− α
b̄(xn) = b̄(xn). �

Remark 4.4. a) Concerning the requirements on a local lower bounding function in Lemma
4.3 it should be noted that ρn

(

−
¯
b(Tn(x, a, Zn+1))

)

≤ −α
¯
b(x) is a stronger assumption

than

ρn
(

¯
b(Tn(x, a, Zn+1))

)

≥ α
¯
b(x). (4.1)

Indeed, since
¯
b ≤ 0 the monotonicity and normalization of ρn yields ρn

(

¯
b(Tn(x, a, Zn+1))

)

≤
0. Consequently, we have by Lemma 2.3

−ρn
(

¯
b(Tn(x, a, Zn+1))

)

=
∣

∣ρn
(

¯
b(Tn(x, a, Zn+1))

)∣

∣ ≤ ρn

(

∣

∣

¯
b
(

Tn(x, a, Zn+1)
)∣

∣

)

= ρn

(

−
¯
b
(

Tn(x, a, Zn+1)
)

)

≤ −α
¯
b(x).

Multiplying with (−1) yields (4.1).
b) If the one-stage cost functions are bounded and the monetary risk measures ρ0, . . . , ρN−1

normalized, the local bounding functions
¯
b, b̄ can be chosen constant. Where we have used

Lemma 2.5 or subadditivity in the proof of Lemma 4.3, one can then simply argue with
translation invariance. Note that normalization is no structural restriction for monetary
risk measures due to the translation invariance.

With the bounding function b we define the function space

Bb = {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λb(x) for all x ∈ E} .

Endowing Bb with the weighted supremum norm

‖v‖b = sup
x∈E

|v(x)|

b(x)

makes (Bb, ‖ · ‖b) a Banach space, cf. Proposition 7.2.1 in [18]. In case we have local bounding
functions as in Lemma 4.3, it holds

Bb = {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λb(x) for all x ∈ E}

= {v : E → R | v measurable with λ ∈ R+ s.t. |v(x)| ≤ λ b(x) for all x ∈ E}

= Bb

and the weighted supremum norms ‖ · ‖b, ‖ · ‖b are equivalent.

Lemma 4.5. Let v ∈ Bb and n ∈ {0, . . . , N − 1}. Under Assumptions 3.1 (i) and 4.2 (ii) each
sequence of random variables

Ck = cn
(

xk, ak, Tn(xk, ak, Zn+1)
)

+ v
(

Tn(xk, ak, Zn+1)
)

induced by a convergent sequence {(xk, ak)}k∈N in Dn has an Lp-bound C̄, i.e. |Ck| ≤ C̄ ∈
Lp(Ω,A,P) for all k ∈ N.

Proof. There exists a constant λ ∈ R+ such that |v| ≤ λb. Since Dn is closed by Lemma A.2.2
in [9], the limit point (x0, a0) of {(xk, ak)}k∈N lies in Dn. Let ǫ > 0 be the constant from
Assumption 4.2 (ii) corresponding to (x0, a0). Since the sequence is convergent, there exists
m ∈ N such that (xk, ak) ∈ Bǫ(x0, a0) ∩ Dn for all k > m. For the finite number of points
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(x0, a0), (x1, a1), . . . , (xm, am) there exist bounding functions Θxi,ai
n,1 ,Θxi,ai

n,2 by Assumption 4.2

(ii). Thus, the random variable

C̄ = max
i=0,...,m

(

Θxi,ai
n,1 (Z) + λΘxi,ai

n,2 (Z)
)

is an Lp-bound as desired. �

Let us now consider specifically Markov policies π ∈ ΠM of the controller. The subspace

B = {v ∈ Bb : v lower semicontinuous}

of (Bb, ‖·‖b) turns out to be the set of potential value functions under such policies. (B, ‖·‖b) is a
complete metric space since the subset of lower semicontinuous functions is closed in (Bb, ‖ ·‖b).
When we consider intervals [

¯
v, v̄] ⊆ B with

¯
v, v̄ : E → R s.t.

¯
v(x) ≤ v̄(x) for all x ∈ E, they are

to be understood pointwise

[
¯
v, v̄] = {v ∈ B :

¯
v(x) ≤ v(x) ≤ v̄(x) for all x ∈ E}.

Such intervals are closed even w.r.t. pointwise convergence and therefore form a complete metric
space as a closed subset of (B, ‖ · ‖b). In the sequel, the interval

I =
[

¯
b, b̄

]

will be of interest. We define the following operators on Bb and especially on B.

Definition 4.6. For v ∈ Bb and a Markov decision rule d let

Lnv(x, a) = ρn

(

cn
(

x, a, Tn(x, a, Zn+1)
)

+ v
(

Tn(x, a, Zn+1)
)

)

, (x, a) ∈ Dn,

Tndv(x) = Lnv(x, d(x)), x ∈ E,

Tnv(x) = inf
a∈Dn(x)

Lnv(x, a), x ∈ E.

Note that the operators are monotone in v. Under a Markov policy π = (d0, . . . , dN−1) ∈ ΠM ,
the value iteration can be expressed with the operators. In order to distinguish from the history-
dependent case, we denote policy values here with J . Setting JNπ(x) = cN (x), x ∈ E, we obtain
for n = 0, . . . , N − 1 and x ∈ E

Jnπ(x) = ρn

(

cn
(

x, dn(x), Tn(x, dn(x), Zn+1)
)

+ Jn+1π

(

Tn(x, dn(x), Zn+1)
)

)

= TndnJn+1π(x).

Let us further define for n = 0, . . . , N − 1 the Markov value function

Jn(x) = inf
π∈ΠM

Jnπ(x), x ∈ E.

The next result shows that Vn satisfies a Bellman equation and proves that an optimal policy
exists and is Markov.

Theorem 4.7. Let Assumptions 3.1 and 4.2 be satisfied. Then, for n = 0, . . . , N , the value
function Vn only depends on xn, i.e. Vn(hn) = Jn(xn) for all hn ∈ Hn, lies in I =

[

¯
b, b̄

]

⊆ B

and satisfies the Bellman equation

JN (x) = cN (x),

Jn(x) = TnJn+1(x), x ∈ E.

Furthermore, for n = 0, . . . , N − 1 there exist Markov decision rules d∗n such that TnJn+1 =
Tnd∗nJn+1 and every sequence of such minimizers constitutes an optimal policy π = (d∗0, . . . , d

∗
N−1).

Proof. The proof is by backward induction. At time N we have VN = JN = cN which is in B

by Assumptions 3.1 (iii) and 4.2 (i). Assuming the assertion holds at time n+ 1, we obtain for
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time n:

Vn(hn) = inf
π∈Π

Vnπ(hn)

= inf
π∈Π

ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+Vn+1π

(

hn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

≥ inf
π∈Π

ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+Vn+1

(

hn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

)

= inf
π∈Π

ρn

(

cn
(

xn, dn(hn), Tn(xn, dn(hn), Zn+1)
)

+ Jn+1

(

Tn(xn, dn(hn), Zn+1)
)

)

.

= inf
an∈D(xn)

ρn

(

cn
(

xn, an, Tn(xn, an, Zn+1)
)

+ Jn+1

(

Tn(xn, an, Zn+1)
)

)

. (4.2)

The last equality holds since the minimization does not depend on the entire policy but only on
an = dn(hn). Here, objective and constraint depend on the history of the process only through
xn. Thus, given existence of a minimizing Markov decision rule d∗n, (4.2) equals Tnd∗nJn+1(xn).

Again by the induction hypothesis there exists an optimal Markov policy π∗ ∈ ΠM such that
Jn+1 = Jn+1π∗ . Hence, we have

Vn(hn) ≥ Tnd∗nJn+1(xn) = Tnd∗nJn+1π∗(xn) = Jnπ∗(xn) ≥ Jn(xn) ≥ Vn(hn).

It remains to show the existence of a minimizing Markov decision rule d∗n and that Jn ∈ B. We
want to apply Proposition 2.4.3 in [9]. The set-valued mapping E ∋ x 7→ Dn(x) is compact-
valued and upper semicontinuous. Next, we show that Dn ∋ (x, a) 7→ Lnv(x, a) is lower semi-
continuous for every v ∈ B. Let {(xk, ak)}k∈N be a convergent sequence in Dn with limit
(x∗, a∗) ∈ Dn. The function Dn ∋ (x, a) 7→ cn

(

x, a, Tn(x, a, Zn+1(ω))
)

+ v
(

Tn(x, a, Zn+1(ω))
)

is
lower semicontinuous for every ω ∈ Ω as a composition of a continuous and a lower semicontin-
uous one. Consequently,

lim
k→∞

inf
ℓ≥k

cn
(

xℓ, aℓ, Tn(xℓ, aℓ, Zn+1)
)

+ v
(

Tn(xℓ, aℓ, Zn+1)
)

= lim inf
k→∞

cn
(

xk, ak, Tn(xk, ak, Zn+1)
)

+ v
(

Tn(xk, ak, Zn+1)
)

≥ cn
(

x∗, a∗, Tn(x
∗, a∗, Zn+1)

)

+ v
(

Tn(x
∗, a∗, Zn+1)

)

. (4.3)

The sequence {Ck}k∈N with

Ck(ω) = inf
ℓ≥k

cn
(

xℓ, aℓ, T (xℓ, aℓ, Zn+1)
)

+ v
(

Tn(xℓ, aℓ, Zn+1)
)

is measurable as the ω-wise infimum of a countable number of random variables and increasing
for every ω ∈ Ω. By Lemma 4.5, there exists a nonnegative random variable C̄ ∈ Lp(Ω,A,P) such
that |Ck| ≤ C̄ for all k ∈ N. Hence, {Ck}k∈N converges almost surely to some C∗ ∈ Lp(Ω,A,P).
The Fatou property of the risk measure ρn implies

lim inf
k→∞

Lnv(xk, ak) = lim inf
k→∞

ρn

(

cn
(

xk, ak, Tn(xk, ak, Zn+1)
)

+ v
(

Tn(xk, ak, Zn+1)
)

)

≥ lim inf
k→∞

ρn(Ck)

≥ ρn(C
∗)

≥ ρn

(

cn
(

x∗, a∗, Tn(x
∗, a∗, Zn+1)

)

+ v
(

Tn(x
∗, a∗, Zn+1)

)

)

= Lnv(x
∗, a∗).

The last inequality follows from (4.3) and the monotonicity of ρn. So we have shown the lower
semicontinuity of Dn ∋ (x, a) 7→ Lnv(x, a). Proposition 2.4.3 in [9] yields the existence of a
minimizing Markov decision rule d∗n and that Jn = TJn+1 is lower semicontinuous. Furthermore,
Jn is bounded by

¯
b and b̄ according to Assumption 4.2 (i). Thus, Jn ∈ I and the proof is

complete. �
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5. Cost Minimization under an Infinite Planning Horizon

In this section, we consider the risk-sensitive recursive cost minimization problem with an
infinite planning horizon. This is reasonable if the terminal period is unknown or if one wants
to approximate a model with a large but finite planning horizon. Solving the infinite horizon
problem will turn out to be easier since it admits a stationary optimal policy. We study the
stationary version of the decision model with no terminal cost. Therefore, the risk measure may
no longer vary over time. We also require coherence as an additional property. Recall that if ρ
is finite on Lp(Ω,A,P), the Fatou property is already implied by coherence. Within the class
of distortion risk measures requiring coherence essentially means a restriction to spectral risk
measures. For spectral risk measures, finiteness is guaranteed if the spectrum φ lies in Lq. Due
to coherence we can work with local bounding functions, see Lemma 4.3. We will see that if
the one-stage cost function is bounded, coherence can be dropped as a requirement on the risk
measure. Then, all distortion risk measures with the Fatou property are admissible. For clarity,
all assumptions of this section are summarized below.

Assumption 5.1. (i) There exist α,
¯
ǫ, ǭ ≥ 0 with

¯
ǫ + ǭ = 1 and measurable functions

¯
b :

E → (−∞,−
¯
ǫ], b̄ : E → [ǭ,∞) such that for all (x, a) ∈ D

ρ
(

c(x, a, T (x, a, Z))
)

≥
¯
b(x), ρ

(

−
¯
b(T (x, a, Z))

)

≤ −α
¯
b(x),

ρ
(

c(x, a, T (x, a, Z))
)

≤ b̄(x), ρ
(

b̄(T (x, a, Z))
)

≤ αb̄(x).

(ii) We define b : E → [1,∞), b(x) = b̄(x)−
¯
b(x). For all (x̄, ā) ∈ D there exists an ǫ > 0 and

measurable functions Θx̄,ā
1 ,Θx̄,ā

2 : Z → R+ such that Θx̄,ā
1 (Z),Θx̄,ā

2 (Z) ∈ Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ Θx̄,ā
1 (z), b(T (x, a, z)) ≤ Θx̄,ā

2 (z)

for all z ∈ Z and (x, a) ∈ Bǫ(x̄, ā) ∩ D. Here, Bǫ(x̄, ā) is the closed ball around (x̄, ā)
w.r.t. an arbitrary product metric on E ×A.

(iii) The law-invariant risk measure ρ : Lp(Ω,A,P) → R̄ is proper, coherent and has the Fatou
property.

(iv) The discount factor β satisfies αβ < 1.

Due to discounting, the global bounding functions corresponding to
¯
b, b̄, b are given by

¯
b =

1

1− αβ¯
b, b̄ =

1

1− αβ
b̄ and b =

1

1− αβ
b. (5.1)

This can be seen as in the proof of Lemma 4.3.
Since the model with infinite planning horizon will be derived as a limit of the one with finite

horizon, the consideration can be restricted to Markov policies π = (d1, d2, . . . ) ∈ ΠM due to
Theorem 4.7. When calculating limits, it is convenient to index the value functions with the
distance to the time horizon rather than the point in time. This is also referred to as forward
form of the value iteration.

Definition 5.2. For v ∈ Bb and a Markov decision rule d let

Tdv(x) = ρ
(

c
(

x, d(x), T (x, d(x), Z)
)

+ βv
(

T (x, d(x), Z)
)

)

, x ∈ E,

T v(x) = inf
a∈D(x)

ρ
(

c
(

x, a, T (x, a, Z)
)

+ βv
(

T (x, a, Z)
)

)

, x ∈ E.

The value of a policy π = (d0, d1 . . . ) ∈ ΠM up to a planning horizon N ∈ N now is

JNπ(x) = Td0 ◦ · · · ◦ TdN−1
0(x), x ∈ E. (5.2)

In a non-stationary formulation the discounting is included in the one-stage cost functions and
therefore calibrated w.r.t. the fixed reference time zero. If the value functions are considered at
a later point in time, the non-stationary and stationary version differ by a discounting factor:

Jnon-stat
n (x) = βnJ stat

N−n(x), x ∈ E, n = 0, . . . , N.
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The reformulation (5.2) makes it necessary to write the value iteration in terms of the shifted
policy ~π = (d1, d2, . . . ) corresponding to π = (d0, d1, . . . ) ∈ ΠM :

JNπ(x) = Td0JN−1~π(x) = ρ
(

c
(

x, d0(x), T (x, d0(x), Z)
)

+ βJN−1~π

(

T (x, d0(x), Z)
)

)

, x ∈ E.

The value function under planning horizon N ∈ N is given by

JN (x) = inf
π∈ΠM

JNπ(x), x ∈ E,

By Theorem 4.7, the value function satisfies the Bellman equation

JN (x) = T JN−1(x) = T N0(x), x ∈ E. (5.3)

When the planning horizon is infinite, we define the value of a policy π ∈ ΠM as

J∞π(x) = lim
N→∞

JNπ(x), x ∈ E. (5.4)

Hence, the optimality criterion considered in this section is

J∞(x) = inf
π∈ΠM

J∞π(x), x ∈ E. (5.5)

The next lemma shows that the infinite horizon policy value (5.4) and value function (5.5) are
well-defined.

Lemma 5.3. Under Assumption 5.1, the sequence {JNπ}N∈N converges pointwise for every
Markov policy π ∈ ΠM and the limit J∞π is bounded by

¯
b and b̄.

Proof. First, we show by induction that for all N ∈ N

JNπ(x) ≥ JN−1π(x) + (αβ)N−1

¯
b(x), x ∈ E. (5.6)

For N = 1 it holds by Assumption 5.1 (i) that J1π(x) ≥
¯
b(x) = J0π(x) + (αβ)0

¯
b(x). For N ≥ 2

it follows

JNπ(x) = ρ
(

c
(

x, d0(x), T (x, d0(x), Z
)

+ βJN−1~π

(

T (x, d0(x), Z)
)

)

≥ ρ
(

c
(

x, d0(x), T (x, d0(x), Z
)

+ βJN−2~π

(

T (x, d0(x), Z)
)

+ β(αβ)N−2

¯
b
(

T (x, d0(x), Z)
)

)

≥ ρ
(

c
(

x, d0(x), T (x, d0(x), Z
)

+ βJN−2~π

(

T (x, d0(x), Z)
)

)

− β(αβ)N−2ρ
(

−
¯
b
(

T (x, d0(x), Z)
)

)

≥ ρ
(

c
(

x, d0(x), T (x, d0(x), Z
)

+ βJN−2~π

(

T (x, d0(x), Z)
)

)

+ (αβ)N−1

¯
b(x)

= JN−1π(x) + (αβ)N−1

¯
b(x).

The first inequality is by the induction hypothesis, the second one is by Lemma 2.5 together
with the positive homogeneity of ρ and the third one is due to Assumption 5.1 (i). Thus, (5.6)
holds. Applying this inequality repeatedly for N,N − 1, . . . ,m yields

JNπ(x) ≥ Jmπ(x) +

N−1
∑

k=m

(αβ)k
¯
b(x) ≥ Jmπ(x) +

∞
∑

k=m

(αβ)k
¯
b(x), (5.7)

where δm(x) =
∑∞

k=m(αβ)k
¯
b(x) are non-positive functions with limm→∞ δm(x) = 0. Hence,

the sequence of functions {JNπ}N∈N is weakly increasing and therefore convergent to a limit
function J∞π by Lemma A.1.4 in [9]. The global bounds (5.1) also apply to the limit J∞π. �

Lemma 5.4. Given Assumption 5.1, the Bellman operator T is a contraction on I = [
¯
b, b̄]

with modulus αβ ∈ (0, 1).
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Proof. Let v ∈ I. It has been established in the proof of Theorem 4.7 that T v is lower semicon-
tinuous. Furthermore,

T v(x) ≥ T
¯
b(x) = inf

a∈D(x)
ρ
(

c
(

x, a, T (x, a, Z)
)

+
β

1− αβ¯
b
(

T (x, a, Z)
)

)

≥ inf
a∈D(x)

ρ
(

c
(

x, a, T (x, a, Z)
)

)

−
β

1− αβ
ρ
(

−
¯
b
(

T (x, a, Z)
)

)

≥
¯
b(x) +

αβ

1− αβ¯
b(x) =

¯
b(x).

The second inequality is by Lemma 2.5 together with the positive homogeneity of ρ and the
third one is due to Assumption 5.1 (i). Regarding the upper bounding function one can argue
similarly, using the subadditivity of ρ instead of Lemma 2.5:

T v(x) ≤ T b̄(x) = inf
a∈D(x)

ρ
(

c
(

x, a, T (x, a, Z)
)

+
β

1− αβ
b̄
(

T (x, a, Z)
)

)

≤ inf
a∈D(x)

ρ
(

c
(

x, a, T (x, a, Z)
)

)

+
β

1− αβ
ρ
(

b̄
(

T (x, a, Z)
)

)

≤ b̄(x) +
αβ

1− αβ
b̄(x) = b̄(x).

Hence, the operator T is an endofunction on I and it remains to verify the Lipschitz constant
αβ. For v1, v2 ∈ I it holds

|T v1(x)− T v2(x)| ≤ sup
a∈D(x)

|Lv1(x, a) − Lv2(x, a)|

≤ β sup
a∈D(x)

ρ
(

∣

∣v1
(

T (x, a, Z)
)

− v2
(

T (x, a, Z)
)
∣

∣

)

≤ β sup
a∈D(x)

ρ
(

‖v1 − v2‖bb
(

T (x, a, Z)
)

)

= β‖v1 − v2‖b sup
a∈D(x)

ρ
(

b̄
(

T (x, a, Z)
)

−
¯
b
(

T (x, a, Z)
)

)

≤ β‖v1 − v2‖b sup
a∈D(x)

[

ρ
(

b̄
(

T (x, a, Z)
)

)

+ ρ
(

−
¯
b
(

T (x, a, Z)
)

)]

≤ αβ‖v1 − v2‖b

[

b̄(x)−
¯
b(x)

]

= αβ‖v1 − v2‖bb(x).

Dividing by b(x) and taking the supremum over x ∈ E on the left hand side completes the proof.
Note that the second inequality is by Lemma 2.3, the fourth one due to the subadditivity of ρ
and the last one by Assumption 5.1 (i). �

Under a finite planning horizon N ∈ N we have characterized the value function with the
Bellman equation (5.3). We will show that this is compatible with the optimality criterion of
the infinite horizon model (5.5). To this end, we define the limit value function

J(x) = lim
N→∞

JN (x), x ∈ E.

Note that the limit exists since it follows from (5.7) that JN ≥ Jm + δm for all N ≥ m which
implies the convergence.

Theorem 5.5. Let Assumptions 3.1 and 5.1 be satisfied. Then it holds:

a) The limit value function J is the unique fixed point of the Bellman operator T in I = [
¯
b, b̄].

b) There exists a Markov decision rule d∗ such that Td∗J = T J .
c) Each stationary policy π∗ = (d∗, d∗, . . . ) induced by a Markov decision rule d∗ as in b) is

optimal for optimization problem (5.5) and it holds J∞ = J .

Proof. a) The fact that J is the unique fixed point of the operator T in I follows directly
from Banach’s Fixed Point Theorem using Lemma 5.4.

b) The existence of a minimizing Markov decision rule follows from the respective result in
the finite horizon case, cf. Theorem 4.7.
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c) Let d∗ be a Markov decision rule as in part b) and π∗ = (d∗, d∗, . . . ). Then it holds

J(x) ≤ J∞(x) ≤ J∞π∗(x), x ∈ E.

The second inequality holds by definition. Regarding the first one note that for any
π ∈ ΠM we have JN (x) ≤ JNπ(x) for all N ∈ N0. Letting N → ∞ yields J(x) ≤ J∞π(x).
Since π ∈ ΠM was arbitrary we get J(x) ≤ infπ∈ΠM J∞π(x) = J∞(x). It remains to show

J∞π∗(x) ≤ J(x), x ∈ E. (5.8)

To that end, we will prove by induction that for all N ∈ N0 and x ∈ E

J(x) ≥ JNπ∗(x) +
(αβ)N

1− αβ¯
b(x). (5.9)

Letting N → ∞ in (5.9) yields (5.8) and concludes the proof. For N = 0 equation (5.9)
reduces to J(x) ≥ 1

1−αβ¯
b(x) =

¯
b(x), which holds by part a). For N ≥ 1 the induction

hypothesis yields

J(x) = Td∗J(x) ≥ Td∗

(

JN−1π∗ +
(αβ)N−1

1− αβ ¯
b

)

(x)

≥ ρ
(

c
(

x, d∗(x), T (x, d∗(x), Z)
)

+ βJN−1π∗

(

T (x, d∗(x), Z)
)

)

− β
(αβ)N−1

1− αβ
ρ
(

−
¯
b
(

T (x, d∗(x), Z)
)

)

≥ JNπ∗(x) +
(αβ)N

1− αβ¯
b(x).

The second inequality is by Lemma 2.5 together with the positive homogeneity of ρ and
the last one is by Assumption 5.1 (i). �

Let us now consider the special case that the one-stage cost is bounded, i.e.

(B) there exist
¯
b ∈ R− and b̄ ∈ R+ such that b = b̄ −

¯
b > 0 and

¯
b ≤ c

(

x, a, T (x, a, Z)
)

≤ b̄

P-f.s. for all (x, a) ∈ D.

Then, Assumption 5.1 (i) is satisfied with α = 1 and part (ii) is obvious. Part (iv) of the
assumption reduces to β < 1.

Corollary 5.6. Given (B), Lemmata 5.3, 5.4 and in case Assumption 3.1 is satisfied, Theorem
5.5 hold for any normalized monetary risk measure with the Fatou property.

Proof. The steps in the proofs that where justified by Lemma 2.5, subadditivity, positive homo-
geneity or Assumption 5.1 (i) now hold due to translation invariance and normalization. Nothing
else has to be changed. �

6. Connection to Distributionally Robust MDP

We consider the stationary version of the decision model with no terminal cost under both
finite and infinite horizon in this section. If the planning horizon is finite, stationarity is only
assumed for convenience and everything can be transferred to a non-stationary setting purely
by notational changes. Let the risk measure ρ be proper and coherent with the Fatou property.
By inserting the dual representation of Proposition 2.4 in the Bellman equation, we get

JN (x) = 0,

Jn(x) = inf
a∈D(x)

sup
Q∈Q

EQ
[

c
(

x, a, T (x, a, Z)
)

+ βJn+1

(

T (x, a, Z)
)

]

, x ∈ E,

i.e. the Bellman equation of a distributionally robust MDP as considered in [5]. Under some mi-
nor technical assumptions we have indeed a special case of the distributionally robust MDP and
thus obtain a global interpretation of the recursively defined risk-sensitive optimality criterion.
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Due to the independence of the disturbances we can w.l.o.g. assume that the underlying
probability space has a product structure (Ω,A,P) =

⊗∞
n=1(Ω1,A1,P1) with Zn(ω) = Zn(ωn)

only depending on component ωn of ω = (ω1, ω2, . . . ) ∈ Ω. For a policy π = (d0, d1, . . . ) ∈ ΠM

of the controller and γ = (γ0, γ1, . . . ), where γn : D → Q is measurable, we define the transition
kernel

Qπγ
n (B|x, a) =

∫

1B

(

T (x, dn(x), Z(ω))
)

γn(dω|x, dn(x)), B ∈ B(E), x ∈ E,

and the law of motion Q
πγ
x = δx ⊗Q

πγ
0 ⊗Q

πγ
1 ⊗ . . . The set of all possible laws of motion under

policy π ∈ ΠM is denoted by Qπ = {Qπγ
x : γ ∈ Γ} with Γ being the set of all possible γ.

Theorem 6.1. Let Assumption 5.1 be fulfilled with the following tightening in part (i):

ρ
(

c−(x, a, T (x, a, Z))
)

≤ −
¯
b(x), ρ

(

c+(x, a, T (x, a, Z))
)

≤ b̄(x), (x, a) ∈ D.

Furthermore, let the underlying probability space have a product structure as above and let the
probability measure P1 on (Ω1,A1) be separable. Then, for N ∈ N ∪ {∞} it holds

JN (x) = inf
π∈ΠM

sup
Q∈Qπ

EQ

[

N−1
∑

k=0

βkc(Xk, dk(Xk),Xk+1)

]

(6.1)

Proof. We need to verify Assumption 3.1 in [5]. Then, the assertion follows from Theorem 3.10
therein for the finite horizon case and from Theorem 4.18 in [16] for the infinite horizon case.
Part (i) holds since we have for all Q ∈ Q and (x, a) ∈ D

EQ
[

−c−(x, a, T (x, a, Z))
]

≥ inf
Q∈Q

EQ
[

−c−(x, a, T (x, a, Z))
]

= − sup
Q∈Q

EQ
[

c−(x, a, T (x, a, Z))
]

= −ρ
(

c−(x, a, T (x, a, Z))
)

≥
¯
b(x),

EQ [
¯
b(T (x, a, Z))] ≥ inf

Q∈Q
EQ [

¯
b(T (x, a, Z))] = − sup

Q∈Q

EQ [−
¯
b(T (x, a, Z))]

= −ρ
(

−
¯
b(T (x, a, Z))

)

≥ α
¯
b(x),

EQ
[

c+(x, a, T (x, a, Z))
]

≤ sup
Q∈Q

EQ
[

c+(x, a, T (x, a, Z))
]

= ρ
(

c+(x, a, T (x, a, Z))
)

≤
¯
b(x),

EQ
[

b̄(T (x, a, Z))
]

≤ sup
Q∈Q

EQ
[

b̄(T (x, a, Z))
]

= ρ
(

b̄(T (x, a, Z))
)

≤ αb̄(x).

Part (ii) equals Assumption 5.1 (ii). Finally, part (iii) holds since ρ(X) = maxQ∈Q EQ[X] by
Proposition 2.4 where Q ⊆ Mq

1(Ω,A,P) is weak* compact and therefore norm bounded by the
Banach-Alaoglu Theorem 6.21 in [2]. �

It is readily checked that for a fixed policy π ∈ ΠM of the controller ρ̃(X) = supQ∈Qπ
EQ[X],

X ∈ Lp(Ω,A,P), defines a coherent risk measure. If the stage-wise applied risk measure ρ

is spectral and the model data has certain monotonicity properties, one can choose Q to be
independent of π, cf. Lemma 6.8 and subsequent remarks in [5]. In this case, the recursive
minimization of spectral risk measures is equivalent to the minimization of a non-standard
coherent risk measure applied to the total cost.

Besides, one can reformulate (6.1) to

JN (x) = inf
π∈ΠM

sup
γ∈Γ

Eπγ

[

N−1
∑

k=0

βkc(Xk, dk(Xk),Xk+1)

]

with the interpretation of a Stackelberg game of the controller against a theoretical opponent (na-
ture) selecting the most adverse disturbance distribution in each scenario. Here, γ = (γ0, γ1, . . . )
with γn : D → Q is a Markov policy of nature. This game is extensively studied in [5]. From this
perspective we get another global interpretation of the recursively defined objective function as
robust minimization of the expected total cost.
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7. Relaxed Assumptions for Monotone Models

The model has been introduced in Section 3 with a general Borel space as state space. How-
ever, in many applications the state space is simply R. In this case, the assumption on the
transition function can be relaxed to semicontinuity when the transition and one-stage cost
function have some form of monotonicity. For notational convenience, we consider the station-
ary model with no terminal cost under both finite and infinite horizon in this section. We replace
Assumption 3.1 by

Assumption 7.1. (i) The state space is the real line E = R.
(ii) The sets D(x) are compact and R ∋ x 7→ D(x) is upper semicontinuous and decreasing,

i.e. D(x) ⊇ D(y) for x ≤ y.
(iii) The transition functions T is lower semicontinuous in (x, a) and increasing in x.
(iv) The one-stage cost function c is lower semicontinuous in (x, a, x′) and increasing in (x, x′).

How do the modified continuity assumptions affect the validity of the results in Sections 4
and 5? Lemmata 4.3, 4.5, 5.3 and 5.4 were proven without using the continuity of T . Thus,
only Theorems 4.7 and 5.5 need to be looked at.

Proposition 7.2. Let the new continuity and monotonicity Assumptions 7.1 be satisfied. Then,

a) under Assumption 4.2, the assertion of Theorem 4.7 remains true.
b) under Assumption 5.1, the assertion of Theorem 5.5 remains true.

In both cases, the value functions are increasing and the set of potential value functions can be
replaced by B = {v ∈ Bb : v lower semicontinuous and increasing}.

Proof. In the proof of Theorem 4.7, the continuity of T is only used to show that D ∋ (x, a) 7→
Lv(x, a) is lower semicontinuous for every v ∈ B. Due to the monotonicity assumptions,

D ∋ (x, a) 7→ c
(

x, a, T (x, a, Z(ω))
)

+ βv
(

T (x, a, Z(ω))
)

is lower semicontinuous for every ω ∈ Ω. Now, the lower semicontinuity of D ∋ (x, a) 7→ Lv(x, a)
and the existence of a minimizing decision rule follow as in the proof of Theorem 4.7. The fact
that T v is increasing for every v ∈ B follows as in Theorem 2.4.14 in [9]. Theorem 5.5 uses the
continuity of T only indirectly through Theorem 4.7. �

With the real line as state space, a simple separation condition is sufficient for Assumptions
4.2 (ii) or 5.1 (ii).

Lemma 7.3. Let there be upper semicontinuous functions ϑ1, ϑ2 : D → R+ and measurable
functions Θ1,Θ2 : Z → R+ which fulfill Θ1(Z),Θ2(Z) ∈ Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ ϑ1(x, a) + Θ1(z), b(T (x, a, z)) ≤ ϑ2(x, a) + Θ2(z)

for every (x, a, z) ∈ D ×Z. Then Assumptions 4.2 (ii) and 5.1 (ii) are satisfied.

Proof. Let (x̄, ā) ∈ D. We can choose ǫ > 0 arbitrarily. The set S = [x̄− ǫ, x̄+ ǫ]×D(x̄− ǫ) is
compact w.r.t. the product topology by the Tychonoff Product Theorem 2.61 in [2]. Moreover,
Bǫ(x̄, ā) ∩D ⊆ S since the set-valued mapping D(·) is decreasing. Due to upper semicontinuity
there exist (xi, ai) ∈ S such that ϑi(xi, ai) = sup(x,a)∈S ϑi(x, a), i = 1, 2. Hence, one can define

Θx̄,ā
i (·) = ϑi(xi, ai) + Θi(·), i = 1, 2

and Assumptions 4.2 (ii) and 5.1 (ii) are satisfied. �

A monotone model not only allows for weaker assumptions on the transition function, but
also requirements regarding the risk measure may be relaxed. In the following, we study two
such cases: local bounding and infinite horizon cost minimization with bounded below cost.

Firstly, the existence of a global upper and lower bounding function can be guaranteed by
suitable local bounding functions as in Lemma 4.3. However due to the monotonicity properties
of the model, the risk measure does not need to be coherent. E.g. spectral risk measures can be
replaced by other distortion risk measures.
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Lemma 7.4. Let Assumption 7.1 be satisfied and the monetary risk measure ρ be positive
homogeneous and comonotonic additive. If there exist

¯
ǫ, ǭ ≥ 0 with

¯
ǫ+ǭ = 1, increasing functions

¯
b : R → (−∞,−

¯
ǫ], b̄ : R → [ǭ,∞) and a constant α > 0 such that αβ ∈ (0, 1) and

ρ
(

c(x, a, T (x, a, Z))
)

≥
¯
b(x), ρ

(

¯
b(T (x, a, Z))

)

≥ α
¯
b(x),

ρ
(

c(x, a, T (x, a, Z))
)

≤ b̄(x), ρ
(

b̄(T (x, a, Z))
)

≤ αb̄(x),

for all (x, a) ∈ D, then

¯
b =

1

1− αβ¯
b and b̄ =

1

1− αβ
b̄

are global lower/ upper bounding functions and Assumption 4.2 (i) holds.

Proof. We proceed by backward induction. At time N there is nothing to show. Assuming the
assertion holds at time n+ 1, it follows for time n:

Vnπ(hn) = ρ
(

c
(

xn, dn(hn), T (xn, dn(hn), Z)
)

+ βVn+1π

(

hn, dn(hn), T (xn, dn(hn), Z)
)

)

≥ ρ
(

c
(

xn, dn(hn), T (xn, dn(hn), Z)
)

+
β

1− αβ¯
b
(

T (xn, dn(hn), Z)
)

)

= ρ
(

c
(

xn, dn(hn), T (xn, dn(hn), Z)
)

)

+
β

1− αβ
ρ
(

¯
b
(

T (xn, dn(hn), Z)
)

)

≥
¯
b(xn) +

αβ

1− αβ¯
b(xn) =

¯
b(xn),

π ∈ Π, hn ∈ Hn. The second equality is by the comonotonic additivity and positive homogeneity
of ρ. Regarding the upper bounding function one argues analogously. �

In Lemma 7.4, the local bounding functions are assumed to be increasing, which was not
necessary in Lemma 4.3. Also note that we only have to require ρ

(

¯
b(T (x, a, Z))

)

≥ α
¯
b(x),

(x, a) ∈ D which is weaker than the corresponding assumption for the model with general state
space, cf. Lemma 4.3 and Remark 4.4.

As a second example, where the assumptions on the risk measure can be relaxed, we consider
infinite horizon cost minimization with bounded below cost. For absolutely bounded cost func-
tions we already showed in Corollary 5.6 that a coherent risk measure is not necessary to solve
the infinite horizon problem. This result is very general regarding the risk measure but very
restrictive concerning the one-stage cost. The monotone model allows for a middle course.

(B−) There exist
¯
b ≤ 0, ǭ ≥ 0 and α ≥ 1 with ǭ−

¯
b = 1 and an increasing function b̄ : R → [ǭ,∞)

such that c
(

x, a, T (x, a, Z)
)

≥
¯
b P-f.s. and

ρ
(

c(x, a, T (x, a, Z))
)

≤ b̄(x), ρ
(

b̄(T (x, a, Z))
)

≤ αb̄(x).

for all (x, a) ∈ D.

W.l.o.g. we assume α ≥ 1 since then ρ(−
¯
b) = −

¯
b ≤ α

¯
b due to translation invariance and

normalization. Otherwise one would need separate alphas for the lower and upper local bounding
function. If the risk measure is comonotonic additive and positive homogeneous, the objective
function is globally bounded under (B−) due to Lemma 7.4 and Theorem 4.7 remains true. Under
an infinite planning horizon, the assertion of Theorem 5.5 can be proven without requiring a
coherent risk measure. When we refer to the interval I = [

¯
b, b̄] in the following, it is to be

understood as a subset of the modified function space B as in Proposition 7.2.

Proposition 7.5. Let Assumptions 7.1 and 5.1 be satisfied with the modification that part (i) is
replaced by (B−) and part (iii) by the requirement that ρ is a law invariant, comonotonic additive
and positive homogeneous monetary risk measure with the Fatou property. Then it holds:

a) The sequence {JNπ}N∈N converges pointwise for every Markov policy π ∈ ΠM and the
limit function J∞π is bounded by

¯
b and b̄.
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b) The Bellman operator T is a contraction on I with modulus αβ ∈ (0, 1) and the limit
value function J is the unique fixed point of T in I.

c) There exists a Markov decision rule d∗ such that Td∗J = T J , each stationary policy
π∗ = (d∗, d∗, . . . ) induced by such a Markov decision rule is optimal for optimization
problem (5.5) and it holds J∞ = J .

Proof. a) We show by induction that for all N ∈ N

JNπ(x) ≥ JN−1π(x) + (αβ)N−1

¯
b, x ∈ R. (7.1)

For N = 1 it holds due to (B−) that J1π(x) ≥
¯
b = J0π(x) + (αβ)0

¯
b. For N ≥ 2 it follows

with the monotonicity and translation invariance of ρ that

JNπ(x) = Td0JN−1~π(x) ≥ Td0
(

JN−2~π + (αβ)N−2

¯
b
)

(x) = Td0JN−2~π(x) + β(αβ)N−2

¯
b

≥ Td0JN−2~π(x) + (αβ)N−1

¯
b = JN−1π(x) + (αβ)N−1

¯
b.

Thus, (7.1) holds. Applying this inequality repeatedly for N,N − 1, . . . ,m yields

JNπ(x) ≥ Jmπ(x) +
N−1
∑

k=m

(αβ)k
¯
b ≥ Jmπ(x) +

∞
∑

k=m

(αβ)k
¯
b.

Since
∑∞

k=m(αβ)k
¯
b is non-positive and converges to zero as m → ∞, the sequence

{JNπ}N∈N is weakly increasing and hence convergent to a limit J∞π by Lemma A.1.4
in [9]. Clearly, the global bounds

¯
b, b̄(·) also apply to the limit J∞π.

b) Let v ∈ I. Due to Proposition 7.2 T v is increasing and lower semicontinuous. Further-
more, the monotonicity and translation invariance of ρ imply

T v(x) ≥ T
¯
b(x) = T 0(x) +

¯
b ≥

¯
b+

αβ

1− αβ¯
b =

¯
b.

Regarding the upper bounding function it follows from the comonotonic additivity and
positive homogeneity of ρ that

T v(x) ≤ T b̄(x) = inf
a∈D(x)

ρ
(

c
(

x, a, T (x, a, Z)
)

+
β

1− αβ
b̄
(

T (x, a, Z)
)

)

= inf
a∈D(x)

ρ
(

c
(

x, a, T (x, a, Z)
)

)

+
β

1− αβ
ρ
(

b̄
(

T (x, a, Z)
)

)

≤ b̄(x) +
αβ

1− αβ
b̄(x) = b̄(x).

I.e. T is an endofunction on I and it remains to verify the Lipschitz constant. For v1, v2 ∈ I

it holds

T v1(x)− T v2(x)

≤ sup
a∈D(x)

Lv1(x, a)− Lv2(x, a) = β sup
a∈D(x)

ρ
(

v1
(

T (x, a, Z)
)

)

− ρ
(

v2
(

T (x, a, Z)
)

)

= β sup
a∈D(x)

ρ
(

v1
(

T (x, a, Z)
)

− v2
(

T (x, a, Z)
)

+ v2
(

T (x, a, Z)
)

)

− ρ
(

v2
(

T (x, a, Z)
)

)

≤ β sup
a∈D(x)

ρ
(

‖v1 − v2‖bb
(

T (x, a, Z)
)

+ v2
(

T (x, a, Z)
)

)

− ρ
(

v2
(

T (x, a, Z)
)

)

= ‖v1 − v2‖bβ sup
a∈D(x)

ρ
(

b
(

T (x, a, Z)
)

)

= ‖v1 − v2‖bβ sup
a∈D(x)

[

ρ
(

b̄
(

T (x, a, Z)
)

)

−
¯
b
]

≤ αβ‖v1 − v2‖b[b̄(x)−
¯
b] = αβ‖v1 − v2‖bb(x).

The first equality is by comonotonic additivity and positive homogeneity. Since
¯
b is

constant, b(·) = b̄(·) −
¯
b is an increasing function and so is v2. Therefore, the third
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equality is again by comonotonic additivity. The last inequality is by (B−) using α ≥ 1.
Interchanging the roles of v1 and v2 yields

|T v1(x)− T v2(x)| ≤ αβ‖v1 − v2‖bb(x).

Finally, dividing by b(x) and taking the supremum over x ∈ R shows that T is a contrac-
tion and Banach’s Fixed Point Theorem yields the assertion.

c) The existence of a minimizing Markov decision rule follows from Proposition 7.2. With
the same argument as in the proof of Theorem 5.5, the relation J ≤ J∞ ≤ J∞π holds
for any policy and it remains to show that J∞π∗ ≤ J for the specific policy π∗. To that
end, we will prove by induction that J ≥ JNπ∗ + (αβ)N

¯
b for all N ∈ N0. Then, letting

N → ∞ concludes the proof. The case N = 0, i.e. J(x) ≥ 1
1−αβ¯

b, holds by part b). For

N ≥ 1 we have

J(x) = Td∗J(x) ≥ Td∗
(

JN−1π∗ + (αβ)N−1

¯
b
)

(x) = Td∗JN−1π∗(x) + β(αβ)N−1

¯
b

≥ Td∗JN−1π∗(x) + (αβ)N
¯
b = JNπ∗(x) + (αβ)N

¯
b.

The first inequality is by the induction hypothesis and the monotonicity of ρ, the equality
thereafter is by translation invariance and the second inequality holds since α ≥ 1. �

8. Examples

In this section, we present some applications of the results in the previous sections. In
particular we show that often structural results about optimal policies which are know from the
classical iterated expectation case still hold under more general risk measures.

Example 8.1 (Value-at-Risk is Myopic in Monotone Models). In a monotone model as in
Section 7, where the one-stage cost function does not depend on the controller’s action, i.e.
c(x, a, x′) = c(x, x′), recursive decision making with Value-at-Risk is myopic. This can be seen
as follows. Let Assumptions 7.1 and 4.2 (i),(ii) be satisfied. The Bellman equation here reads

JN (x) = 0

Jn(x) = inf
a∈D(x)

VaRα

(

c(x, T (x, a, Z)) + βJn+1(T (x, a, Z))
)

, n = 0, . . . , N − 1.

We can now interchange VaR with the increasing lower semicontinuous (i.e. left-continuous)
function h(x′) = c(x, x′) + βJn+1(x

′), x′ ∈ R by properties of the quantile function (see e.g.
Proposition 2.2 in [4]). Doing this we obtain

Jn(x) = inf
a∈D(x)

h
(

VaRα(T (x, a, Z))
)

= h

(

inf
a∈D(x)

VaRα(T (x, a, Z))

)

.

Hence, the minimizer of a 7→ VaRα(T (x, a, Z)) induces an optimal decision rule for each stage.
In particular the optimal policy is stationary and does not depend on time.

Note here that we can interpret a spectral risk measure as a Value-at-Risk criterion with
unknown parameter α which has a prior distribution given by the density φ. However, since we
apply it recursively at each stage, learning of the parameter is not possible.

Example 8.2 (Stopping Problems). Let us consider the following standard stopping problem:
Suppose a real-valued Markov chain (Xn) ⊂ Lp is given by Xn+1 = T (Xn, Zn+1) where (Zn) is
an i.i.d. sequence of random variables. We are allowed to observe the Markov chain and when
we stop it in state x we have to pay the cost c(x). In case we do not stop we have to pay the
fixed cost c̄. We have to stop no later than time point N . Suppose Assumptions 4.2 (i) and
(ii) are fulfilled. The risk measure ρ is simply monetary and finite. The Fatou property is not
needed here since the existence of minimizers is immediate. The Bellman equation is

JN (x) = x,

Jn(x) = min
{

ρ(c(x)); ρ
(

c̄+ βJn+1

(

T (x,Zn+1)
))}

,

= min
{

ρ(c(x)); c̄+ ρ
(

βJn+1

(

T (x,Zn+1)
))}

, n = 0, . . . , N − 1.



MARKOV DECISION PROCESSES WITH RECURSIVE RISK MEASURES 21

In the well-known house selling application for example Xn is the offer for a house at time n

that we may buy. When we decide to buy it we have to pay the price, i.e. c(x) = x. In case we
do not buy, we still have to pay the rent c̄. Offers are here assume to be i.i.d. Thus, the Bellman
equation specializes to

JN (x) = x,

Jn(x) = min {ρ(x); c̄+ ρ (βJn+1(Zn+1))} , n = 0, . . . , N − 1.

Thus, when we define

tn := sup
{

x ∈ R : ρ(x) ≤ c̄+ ρ (βJn+1(Zn+1))
}

then the optimal policy obviously is to buy at time n if x ≤ tn, otherwise not. Hence the
optimal strategy is still a threshold policy, but the thresholds depend on ρ. For example if ρ is
normalized and ρ(X) ≥ EX (this is e.g. satisfied for Average-Value-at-Risk or the Entropic risk
measures) then tn ≥ tEn where tEn belongs to the case ρ = E. Hence, under the risk measure we
will accept an offer earlier.

Example 8.3 (Casino Game). Suppose we have to play N -times the same game and decide
how much of our current capital we should bet. Outcomes are either a gain or a loss and given
by i.i.d. random variables (Zn), with P(Zn = 1) = p = 1 − P(Zn = −1). Note that the Zn are
bounded. We assume that the risk measure is monetary, law-invariant, positive homogeneous
and has the Fatou property. We want to minimize the risk of a loss. Note that Assumptions 3.1
and 4.2 are satisfied. The Bellman equation is

JN (x) = −x,

Jn(x) = inf
0≤a≤x

ρ
(

Jn+1

(

T (x, a, Zn+1)
))

,

= inf
0≤a≤x

ρ
(

Jn+1

(

x+ aZ
))

, n = 0, . . . , N − 1.

It is then easy to see by induction that the optimal policy is stationary and given by

d∗(x) =

{

0, ρ(−Z) ≥ 0,
x, ρ(−Z) < 0.

From the monotonicity and law-invariance of ρ it follows that there exists p∗ ∈ [0, 1] such that

d∗(x) =

{

0, p < p∗,
x, p ≥ p∗.

In case ρ(−Z) < 0, bold-play is best and we obtain by induction that Jn(x) = −x(1−ρ(−Z))N−n.
When ρ is additionally convex (which then means coherent) and the game is fair (p = 1

2), we
obtain since 0 ≤cx −Zn in convex order implying that 0 = ρ(0) ≤ ρ(−Z) (see Theorem 3.4 in
[8]) and it is obviously best not to play.

Example 8.4 (Cash Balance). In a cash balance problem the aim is to keep the cash level of
a company close to zero, because a negative cash level means we have to pay interest and a
positive cash level creates opportunity cost (see Section 2.6.2 in [9]). We assume that a convex
function L : R → R+ with L(0) = 0 gives the cost of deviating from zero. The cash level is
subject to random changes which are modelled as i.i.d. random variables (Zn). It is possible to
increase or decrease the cash level at the beginning of each period by paying transfer cost. The
transfer cost c : R → R+ are assumed to be piecewise linear:

c(x′) = cu(x
′)+ + cd(x

′)−

with cu, cd > 0. Of course the state is here the cash level and we choose the action to be the new
cash level. Hence the transition function is T (x, a, z) = a− z. We consider the infinite horizon
problem and suppose that Assumption 5.1 is in force. Assumption 3.1 is here satisfied, except
for the compactness of the admissible actions which are here R. However, it can be seen that it
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is possible to restrict to a compact level set (see Section 2.6.2 in [9] for details). The Bellman
equation for the infinite horizon problem is here

J∞(x) = sup
a∈R

ρ
(

c(a− x) + L(a) + βJ∞(a− Z)
)

= sup
a∈R

{

c(a− x) + L(a) + βρ
(

J∞(a− Z)
)}

Now we can proceed exactly in the same way as in the classical case (see Section 2.6.2 in [9] for
details) since the functions

hu(a) := (a− x)cu + L(a) + βρ
(

J∞(a− Z)
)

hd(a) := (x− a)cd + βρ
(

J∞(a− Z)
)

are still both convex under our assumption that ρ is convex. We obtain:

Proposition 8.5. For the cash balance problem with infinite horizon it holds under Assumption
5.1:

a) There exist critical levels S− and S+ such that

J∞(x) =















(S− − x)cu + L(S−) + βρ
(

J∞(S− − Z)
)

if x < S−

L(x) + βρ
(

J∞(x− Z)
)

if S− ≤ x ≤ S+

(x− S+)cd + L(S+) + βρ
(

J∞(S+ − Z)
)

if x > S+.

J∞ is convex.
b) The stationary policy (f∗, f∗, . . .) is optimal with

f∗(x) :=







S− if x < S−,

x if S− ≤ x ≤ S+,

S+ if x > S+,

(8.1)

Of course the switching points S− and S+ depend on the choice of the risk measure ρ.
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