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3Corvinus University of Budapest, Fővám tér 8, 1093, Budapest, Hungary

4School of Engineering, Polytechnic of Porto, Rua Dr. António Bernardino de
Almeida, 431, 4249-015 Porto Portugal

5Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007,
Porto, Portugal

December 10, 2020

Abstract

Kidney exchange programs (KEP’s) represent an additional pos-
sibility of transplant for patients suffering from end stage kidney dis-
ease. If a patient has a willing living donor with whom the patient
is not compatible, the pair patient–donor can join a pool of incom-
patible pairs and, if compatibility between patient and donor in two
our more pairs exists, organs can be exchanged between them. The
problem can be modeled as an integer program that, in general, aims
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at finding the pairs that should be selected for transplant such that
maximum number of transplants is performed.

In this paper we consider that for each patient there may exist
a preference order over the organs that he/she can receive, since a
patient may be compatible with several donors but may have a bet-
ter fit over some than over others. Under this setting, the aim is to
find the maximum cardinality stable exchange, a solution where no
blocking cycle exists. For this purpose we propose three novel integer
programming models based on the well-known edge and cycle formu-
lations. These formulations are adjusted for both finding stable and
strongly stable exchanges under strict preferences and for the case
when ties in preferences may exist. Furthermore, we study a situa-
tion when the stability requirement can be relaxed by addressing the
trade-off between maximum cardinality versus number of blocking cy-
cles allowed in a solution. The effectiveness of the proposed models is
assessed through extensive computational experiments on a wide set
of instances.

Keywords: OR in health servicesstable exchange kidney exchange
programs integer programming k-way exchange

1 Introduction

1.1 Background

End-stage kidney disease (ESKD) affects a considerable number of people
and is a major threat to public health: the number of ESKD patients is
expected to increase at an annual rate of 5 to 8% in developed countries;
more than 700,000 U.S citizens are currently receiving treatment for ESKD,
the 9th leading cause of deaths each year in that country [27].

Compared to dialysis, kidney transplant brings much better quality of
life to the patient but the deceased kidneys available for transplants can
only meet a tiny fraction of the existing demand. Living donation is an
alternative that in the past was constrained to related living donors: if a
patient had a related willing donor that was blood and tissue compatible
with him/her, the transplant could be performed. However, if they were
not compatible, the transplant could not proceed. To overcome this issue,
a new possibility of transplantation arose with Kidney Exchange Programs
(KEPs): for a patient with a willing donor of one kidney but medically
incompatible for transplant, the patient-donor pair can join many other such
incompatible pairs in a pool for potential exchange. In its simplest form,
with two incompatible pairs, KEP facilitates kidney exchange if the donor
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in one pair is compatible with the patient in the second pair and vice-versa.
The concept behind this exchange in a 2-cycle extends to k-cycle when k
incompatible pairs are involved. Within a KEP, a limit K on the maximum
length of exchange cycles is usually imposed, i.e., in the kidney exchange
problem only k-cycles with length k ≤ K are considered.

A relevant practical extension of the problem covers the case in which
a donor with no associated patient is allowed in the program. That donor,
hereby referred to as non-directed donor (NDD), initiates a chain by donating
his/her kidney to a patient in one pair. The donor in that pair donates to a
patient in a subsequent pair and so forth. The last donor in the chain either
donates to the deceased donor’s waiting list or acts as a “bridge” donor in
future matches. In many European programs a limit L on the maximal
length of a chain is also imposed. Considering a dummy compatibility from
all the pairs to each NDD, chains can also be referred to as cycles, taking
into account that their length is limited by L.

The underlying combinatorial optimization problem associated with a
KEP can be modeled as a vertex-disjoint cycle packing problem in a digraph,
having vertices as incompatible pairs or NDD donors and arcs indicating com-
patibility of donor in one pair with patient in another pair. The aim is in
general to obtain the set of disjoint cycles that maximizes the number of as-
sociated transplants. Additional objectives that may encapsulate preferences
by way of weights or hierarchically are, e.g. difference in age between patient
and donor and HLA-matching between them [25, 7].

In this paper we assume that patients have preferences over potential
donors, represented by ranks on in-going arcs, and aim at finding the maxi-
mum cardinality stable exchange. A stable exchange is a set of vertex-disjoint
cycles such that there is no so-called blocking cycle where all the vertices
would be better off, according to their preferences, than in the current solu-
tion. If strict preference is required only for one vertex in the blocking cycle
then we speak about strongly stable exchanges. Stability and strong stability
are equivalent to the core and strong core properties, respectively, which are
standard solution concepts in cooperative game theory, see [35] and [30]. The
usage of stable matchings in two-sided matching markets are standard both
in theory and practice, in applications such as resident allocation, college ad-
mission and school choice, see e.g. a recent book on the algorithmic aspects
of this topic by [24].

When the length of the exchange cycles is not limited there is always a
stable solution that can be found efficiently by Gale’s Top Trading Cycle
(TTC) algorithm [35]. Moreover, if the preferences are strict then the TTC
solution is unique and strongly stable [30], as suggested in the seminal paper
on KEPs by [31]. However, when the length of cycles is limited, which is
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typically the case for KEPs, a stable or strongly stable solution may not
exist and the problem of deciding its existence is NP-hard [12, 20] even for
tripartite graphs (also known as the cyclic 3D stable matching problem [28]).

To the best of our knowledge, the concept of stable solutions has not
been used yet in real KEPs. In fact, besides considering some logistical and
quality factors, the typical objective in European programs is to maximize the
number of transplants [10, 13]. However, there are several reasons why stable
solutions may well be aimed for in the future. One reason is that quality of
the transplants is becoming more important for the patients and system
organizers as well, since increasing the expected graft survival time yields a
longer expected life time for the patient and reduces the risk that this patient
will move back to the waiting list for another transplant, in a state when it
becomes more complicated to find a compatible donor. Secondly, there are
more and more platforms where the patient-donor pairs can communicate,
and so the possibility of finding a better exchange for some pairs may become
feasible through alternative channels. Finally, there is an increasing number
of compatible pairs or ABO-incompatible pairs, who are joining the KEP
pools instead of direct transplantation with the incentive of getting a better
donor. In the UK, for example, this strict improvement can be guaranteed by
the possibility of setting quality thresholds, which is an available option for
every pair. A pair might strategically set its threshold high enough in the first
matching run it participates in and then they gradually decrease it in later
rounds if no exchanges are offered. Indeed, the actual solution can be close
to being stable in such a dynamic system, even if the main optimization
goal is to maximize the number of transplants. However, as this process
takes time to converge, the health condition of the patients gets worse while
waiting for convergence. A direct mechanism for finding stable exchanges
can give the incentive to the pairs of reporting low thresholds, as they are
guaranteed to get the best possible donor in a stable solution. In fact, if no
length limit is imposed then the unique strongly stable solution, obtained
by the TTC algorithm satisfies the respecting improvement property, which
means that bringing a better quality (e.g. younger) or more compatible (e.g.
blood-type O) donor can only improve the quality of the exchange donor
that this patient will receive [9]. This property is violated for the standard
objectives of maximizing the size or the total weight (e.g., quality score) of
the solution, which can be a serious concern.

1.2 Our contribution

In this paper we propose three novel Integer Programming (IP) models for the
stable exchange problem that are suitable for finding stable and strongly sta-
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ble exchanges, considering both strict preferences and the possibility of ties.
It extends the work in [15] by providing more general and tighter formula-
tions. Namely, the new models now allow for the incorporation of non-direct
donors, permitting chains and cycles maximum length to be different. They
also consider the possibility of ties on preferences. Furthermore, we propose
a model where the stability requirement is relaxed and substituted by the
minimization of the number of blocking cycles. For that model we evaluate
the trade-off between that objective and the maximization of the number of
transplants by imposing a constraint on the maximum number of transplants
that can be sacrificed in order to obtain “the most stable” solution, i.e. the
solution with the least number of blocking cycles. Finally, we assess the per-
formance of the proposed IP formulations on generated KEP instances, and
we analyze the trade-off between maximality and stability of the solutions.

To the best of our knowledge there is no previous work in the literature
where it is proposed to compute stable matching in this setting with opti-
mization techniques. Therefore, the contribution of this paper to the state of
the art is twofold: it enriches the scarce literature on the use of IP models to
find stable matches; and it provides, for the first time, integer programming
models for finding maximum cardinality stable exchanges in a KEP.

1.3 Related literature

Although kidney exchange programs represent a relatively new paradigm,
considerable relevant research has been done during the last decades on the
associated optimization problems. Research lines attacked the modeling as-
pects of the base problem and its variants, and analyzed different policies.

Starting with the proposal by [29], the medical literature contains a num-
ber of detailed descriptions on operating KEPs (e.g. a survey by [18], or
the recent study by [2] for the US). Thorough review of European KEPs
has also been made recently and published as two deliverables of ENCKEP
(European Network for Collaboration on Kidney Exchange Programs) COST
Action: the general operation of programs is summarized in [10] and the op-
timization aspects in [13]. Well-established quality estimators of the quality
of living donations were recently proposed in the medical literature in [25]
and [7].

Regarding the optimization aspects, seminal work on IP models for KEP’s
is presented in [1] and [32]. The authors propose two models – the edge and
the cycle formulations – none of the models being compact (i.e., none having
both polynomial number of constraints and variables). Later, [14] proposed
compact formulations for the basic KEP problem. The authors also showed
how their model could be extended in order to accommodate the following
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problem variants: inclusion of non-directed donors, inclusion of compatible
pairs and possibility of having more than one donor associated to a patient.
Although they prove that linear relaxations of the compact formulations do
not provide better upper bounds for optimal solutions, when compared to
the cycle formulation, computational results reinforce the idea that compact
formulations are of practical relevance: for larger values of K and especially
if graphs are denser, compact formulations provide better results and are
able to solve larger problems. More recently [17] presented two new compact
IP models and showed that one of those models has a linear programming
relaxation that is as tight as the previously known tightest formulation – the
cycle formulation. The case of bounded length cycles and unbounded length
(aka never ending) chains was studied from an optimization aspect in [6],
and was successfully implemented in a national US KEP, Alliance for Paired
Donation (APD), as described in [5]. For recent surveys on the optimization
aspects of KEPs, we refer to [23] and [8]; a review on KEP simulations can
be found in [34].

The model of stable exchanges with unbounded length, which is equiva-
lent to the classical housing market model by [35], has been proposed as a
possible solution concept for kidney exchange in the seminal paper by [31].
However, when it became apparent that in the real applications the length of
the cycles is limited and that the main objective is rather the maximization
of the number of transplants, the literature started to focus on that sort of
models [33]. The only research papers we are aware of about bounded length
stable exchanges motivated by the kidney exchange applications are [12] and
[20], but these papers only considered the computational complexity (i.e.,
NP-hardness) of the corresponding problem.

There is a recent line of research on computing stable matchings through
integer programming methods for two-sided matching markets. That is the
case for the hospital–resident problem with couples [11], ties [22, 16], college
admissions with special features [3], stable project allocation under distribu-
tional constraints [4], and car–sharing [36]. For the algorithmic aspects of
matching problems under preferences we refer to the book by [24].

1.4 Layout of the paper

The remaining of the document is structured as follows. In Section 3 we
describe our integer programming formulations for finding stable and strongly
stable exchanges. We continue by providing further IP formulations for the
multiple objective case in Section 4, where the relaxed version of stability
versus maximization of cardinality of exchange is analysed. Computational
experiments are presented and discussed in Section 5. In Section 6 we provide
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concluding remarks.

2 Definitions and notation

Consider a digraph G = (V,A), where V = {1, 2, . . . n} is the set of vertices
and A is the set of arcs. In the context of a KEP, vertices represent patient-
donor pairs or NDDs and an arc (i, j) indicates possibility of transplanting
a kidney from donor in i to a compatible patient in j. In case compatible
pairs are included into the programme, for such a pair j we may restrict the
incoming arcs to those donors that are strictly better in quality than the
donor associated to patient j. If j is a NDD we create dummy arcs to j from
all other vertices that are not NDDs (these arcs represent donation of the
last living donor in a chain to the deceased donors waiting list).

Let C be the set of cycles in G of length at most K, if all vertices represent
patient-donor pairs, and of length at most L, if the cycle contains exactly
one NDD. Denote by V (c) and A(c) the set of vertices and arcs, respectively,
that are involved in c ∈ C. Within this context, an exchange is a set of vertex
disjoint cycles M ⊆ C. We say that vertex i is matched if there is a cycle
c ∈ M such that i ∈ V (c) and denote by A(M) =

⋃
c∈M A(c) the set of arcs

belonging to exchange M .

Preferences

For each vertex j ∈ V , each vertex i from set δ(j) = {i | (i, j) ∈ A} ⊆ V
is ranked with value r ∈ {1, . . . , |δ(j)|}. The preferences of a vertex j over
vertices of set δ(j) are defined as follows.

Definition 1 For i, i′ ∈ δ(j) ranked with r, r′, respectively, vertex j prefers
i to i′ (denoted by i <j i

′), if r < r′.

Definition 2 For i, i′ ∈ δ(j) ranked with r, r′, respectively, vertex j is in-
different between i and i′ (denoted by i =j i

′), if r′ = r.

Figure 1 illustrates definitions 1 and 2. Based on the definitions a <j b,
a <j c, a <j d, b =j c, b <j d and c <j d.

Definition 3 If i =j k implies that i = k for all j ∈ V , preferences are called
strict. Otherwise they are called weak.

In this work we assume that a vertex always prefers to be matched (i.e., to
belong to a cycle in the exchange), rather than be unmatched. For the case
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Figure 1: Example of preference or indifference of one vertex over others.

of NDDs, to avoid harming of patients in the waiting list (who, in general are
the recipients of the kidney from the last donor in the chain), we consider
that preferences are based on quality factors associated to the last donor
in the chain: donors with higher quality measures are ranked higher by the
dummy patient of the NDD.

The notion of preferences for vertices can be extended for cycles.

Definition 4 Vertex j prefers cycle c ∈ C(i) over cycle c′ ∈ C(i), denoted as
c ≺j c′, if for (i, j) ∈ A(c) and (i′, j) ∈ A(c′), i <j i

′.

Definition 5 Vertex i is indifferent between cycles c and c′ (c ∼i c′) if for
(i, j) ∈ A(c) and (i′, j) ∈ A(c′), i =j i

′

Note that for the case of strict preference the indifference between cycles
reduces to the cycles that share an arc, i.e. (i, j) ∈ A(c) ∩ A(c′).

Definition 6 Vertex i weakly prefers cycle c to c′ (c �i c′) if it prefers c to
c′ or it is indifferent between them.

Stability and strong stability

The Stable Exchange Problem is the problem of finding a maximum cardi-
nality stable or strongly stable exchange, defined as follows [12, 20]:

Definition 7 An exchange M is called stable if there is no blocking cycle
c /∈M . A blocking cycle c /∈M is a cycle such that every vertex i in V (c) is
either unmatched in M or prefers c to c′, where c′ ∈M and i ∈ V (c′).

Definition 8 An exchange M is called strongly stable if there is no weakly
blocking cycle c /∈M . A weakly blocking cycle is a cycle c /∈M such that for
every i ∈ V (c), i is either unmatched in M or weakly prefers c to c′ ∈ M ,
with strict preference for at least one vertex.
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Although Definitions 7 and 8 are the classic definitions for (strong) sta-
bility we will consider their alternative form, also used in [26], as it is writes
more natural when designing IP formulations.

Proposition 1 An exchange M is stable if and only if for every c ∈ C there
exists an arc (i, j) ∈ A(c) and (k, j) ∈ A(M) such that j weakly prefers k to
i.

For the case of strong stability and strict preferences the following holds.

Proposition 2 In case of strict preferences an exchange M is strongly sta-
ble if and only if for every cycle c ∈ C, c /∈M , there exists an arc (i, j) ∈ A(c)
such that there exists (k, j) ∈M and j prefers k to i.

Although Proposition 1 holds both for strict and weak preferences, Propo-
sition 2 is not valid for the weak preferences in case of ties.

Example 1 Figure 2 exemplifies one case where proposition 2 would fail.
Assume that i has equal preferences (p), over j and a, and that j also has

i ja b

p

qp

q

Figure 2: Strong stability with ties

equal preferences (q), over i and b. Under this setting, consider an exchange
M that consist of cycles (a, i) and (j, b). Then for cycle c = (i, j) /∈M there
is no arc such that a vertex in c strictly prefers its in-neighbour in M to an
arc in c (as required by Proposition 2). Nevertheless cycle c is not a blocking
cycle accordingly to Definition 8.

To accommodate this case, Proposition 2 is adapted as follows:

Proposition 3 In case of weak preferences, an exchange M is strongly sta-
ble if and only if for every cycle c ∈ C, c /∈ M , either for all (i, j) ∈ A(c)
there exists an arc (k, j) ∈ M such that k =j i (i.e. each vertex j in c is
matched in M with equal preference to in-neighbour i), or there exists an arc
(i, j) ∈ A(c) and an arc (k, j) ∈ A(M) such that j prefers k to i.

Within Proposition 3, cycle (i, j) in Example 1 satisfies the first condition
of the proposition.
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3 Integer programming models for stable ex-

changes

In this section we introduce three new IP models for the stable exchange
problem defined above. The two first models originate directly from the edge
and cycle formulations, while the third model incorporates the decision vari-
ables from the two previous ones. For each formulation we start by presenting
the model for the case of no ties (i.e. when preferences are strict). Then,
and whenever required, we introduce the necessary changes to accommodate
ties.

3.1 Edge Formulation

Consider a variable yij associated with each arc (i, j) ∈ A in the graph
G(V,A) and defined in [1] and [32]:

yij =

{
1 if arc (i, j) is selected in the exchange, i.e (i, j) ∈ A(M),
0 otherwise.

Consider also variables ycij y
n
ij, where:

• ycij = 1, if arc (i, j) is selected and is part of an exchange cycle of
patient-donor pairs; 0, otherwise.

• ynij = 1, if arc (i, j) is selected and is part of a NDD chain; 0, otherwise.

These extra variables extend the model in [1] and [32], allowing K and L
to be assigned different values.

Let Pc be the set of all non-cyclic paths p in G with K arcs, with all
vertices representing patient-donor pairs. In a similar way, let Pn be the set
of paths with L arcs, with the first vertex in a path representing a NDD and
all other vertices being patient-donor pairs. Denote by A(p) the set of arcs
in p.

The integer program for finding a stable exchange is written as the edge
formulation in [1] and [32] with an additional set of constraints that enforce
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stability:

Maximize
∑

(i,j)∈A

yij (1)

Subject to:
∑

j:(i,j)∈A

yij 6 1 ∀i ∈ V (2)

yij = ycij + ynij ∀(i, j) ∈ A (3)∑
j:(j,i)∈A

ycji =
∑

j:(i,j)∈A

ycij ∀i ∈ V, (4)

∑
j:(j,i)∈A

ynji =
∑

j:(i,j)∈A

ynij ∀i ∈ V, (5)

∑
(i,j)∈A(p)

ycij 6 K − 1 ∀p ∈ Pc (6)

∑
(i,j)∈A(p)

ynij 6 L− 1 ∀p ∈ Pn (7)

∑
(i,j)∈A(c)

∑
k:k≤ji

ykj ≥ 1, ∀c ∈ C. (8)

yij ∈ {0, 1}, ycij ≥ 0, ynij ≥ 0 ∀(i, j) ∈ A. (9)

The objective function (1) maximizes the cardinality of the exchange (in
the context of a KEP this corresponds to maximizing the total number of
transplants). Constraints (2) guarantee that the cycles in the exchange are
disjoint, i.e. a donor can only donate one kidney. Constraints (3), together
with constraints (2), state that an arc cannot be simultaneously in a patient-
donor pair cycle and in a NDD chain. Constraints (4) and (5) are standard
flow conservation constraints that ensure that the number of kidneys received
by the patient in pair i is equal to the number of kidneys given by the
associated donor. Constraints (6) enforce maximum cycle-length: to exclude
cycles larger than K, every path of length K arcs cannot have more than
K − 1 arcs in a feasible exchange. In a similar way, constraints (7) enforce
the maximum length of NDD chains. These two sets of constraints require
all paths of length K and L to be considered explicitly in the model and,
in general, the number of such paths grows exponentially with K and L.
Finally, constraints (8) ensure stability: according to Proposition 1, each arc
(i, j) in any cycle c is either in the set of arcs of the exchange, or vertex j is
matched with a vertex that it prefers to i.

Recall that, for the case of stability, Proposition 1 is valid both for strict
and weak preferences. Differently, for the case of strong stability, Proposi-
tions 2 and 3 hold for the cases of strict and weak preferences, respectively.
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Accordingly, for finding a strongly stable exchange in the case of strict pref-
erences constraints (8) in model (1)-(9) must be replaced by:

∑
(i,j)∈A(c)

yij + |c| ·

 ∑
(i,j)∈A(c)

∑
k:k<ji

ykj

 ≥ |c|, ∀c ∈ C. (10)

Following Proposition 2, constraints (10) ensure that each cycle c ∈ C is
either in an exchange (i.e. all its arcs are chosen) or there is at least one
patient in c that is matched with a strictly better donor.

Finally, for the case of weak preferences, constraints (8) are replaced by:

∑
(i,j)∈A(c)

(yij +
∑

k:k=ji,k 6=i

ykj) + |c| ·

 ∑
(i,j)∈A(c)

∑
k:k<ji

ykj

 ≥ |c|, ∀c ∈ C. (11)

These constraints are similar to (10) but the first term of (11) covers, in
addition, the case where all patients in the cycle are matched with donors
that are equally preferable to the ones in the exchange. The second term of
the constraint remains the same as in (10).

3.2 Cycle Formulation

Define variables xc for each cycle c ∈ C as:

xc =

{
1 if cycle c is selected in the exchange,
0 otherwise.

For each pair (i, c), i ∈ V , c ∈ C(i), define also set Bi,c = {c̄ ∈ C(i), c̄ 6= c :
c̄ �i c}, i.e. the set of cycles that are different from c and weakly preferred
by i to c (see Definition 6).

Using the cycle formulation, the stable exchange problem is modelled as
follows.

Maximise
∑
c:c∈C

|c| · xc. (12)∑
c:i∈V (c)

xc ≤ 1 ∀i ∈ V (13)

xc +
∑

s∈
⋃

i∈V (c)B(i,c)

xs ≥ 1, ∀c ∈ C, (14)

xc ∈ {0, 1} ∀c ∈ C, (15)
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The objective function (12) maximises the cardinality of the exchange.
Constraints (13) guarantee that an exchange is a set of disjoint cycles, and
constraints (14) guarantee stability: either c is in the exchange or, for at
least one vertex i ∈ V (c), there exists another cycle s weakly preferred by i.

For the case of strong stability, for each pair (i, c), i ∈ V , c ∈ C(i), define
set Si,c = {c̄ ∈ C(i) : c̄ ≺i c}, i.e. the set of cycles that i prefers to c (see
Definition 4). A strongly stable maximum cardinality exchange with strict
preferences can be obtained by replacing constraints (14) in problem (12)-
(15) by:

xc +
∑

s∈
⋃

i∈V (c) S(i,c)

xs ≥ 1,∀c ∈ C, (16)

Constraints (16) guarantee that either c is in the exchange or one of its
vertices is matched in a cycle strictly better than c.

Finally, for the case of weak preferences, let us define E(i,c) = B(i,c) \S(i,c),
that is, E(i,c) = {c̄ ∈ C(i), c̄ 6= c : c̄ ∼i c} is a set of cycles that are different
from c and are equally good for i (see Definition 5). Constraints (16) can be
modified as follows:

xc +
1

|c|
∑
i∈V (c)

∑
s∈E(i,c)

xs +
∑

s∈
⋃

i∈V (c) S(i,c)

xs ≥ 1,∀c ∈ C, (17)

If for a cycle c there is a vertex i ∈ V (c) such that there is no cycle s different
form c where s ∼i c, then the latter constraint can be tightened for that cycle
in the following way:

xc +
∑

s∈
⋃

i∈V (c) S(i,c)

xs ≥ 1, (18)

3.3 Cycle-Edge Formulation

Preliminary experiments identified some weaknesses on the two previous for-
mulations. The bottleneck for the edge formulation is the large number of
path constraints (6) and (7). For the cycle formulation the stability con-
straints are large in size as they contain one variable for each cycle that
shares the same arc (i, j). For the same purpose, variable yij in the edge
formulation only appears in the constraint when necessary.

We now propose an alternative formulation, called cycle-edge formulation,
where we retain advantages from both formulations. This new formulation
uses both integer variables x and y in a consistent way: for every cycle c ∈ C,
we require that xc = 1 if and only if yij = 1 for every (i, j) ∈ A(c). This
correspondence can be achieved by the basic feasibility cycle-constraints (13),
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and by adding the following set of constraints:∑
c:(i,j)∈A(c)

xc = yij,∀(i, j) ∈ A (19)

Bearing in mind the packing constraints (13), we may relax the binary
requirement for variables yij, and consider:

yij ≥ 0 ∀(i, j) ∈ A. (20)

Stability and strong stability are assured by constraints (8) and (10) or
(11), respectively. The objective function can be represented either by (12)
or (1).

4 Relaxing stability

Since finding a stable exchange in a graph is not always possible, in this
section we discuss the possibility of obtaining “least non-stable” solutions
when stability is not achievable. The aim in such cases will be to find the
exchange with minimum number of blocking cycles that has maximum car-
dinality. Furthermore, since stability may negatively impact the maximum
number of transplants, we also discuss the possibility of relaxing stability
constraints so that the decrease in the number of transplants does not go
over a pre-defined limit.

Let acu ≥ bc ∀c ∈ C, be one of the sets of constraints associated to
stability in Section 3 (constraints (8), (10), (11), (14), (16), or (17)), where u
is a vector of corresponding variables, x or y. Consider also the slack variables
τc ∈ {0, 1} that will indicate whether the stability constraint associated to
cycle c is violated, or not (i.e. whether cycle c is blocking).

The following IP model is to be solved:

min
u,τ

|V |
∑
c∈C

τc − ωu (21)

acu+ bcτc ≥ bc ∀c ∈ C (22)

(Other model constraints) (23)

where (Other model constraints) refers to all constraints, except for the sta-
bility ones, in the edge, cycle and cycle-edge formulations. Coefficients ω
in the objective function (21) correspond to coefficients of the respective
objective function: arc weight and cycle weight, for the edge and cycle for-
mulations, respectively. Coefficient |V | in the first term of (21) guarantees
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the minimization of the number of blocking cycles in the solution at first
place. Indeed, for any solution u the value of the second term ωu will never
exceed the number of vertices. Constraints (22) signal if a blocking cycle is
in the solution.

In the context of a KEP, requesting for solution stability may represent
a decrease in the maximum number of transplants in a pool. In such a case,
if the decrease goes over a certain value, it may happen that the decision
maker would wish to relax the stability of the solution to keep the number of
transplants within what he/she considers to be an acceptable distance from
the maximum cardinality solution. This can be addressed by solving the
problem (21)–(23), with the following additional constraint:∑

c:c∈C

|c| · xc ≥M∗ −R (
∑

(i,j)∈A

wijyij ≥M∗ −R) (24)

where M∗ is the maximum number of transplants that can be achieved if
stability is not imposed, and R is the maximum number of transplants we
accept to loose in order to have a “more stable” solution. Considering dif-
ferent values of R the decision maker may study different trade-offs between
the two objectives. Notice that when R = M∗ the problem corresponds to
finding a stable solution or, for the cases where a stable solution does not
exist, to the minimization of the number of blocking cycles. On the other
hand, by solving the problem (21)–(24) with R = 0 one will find an exchange
with maximum number of transplants that has minimal number of blocking
cycles.

5 Computational experiments

In this section we present computational results for validation and compari-
son of the models proposed in Sections 3 and 4. To refer to the formulations
we use CF for the cycle formulation, EF for the edge formulation, and CEF
for the cycle-edge formulation.

All formulations were implemented using Python programming language
and tested using Gurobi as optimization solver [19]. The tests were executed
on a MacMini 8 running macOS version 10.14.3 in a Intel Core i7 CPU with
6 cores at 3.2 GHz with 8GB of RAM.

5.1 Test instances

In our analysis we use test instances generated with the generator proposed
in [34, 21]. Each instance mimics a pool of a KEP: patients and donors
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are generated with their characteristics (blood-type and sensitization level)
and added to the pool if the generated pair is considered incompatible. An
instance has a given number incompatible pairs (P ) and the number of non-
directed donors is |N | = d5%|P |e. Fifty instances of each size were consid-
ered. Preferences were generated randomly. For weak preferences, random
weights in the interval (0, 1) were assigned to each arc. Incoming arcs with
weights within each interval of length 0.1 were considered equally prefer-
able. We imposed the maximum length of cycles and chains to be equal, i.e.
K = L, and performed experiments for K = 2, 3 and 4.

Table 1 summarizes the characteristics of the instances considered: num-
ber of NDDs |N |; average number of arcs in instances of a given size |A| ;
average number of cycles |CP |K and of chains |CN |K for each K; and CPU
time tK required for enumeration of cycles and chains.

As expected the number of cycles and chains increases exponentially when
K increases. We can also observe that a main difficulty of the instances is
associated to the presence of NDDs: there are almost twice as many chains
as cycles for K = 3, 4. Nevertheless the CPU time required for enumeration
of cycles and chains is reasonable even for larger instances.

5.2 Comparison of formulations

The formulations proposed in Section 3 were tested on different instances,
for different values of K. For the case of the cycle-edge formulation, results
are presented using both objective functions (12) and (1).

Tables 2 and 3 report average results for each set of instances of the same
size, for strict (Table 2) and weak (Table 3) preferences, respectively. The
following notation is used in the tables:

– G is the average gap of the linear relaxation of a formulation for in-
stances of a given size;

– T is the average CPU time (in seconds) needed to find an optimal
solution; maximum CPU time of 1 hour was imposed; the number of
instances that were not solved within the limit is presented in between
parenthesis; for the case of the CEF formulation we denote by Tx the
average CPU time when the objective function (12) (with x variables)
is used and by Ty the average CPU time for objective (1) (with y
variables).

– #I is the number of instances out of 50 that do not have a stable or a
strongly stable solution.

16



|P
|

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
5
0

1
6
0

1
7
0

1
8
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

|N
|

1
2

2
3

3
4

4
5

5
8

8
9

9
1
0

1
3

1
5

1
8

2
0

|A
|

9
8

2
2
5

3
9
2

6
3
2

9
0
1

1
2
4
2

1
6
1
0

2
0
7
0

2
5
2
0

5
7
3
8

6
4
9
1

7
3
6
2

8
2
4
4

1
0
1
0
4

1
5
9
4
1

2
3
0
5
4

3
1
3
9
7

4
1
0
1
9

|C
P
| 2

9
1
9

3
6

5
6

7
9

1
0
8

1
4
4

1
8
7

2
3
2

5
3
8

6
1
2

6
9
4

7
8
3

9
5
2

1
4
8
7

2
1
9
6

2
9
8
3

3
9
2
8

|C
N
| 2

8
2
3

3
0

5
9

7
0

1
0
9

1
2
4

1
7
7

1
9
7

4
5
8

4
8
7

5
7
8

6
1
2

7
5
2

1
2
3
1

1
7
2
8

2
3
7
8

3
0
2
0

|C
P
| 3

2
7

8
2

1
9
2

3
7
6

5
9
9

9
3
4

1
4
1
6

2
0
7
4

2
8
2
4

9
8
1
3

1
1
8
8
1

1
4
3
3
5

1
7
0
6
7

|C
N
| 3

3
7

1
5
1

2
6
0

6
3
7

8
8
5

1
5
8
7

2
0
7
9

3
3
3
5

4
0
7
1

1
4
1
5
6

1
6
0
0
3

2
0
2
0
2

2
2
6
4
6

|C
P
| 4

7
2

3
3
9

1
1
3
6

2
8
4
3

5
3
3
7

9
7
5
2

1
7
1
3
9

2
8
5
3
0

4
3
5
5
3

|C
N
| 4

1
4
7

8
7
4

2
0
6
2

6
2
4
2

1
0
2
4
0

2
1
3
6
4

3
2
4
7
5

6
0
0
8
8

8
1
8
3
5

t 2
0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.1

0
.1

0
.1

0
.2

0
.5

1
.0

1
.9

3
.2

t 3
0
.0

0
.0

0
.0

0
.0

0
.0

0
.1

0
.2

0
.4

0
.6

6
.6

8
.8

1
3
.3

1
7
.5

t 4
0

0
0
.2

1
.2

3
.3

1
2
.5

3
0
.9

9
7
.5

1
9
4
.4

T
ab

le
1:

C
h
ar

ac
te

ri
st

ic
s

of
in

st
an

ce
s

fo
r

d
iff

er
en

t
va

lu
es

of
m

ax
im

u
m

le
n
gt

h
of

cy
cl

es
K

.

17



– ps is the average price of stability, i.e. the relative loss in number of
transplants when compared to the maximum value: ps = M∗−Ms

M∗
1̇00%,

where M∗ is the maximum number of transplants for a given instance
and M s is the number of transplants in a maximum cardinality stable or
strongly stable solution (calculated only for instances where a solution
exists).

Results in Table 2 show that the EF is not competitive when compared
to the other formulations, both for stability and strong stability. Tests were
run only for instances of up to 200 vertices for K = 2, and up to 60 and
100 vertices for K = 3. For instances of those sizes, T for the EF is already
drastically larger than the one obtained for the other formulations. ForK = 4
the EF was not run.

In terms of gap of the linear relaxation (columns G) the CF has the best
performance, with average values of at most 2% for all instances and values
of K. For K = 2, a stable solutions is always strongly stable. The CF is
tight even in case of stability, having zero gap for all instances, while the
stable CEF formulation is less tight than the strongly stable CEF (compare
columns G for CEF). Notice that the EF is the least tight among all the
formulations, having the largest gap of the linear relaxation. This obser-
vation, together with the large number of constraints (6) associated to this
formulation, justifies the higher CPU times.

Despite of having a larger gap than for CF, CEF is computationally more
efficient than CF for the two objective functions considered. For K = 3, 4,
and larger instances (|P | ≥ 150 and |P | = 60, respectively) CEF found
stable solutions for more instances within the time limit for the stable ex-
change problem. Also CEF was faster for instances of smaller size and for the
strongly stable problem. The difference between CEF and CF becomes even
more evident when K = 4. Experiments on instances of size bigger than 60
were not run due to high memory consumption by the solver.

In what regards the existence of a solution (see columns #I), for the case
of stability and K = 3, 4 there were no instances without a stable solution.
Differently, for strong stability, there was a considerable number of instances
with no solution. Moreover, to obtain a strongly stable solution one may
have to sacrifice more than 20% of the transplants, while for stable solution
the price of stability is less than 11% (compare columns ps.). Finally, we
may observe that finding strongly stable exchanges is slightly easier than
finding stable exchanges: all formulations need shorter CPU times and more
instances are solved within the same time limit (compare the performance
of each formulation in columns “Stable” and “Strongly Stable” for K = 3,
|P | > 100, K = 4, |P | > 40).
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Comparing the results for weak preferences presented in Table 3 with
those in Table 2 we reach similar conclusions. The performance of all the
models is in general very similar, when compared to the same instances with
strict preferences. The main difference between the tables is in the number
of instances where a solution exists (columns I). In particular, for the case
of weak preferences, there are significantly more instances where a strongly
stable solution does not exist, e.g. no instances with 400 pairs and K = 2
had a strongly stable solution.

Interestingly, for both strict and weak preferences we may observe a sig-
nificant difference in the performance of the CEF for the two alternative
objective functions: CEF with x-objective is the fastest among all the for-
mulations at finding a strongly stable exchange (see column Tx in ”Strongly
Stable” columns of Tables 2 and 3).

5.3 Analyzing the trade-off stability versus number of
transplants

Following the discussion in Section 4, in this section we will analyze how
stability requirements impact the objective of maximizing the number of
transplants. For doing so, we will compare two extreme solutions in terms of
the number of transplants achieved: the solution that maximizes the number
of transplants and the stable solution (or solution with minimum number of
blocking cycles when a stable solution does not exist). Furthermore, we will
evaluate intermediate cases that represent different trade-offs between achiev-
ing stability and maximizing the number of transplants. This is achieved by
running the models presented in Section 4, setting R in constraints (24) to
κM∗, for different values of κ, and rounding up the right hand side of the
same constraints in order to get an integer value: dM∗ − κM∗e.

Based on the results in Tables 2 and 3, where the average value of the price
of stability (ps.) was at most 24%, we considered the following set of values
for parameter κ : {0.05, 0.1, 0.15, 0.2}; for κ ≥ 0.25 we will, in general, get
stable solutions. Note that for κ = 0 we obtain the solution with maximum
number of transplant that has minimum number of blocking cycles, and for
κ = 1 we obtain a stable solution (or a solution with minimum number
of blocking cycles, if there is no stable solution) with maximum number of
transplants.

In Figures 3-6 we plot the two objective function values for stable and
strongly stable exchanges and for different values of K, representing those
values separately for instances with strict (left hand-side graphs) and weak
(right hand-side graphs) preferences. Each figure presents average results for
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instances of size |P | = 20,50,70 and 100. Note that, since there were instances
where strongly stable exchanges did not exist, for κ = 0 the average number
of blocking cycles is not always 0.
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Figure 3: Trade-off between stability and maximum number of transplants
for instances with |P | = 20; κ = 0, 0.05, 0.1, 0.15, 0.2, 1.

Results clearly show that when K = 2, and when compared with larger
values of K, the impact of stability requirements on the maximum number
of transplants is low for smaller instances. However, when increasing the size
of the instances, in particular for |P | = 100, stability affects the number of
transplants with more than 10% decrease, a value that is no longer negligible.
In such a case, with an average number of blocking cycles of 5, the question
is whether it is desirable to have at least 5 patients being transplanted from a
donor that is not the most favorable for them or, instead, having a reduction
of 5 to 6 transplants to guarantee that stability is met. A similar conclusion
can be drawn for larger values of K, in particular when strong stability is
required and K = 4, as for this case the trade-off between the criteria in the
two extreme solutions is high.

As reflected in the curves plotted for K = 3 and 4, strong stability re-
quirements have a much stronger (negative) impact on the number of trans-
plants, with curve Stable always dominating curve Strongly Stable. Hence,
as expected, strong stability is achieved with more sacrifice on the number
of transplants and is aligned with the results in Tables 2 and 3 on the values
of the price of stability (ps.).
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Figure 4: Trade-off between stability and maximum number of transplants
for instances with |P | = 50; κ = 0, 0.05, 0.1, 0.15, 0.2, 1.
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Figure 5: Trade-off between stability and maximum number of transplants
for instances with |P | = 70; κ = 0.05, 0.1, 0, 15, 0.2.
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Figure 6: Trade-off between stability and maximum number of transplants
for instances with |P | = 100; κ = 0, 0.05, 0.1, 0.15, 0.2, 1.

Also noteworthy is that for |P | ≥ 50 trade-offs significantly differ for
κ ≥ 0.05 and for κ < 0.05. This can be confirmed by the different slopes in
the graph: in between κ = 0.05 and 1 a smaller reduction in the number of
blocking cycles is reflected in a comparatively larger reduction in the number
of transplants; while for κ < 0.05 solution stability (measured by the number
of blocking cycles) is severely affected for a relatively small gain in the number
of transplants. For small instances with |P | = 20 (see figure 3) the number
of blocking cycles decreases nearly linearly for values of κ = 0 to 0.2.

Interestingly, by comparing the result for K = 3 and K = 4 for instances
with |P | = 20, 50 we observe that when we consider stability (curve Stable)
the number of blocking cycles does not differ significantly for different values
of κ, i.e. one can slightly increase the number of transplants considering
larger values ofK with no sacrifice in the number of blocking cycles. However,
for the case of strong stability, for smaller values of κ (κ = 0 and 0.05) the
number of blocking cycles for K = 4 is in some cases nearly twice as large
as for K = 3. At the same time, for strongly stable solutions (κ = 0) the
number of transplants does not differ significantly for K = 3, 4. Taking into
account that the problem difficulty increases dramatically when switching
from K = 3 to 4, one may consider that for strong stability the increase of
K is not primordial.
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6 Conclusions

In this paper we consider kidney exchange programs in which patients may
have preferences over potential donors, and where the aim is to find a max-
imum cardinality stable exchange. This is a problem of practical relevance
when patients can be transplanted from several donors but some fit better
medically than others.

We have advanced on the current state of the art by proposing three Inte-
ger Programming formulations capable of finding stable and strongly stable
solutions, considering both strict and weak preferences. Furthermore, we
have studied the impact of stability on the maximum number of transplants
achievable by a pool. For doing so, we considered a bi-objective problem and
studied the trade-off between (relaxed) stability, measured by the number
of blocking cycles in a solution, and the maximum number of transplants.
Such analysis is again of practical relevance: it can provide a solution with
minimum number of blocking cycles for the decision maker that does not
reduce the number of transplants below a certain limit.

Results show that the cycle-edge formulation proposed in this paper re-
tains advantages from both the cycle and the edge formulation is more effi-
cient than the two other formulations at solving the problems. This becomes
even more evident when K = 4. Results also show that finding strongly
stable exchanges is slightly easier than finding stable exchanges: all formula-
tions need shorter CPU times and more instances are solved within the same
time limit.

In what concerns relaxation of stability requirements results show that
when K = 2, and if compared with larger values of K, the impact of stabil-
ity requirements on the maximum number of transplants is low for smaller
instances. However, when problem size increases, such value is no longer
negligible. This conclusion is also valid for bigger values of K. Results also
show that strong stability is achieved with more sacrifice on the number of
transplants than stability.
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[12] Péter Biró and Eric McDermid. Three-sided stable matchings with cyclic
preferences. Algorithmica, 58(1):5–18, Sep 2010.
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