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stitutable goods, buyers with high values only bid in one marketplace, whereas
buyers with low values bid in multiple marketplaces. Then, for perfectly com-
plementary goods, only buyers with high values bid in multiple marketplaces and
buyers with low values enter no marketplaces. Finally, in the hybrid setting with
perfectly complementary goods, traders choose no marketplaces.
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1. Introduction

Electronic exchanges, in which securities, futures, stocks and commodities can
be traded, are becoming ever more prevalent. In addition to various electronic
financial markets (such as NASDAQ and NYSE), electronic betting exchanges
have emerged which allow gamblers to trade online (such as World Bet Exchange
http://www.wbx.com and BetFair http://www.betfair.com). Many of these
adopt the double auction market mechanism which is a type of two-sided market-
place for matching buyers (one side) and sellers (the other side) (Friedman and
Rust, 1993). The advantages of this type of mechanism are that traders can en-
ter the marketplace at any time and they can trade multiple items in one place
without travelling around several marketplaces. Furthermore, this mechanism is
highly efficient in economic terms (Smith, 1962).

Now, often electronic exchanges do not exist in isolation, and there are several
competing electronic exchanges where traders can participate. In finance, compa-
nies can be listed on multiple electronic exchanges. In addition, alternative auto-
mated trading systems, often called “dark pools” or “dark liquidity”, are propagat-
ing rapidly (Carrie, 2008). For online betting, gamblers can choose to trade bets
in one or multiple electronic bet exchanges, such as World Bet Exchange, Betfair
and Betdaq (http://www.betdqa.com). In these markets, software agents are
often used to make autonomous trading decisions because of the speed of trad-
ing that is required (Ma and Leung, 2007; Vytelingum et al., 2008; Dang et al.,
2015). However, as there are multiple such markets, these trading agents need to
both select which ones to participate in, as well as how much to bid in each one
selected.

Against this background, in this paper we use a computational learning ap-
proach called fictitious play to analyse how trading agents behave strategically in
terms of selecting marketplaces and submitting offers in the context of multiple
double auction marketplaces. Intuitively, trading agents’ strategies will be de-
termined by their own preferences (types), which are usually heterogeneous and
privately known. Moreover, traders’ strategies are affected by the trading environ-
ments. Specifically, we distinguish between four different trading environments.
The first is the isolated marketplace, which corresponds to the commonly-studied
setting with no competing marketplaces. The second is single-home trading where
both buyers and sellers can only select one of the available marketplaces. The
third is multi-home trading where both buyers and sellers can participate in mul-
tiple marketplaces simultaneously. Finally, in hybrid trading settings one side of
traders can only enter one marketplace (i.e. single-home trading), while the other
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side of traders can enter multiple marketplaces (i.e. multi-home trading).
It is known that different trading environments have different effects on the

strategic behaviour of the traders. For example, in a single-home environment,
traders will only participate in the most profitable marketplace. However, in the
multi-home case, traders will participate in any marketplace that provides non-
negative (or positive) profits. In addition to the impact of the trading environ-
ments, the types of the goods traded between buyers and sellers can also affect
their behaviour. Specifically, when multiple goods are traded across multiple mar-
ketplaces, these goods can be either independent, substitutable or complementary.
When they are independent, the trader’s valuation for the multiple goods is addi-
tive, i.e. equal to the sum of its valuation for each individual good. When they are
substitutable, the trader’s valuation is subadditive, i.e. less than the sum of its val-
uation for each individual good. When the goods are complementary, the trader’s
valuation is superadditive, i.e. greater than the sum of its valuation for each in-
dividual good. These different types also affect traders’ strategies. For example,
when trading complementary goods, buyers may prefer to buy as many as they
can, and thus will try to bid high in several marketplaces to maximise the number
of transactions. In this paper, we will consider all of the above factors and derive
traders’ market selection and bidding strategies in different trading environments
with different types of goods.

Intuitively, we can see that the decision about which marketplace to select and
how much to offer depends on other traders’ decisions. Therefore, game theory
(Fudenberg and Tirole, 1991), which mathematically studies such strategic inter-
actions between self-interested agents (where an individual’s success in making
choices depends on the choices of others), is the appropriate tool to analyse our
system. Indeed, game theory has been widely used to analyse the strategic be-
haviour of traders in similar areas, see, for example, Lin and Chou (2004); Yuan
and Zeng (2012) and Shi et al. (2013). Specifically, we assume that traders have
a privately known value or type which determines their utility for the obtained
goods, and this type is i.i.d. sampled from a continuous probability distribution.
A trader does not know the types of other traders, but knows the probability dis-
tribution from which the types are sampled. Given this, the appropriate solution
concept is the Bayes-Nash equilibrium in which each trading agent makes a best
response against the other agents’ strategies. Due to the high complexity of the
game we study, it is very difficult, perhaps impossible, to derive the equilibrium
solution by purely theoretical approaches based on lemmas or theorems. There-
fore, we use numerical approaches to compute the equilibrium. Furthermore, this
game involves a continuous trader type space, which results in an infinite game.
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Therefore, standard approaches, such as the Lemke-Howson algorithm (Lemke
and Howson, 1964) or the Govindan-Wilson algorithm (Govindan and Wilson,
2003), cannot be used. Instead, we adopt a computational learning approach based
on fictitious play (FP) to approximate pure Bayes-Nash equilibria for the traders’
strategies. We use this approach because it has previously been effectively applied
to find equilibria in complex auction settings where traders’ types are continuous
(Rabinovich et al., 2013).

In so doing, this is the first work to analyse traders’ Nash equilibrium market
selection and bidding strategies across multiple double auction marketplaces that
takes into account different trading environments with different types of goods. In
more detail, the contributions of this paper are as follows. Firstly, we analyse the
equilibrium bidding strategies in isolated double auction marketplaces. Despite
the extensive existing research studying these auctions, computing equilibria for
this setting is still challenging (although the existence of the Nash equilibrium has
been shown and the solution for the simple setting with only one buyer and one
seller has been analysed, see Section 2). We then go on to study the traders’ mar-
ket selection and bidding strategies across multiple double auction marketplaces.
In single-home trading environments, we find that all traders eventually converge
to the same marketplace. In the multi-home environment, when trading perfectly
substitutable goods, buyers having high values will only bid in one marketplace,
and buyers having low values will bid in multiple marketplaces to increase the
probability of being matched. When trading perfectly complementary goods, only
buyers that have high values will bid in multiple marketplaces, while buyers with
low values will not enter any marketplace. Furthermore, in the hybrid trading
environment with perfectly substitutable goods, all traders only choose one mar-
ketplace in equilibrium and, as buyers’ values for multiple goods increase, buyers
will increasingly bid in multiple marketplaces, which causes sellers to participate
in different marketplaces depending on their types. For perfectly complementary
goods, we find that buyers choose no marketplaces since they incur a high risk of
loss, and so neither will sellers. However, as buyers’ values for individual items
increase or buyers have more market power than sellers, we find that some trade
does occur.

The structure of the rest of the paper is as follows. In Section 2, we discuss
related work. In Section 3, we describe the setting for analysing traders’ strategies
across multiple double auction marketplaces, and derive the expected utilities of
traders in this setting. In Section 4, we describe the FP algorithm used in our anal-
ysis. In Section 5, we use this algorithm to analyse traders’ equilibrium strategies.
Finally, we conclude and discuss the limitations in Section 6.
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2. Related Work

We start by discussing related work on analysing trading strategies across multiple
single-sided auctions. We then introduce related work on bidding strategies in
isolated double auction marketplaces. Finally, we describe work on analysing
traders’ behaviour in the context of multiple double auction marketplaces.

2.1. Trading Across Multiple Single-Sided Auctions
A number of works analyse trading agents’ strategies across multiple single-sided
auctions with independent goods, such as English auctions, Dutch auctions and
sealed-bid auctions (Preist et al., 2001; Byde et al., 2002; Stone et al., 2003; An-
thony and Jennings, 2003; He et al., 2006; Dang et al., 2015). In this context, in
order to make effective trading decisions, buyers need to determine the best set of
auctions in which to bid and determine how much to bid in the chosen auctions.
Existing research mainly adopts empirical approaches to design buyers’ bidding
strategies across multiple single-sided auctions. Specifically, Anthony and Law
(2012) analyse how sellers set reserve prices in multiple English auctions heuris-
tically. Furthermore, Ashlagi et al. (2013) investigate the bidding strategies of
advertisers across multiple ad auctions. In addition to analysing bidding across
multiple auctions with independent goods, Zeng et al. (2004) analyse the bid-
ding strategies on goods with combinatorial interdependencies in the setting of
multiple posted-price markets and multiple sealed-bid auctions respectively. Fur-
thermore, Gerding et al. (2008) analyse the optimal bidding strategy across mul-
tiple simultaneous Vickrey auctions with perfectly substitutable goods in a theo-
retical way. Wellman et al. (2008) and Goeree and Lien (2014) analyse bidding
strategies across multiple ascending auctions by considering complementary and
substitutable goods. Wellman et al. (2012) and Mayer et al. (2013) analyse bid-
ding strategies across multiple sealed-bid auctions by considering complementary
and substitutable goods. In contrast, instead of analysing trading across multi-
ple single-sided auctions, we focus on the market selection and bidding strate-
gies across multiple double auctions. In double auctions, transactions can happen
between multiple buyers and multiple sellers. Thus, an agent’s optimal bidding
strategy not only depends on the bids of their direct competitors, but also on the
agents in the other side of the market. Furthermore, our setting considers differ-
ent trading environments with multiple double auction marketplaces, which also
increases the complexity of the analysis.

5



2.2. Trading in an Isolated Double Auction
A number of heuristic bidding strategies have been proposed for traders bidding in
an isolated double auction, such as Gode and Sunder (1993); Gjerstad and Dick-
haut (1998); Ma and Leung (2007) and Vytelingum et al. (2008). Furthermore,
Phelps et al. (2010) use evolutionary game theory to investigate the Nash equi-
librium given a restricted strategy space. However, these restricted strategies do
not necessarily constitute a Nash equilibrium when considering the entire space
of possible strategies. Moreover, these strategies are not suitable for traders to bid
across multiple marketplaces because they do not consider the choice of market-
places.

In addition to these heuristic strategies, there also exists theoretical work on
investigating the existence of equilibrium bidding strategies in isolated double
auction marketplaces. In double auctions there exists a trivial equilibrium strat-
egy where buyers bid zero and sellers ask for the maximal allowed offer. Since
there is a zero probability of transactions happening between buyers and sellers
in this trivial equilibrium, this equilibrium is meaningless. Therefore, researchers
focus on non-trivial equilibria in which there is a positive probability of trans-
actions happening. The first such work is by Chatterjee and Samuelson (1983).
They show that, in the case of one buyer and one seller, an equilibrium solution
exists where the offers of the buyer and the seller are monotonic in the respective
reservation prices (types). A number of other works extend the above. Williams
(1991) analyses the buyer’s Nash equilibrium bidding strategy in a double auc-
tion where the seller has a dominant strategy of bidding its true value. By fixing
the seller’s strategy, the authors prove the existence of the buyer’s Nash equilib-
rium bidding strategy. Then Jackson and Swinkels (2005) show the existence of a
non-trivial mixed-strategy equilibrium for double auctions in a variety of settings
given a finite set of offers, and Reny and Perry (2006) show that, when there are
sufficiently many buyers and sellers with a finite set of discrete offers, there exists
a monotonic pure equilibrium bidding strategy for traders. Although all of these
works show the existence of non-trivial equilibrium bidding strategies in double
auctions, they do not indicate exactly what traders will bid in equilibrium when
there exist multiple buyers and sellers. Furthermore, there exists no theoretical
work on analysing equilibrium bidding strategies across multiple double auction
marketplaces. In addition to these works, Bredin and Parkes (2005) propose a
framework for designing truthful double auction marketplaces, in which traders
will bid truthfully (i.e. bid their types). However, the auctions that are used in
practical settings are not truthful, and traders usually have an incentive to shade
their bids in order to make more profits.
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2.3. Trading Across Multiple Double Auctions
In the context of multiple double auctions, Cai et al. (2010) experimentally anal-
yse how standard economic measures are affected by the presence of multiple
marketplaces when traders select marketplaces and submit offers in a heuristic
way, and then Miller and Niu (2012) experimentally analyse traders’ market se-
lection strategies in the single-home trading environment. In contrast, in our work,
we analyse both the Nash equilibrium market selection and bidding strategies in
different trading environments with different types of goods. Similar to this work,
Shi et al. (2010; 2013) analyse the Nash equilibrium market selection strategy in
the context of multiple double auction marketplaces. However, these works only
consider a limited number of discrete trader types and assume that traders can only
choose one marketplace at a time (i.e. single-home trading). Furthermore, these
works do not solve the equilibrium bidding strategy. In contrast, we address these
limitations by considering a game with continuous trader types and analyse both
the equilibrium market selection and bidding strategies in different trading envi-
ronments with different types of goods. This new setting with continuous trader
types requires a fundamentally different approach to address the Nash equilibrium
strategy and also enables us to considerably enrich the analysis.

Finally, game theory has often been used to analyse the strategic interactions
in electronic marketplaces (Lin and Chou, 2004; Yuan and Zeng, 2012; Shi et al.,
2013). In this paper, as we discussed previously, we will use game theory to anal-
yse the traders’ Nash equilibrium market selection and bidding strategies. Further-
more, due to the high complexity of the game analysed in this paper, we will use
fictitious play to approximate the traders’ equilibrium market selection and bid-
ding strategies. However, the traditional fictitious play algorithm (von Neumann
and Brown, 1950; Brown, 1951) is not suitable for analysing Bayesian games in
which there is incomplete information (i.e. where the player’s type is not known
to the other players) and where the types are continuous (resulting in an infinite
game). To address this, Rabinovich et al. (2013) provided a generalised fictitious
play algorithm to analyse Bayesian games with continuous types and a finite ac-
tion space. However, they only show how to use this algorithm to analyse traders’
strategies in single-sided auctions. We extend their fictitious play algorithm to
analyse the equilibrium market selection and bidding strategies for traders in the
much more complex environment of multiple double auction marketplaces.
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3. The Double Auction Marketplace Framework

We first introduce the basic setting for analysing traders’ strategies across multiple
double auction marketplaces. We then proceed to the first step of the theoretical
analysis and derive the equations to calculate the expected utilities of the traders
in this setting. This will then be used by the FP algorithm in Section 4 to com-
pute the best response action and approximate the Bayes-Nash equilibrium market
selection and bidding strategy.

3.1. Basic Setting
We assume there is a set of buyers, B = {1, 2, ...B}, and a set of sellers, S =

{1, 2, ...S }. Each buyer and each seller can only trade a single unit of the good in
one marketplace. All goods are identical. Each buyer and seller has a type,1 which
is denoted as θb and θs respectively. We assume that the types of all buyers are
i.i.d drawn from the cumulative distribution function Fb, with support [0, 1], and
the types of all sellers are i.i.d drawn from the cumulative distribution function
F s, with support [0, 1]. The distributions Fb and F s are assumed to be common
knowledge and differentiable. The probability density functions are f b and f s

respectively. In our setting, the type of each specific trader is private information,
i.e. not known to the other traders.

In addition, we assume that there is a set of double auction marketplacesM =

{1, 2, ...M}, that offer places for trade and provide a matching service between
the buyers and sellers. Traders will incur a small cost ι when they choose any
marketplace (representively, for example, the time cost for trading online or travel
and time costs for trading in shopping malls). We do this so that they slightly
prefer choosing no marketplace to choosing a marketplace but not transacting.

Furthermore, we assume that marketplaces adopt a clearing house double auc-
tion market mechanism, which means that the marketplaces match buyers with
sellers when all traders have submitted their offers. We also assume that market-
places match buyers with sellers according to the equilibrium matching policy.
In detail, this policy will match the buyer with v-th highest offer with the seller
with v-th lowest offer if the seller’s offer is not greater than the buyer’s offer. By
adopting the clearing house mechanism and the equilibrium matching policy, the
marketplaces can match traders in a highly efficient way. Moreover, the transac-
tion price of a successful transaction in marketplace m is determined by a param-

1The type of a buyer is its limit price, the highest price it is willing to buy the item for. The
type of a seller is its cost price, the lowest price it is willing to sell the item for.
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eter km ∈ [0, 1] (i.e. a discriminatory k-pricing policy), which sets the transaction
price of a matched buyer and seller at the point determined by km in the interval
between their offers.

After describing the basic settings for traders and marketplaces, we now in-
troduce the trader’s value or values for possessing multiple goods. As mentioned
above, we assume that each trader can only trade one single unit of the good in
each marketplace. However, when multi-home trading is available, traders may
trade multiple goods when they participate in multiple marketplaces. These goods
can be either independent, substitutable, or complementary.2 We need to describe
these different preferences, which are modeled as follows. For a buyer with type
θb, the valuation that it derives when it successfully purchases T units of the good
is given by:

vb(θb,T ) = αb(T ) × θb (1)

where we refer to αb(T ) as the “buyer preference coefficient function”, determin-
ing whether the buyers have independent, substitutable or complementary prefer-
ences. In more detail, if the goods are independent for the buyer, then the total
valuation for the individual goods is additive, i.e. αb(T ) = T . If, on the other
hand, the goods are substitutable, then the total valuation for getting T goods is
subadditive, i.e. αb(1) = 1 and 0 ≤ αb(T ) − αb(T − 1) < 1, ∀T ≥ 2. In particu-
lar, when the goods are perfectly substitutable for the buyer, we have αb(T ) = 1,
T ∈ {1, ...,M}. Finally, if goods are complementary, the total valuation is su-
peradditive, i.e. αb(1) = 1 and αb(T ) − αb(T − 1) > 1, ∀T ≥ 2. Specifically,
for perfectly complementary goods, we have αb(T ) = 0, T ∈ {1, ...,M − 1} and
αb(M) = 1, i.e. the buyer obtains valuation θb when it successfully purchases M
goods, and the buyer obtains zero valuation when it purchases less than M. The
valuation function for a seller is defined analogously, where αs(T ) is the seller
preference coefficient function. We assume that αb(T ) and αs(T ) are the same for
all buyers and sellers, and these parameters are common knowledge.

We now describe the actions that traders take in this setting (i.e. selecting
marketplaces and submitting offers). We call the offers of the buyers bids and the
offers of the sellers asks. Specifically, we make the assumption that there are a

2Note that in this paper we assume that all goods are identical. Although the notion of sub-
stitutable and complementary goods usually refers to different types of goods, in some situations
identical goods can be substitutable or complementary. For example, when a couple purchases
cinema tickets, the valuation of two tickets is intuitively higher than the sum of the valuation on
each individual ticket (i.e. complementary). When a single person buys two cinema tickets, the
valuation of two tickets for this person is equal to the valuation of one ticket (i.e. substitutable).
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finite number of bids and asks and that these are discrete. The reason for doing so
is two-fold. First, this assumption is more realistic than having continuous bids
because, in practice, the numeraire is discrete. Second, it allows us to compute
the Bayes-Nash equilibrium more easily using fictitious play. Now, the ranges
of possible bids and asks constitute the bid space and ask space respectively. In
reality, buyers and sellers usually have the same offer space. In our setting, the
offer space for buyers and sellers is denoted by Ψ = {0, 1

D ,
2
D , ...,

D−1
D , 1} ∪ {	},

i.e. the offer space comprises D + 1 allowable offers from 0 to 1 with step size
1/D, and 	means not submitting an offer in the marketplace (i.e. not entering the
marketplace). In our setting, traders may participate and place offers in multiple
marketplaces. We refer to a combinational offer across multiple marketplaces as
an action. Formally, a buyer’s action is defined as a tuple δb = 〈db

1, d
b
2, ..., d

b
M〉,

where the buyer bids db
m in marketplace m if db

m , 	, and does not choose market-
place m if db

m = 	. Note that this definition actually combines the buyer’s market
selection and the bids in the selected marketplaces as a whole. Similarly, a seller’s
action is given by δs = 〈ds

1, d
s
2, ..., d

s
M〉. The set of all possible actions constitutes

the action space, which is defined as ∆ = ΨM. Note that in our system, both
buyers and sellers have the same action space.

Now, a trader’s action choice depends on its type. Hence, a strategy, is de-
fined as a mapping from the set of types to the action space. Formally, we use
σb : [0, 1] → ∆ and σs : [0, 1] → ∆ to denote the buyer and the seller trading
strategies respectively. Note that the expected utility of a trader is directly de-
pendent on its beliefs about the other traders’ action choices. Therefore, instead
of looking at traders’ strategies, in what follows, the expected utility is expressed
directly in terms of the traders’ action distributions. This will also be convenient
when we use fictitious play to derive traders’ equilibrium strategies (see Section
4). Specifically, we use ωb

i to denote the probability of action δb
i being chosen by a

buyer, and ωs
i to denote the probability of action δs

i being chosen by a seller. Fur-
thermore, we use Ωb = (ωb

1, ω
b
2, ..., ω

b
|∆|

),
∑|∆|

i=1 ω
b
i = 1, to represent the probability

distribution of buyers’ actions and Ωs = (ωs
1, ω

s
2, ..., ω

s
|∆|

) for the sellers’ action dis-
tribution. Note that, given a trader’s strategy and the type distribution function, we
can derive the probability of a certain action being played by the trader. Specifi-
cally, we use σ−b(δb

i ) ⊆ [0, 1] to denote the set of buyer types adopting action δb
i .

Then the probability of the action δb
i being played is ωb

i =
∫

x∈σ−b(δb
i )

f b(x)dx. The
calculation of the seller action distribution is analogous.
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3.2. The Trader’s Expected Utility
Before analysing the strategies of the traders, we first need to derive the equations
to calculate their expected utilities, which are defined as the expected profits that
traders can make in the marketplaces. In what follows, we derive the expected
utility of a buyer, but the seller’s is calculated analogously. We can see that a
buyer’s expected utility depends on its type, its own action and its beliefs about
the action choices of other traders. In the following, we calculate the expected
utility of a buyer with type θb adopting the action δb = 〈db

1, d
b
2, ..., d

b
M〉 given the

other buyers’ action distribution Ωb and the sellers’ action distribution Ωs. The
expected utility consists of two parts: the expected valuation of the goods and the
expected payment made for the goods. In the following, we derive these two parts
separately.

3.2.1. The Expected Valuation
Firstly, we derive the buyer’s expected valuation. In our setting, since we consider
the equilibrium matching policy (where buyers submitting high bids are matched
with sellers submitting low asks), a buyer’s expected valuation is determined by
its position in the available marketplaces (the buyer’s position is the rank of the
buyer’s bid among all descendingly sorted bids) and the sellers’ action choices.
Furthermore, it is also determined by the number of units it can win. In the fol-
lowing, we calculate the expected position of the buyer when adopting action δb

and then compute the probability of the specific numbers of sellers choosing dif-
ferent actions. Finally, given the buyer’s position and sellers’ action choices, we
derive the buyer’s expected valuation by considering all possible numbers of units
it can win.

The Buyer’s Expected Position. Clearly, a buyer’s position in a marketplace is
determined by its own action and those of other buyers. However, since we do not
know the actions of other traders, we can only derive probabilistic information
about the buyer’s position in a marketplace. Furthermore, the bids placed in mul-
tiple marketplaces from the same action are correlated with each other. Thus when
the buyer chooses a specific action, its positions in different marketplaces are also
correlated with each other. Therefore, we cannot consider each marketplace inde-
pendently, rather we need to consider the buyer’s joint positions in marketplaces.
In addition, since different buyers may place the same bids in the same market-
place, we need to have a tie-breaking rule to determine a buyer’s position.

In the following, we describe how to determine a buyer’s joint positions when
it takes action δb. Intuitively, by knowing the number of buyers choosing each ac-
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tion, we know what exact bids are placed in each marketplace, from which we can
determine the buyer’s position in each marketplace. In so doing, we can determine
the buyer’s joint positions. Specifically, we use a |∆|-tuple x̄ = 〈x1, ...x|∆|〉 ∈ X to
represent the number of buyers choosing specific actions, where xi is the number
of buyers choosing action δb

i , X is the set of all such possible tuples and we have∑|∆|
i=1 xi = B− 1 (note that we need to exclude the buyer for which we are calculat-

ing the expected utility). The probability of exactly xi buyers choosing action δb
i

is (ωb
i )xi , and then the probability of this tuple appearing is:

ρb(x̄) =

(
B − 1

x1, ..., x|∆|

)
×

|∆|∏
i=1

(
ωb

i

)xi
(2)

Now for x̄, we determine the buyer’s position in each marketplace as follows.
Firstly, we compute the number of other buyers whose bids are greater than the
buyer’s bid in marketplace m, db

m, which is given by:

X>
m(x̄, db

m) =
∑

δb
i ∈∆:db

im>db
m

xi (3)

where db
im is the bid placed in marketplace m through action δb

i . Similarly, we use
X=

m(x̄, db
m) to represent the number of buyers whose bids are equal to the buyer’s

bid in marketplace m (excluding the buyer itself):

X=
m(x̄, db

m) =
∑

δb
i ∈∆:db

im=db
m

xi (4)

As there are discrete bids and given X>
m(x̄, db

m) buyers bidding higher than the
buyer’s bid db

m and X=
m(x̄, db

m) buyers bidding equal to db
m, the buyer’s position in

marketplace m could be anywhere from X>
m(x̄, db

m) + 1 to X>
m(x̄, db

m) + X=
m(x̄, db

m) + 1.
This constitutes the buyer’s position range in this marketplace. Since X=

m(x̄, db
m)+1

buyers have the same bid, as noted previously, a tie-breaking rule is needed to
determine the buyer’s position. Here, we adopt a standard rule where each of
these possible positions3 occurs with equal probability, i.e. 1/(X=

m(x̄, db
m) + 1).

Now, given the buyer’s position ranges in different marketplaces, we can obtain
the set of all possible joint positions for the buyer. Specifically, we use an M-
tuple v̄x̄ = 〈v1, ..., vM〉 ∈ Vx̄ to represent one of the possible joint positions where

3They are X>
m(x̄, db

m) + 1, X>
m(x̄, db

m) + 2,..., X>
m(x̄, db

m) + X=
m(x̄, db

m) + 1.
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vm is the buyer’s position in marketplace m, andVx̄ is the set of all possible joint
positions satisfying the condition X>

m(x̄, db
m) + 1 ≤ vm ≤ X>

m(x̄, db
m) + X=

m(x̄, db
m) + 1

(m = 1, ...,M). The probability of the buyer having the joint positions v̄x̄ given the
tuple x̄ is:

Φ(v̄x̄) =

M∏
m=1

1
X=

m(x̄, db
m) + 1

(5)

Note that tie-breaking occurs independently for each marketplace. Now we have
computed the buyer’s joint positions across multiple marketplaces when taking
action δb, and also calculated the probability of the joint positions occurring. The
joint positions will be used when matching the buyer with sellers in marketplaces.

The Action Choices of Sellers. In addition to depending on the positions in dif-
ferent marketplaces, the buyer’s expected valuation also depends on the sellers’
action choices. Specifically, we use a |∆|-tuple ȳ = 〈y1, ...y|∆|〉 ∈ Y to represent
the number of sellers choosing different actions, where yi is the number of sell-
ers choosing action δs

i , and Y is the set of all such possible tuples and we have∑|∆|
i=1 yi = S . The probability of this tuple appearing is:

ρs(ȳ) =

(
S

y1, ..., y|∆|

)
×

|∆|∏
i=1

(
ωs

i

)yi
(6)

The Expected Valuation. Given the buyer’s joint positions v̄x̄ and the number of
sellers choosing different actions ȳ, we are ready to calculate the buyer’s expected
valuation for traded goods. Since the buyer can enter multiple marketplaces and
thus purchase multiple goods, we need to compute its expected valuation for dif-
ferent units of goods. Recall we assume each trader can only trade one unit of
good in each marketplace, and thus when there are M marketplaces in total, the
possible number of goods the buyer can purchase is from 1 to M. Specifically,
in Section 3.1, we defined the buyer’s valuation vb(θb,T ) on T units of goods by
considering different types of goods (see Equation 1). Now by considering all
possible subsets of marketplaces with cardinality T , where this buyer makes a
transaction in each of them, we compute the buyer’s expected valuation when it
purchases T units of goods given its joint positions v̄x̄ and the number of sellers
choosing different actions ȳ:

Ṽ(v̄x̄, ȳ, θb, δb,Ωb,Ωs,T ) =
∑

MI⊂2M:|MI |=T

ϕb(v̄x̄, ȳ, δb,MI) × vb(θb,T )

=
∑

MI⊂2M:|MI |=T

ϕb(v̄x̄, ȳ, δb,MI) × αb
T × θ

b (7)

13



where ϕb(v̄x̄, ȳ, δb,MI) indicates whether the buyer makes transactions in the sub-
set of marketplacesMI and does not make transactions in the remaining market-
placesM−MI . Note that given the buyer’s joint positions v̄x̄ and the number of
sellers choosing different actions ȳ, whether the buyer is transacting or not in each
individual marketplace is independent. Thus whether the buyer transacts in MI

and not inM−MI is given by:

ϕb(v̄x̄, ȳ, δb,MI) =
∏

m∈MI

ψb(vm, ȳ,m, db
m) ×

∏
m∈M−MI

χb(vm, ȳ,m, db
m) (8)

where ψb(vm, ȳ,m, db
m) indicates whether the buyer with bid db

m makes a transaction
in marketplace m given its position vm and the number of sellers choosing different
actions ȳ, and χb(vm, ȳ,m, db

m) indicates whether the buyer with bid db
m does not

transact in marketplace m.
We derive ψb(vm, ȳ,m, db

m) and χb(vm, ȳ,m, db
m) as follows. Since the market-

place uses equilibrium matching to match buyers with sellers, if the buyer can
transact in marketplace m, then the number of asks which are not greater than its
bid, db

m, will not be less than its position vm. Given the number of sellers choosing
different actions, we know what asks are placed in marketplace m, from which we
can calculate the number of asks not greater than db

m:

Y≤m(ȳ, db
m) =

∑
δs

i ∈∆:ds
im≤db

m

yi (9)

Now, whether the buyer transacts in marketplace m is given by:

ψb(vm, ȳ,m, db
m) =

{
1 if Y≤m(ȳ, db

m) ≥ vm

0 if Y≤m(ȳ, db
m) < vm

(10)

and whether the buyer does not transact in m is:

χb(vm, ȳ,m, db
m) = 1 − ψb(vm, ȳ,m, db

m) (11)

Finally, by considering all possible numbers of units the buyer is purchasing,
all possible numbers of sellers choosing different actions, all possible joint posi-
tions and all possible numbers of buyers choosing different actions, the buyer’s
expected valuation is given by:

Ṽ(θb, δb,Ωb,Ωs) =
∑
x̄∈X

ρb(x̄)×
∑

v̄x̄∈Vx̄

Φ(v̄x̄)×
∑
ȳ∈Y

ρs(ȳ)×
M∑

T=1

Ṽ(v̄x̄, ȳ, θb, δb,Ωb,Ωs,T )

(12)
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3.2.2. The Expected Payment
After deriving the expected valuation, in the following, we derive the expected
payment that the buyer will make for the goods given the action distributions of
buyers and sellers, Ωb and Ωs. Firstly, we derive the buyer’s expected payment
given its joint positions v̄x̄ and the specific numbers of sellers choosing different
actions ȳ. This is equal to the sum of the expected payments in each marketplace,
which is:

P̃b(v̄x̄, ȳ, θb, δb,Ωb,Ωs) =

M∑
m=1

P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs) (13)

where P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs) is the expected payment of the buyer given its bid

db
m and its position vm in marketplace m. Specifically, when db

m = 	, i.e. not
bidding in this marketplace, the expected payment is 0; when db

m , 	, by sorting
the asks ascendingly, we will know what exact ask will be (if it can be) matched
with bid db

m. We denote the ask matched with bid db
m in marketplace m as ds

m. As
a result, P̃b

m(vm, ȳ, θb, db
m,Ω

b,Ωs) is given by:

P̃b
m(vm, ȳ, θb, db

m,Ω
b,Ωs) =


0 if db

m = 	

ds
m × km + db

m × (1 − km) + ι if db
m ≥ ds

m
ι otherwise

(14)

where ι is the constant cost.
Now by considering all the possible numbers of sellers choosing different ac-

tions, all possible joint positions and all possible numbers of buyers choosing
different actions, the buyer’s expected payment is given by:

P̃b(θb, δb,Ωb,Ωs) =
∑
x̄∈X

ρb(x̄) ×
∑

v̄x̄∈Vx̄

Φ(v̄x̄) ×
∑
ȳ∈Y

ρs(ȳ) × P̃b(v̄x̄, ȳ, θb, δb,Ωb,Ωs)

(15)
Finally, the expected utility of the buyer with type θb using action δb is:

Ũb(θb, δb,Ωb,Ωs) = Ṽb(θb, δb,Ωb,Ωs) − P̃b(θb, δb,Ωb,Ωs) (16)

3.3. Equilibrium Strategies
After deriving the traders’ expected utilities when trading across multiple double
auction marketplaces, we are now ready to define the trader’s Bayes-Nash equi-
librium trading strategy. Since we cannot run the fictitious play algorithm for an
infinite number of iterations, we adopt the standard approach of running the al-
gorithm until we obtain an ε-Bayes-Nash equilibrium, where each trader cannot
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gain more than ε utility by unilaterally deviating from its strategy. Formally, the
ε-Bayes-Nash equilibrium trading strategy is defined as follows:

Definition The trading strategies σb : [0, 1] → ∆ and σs : [0, 1] → ∆ constitute
an ε-Bayes-Nash equilibrium if :
∀i ∈ B, ∀θb ∈ [0, 1], ∀δb′ ∈ ∆

Ũb
i (θb, σb(θb),Ωb,Ωs) + ε ≥ Ũb

i (θb, δb′ ,Ωb,Ωs)

and ∀ j ∈ S, ∀θs ∈ [0, 1], ∀δs′ ∈ ∆

Ũ s
j(θ

s, σs(θs),Ωb,Ωs) + ε ≥ Ũ s
j(θ

s, δs′ ,Ωb,Ωs)

where Ωb and Ωs are the action distributions of buyers and sellers when they adopt
the trading strategy σb and σs.

4. The Fictitious Play Algorithm

In this section, we describe how to use fictitious play (FP) to approximate a pure
Bayes-Nash equilibrium market selection and bidding strategy for traders using
the equations derived in Section 3.2. Note that, in our setting, the trader’s action
actually combines the selected marketplaces and the offers in the selected market-
places as a whole. Then, in the fictitious play iteration for choosing the best action,
traders actually make decisions about which marketplace or marketplaces to enter
for all marketplaces simultaneously. While the learning process is dynamic, our
aim is to find the equilibrium of this one-shot game.

In what follows, we first briefly describe the standard FP algorithm. We then
describe how to compute the trader’s best response action (which needs to max-
imise its expected utility as derived in Section 3.2) against current FP beliefs, and
describe how to update FP beliefs according to the best response action distribu-
tions. Furthermore, we introduce how to measure the convergence in our setting.
Finally, we show the structure of the entire algorithm.

4.1. Standard Fictitious Play
In the standard FP algorithm (von Neumann and Brown, 1950; Brown, 1951),
opponents are assumed to play a mixed strategy. Then, by observing relative
frequencies of different actions, the player can estimate their opponents’ mixed
strategies, and take a best response to those strategies. The observed frequencies
of opponents’ actions are termed FP beliefs. In each round, all players estimate
their opponents’ mixed strategies and update their FP beliefs, and play a best
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response to their FP beliefs. All players continually iterate this process until it
converges. This algorithm has two types of convergence. First, it may converge
to a pure strategy, which means that after a number of iterations, the best response
strategy of each player is stable. Then all players’ best response strategies con-
stitute a pure Nash equilibrium. Second, it may converge in FP beliefs. Then the
converged FP beliefs constitute a mixed Nash equilibrium. We should note that,
in reality, it is impossible to run the algorithm to convergence since it involves an
infinite number of iteration rounds. Therefore, it is often used to approximate the
Nash equilibrium (i.e. deriving the ε-Nash equilibrium) by running the fictitious
play algorithm for a finite number of rounds.

However, the standard FP algorithm is not suitable for analysing Bayesian
games in which there is incomplete information about traders’ types. In such
games, a strategy is a function that maps the set of player types to the set of
allowed actions for the player. In the standard FP algorithm, by observing the fre-
quency of opponents’ actions, we cannot know the actual strategy of a player since
we do not know which type performs which action. To address this, Rabinovich
et al. (2013) provided a generalised fictitious play algorithm to analyse Bayesian
games with continuous types and a finite action space. Using this algorithm, when
the FP beliefs converge, they either directly converge to a pure Bayes-Nash equi-
librium, or can be purified to produce a pure Bayes-Nash equilibrium (Radner
and Rosenthal, 1982). Moreover, it is known that a pure Bayes-Nash equilibrium
always exists given the conditions that the game is non-atomic (giving zero prob-
ability to any specific player type appearing), and that the action space is finite.
However, Rabinovich et al. (2013) only showed how to use this algorithm to anal-
yse traders’ strategies in single-sided auctions. Building on this, we extend their
fictitious play algorithm to approximate the Bayes-Nash equilibrium market se-
lection and bidding strategies for traders in the much more complex environment
of multiple double auction marketplaces.

4.2. Computing the Best Response
We now describe how to compute the best response actions against current FP
beliefs. Recall that in Section 3.1, we used Ωb and Ωs to denote the probability
distributions of buyers’ and sellers’ actions respectively. In the FP algorithm, we
use them to represent FP beliefs about the buyers’ and sellers’ actions respec-
tively. Then, given their beliefs, we compute the buyers’ best response function
as follows (mutatis mutandis for sellers):

σb∗(θb|Ωb,Ωs) = argmaxδb∈∆Ũ(θb, δb,Ωb,Ωs) (17)
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Figure 1: Piecewise linear expected utility functions.

where σb∗ is the best response action of the buyer with type θb given FP beliefs
Ωb and Ωs. The optimal utility that a buyer with type θb can achieve is:

Ũ∗(θb,Ωb,Ωs) = maxδb∈∆Ũ(θb, δb,Ωb,Ωs) (18)

From the buyer’s expected utility equations (see Equations 7 and 12) we note
that the buyer’s expected utility Ũ(θb, δb,Ωb,Ωs) is linear in its type θb for a given
action. Given this, and given a finite number of actions, the best response function
is the upper envelope of a finite set of linear functions, and thus is piecewise linear.

An example with 4 actions, δb
1, δb

2, δb
3 and 	 (meaning no participation in the

marketplace), is given in Figure 1. Given each action, the buyer’s expected utility
with respect to its type is shown by line1, line2, line3 and line	 (i.e. x-axis)
respectively. The optimal utility achieved by the buyer is represented by the set
of thick piecewise linear segments. Note that each line segment corresponds to a
set of types on the x-axis, and this actually indicates the buyers’ optimal trading
strategy given current FP beliefs. Here, the set of types that have a best response
action δb

i is given by σ−b(δb
i ) (i = 1, 2, 3) and the type set corresponding to the best

response action 	 is σ−b(	).

4.3. Updating Fictitious Play Beliefs
We have computed the best response function and also provided the sets of types
corresponding to the best response actions. Based on this, we can now calculate
the best response action distribution of buyers. Given that the upper envelope is
a piece-wise linear function, we know that the set of buyer types corresponding
to the best response action δb

i is σ−b(δb
i ). Given this, the probability of action δb

i
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being played by a buyer is given by:

ωb
i =

∫
x∈σ−b(δb

i )
f b(x)dx (19)

By calculating the probability of each action being used, we obtain the current
best response action distribution of buyers, denoted by Ωb

br, which is given current
FP beliefs. We can then update the FP beliefs of buyers’ actions:

Ωb
τ+1 =

τ

τ + 1
×Ωb

τ +
1

τ + 1
×Ωb

br (20)

where Ωb
τ+1 is the updated FP beliefs of the buyers’ actions for the next iteration

round τ+ 1, Ωb
τ is the FP beliefs on the current iteration τ, and Ωb

br is the probabil-
ity distribution of the best response actions against FP beliefs Ωb

τ. This equation
actually gives the FP beliefs at the current round as the average of the best re-
sponse action distributions of buyers in all previous rounds. The computation of
the sellers’ best response function and belief updates is analogous. In our setting,
we need to update both buyers’ and sellers’ FP beliefs simultaneously.

4.4. Measuring Convergence
We now describe how to check the convergence to a Bayes-Nash equilibrium. In
the above, we have given the definition of the ε-Bayes-Nash equilibrium where
each trader cannot gain more than ε in expected utility by unilaterally deviating
from its strategy. According to this definition, if the trader cannot gain more than
ε by taking a best response action against the current best response action distri-
butions, the FP algorithm stops the iteration process. At this point, the current
best response actions with corresponding type sets constitute an ε-Bayes-Nash
equilibrium. Formally, the measure of convergence is given by:

|Ũb(Ωb
br,Ω

s
br) − Ũb

br(Ω
b
br,Ω

s
br)| ≤ ε and |Ũ s(Ωb

br,Ω
s
br) − Ũ s

br(Ω
b
br,Ω

s
br)| ≤ ε (21)

where Ũb(Ωb
br,Ω

s
br) is the expected utility of a buyer in the best response action

distributions Ωb
br and Ωs

br:

Ũb(Ωb
br,Ω

s
br) =

∫ 1

0
f b(x) × Ũb(x, δb,Ωb

br,Ω
s
br)dx (22)

where δb is the action chosen by the buyer with type x (actually, it is the best
response action of this buyer against FP beliefs Ωb

τ and Ωs
τ, i.e. σb∗(x|Ωb

τ,Ω
s
τ)).
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Ũb
br(Ω

b
br,Ω

s
br) is the expected utility of a buyer adopting the best response action

against the current best response action distributions Ωb
br and Ωs

br:

Ũb
br(Ω

b
br,Ω

s
br) =

∫ 1

0
f b(x) × Ũb(x, δb∗,Ωb

br,Ω
s
br)dx (23)

where δb∗ = σb∗(x|Ωb
br,Ω

s
br) is the best response action of the buyer with type x

given action distributions Ωb
br and Ωs

br. The equations for sellers are analogous.

4.5. Algorithm Overview
Given the calculation of best response actions, the update of FP beliefs and the
measure of convergence, Figure 2 shows the structure of the entire FP algorithm.

Initial:
set iteration count τ = 0
set the initial beliefs Ωb

0 and Ωs
0

do
1. Compute best response functions σb∗(θb|Ωb

τ,Ω
s
τ) and σs∗(θs|Ωb

τ,Ω
s
τ) against

the action distribution Ωb
τ and Ωs

τ;
2. Generate the type set σ−b(δb∗

i ) corresponding to the best response action δb∗
i ;

3. Generate the type set σ−s(δs∗
i ) corresponding to the best response action δs∗

i ;
4. Compute current best response action distribution of buyers and sellers:

Ωb
br = (ωb

1, ..., ω
b
|∆|

), where ωb
i =

∫
x∈σ−b(δb∗

i )
f b(x)dx, i = 1, ..., |∆|

Ωs
br = (ωs

1, ..., ω
s
|∆|

), where ωs
i =

∫
x∈σ−s(δs∗

i )
f s(x)dx, i = 1, ..., |∆|

5. Update beliefs:
Ωb
τ+1 = τ

τ+1 ×Ωb
τ + 1

τ+1 ×Ωb
br

Ωs
τ+1 = τ

τ+1 ×Ωs
τ + 1

τ+1 ×Ωs
br

6. Measure the convergence, if (converged), then
return the best response actions δb∗

i and δs∗
i with corresponding type sets

σ−b(δb∗
i ) and σ−s(δs∗

i )
7. Set τ = τ + 1
while (not converged)

Figure 2: The fictitious play algorithm.
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5. Equilibrium Analysis of Market Selections and Bidding Strategies

In this section, we use the FP algorithm from Section 4 to analyse the traders’
equilibrium strategies. We first introduce the experimental setting in this paper.
After this, we report the convergence results. We then analyse the traders’ equi-
librium bidding strategies in an isolated marketplace. This helps us to understand
the analysis in the more complex setting with multiple marketplaces.

5.1. Experimental Settings
In each of the following experiments, we consider 200 instantiations with different
initial FP beliefs on the traders’ actions. Each initial belief is uniformly chosen
between 0 and 1, and then scaled so they sum to 1. The remaining experimental
settings are given in Table 1.4 Specifically, we consider 2 marketplaces, 5 buyers
and 5 sellers, and 11 discrete bid(ask) levels plus 	 (denoting the action when the
marketplace is not chosen). Furthermore, we assume that both buyer and seller
types are independently drawn from a uniform distribution.5 In addition, we set
ε = 0.00001 in the ε-Bayes-Nash equilibrium, and assume that the small cost for
traders to enter a marketplace is set to ι = 0.0001. For the transaction price, we
assume that km = 0.5, i.e. the transaction price is set in the middle of the matched
bid and ask, which means that the marketplace has no bias in favour of buyers or
sellers when allocating profits.

5.2. Convergence Results
As per Section 5.1, we consider 200 different initial FP beliefs on the traders’ ac-
tions for each experiment. Our experiments empirically demonstrate that, in this
setting, the FP algorithm consistently converges.6 This allows the identification
of the pure Bayes-Nash equilibrium market selection and bidding strategies. Fur-
thermore, we find that the FP algorithm converges to the same Nash equilibrium

4Note that the exact Nash equilibrium solution depends on the specific experimental setting.
However, although different experimental parameter values result in different equilibrium solu-
tions, the insights drawn from the solutions are broadly similar. For example, as we show in
Appendix A, the insights obtained in the setting with three marketplaces are similar to those with
two.

5In our setting, it is easy to consider different distributions. We just need to set the probability
density function f b(x) in Equations 19, 22 and 23 to any specific probability density function for
buyers, and do this for sellers analogously.

6Note that, while a pure-strategy Nash equilibrium always exists in this setting (Rabinovich
et al., 2013), in general, the FP algorithm is not guaranteed to converge (Vijay and Sjöström,
1998).
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Parameter Value(s)
Number of marketplaces M 2
Number of buyers B 5
Number of sellers S 5
Trader offer space Ψ {0, 0.1, ..., 0.9, 1,	}
Buyer type probability distribution Fb Uniform([0, 1])
Seller type probability distribution F s Uniform([0, 1])
Buyer preference coefficient function αb(T ) varies
ε value in ε-Bayes-Nash equilibrium ε = 0.00001
Constant cost ι ι = 0.0001
k value in k-pricing policy k = 0.5

Table 1: Experimental setting

(see Figures 3 to 11). The only exception is a setting where the initial FP beliefs
are such that no buyers and sellers participate in the marketplace. In this case, the
algorithm will immediately converge to a different Bayes-Nash equilibrium where
nobody enters the marketplace. However, this equilibrium is trivial since there is a
zero probability of transactions happening between buyers and sellers. This trivial
equilibrium exists both in isolated marketplaces and when trading across multiple
double auctions where no buyers and sellers enter any marketplaces. Given this,
in what follows we focus solely on non-trivial equilibria where there is a positive
probability of transactions happening.

Moreover, for each of the following experiments, the average number of it-
erations to convergence and standard deviation are show in Table 2. Note that,
although each experiment is run 200 times with different initial beliefs, the re-
sults shown in Table 2 are the average over the 150 runs with the lowest iteration
numbers to convergence. We do this because the iteration numbers to conver-
gence vary depending on the initial beliefs. Although in most cases the algorithm
converges quickly, there are a few initial FP beliefs which take much longer to
converge (sometimes by a factor of 6) and including these would skew the results.
We avoid this problem by removing the top 50 runs. From the experiments, we
can see that, as the number of traders increases (e.g. comparing experiment 1
with 5 buyers and 5 sellers to experiment 2 with 8 buyers and 5 sellers), the av-
erage number of iterations to convergence increases. We furthermore find that,
when traders bid asymmetrically in two marketplaces (e.g. experiments 5, 8 and
9 shown in Figures 5, 8 and 9 respectively), the average number of iterations to
convergence also increases.
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Experiment Average Standard
Number Deviation

1. An isolated marketplace 604.26 235.40
2. An isolated marketplace, 8 buyers and 5 sellers 1084.38 384.31
3. Single-home 654.46 241.53
4. Multi-home with independent goods 752.94 282.58
5. Multi-home with perfectly substitutable goods 1348.32 493.24
6. Multi-home with perfectly complementary goods 682.56 247.23
7. Multi-home with complementary goods, αb(1) = 1 and αb(2) = 4 694.40 254.45
8. Hybrid with independent goods 1638.98 608.60
9. Hybrid with substitutable goods, αb(1) = 1 and αb(2) = 1.8 1758.36 653.11
10. Hybrid with perfectly complementary goods, 2 buyers and 10 sellers 913.52 341.02
11. Hybrid with complementary goods, αb(1) = 1 and αb(2) = 4 791.26 284.82

Table 2: Average number of iterations to convergence and standard deviation for each experiment
where parameter values are taken from Table 1, unless mentioned otherwise.

5.3. Trading in an Isolated Marketplace
We now analyse the traders’ Nash equilibrium strategies. As introduced in Sec-
tion 2, there are many heuristic bidding strategies in double auctions. However,
they all fail to determine exactly what traders should bid in equilibrium. This
is an important shortcoming since the way in which traders bid in a given mar-
ketplace affects their expected utilities and this, in turn, affects their selection of
marketplaces.

The converged pure-strategy Bayes-Nash equilibrium bidding strategies from
the FP algorithm are shown in Figure 3. The gray line represents the buyers’ bids
in equilibrium for given types and the black line represents the sellers’ asks in
equilibrium. We find that buyers shade their bids (i.e. bid less than their types)
and sellers shade their asks (i.e. ask more than their types). They do so in order
to keep profits. We also find that, when buyers’ types are lower than a certain
point and sellers’ types are higher than a certain point, they will not enter the
marketplace because of the small cost ι.

In the above, we considered the case with the same number of buyers and
sellers. We now analyse asymmetric settings where these numbers differ. In par-
ticular, Figure 4 shows the results for the case with 8 buyers and 5 sellers. As
expected, we see that because there are more buyers than sellers, the competition
between buyers is more severe, and thus they have to raise their bids. For sellers,
since they have a higher probability of being matched, they raise their asks. In
this environment, sellers have more market power, and can therefore extract more
profit from the transactions.
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Figure 3: Equilibrium strategies of traders in an isolated marketplace with 5 buyers and 5 sellers.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Traders Types

O
ff
e
rs

 

 

Bids

Asks

Figure 4: Equilibrium strategies of traders in an isolated marketplace with 8 buyers and 5 sellers.

5.4. Trading Across Multiple Marketplaces
The above analysis of isolated marketplaces is important for understanding the
setting where traders trade across multiple marketplaces. For example, as we will
show, in the setting with multiple marketplaces, when traders converge to one
marketplace, their bidding strategies are exactly the same as those in an isolated
marketplace. In the following, we start by analysing equilibrium market selection
and bidding strategies for traders in environments with multiple marketplaces. As
mentioned in Section 1, in addition to the isolated marketplace setting, there are
three other types of trading environments: single-home, multi-home and hybrid.
Furthermore, when multiple goods are traded, goods can be either independent,
substitutable or complementary. In the single-home trading environment, since
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we assume that only one unit of the good is traded by each trader, we do not need
to consider the types of goods. However, in the multi-home and hybrid environ-
ments where multiple goods can be traded by each trader, we do need to consider
different types of goods. In the following, we first analyse the traders’ equilib-
rium strategies in the single-home environment. Then we extend the analysis to
the multi-home and hybrid environments by considering different types of goods.

5.4.1. Single-Home Trading
We now consider traders’ equilibrium strategies in the single-home environment
with two marketplaces, where traders can only enter one marketplace at a time. In
this environment, traders can only trade one unit of the good. Thus the valuation
for the good is equal to its type, i.e. αb(1) = αs(1) = 1. By using FP, we find
that, except for some traders (buyers with low types and sellers with high types)
choosing no marketplace, all other traders eventually converge to one marketplace
in equilibrium. Since the two marketplaces are identical in this environment, the
traders will eventually converge to marketplace 1 or 2 with the same probability.
In addition, we find that the traders’ bidding strategies in the converged market-
place are the same as those in an isolated marketplace (i.e. Figure 3).

When considering the traders’ equilibrium strategies across more than two
marketplaces, we still obtain similar conclusions. Specifically, traders converge
to one marketplace, and their bidding strategies in this marketplace are the same
as in Figure 3.

5.4.2. Multi-Home Trading
So far we have analysed the equilibrium strategies of traders in single-home trad-
ing environments. Now we extend the analysis to the multi-home settings where
both buyers and sellers can enter multiple marketplaces at a time. In such environ-
ments, multiple goods may be traded by each trader. Therefore, we now need to
consider the types of goods since these will affect traders’ strategies. Specifically,
here we assume that, for sellers, all goods are independent since a seller’s valua-
tion for sold goods is usually equal to the sum of its valuation for each individual
sold good (i.e. additive). Thus, in the multi-home environment, sellers are willing
to enter any marketplace which can provide positive profits for them. For buyers,
goods can be either independent, substitutable or complementary. In the follow-
ing, we will analyse the equilibrium strategies for traders by considering different
types of goods for buyers.

Independent Goods. In the multi-home environment with independent goods,
buyers’ values on goods are additive, i.e. the buyer preference coefficient αb(1) =
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Figure 5: Equilibrium strategies of traders in the multi-home trading environment with perfectly
substitutable goods for buyers, 5 buyers, 5 sellers and 2 marketplaces.

1 and αb(2) = 2. In such situations, buyers and sellers will enter both market-
places when their profits in both marketplaces are positive, and then their equilib-
rium bidding strategies are exactly the same as those in the isolated marketplace
setting (see Figure 3).

Substitutable Goods. We now consider the equilibrium strategies for traders with
substitutable goods for buyers (i.e. αb(1) = 1, and 1 ≤ αb(2) < 2).

Firstly, we consider perfectly substitutable goods, i.e. αb(1) = 1 and αb(2) = 1.
This means that, when the buyer with type θb wins one good, it obtains valuation
θb and pays for the good; and when this buyer wins two goods, it only obtains
valuation θb, but pays for two goods. The results are shown in Figures 5(a) and
5(b). We find that, in this setting, even though the marketplaces are identical, a
buyer with a particular type will bid differently in the two marketplaces. The im-
plications are as follows. Because of perfectly substitutable goods, buyers would
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like to purchase and pay for only one good. Therefore, buyers with high types
choose to only bid in one marketplace, and bid slightly higher than the buyers
with lower types. By so doing, they can win one good successfully and only pay
for this good. For example, when the types are within [0.928, 1.0], they bid 0.6
in marketplace 1. However, buyers with lower types have to bid in both market-
places in order to increase the probability of being matched. In this situation, they
may transact in both marketplaces, which means they have to pay for two goods.
Then, in order to maximise the profit of the transaction and minimise the payment,
they may choose to bid slightly higher in one marketplace and lower in another.
Furthermore, we note that some of these buyers with lower types will bid higher
in one marketplace, and others will bid higher in the other one. This is because
all buyers bidding higher in one marketplace results in fierce competition between
them. Thus some of them will choose to bid higher in another marketplace in
order to increase the probability of being matched. This result provides useful in-
sights for buyers trading perfectly substitutable goods. Specifically, when buyers’
valuations on individual goods are high, they only need to bid in one marketplace.
However, if their valuations are low, they need to bid in multiple marketplaces to
increase their probability of transacting.

Furthermore, we extend this analysis by increasing the buyer’s valuation for
the substitutable goods (i.e. αb(2) is increased from 1 to 2). In so doing, the
goods become less substitutable (no longer perfectly substitutable). We find that,
as the goods become less substitutable, buyers with high types begin to bid in
two marketplaces since they start to prefer to win multiple goods, and bidding in
both marketplaces increases the probability of being matched. Note that when the
(perfectly) substitutable goods are traded, the exposure problem may arise. This
occurs when a buyer intends to win a certain number of items by placing bids in all
marketplaces to increase the probability of transacting. In this case a buyer could
end up with with a loss when its overall payment exceeds its overall valuation for
the obtained items.

Complementary Goods. Now we analyse the setting with complementary goods
for buyers. We first consider the case with perfectly complementary goods, i.e.
αb(1) = 0 and αb(2) = 1. This means that when the buyer with type θb wins one
good, it obtains zero valuation, but needs to pay for the good; and when this buyer
wins two goods, it obtains valuation θb, and pays for two goods. The results are
shown in Figures 6(a) and 6(b). We can see that, with perfectly complementary
goods, only buyers with high types bid in marketplaces, and they bid in both mar-
ketplaces (if they only bid in one marketplace and transact, they need to pay for the
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Figure 6: Equilibrium strategies of traders in the multi-home trading environment with perfectly
complementary goods for buyers, 5 buyers, 5 sellers and 2 marketplaces.

good, but obtain zero valuation because of the perfectly complementary goods).
Buyers with relatively low types do not enter any marketplace since even though
they may bid in both marketplaces, because of their low types and perfectly com-
plementary goods, they are more likely to obtain losses. Furthermore, we find
that buyers shade their bids more than what they do in the case of isolated market-
places. For example, when the buyers’ types are within [0.825, 1.0], buyers bid
0.5 in both marketplaces. The reason is as follows. With perfectly complementary
goods, the buyer with type θb purchasing two units, only obtains valuation θb, but
has to pay for two goods. In order to ensure positive profits, buyers should shade
their bids more.

Furthermore, we extend this analysis to the case of non-perfectly complemen-
tary goods where αb(1) = 1 and αb(2) = 4. That is, when the buyer with type θb

wins one good, it obtains valuation θb and pays for the good; and when this buyer
wins two goods, it obtains valuation 4 × θb (four times its type). The results are
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Figure 7: Equilibrium strategies of traders in the multi-home trading environment with comple-
mentary goods for buyers where αb(1) = 1 and αb(2) = 4, 5 buyers, 5 sellers and 2
marketplaces.

shown in Figures 7(a) and 7(b). Compared to the perfectly complementary goods,
we find that buyers still bid in two marketplaces. However, they do not shade their
bids. Instead, buyers increase their bids in order to increase the probability of be-
ing matched. Particularly when buyers’ types are within [0.408,1.0], buyers bid
1.0 in each marketplace. This is because when purchasing two complementary
goods, the buyers’ values for the goods are very high (i.e. 4 × θb). In this situa-
tion, in terms of obtaining more profits, it is better for the buyers to increase their
bids to increase the probability of transacting than it is to shade. Furthermore, this
will cause a larger range of sellers to ask since when buyers increase their bids,
sellers with high types can still trade. Note that when the (perfectly) complemen-
tary goods are traded, the exposure problem may also arise. This occurs when
the buyer, in order to secure multiple complementary goods, bids more than the
valuation for a single good. The buyer could then face a loss when failing to win
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sufficient goods.

In Conclusion. In the experiments with multi-home environments, we find a
number of insights for trading strategies. Specifically, in the case of indepen-
dent goods, traders can enter both marketplaces when their expected utilities in
these marketplaces are positive, and their equilibrium bidding strategies are then
identical to those in the isolated marketplace setting. In the multi-home envi-
ronment with perfectly substitutable goods, buyers with high types should only
bid in one marketplace, and buyers with relatively lower types should bid high in
one marketplace and bid low in another. Furthermore, as the buyers’ values on
the substitutable goods increase, buyers with high types begin to bid in two mar-
ketplaces. Then in the environment with perfectly complementary goods, buyers
need to shade more in order to guarantee positive profits. As buyers’ values on
multiple complementary goods increase, buyers can increase their bids instead of
shading in order to win more goods. Similar insights are found when the analysis
is extended to the case with more than two marketplaces (refer to the experiments
detailed in Appendix A.2).

5.4.3. Hybrid Trading
We now investigate the equilibrium strategies of traders in the hybrid trading envi-
ronment where one side can only participate in one marketplace (i.e. single-home
trading), and the other side can participate in multiple marketplaces (i.e. multi-
home trading). Specifically, we consider the case that buyers can participate in
multiple marketplaces and sellers can only participate in one marketplace at a
time.7 Note that the analysis of the opposite case where sellers can choose multi-
ple marketplaces and buyers can only choose one provides similar results.

Independent Goods. The case with independent goods for buyers (i.e. αb(1) = 1,
αb(2) = 2) is shown in Figures 8(a) and 8(b). From these figures, we can see
that, in contrast to the analysis in the single-home environment (see Section 5.4.1)
where sellers converge to one marketplace in equilibrium, in this case sellers split
and place asks in different marketplaces in equilibrium. The reason is as follows.
The sellers have to compete with each other in order to be matched with buy-
ers. Thus they prefer marketplaces with fewer sellers. Because both marketplaces
have the same buyers in this case, the impact of buyers on the sellers’ strategies

7Note that in the iteration of fictitious play, the seller can switch between marketplaces to select
the best marketplace to maximise its expected utility.
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Figure 8: Equilibrium strategies of traders in the hybrid trading environment with independent
goods for buyers, 5 buyers, 5 sellers and 2 marketplaces.

in both marketplaces are identical. In this environment, the internal competition
between the sellers becomes the dominant effect and this drives the sellers to stay
in different marketplaces. Another interesting and non-obvious result is that, com-
pared to the traders’ equilibrium strategies in Figure 3, we find that buyers raise
their bids and sellers also raise their asks in this case. The reason is as follows.
As the sellers are split into two marketplaces, in each marketplace the number of
sellers is less than the number of buyers. Thus, as per our previous analysis (see
Figure 4), sellers have more market power than buyers, and so buyers raise their
bids (i.e. shade less) in order to be matched, and sellers raise their asks to extract
more profits from the transactions.

Substitutable Goods. Now we turn to the case when goods are substitutable for
buyers. We first analyse the case with perfectly substitutable goods (i.e. αb(1) = 1,
αb(2) = 1). In this case, we find that in equilibrium traders will only choose one

31



marketplace, and the bidding strategies are the same as the isolated marketplace
(see Figure 3). The is because when goods are perfectly substitutable for buyers,
buying more than one good does not mean obtaining more values, but means
paying more. Thus buyers will prefer to bid in one marketplace. This causes
sellers to converge to that marketplace.

Furthermore, since in the above analysis when buyers’ expected values of
goods are additive (i.e. independent), we find that buyers bid in multiple mar-
ketplaces. Thus we hypothesise that as buyers’ values on multiple goods increase
(i.e. the goods become less substitutable), they begin to prefer to bid in multiple
marketplaces, and sellers may split into two marketplaces because of the internal
competition between sellers. This is confirmed by running experiments with dif-
ferent values of αb(2). In particular, we find that when αb(2) ≥ 1.8, buyers begin
to bid in two marketplaces. Specifically, when αb(2) = 1.8, the traders’ equilib-
rium bidding strategies are shown in Figures 9(a) and 9(b), from which we can
see that buyers bid in two marketplaces and sellers split into two marketplaces.

Complementary Goods. Finally, we analyse the case with complementary goods
for buyers. Firstly, we consider perfectly complementary goods for buyers (i.e.
αb(1) = 0 and αb(2) = 1). When there are 5 buyers and 5 sellers, we find an
interesting result where in equilibrium, no traders choose any marketplace. The
reason is as follows. With perfectly complementary goods, buyers have to bid in
both marketplaces and need to shade their bids in order to make positive profits.
However, since sellers adopt single-home trading, sellers have more market power
when they split into two marketplaces, and buyers have to increase their bids to
increase the probability of being matched. Thus buyers cannot shade too much to
win. However, when they purchase two goods, their valuations of the two goods
are equal to their types, but they have to pay for both goods. In this situation,
buyers will make a loss. Therefore, buyers do not choose any marketplaces, and
consequently sellers also choose no marketplaces.

The above situation changes when the market power is changed by amending
the number of buyers and sellers, or the buyers’ valuation of multiple complemen-
tary goods is increased. Specifically, when we increase the number of sellers (to
decrease their market power) and decrease the number of buyers (to increase their
market power), for example, for 2 buyers and 10 sellers, the results are shown
in Figures 10(a) and 10(b). We can see that buyers bid in two marketplaces, and
shade more to keep profits. Because of the internal competition, sellers distribute
themselves over two marketplaces.

Furthermore, in the case with 5 buyers and 5 sellers, if we change the buyer
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Figure 9: Equilibrium strategies of traders in the hybrid trading environment with substitutable
goods for buyers where αb(1) = 1 and αb(2) = 1.8, 5 buyers, 5 sellers and 2 market-
places.

preference coefficient for αb(1) = 1 and αb(2) = 4 (i.e. when purchasing two
goods, the buyer with type θb can obtain valuation 4 × θb), the results are shown
in Figures 11(a) and 11(b). We can see that buyers bid in two marketplaces and,
instead of shading, they increase their bids to increase their probability of transact-
ing, since they will then obtain very high valuations (i.e. four times their types).
For sellers, since the buyers’ bids in both marketplaces are identical, each type
of seller has an equal probability of asking in each marketplace. For example,
when sellers’ types are within [0, 0.257], sellers ask 0.6 in either marketplace 1 or
marketplace 2. Furthermore, since buyers increase their bids, sellers can increase
their asks to obtain more profits.

In Conclusion. In the above experiments, we also find various insights for trading
strategies. In particular, in the case with independent goods, sellers should split
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Figure 10: Equilibrium strategies of traders in the hybrid trading environment with perfectly com-
plementary goods for buyers, 2 buyers, 10 sellers and 2 marketplaces.

and place asks in both marketplaces. For perfectly substitutable goods, traders
converge to bid in one marketplace. As the valuation for the substitutable goods
increases, traders begin to bid in both marketplaces. Then for perfectly comple-
mentary goods, traders enter no marketplace to avoid the loss. As the buyers’
valuation for the complementary goods increases, traders begin to bid in both
marketplaces and buyers need to shade less (or even not shade) to increase their
probability of transacting. Similar insights can be obtained when we extend the
analysis to the case with more than two marketplaces (refer to the experiments in
Appendix A.3).

6. Conclusions and Future Work

In this paper, we analysed the Bayes-Nash equilibrium market selection and bid-
ding strategies for traders that operate across multiple double auction market-
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Figure 11: Equilibrium strategies of traders in the hybrid trading environment with complementary
goods for buyers where αb(1) = 1 and αb(2) = 4, 5 buyers, 5 sellers and 2 marketplaces.

places in different trading environments with different types of goods. Specifi-
cally, we first derived the equations to calculate the expected utilities of traders
in this complex setting. Then we used a FP algorithm to analyse the traders’
Bayes-Nash equilibrium trading strategies in isolated marketplaces, single-home,
multi-home and hybrid trading environments with independent, substitutable and
complementary goods respectively.

We first analysed the traders’ strategies in isolated marketplaces, where we
found that they shade their offers in equilibrium. We then analysed the traders’
equilibrium market selection and bidding strategies across multiple double auc-
tion marketplaces in single-home trading environments, and found that all traders
eventually converge to bid in one marketplace. Moreover, how they bid is exactly
the same as that in the isolated marketplace setting.

We extended the analysis by considering multi-home environments with dif-
ferent types of goods. Specifically, we assumed that the trading goods are in-
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dependent for sellers, and could be independent, substitutable or complementary
for buyers. With independent goods, traders bid in multiple marketplaces and the
equilibrium bidding strategies are exactly the same as those in isolated market-
places. With substitutable goods, we found that buyers with high types only bid
in one marketplace and buyers with low types bid in multiple marketplaces to in-
crease their probability of being matched. When perfectly complementary goods
are traded, only buyers with high types bid in multiple marketplaces. Buyers with
low types do not enter any marketplace. However, when buyers’ values on multi-
ple complementary goods increase, more buyers bid in multiple marketplaces and
they increase their bids, instead of shading, to win more goods.

Finally, we extended the analysis to hybrid environments where buyers can
trade in multiple marketplaces and sellers can only trade in one. We found that,
for independent goods, different from the single-home result where sellers con-
verge to bid in one marketplace, sellers split to place asks in different market-
places in equilibrium. For substitutable goods we found that, as the buyers’ val-
ues for multiple goods increases, they begin to bid in multiple marketplaces. This
causes sellers to distribute themselves over different marketplaces (in contrast to
perfectly substitutable goods, all traders only choose one marketplace in equi-
librium). Then, for complementary goods, we found that no traders choose any
marketplaces when trading perfectly complementary goods and traders begin to
participate when the buyers’ valuations on complementary goods increase or buy-
ers have more market power than sellers.

In sum, we have provided a number of insights for automated trading agents
that operate across multiple double auction marketplaces. However, in order to
obtain tractable results, our work makes a number of simplifying assumptions that
need to be addressed in the future. The first limitation is that, in order to obtain an
equilibrium solution in a reasonable time, we consider a relatively small number
of traders and marketplaces. When the number of participants increases beyond
100 agents, the computational load is intense and it is difficult to get the solution
in a reasonable time. A possible way to address this limitation is to consider a
higher level of abstraction in which individual agents represent many agents of
the same type (as per the work of Sandholm (2010)). The second limitation is
that our analysis is focused on the clearing house mechanism. In reality, some
marketplaces will adopt the continuous double auction mechanism, which means
that the marketplace will try and match traders as soon as new offers arrive. In the
future, we would like to extend our analysis to cover this mechanism. The third
limitation is that we only consider identical goods, and do not consider different
goods, especially when they are substitutable or complementary. In the future, we
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also intend to address this limitation.
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Appendix A. Supplementary Experiments for Three Marketplaces

We present additional experiments to those in Section 5 by considering three dou-
ble auction marketplaces. We omit them from the main text because they provide
no new and significant insights. They are, nevertheless, useful in providing fur-
ther support for the claims made in Section 5. Specifically, the parameter setting
of the following additional experiments is the same as Table 1, except that we
allow three marketplaces.

Appendix A.1. Single-Home Trading
In the single-home trading environment with three double auction marketplaces,
we find that traders eventually converge to one marketplace and the equilibrium
bidding strategies are the same as those in an isolated marketplace (see Figure 3).

Appendix A.2. Multi-Home Trading
In the multi-home trading environment with independent goods, we find that buy-
ers and sellers enter all three marketplaces when their profits in these marketplaces
are positive, and then their equilibrium bidding strategies are exactly the same as
those in an isolated marketplace setting (see Figure 3).

The case of perfectly substitutable goods for buyers (i.e. αb(1) = 1, αb(2) = 1
and αb(3) = 1) is shown in Figure A.1. These results are similar to the experiment
with 2 marketplaces (see Figure 5). In particular, buyers with high types choose
to only bid in one marketplace and bid higher than the buyers with lower types.
Compared to Figure 5, we find that buyers with slightly lower types enter two
marketplaces, and bid slightly higher in one, and bid lower in the other. For
example, when the buyer’s type is within [0.594, 0.632], it chooses marketplaces
2 and 3, and submits bids 0.2 and 0.4 respectively. Furthermore, buyers with
much lower types choose to bid in three marketplaces to increase the probability
of transacting, and bid slightly higher in one marketplace, and bid equally low
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Figure A.1: Equilibrium strategies of traders in the multi-home trading environment with perfectly
substitutable goods for buyers, 5 buyers, 5 sellers and 3 marketplaces.

in the other two. For example, when the buyer’s type is within [0.442 0.496], it
participates in three marketplaces, and submits bid 0.3 in marketplace 2 and 0.2
in marketplaces 1 and 3.

We now turn to the case of complementary goods for buyers. We first consider
the case with perfectly complementary goods, i.e. αb(1) = 0, αb(2) = 0 and
αb(3) = 1. This means that when a buyer with type θb wins one or two goods,
it obtains zero valuation, but needs to pay for the goods; and when it wins three
goods, it obtains valuation θb, and pays for three goods. The results are shown
in Figure A.2. We can see that, with perfectly complementary goods, only buyers
with high types bid in marketplaces, and they bid in all three marketplaces. Buyers
with relatively low types do not enter any marketplace. Furthermore, compared
to Figure 6, because of the difficulty of winning three goods, we find that fewer
buyers bid than in the case with two marketplaces.

Furthermore, we extend this analysis to the case of non-perfectly complemen-
tary goods where αb(1) = 1, αb(2) = 4 and αb(3) = 6. That is, when the buyer
with type θb wins one good, it obtains valuation θb and pays for the good; and
when it wins two goods, it obtains valuation 4× θb (four times its type); and when
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Figure A.2: Equilibrium strategies of traders in the multi-home trading environment with perfectly
complementary goods for buyers, 5 buyers, 5 sellers and 3 marketplaces.

it wins three goods, it obtains valuation 6 × θb (six times its type). The results are
shown in Figure A.3 and are similar to the case of two marketplaces (see Figure
7). In particular, buyers do not shade their bids and instead increase their bids in
order to increase the probability of being matched.

Appendix A.3. HybridTrading
Finally, we show the supplementary experiments with three marketplaces in the
hybrid trading environment. Firstly, we consider the case with independent goods
for buyers (i.e. αb(1) = 1, αb(2) = 2 and αb(3) = 3). The results are shown in Fig-
ure A.4. Similar to the case with two marketplaces (see Figure 8), we can see that
sellers split and place asks in different marketplaces in equilibrium. Furthermore,
since sellers distribute themselves over three marketplaces, the number of sellers
in each marketplace is less than that with two marketplaces. This means that sell-
ers have more market power. Therefore, compared to Figure 8, sellers shade their
offers more and buyers shade their offers less in order to be matched.

We now consider the case of substitutable goods for buyers. With perfectly
substitutable goods (i.e. αb(1) = 1, αb(2) = 1 and αb(3) = 1), in equilibrium
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Figure A.3: Equilibrium strategies of traders in the multi-home trading environment with comple-
mentary goods for buyers where αb(1) = 1, αb(2) = 4 and αb(3) = 6, 5 buyers, 5
sellers and 3 marketplaces.

traders only choose one marketplace and the bidding strategies are the same as
the case with an isolated marketplace (see Figure 3). Furthermore, when buy-
ers’ values on multiple goods increase (i.e. the goods become less substitutable),
buyers begin to prefer to bid in multiple marketplaces, and sellers may split into
three marketplaces because of the internal competition between them. Specifi-
cally, when αb(1) = 1, αb(2) = 1.8 and αb(3) = 2.5, the experimental results are
shown in Figure A.5. As can be seen, buyers bid in three marketplaces and sellers
split into three marketplaces. Furthermore, because there are fewer sellers in each
marketplace than the case with two marketplaces, sellers have more market power.
Therefore, compared to Figures 9, sellers shade their offers more.

Finally, we consider three marketplaces with complementary goods for buy-
ers. For perfectly complementary goods (i.e. αb(1) = 0, αb(2) = 0 and αb(3) = 1)
with 5 buyers and 5 sellers, we observe the same results as two marketplaces.
That is, no traders choose any marketplace. However, when there are two buy-
ers and ten sellers (buyers have more market power than sellers), the results are
shown in Figure A.6. Here buyers bid in three marketplaces and sellers split into
three marketplaces. Furthermore, only when the buyer wins three goods, it ob-
tains valuation θb, and needs to pay for three goods. Therefore, compared to the
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Figure A.4: Equilibrium strategies of traders in the hybrid trading environment with independent

goods for buyers, 5 buyers, 5 sellers and 3 marketplaces.

case with two marketplaces (see Figure 10), buyers shade more to obtain positive
profits. Furthermore, for non-perfectly complementary goods where αb(1) = 1,
αb(2) = 4 and αb(3) = 6, the results are shown in Figure A.7. Similar to the case
of two marketplaces (see Figure 11), buyers bid in three marketplaces, and in-
stead of shading, they increase their bids to increase the probability of transacting
to obtain very high valuations.
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Figure A.5: Equilibrium strategies of traders in the hybrid trading environment with substitutable
goods for buyers where αb(1) = 1, αb(2) = 1.8 and αb(3) = 2.5, 5 buyers, 5 sellers
and 3 marketplaces.
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Figure A.6: Equilibrium strategies of traders in the hybrid trading environment with perfectly
complementary goods for buyers, 2 buyers, 10 sellers and 3 marketplaces.
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Figure A.7: Equilibrium strategies of traders in the hybrid trading environment with complemen-
tary goods for buyers where αb(1) = 1, αb(2) = 4 and αb(3) = 6, 5 buyers, 5 sellers
and 3 marketplaces.
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Vijay, K., Sjöström, T., 1998. On the convergence of fictitious play. Mathematics
of Operations Research 23 (2), 479–511.

von Neumann, J., Brown, G. W., 1950. Solutions of games by differential equa-
tions. Contributions to the Theory of Games 24, 73–79.

Vytelingum, P., Cliff, D., Jennings, N. R., 2008. Strategic bidding in continuous
double auctions. Artificial Intelligence 172(14), 1700–1729.

Wellman, M. P., Osepayshvili, A., MacKie-Mason, J. K., Reeves, D., 2008. Bid-
ding strategies for simultaneous ascending auctions. The B.E. Journal of Theo-
retical Economics 8 (1), 27.

Wellman, M. P., Sodomka, E., Greenwald, A., 2012. Self-confirming price predic-
tion strategies for simultaneous one-shot auctions. In: Proceedings of the 28th
Conference on Uncertainty in Artificial Intelligence. pp. 893–902.

Williams, S. R., 1991. Existence and convergence of equilibria in the buyer’s bid
double auction. The Review of Economic Studies 58 (2), 351–374.

Yuan, Y., Zeng, D., 2012. Co-evolution-based mechanism design for sponsored
search advertising. Electronic Commerce Research and Applications 11 (6),
537–547.

Zeng, D. D., Cox, J. C., Dror, M., 2004. Coordination of purchasing and bidding
activities across markets. In: Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences.

47


