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A B S T R A C T

This paper addresses the problem of planning with preferences using Multiple Criteria Decision Analysis
(mcda) mechanisms. We start by explaining how pddl3 preferences can be modelled by criteria from the Multi-
Attribute Utility Theory (maut) along with a Choquet integral. Interestingly, preferences formalized using maut
have almost the same expressiveness as the ones formalized in pddl3 while being much easier to model.
Next, we present a new heuristic for planning with preferences which is based on the Choquet integral.
Finally, we introduce ChoPlan a proof-of-concept planner solving maut-encoded planning problems using the
aforementioned heuristic. ChoPlan’s performances are evaluated with respect to state of the art planners using
problems from the fifth International Planning Competition.

1. Introduction

Planning addresses the problem of finding a sequence of actions
to achieve a specified goal state from a given initial state. In many
real-world applications, the set of valid plans may be quite large as
the aforementioned goal state may be achieved in various ways. As
a consequence, it is crucial to consider the notion of plan quality to
distinguish between good and bad plans according to users’ preferences.
Preferences naturally arise in many use cases and can be illustrated
using the Tourism domain (more details regarding this new planning
domain in Section 4) in which a road trip including visits of several
cities and points of interest must be organized. In this problem, one may
have preferences over the visits to perform or the restaurants and hotels
to book based on criteria such as financial cost and comfort. Moreover,
it may be preferred that some cities are visited before other ones. In
order to compare plans based on their quality, a preference relation
amongst the set of valid plans must be defined. The pddl3 (Gerevini
and Long, 2006) is the main language used by the planning community
to construct such a relation. It has been extensively used during the
fifth international planning competition (Gerevini et al., 2009) which
focused on planning taking into account users’ preferences.

This paper studies the problem of planning with preferences using
Multiple Criteria Decision Analysis (mcda) mechanisms. mcda assists
users solving decision problems such as the identification of the best
solutions amongst a large set of alternatives (see Figueira et al., 2005
for a complete state of the art survey). Generating a preference model
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that formalizes decision-makers’ preferences is a key element of mcda.
These models have a great expressiveness since they can represent
several criteria as well as the various interactions between them. Con-
sidering that mcda problems and planning with preferences presents
some similarities, ideas from the mcda community can benefit the
planning community. In this paper, we show that the mcda formalism
brings practical improvement as it can be used to extend the scope of
preference-based planning problems that can be solved. Furthermore,
we introduce a new heuristic for planning with preferences inspired by
some mcda mathematical tools.

In Sections 2 and 3, we present preliminary notions on planning
with preferences and mcda. In Sections 4 and 5, we describe the contri-
butions of this paper namely an extension of the pddl3 formalism as well
as a new heuristic for preference-based planning. Next, in Section 6, we
introduce our planner ChoPlan and evaluate its performances with re-
spect to state of the art planners. To conclude, applications to planning
in crisis management context are briefly discussed in Section 7.

2. Planning with preferences

In order to introduce the problem of planning with preferences, we
first state the definition of the classical planning problem as described
by Ghallab et al. (2004).

Definition 1 (Classical Planning). A classical planning problem CP is a
5-tuple (S,A, � , s0,SG), with S a finite set of states, A a finite set of



actions, � : S ùA ô S a transition function, s0 À S an initial state, G a
goal formula and SG ” S the set of goal states induced by G. A solution
of a problem CP is a sequence of actions x = Ía1,… , anÎ corresponding
to a sequence of states Ís1,… , snÎ such that s1 = �(s0, a1), … , sn =
�(sn*1, an) and sn À SG. The set of solutions (or plans) of CP is denoted
by X.

In many real-world applications, users may prefer some plans to
others because they might have interesting properties, be easier or
cheaper to implement. This motivates the introduction of a preference
relation Ã over X such that x1 Ã x2 is interpreted as ‘‘plan x1 is at
least as preferred as plan x2’’. Preference-based planning (see Baier and
McIlraith, 2008 for a complete survey) extends the classical planning
approach by taking into account the relation Ã that represent users’
preferences.

Definition 2 (Preference-based Planning). A prefer -ence based planning
(PBP) problem is a pair I = (CP,Ã) with CP a classical planning
problem and Ã a complete preorder on X. A plan x is a solution of
(CP,Ã) if x is a solution of CP. Moreover, x is an optimal solution if
≈x® À X, x Ã x

®.

The goal of preference-based planning is to find optimal solutions
(or at least good ones) according to Ã contrarily to classical planning
where any solution is satisfactory. PBP problems are formalized us-
ing the pddl3 language introduced in 2006. In pddl3, preferences are
conditions on the sequence of states (also called trajectory) of a plan
that users would prefer to see satisfied if possible. Preferences are
defined using modal operators such as at-end, always, sometime,
at-most-once and sometime-before whose semantics are de-
scribed in Gerevini and Long (2006). Considered as soft constraints,
preference formulas are always true from a semantic point of view
but can nonetheless be satisfied or not. Penalties for violation are
calculated using preference costs associated with Boolean expressions
(is-violated <name>) where <name> is the preference’s name.
Plan quality is specified by aggregating the various preference costs
using the metric function introduced in pddl2.1 by Fox and Long (2003).

3. Preference modelling in MCDA

This section deals with preference modelling using the mcda for-
malism. It focuses on the methods used in this paper namely the
Multi-Attribute Utility Theory (maut) and the Choquet integral. Prefer-
ence modelling aims to design a model that permits automatic analysis
of how several alternatives (plans in our context) compare to each
other. To this end, a complete preorder Ã (e.g. a reflexive and transitive
binary relation) is defined over a set of alternatives X. Let P = {1,… , p}
be the set of criteria to be considered in order to compare the alter-
natives. Such criteria can be associated with any quantity such as a
production cost, a delivery time or a level of quality for instance. Each
alternative x À X is identified by an attribute tuple (x1,… , xp) of the
cartesian product ⌦ = ⌦1ù5ù⌦p with ⌦k ” R denoting the definition
domain of the criteria k.

3.1. Multi-attribute utility theory

The maut formalism (see Dyer, 2005) associates each alternative
with a utility. This value represents the level of satisfaction of the
decision-makers with respect to x and is expressed on a common sat-
isfaction scale ⇠ = [0, 1].

Definition 3 (MAUT Model). Given X a set of alternatives and P a set
of criteria, the maut model defines a complete pre-order Ã on X by:
T
x
a
Ã x

b € U (xa) g U (xb)
U (xi) =  (u1(xi1), … , up(xip))

with U : ⌦ ô ⇠ a maut utility function based on:

• uk : ⌦k ô ⇠ some partial utility functions
•  : ⇠p ô ⇠ an aggregation function

Partial utility functions uk : ⌦k ô ⇠ have values within the
common satisfaction scale ⇠ = [0, 1]. A pure linear model (uk(xk) =
�kùxk, ≈xk À ⌦k) is not satisfactory to construct partial utility functions
as decision-makers preferences are generally not linear. Indeed, it is
more suitable to consider continuous piecewise linear utility functions
which provide a great expressiveness as they can approximate any
continuous arithmetic function.

Definition 4 (Piecewise Linear Utility Function). Let uk be the partial
utility function of the criterion k À P . ⌦k is divided in n intervals,
bounds of which !

0
k

= 0,… ,!
n

k
= 1 are defined such that: ≈i À

[0, n * 1], !i
k
< !

i+1
k
. Utility of an alternative x À X on criterion k

is defined by linear interpolation of xk À [!i
k
,!

i+1
k

] with i À [0, n * 1]:

uk(xk) = uk(!ik) +
uk(!i+1k

) * uk(!ik)

!
i+1
k

* !i
k

ù (xk * !ik)

Within the maut framework, the aggregation function  is used to
compute an alternative’s utility with respect to the values provided by
the partial utility functions uk. Due to its simplicity, the weighted sum
is a commonly used aggregation function.

Definition 5 (Weighted Sum). Let y À ⇠
p be a vector and w À [0, 1]p a

vector of weights such that
≥p

k=1wk = 1 with wk g 0. The weighted
sum Sw : ⇠p ô ⇠ is defined as:

Sw(y) =
p…
k=1

wk yk

Unfortunately, the weighted sum has intrinsic limitations and thus
cannot be used to model a possibly important spectrum of decision-
makers preferences. In order to illustrate these limitations, let us con-
sider the example proposed by Grabisch and Labreuche (2010). Three
alternatives xa, xb, xc are to be compared, based on two criteria and
their respective utility functions u1 and u2 so that:

u1(xa1) = 0.4 u1(xb1) = 0 u1(xc1) = 1

u2(xa2) = 0.4 u2(xb2) = 1 u2(xc2) = 0

If a decision-maker prefers to avoid solutions with totally unsatisfac-
tory criteria (≈k À P , uk(x) ë 0), then its preferences induce the order
x
a
» x

b Ì x
c . As a consequence, the vector of weights (w1,w2) of Sw

has to respect:

x
b Ì x

c € w1 = w2
x
a
» x

b € 0.4 (w1 +w2) > w2

which is impossible. This type of behaviour is due to the implicit
hypothesis of criteria independence inherent to the weighted sum. As
a consequence, it is necessary to look for more powerful aggregation
operators to model complex preferences. The Choquet integral is one of
them.

3.2. Choquet integral

In order to design a model avoiding the aforementioned limitations,
one can generalize the weighted sum by defining weights not only on
single criterion but also on all possible subsets of criteria of P . Such a
generalization is possible using the notion of capacity (Choquet, 1953)
which is defined over P(P ) the power set of P .

Definition 6 (Capacity). Let P be a set of criteria, the function � :
P(P ) ô [0, 1] is a capacity function if:

• �(Á) = 0 and �(P ) = 1
• ≈A,B ” P , A ” B Ÿ �(A) f �(B)



The capacity is normalized and increasing which is interpreted in
the natural way. The notion of capacity allows us to introduce the
Choquet integral (Choquet, 1953) which can be used as an aggregation
function.

Definition 7 (Choquet Integral). Let y À ⇠
p be a vector and � a capacity

function defined overP(P ). The Choquet integral C� : ⇠p ô ⇠ is defined
as:

C�(y) =
p…
k=1

�({�(k),… , �(p)}) ù [ y�(k) * y�(k*1)]

with � a permutation on P such that y�(1) f 5 f y�(p) and y�(0) = 0.

The Choquet integral generalizes the main usual aggregation oper-
ators: min, max, weighted sum and ordered weighted sum (Grabisch,
1996). It permits us to model weighting as well as interactions between
criteria. For instance, the notion of capacity provides a solution to the
aforementioned example:

x
b Ì x

c € �({1}) = �({2})
x
a
» x

b € 0.4 �({1, 2}) > �({2})

Choosing �({1}) = �({2}) = 0.3 allows us to design the expected
preference model as �({1, 2}) = 1 by definition. Preference models
based on a Choquet integral with respect to some capacity � have a
great expressiveness. However, their expressiveness comes at the price
of complexity as 2p * 2 parameters are required to define the capacity
function (i.e. all the values of � on P(P ) except for Á and P ). In order
to simplify these models while keeping most of their expressiveness,
Möbius transformation (Rota, 1964) and k-additive capacities (Grabisch,
1997) are introduced.

Definition 8 (Möbius Transformation). Let � be a capacity, its Möbius
transformation m : P(P ) ô [*1, 1] is given by:

m(A) =
…
K”A

(*1)A‰K
�(K)

Definition 9 (K-additivity). A capacity � is said k-additive if its Möbius
transformation verifies:

• ≈A À P(P ), A > k Ÿ m(A) = 0
• «A À P(P ), A = k and m(A) ë 0

The k-additive capacities are particularly interesting because one
only needs

≥k

i=1
�
p

i

�
parameters to represent them. In particular, 2-

additive capacities are often considered as the best compromise be-
tween expressiveness and complexity. They only required p (p + 1)_2
parameters to be specified while still allowing to model interactions
between pairs of criteria (interactions between more than two criteria
being hard to handle for decision-makers anyway). Using a 2-additive
capacity, the Choquet integral can be expressed as follows Grabisch and
Labreuche (2010).

Definition 10 (2-additive Choquet Integral). Let y À ⇠
p be a vector and

� a capacity function defined on P . The 2-additive Choquet integral
C� : ⇠p ô ⇠ is defined as:

C�(y) =
…
Iij>0

(yi · yj ) ù Iij +
…
Iij<0

(yi ‚ yj ) ù Iij 

+
…
iÀP

yi ù
⌅
�i *

1
2
…
iëj

Iij 
⇧

with · and ‚ denoting min and max operators, mi and mij used instead
of m({i}) and m({i, j}) for simplicity:

• Iij = mij

• �i = mi +
1
2
≥
iëj Ii,j

The Shapley value �i (Shapley, 1953) expresses the global weight
of the criterion i. It should not be confused with mi which represents
the importance of the criterion i considered alone. Furthermore, the
interaction index Iij (Grabisch, 1997) characterizes the interaction be-
tween criteria i and j. By analysing Definition 10, one sees that if
the interaction index Iij is positive, criteria are aggregated using the
min operator. In this case, the criteria are said complementary as their
overall score is high only if both criteria scores are high. On the other
hand, if the interaction index Iij is negative, the criteria are aggregated
using the max operator. In this case, they are said substitutable one to
the other as it is sufficient that one criterion score is high in order
to obtain a high overall score. Finally, the linear part of the integral
performs the weighting of the individual criteria.

4. Modelling PDDL3 preferences using MAUT

In this section, we show that the pddl3 preferences can be expressed
using the maut model and a Choquet integral. Interestingly, preferences
formalized using maut have almost the same expressiveness as the
ones formalized in pddl3 while being much easier to model. We first
introduce a new planning domain (Section 4.1) that will be used for
illustrative purposes in the subsequent sections. Then, we explain how
to encode pddl3 preferences into maut criteria and how to substitute the
pddl metric function with a Choquet integral (Section 4.2). Next, we
present the formal language of our pddl3/maut extension (Section 4.3).
To finish, we compare the expressiveness of the pddl3/maut with respect
to the initial pddl3 formalism (Section 4.4) and explain why preference
elicitation is easier to perform using pddl3/maut (Section 4.5).

4.1. Tourism planning domain

We have introduced a new planning domain denoted Tourism in
order to illustrate how the pddl3 preferences can be represented using
a maut model along with a Choquet integral (Bidoux, 2017c). In this
domain, one has to organize a road trip between cities while optimizing
several trajectory preferences (points of interest to visit before other
ones or at most once, culinary specialities to try) and several numeric
preferences (travel duration, financial cost, comfort, entertainment and
cultural scores). Unsurprisingly, the travel duration criterion can be
used to express a preference regarding the duration of the road trip.
The financial cost criterion models the various expenses of the journey
such as the travel costs or the hotels and restaurants prices. The comfort
criterion models the quality of the considered hotels and restaurants.
The entertainment and cultural criteria depends on the various points
of interest that are visited. Some constraints ensuring that the road trip
participants eat and sleep regularly must also be respected. In order to
formalize the intrinsic interactions between these numeric preferences,
the plan metric is modelled by a Choquet integral involving a substi-
tutability between financial cost and comfort score as well as between
entertainment and cultural scores.

4.2. Representing pddl3 preferences using maut

In the previous section, we have explained that a maut criterion is
characterized by an attribute value (xk) along with a partial utility func-
tion (uk) representing the user’s preferences over the attribute domain
(⌦k). The pddl3 preferences can easily be generalized by substituting
each one of them with a maut criterion.

Such a substitution is quite intuitive for numeric preferences as one
only needs to define the partial utility function of the considered
numeric expression. For example, given a Tourism problem, a user may
be completely satisfied (respectively totally unsatisfied) if the financial
cost of the road trip is 1000 euros (respectively 4000 euros). Moreover,
his preferences are not necessarily linear and he may strongly prefer a
price of 3000 euros to one of 4000 euros while moderately preferring
a price of 1000 euros over one of 3000 euros. These preferences are



Fig. 1. Example of an attribute’s partial utility function.

illustrated on Fig. 1 where the partial utility function is defined over
⇠ = [0, 1] with 1 and 0 denoting respectively complete satisfaction and
total dissatisfaction.

Encoding pddl3 trajectory preferences in maut criteria is less intuitive
but nonetheless straightforward. Indeed, one only has to consider an at-
tribute matching the semantic of the preference along with the identity
as a partial utility function. For instance, in a Tourism problem, pref-
erence (sometime-before (c-visited c2) (c-visited
c1)) means that the city c1 should be visited before the city c2 if
possible. If a plan implies visiting c2 before c1, then the preference is
violated, the value of the corresponding maut attribute and its partial
utility are both equal to 0. On the other hand, if c1 is visited before c2
(or if c2 is never visited), then the preference is satisfied by the plan,
the value of the maut attribute and its partial utility are both equal to
1. This simple mechanism allows pddl3 preferences to be represented
by maut criteria while preserving their initial semantic.

As in pddl3, plan quality (called utility in the maut terminology)
is obtained by merging the problem’s criteria using an aggregation
operator.

Preference aggregation is more intuitive in the maut model as it
enforces commensurability between criteria. Indeed, all preferences are
defined using a partial utility function over the same satisfaction scale
⇠. We illustrate this using the Tourism problem once again. Hotels that
may be booked during the road trip are characterized by a comfort
score defined with respect to the following values: high, moderate
and low. Without commensurability, it is impossible to determine if an
improvement on the financial cost preference (e.g. a cost of 1800 euros
rather than 2200 euros) is preferred to one on the average comfort
score preference (e.g. from a moderate comfort score to a high one).
Therefore, constructing a metric function aggregating meaningfully
financial cost, comfort score and sometime-before (c-visited
c2) (c-visited c1) is difficult in pddl3. On the contrary, if pref-
erences are represented by maut criteria, it is easier to aggregate them
as they are all commensurable.

Preference aggregation is performed using the Choquet integral
along with a 2-additive capacity. As explained in Section 3, a 2-additive
capacity can be used to represent the weight of each preference as
well as the interactions between pairs of preferences. For illustrative
purpose, we present in Fig. 1 a capacity aggregating financial cost
(criterion 1), average hotel comfort score (criterion 2) and sometime-
before ((c- visited c2) (c-visited c1)) (criterion 3) pref-
erences. If the user considers that criteria 1 and 2 are equally important
and slightly more important than criterion 3, its preferences can be
represented by �({1}) = �({2}) > �({3}). Moreover, if he estimates
that there is no interaction between pairs of criteria (1, 3) and (2, 3),
we have �({1}) + �({3}) = �({1, 3}) and �({2}) + �({3}) = �({2, 3}).
Finally, the user may think that 1 and 2 are substitutable (�({1}) +
�({2}) > �({1, 2})) which means that he may accept a high financial

Table 1
Example of a 2-additive capacity.
P(P ) Á 1 2 3 12 13 23 123

� 0 0.5 0.5 0.4 0.6 0.9 0.9 1
m 0 0.5 0.5 0.4 *0.4 0 0 0

cost if the average hotel comfort score is also high and vice versa.
Table 1 illustrates a 2-additive capacity satisfying these requirements.
When instantiated with such a capacity, the Choquet integral defines
an aggregation function for the three aforementioned criteria and their
interactions.

4.3. Formal language of the pddl3/maut extension

As the intuition regarding the generalization of the pddl3 prefer-
ences into maut criteria have been explained, we now present the
formal language of the pddl3/maut extension. We have chosen to de-
sign this extension such that it is fully compatible with the existing
pddl3 specification. In order to do so, we have introduced a new
pddl requirement that planners may choose to support. The latter is
called maut-preferences and is built upon numeric-fluents
and preferences requirements (Gerevini and Long, 2005). The bnf
description specifying the syntax of the maut-preferences require-
ment is available on dataverse (Bidoux, 2017a). Without any surprise,
the main elements of this extension are the concepts of maut cri-
terion (<maut-criterion>) and the concept of Choquet integral
(<choquet-integral>).

In addition, in order to define the semantics of the pddl3/maut ex-
tension, one only need to combine the semantics of the pddl2.1 numeric
expressions (Fox and Long, 2003) and the pddl3 preferences (Gerevini
and Long, 2006) with respect to the maut definitions. We now precise
the definitions given in Section 2 in order to formalize the semantics
of the pddl3/maut extension.

Definition 11 (PDDL3 Planning Problem). An instance of a pddl3 plan-
ning problem is defined to be a pair I = (Dom,Prob) where:

• The planning domain is a tuple Dom = (F ,R,A) consisting of
function symbols F , relation symbols R and actions A.

• The planning problem is a tuple Prob = (O, s0,EG, P ) consisting of
objects in the domain O, initial state s0, extended goals EG and
preferences P .

Definition 12 (PDDL3/MAUT Planning Problem). An instance of a
pddl3/maut planning problem IM is an instance of pddl3 planning prob-
lem I where the tuple Prob have been redefined as (O, s0,EG,MC ,C�)
withMC a set of criteria representing the preferences P of the problem
and C� a 2-additive Choquet integral.

In such problems, a state s is no longer defined as a set of atomic
formulas Atm but as a pair (Atm, v) with v À Rdim where dim denotes the
number of primitive numeric expressions of the problem (Fox and Long,
2003). Based on these additional notations, we can define the utility
associated to both numeric and trajectory preferences and explain how
the plan’s utility is computed.

Definition 13 (Numeric Preference Utility). Let t = Ís0,… , snÎ be a
trajectory whose final state sn is described by the pair (Atm, v), f be
a primitive numeric expression and k À MC be the maut criterion
representing the numeric preference with attribute f and partial utility
function uk : ⌦f ô [0, 1]. The utility associated to the maut criterion k
on the trajectory t is computed with respect to sn as utk = uk(vf ).

Definition 14 (Trajectory Preference Utility). Let t = Ís0,… , snÎ be a
trajectory, � be an extended goal and k À MC be the maut criterion
representing the trajectory preference associated to � with partial



utility function uk : {0, 1} ô [0, 1]. The utility associated to the maut
criterion k on the trajectory t is computed with respect to the semantic
of � as:

u
t

k
=
T

1 if Ís0,… , snÎ Ù �
0 if Ís0,… , snÎ Ù ¬�

Definition 15 (Plan Utility). Let IM be an instance of a pddl3/maut
problem, x be a plan defined by the trajectory t and ut1,… , u

t

p
the partial

utility values of the maut criteria MC with respect to t. The utility U
of the plan x is defined as Ux = C�(ut1,… , u

t

p
).

Using Definition 15, a plan x1 is said at least as preferred as a plan
x2 (denoted x1 Ã x2) if and only if Ux1 g Ux2 .

4.4. Comparison between pddl3 and pddl3/maut

We have chosen to design the pddl3/maut extension so that it is fully
compatible with the existing pddl3 specification. Therefore, it comes at
no surprise that pddl3 and pddl3/maut are almost identical in term of
expressiveness. One should nonetheless note that some differences exist
between these two formalisms.

In order to represent a numeric preference within the pddl3/maut
formalism, one has to bound its value which is not required in pddl3.
From a strict theoretical viewpoint, this means that some pddl3 prob-
lems cannot be encoded into pddl3/maut unless bounds on numeric val-
ues are provided in order to convert them. However, working with un-
bound numeric preferences induce incommensurability between prefer-
ences which in turn impacts negatively the preference aggregation. As
such, one can argue that when working on real world problems where
the preference model have to be meaningful, one should have avoided
unbounded numeric preferences in the beginning.

On the other hand, the pddl3/maut formalism brings several im-
provements in term of expressiveness with respect to the pddl3. By the
very nature of maut criteria, it is possible to aggregate several criteria
together in order to produce a new one. Consequently, the notion of
compound preferences aggregating several preferences can be used in
pddl3/maut while not being supported in pddl3. One should note that
compound preferences are also supported by others PBP languages such
as LPP for example Bienvenu et al. (2006).

In addition, in pddl3 preferences are intrinsically binary whereas
they are intrinsically fuzzy in pddl3/maut thanks to the employed partial
utility functions. Therefore, pddl3/maut preferences could be used to
generalize pddl3 preferences thus increasing the expressiveness of the
language. For instance, a pddl3/maut preference could be used to count
the number of states in which a predicate � is true thus constituting a
fuzzy interpretation of the pddl3 (sometime �) preference that only
express whether � is true at least once in the plan.

4.5. Preference elicitation using pddl3/maut

Preference elicitation is the process used to create a mathematical
representation of user’s preferences with respect to a relation Ã. As the
automated planning community is mainly focused on problem solving,
the preference elicitation problem (which constitutes one step of the
problem modelling) is generally assumed solved a priori by current
preference-based planning approaches. One might consider this posture
slightly dogmatic as in many real-world PBP applications, preference
elicitation is a crucial problem to address and can be as hard to solve
as the planning problem itself. Indeed, there is no point to look for
an optimized solution with respect to a given preference model if the
latter does not formalize correctly what the decision-makers are trying
to achieve.

Preference elicitation is intrinsically easier to perform using the
pddl3/maut formalism. Indeed, the latter natively supports (i) fine-
grained definition of preferences thanks to partial utility functions,
(ii) commensurability between preferences (which enforces meaningful

preference comparison) thanks to the common satisfaction scale ⇠ as
well as (iii) preference interactions thanks to the Choquet integral. Even
if such mechanisms could be simulated in pddl3, doing so would com-
plexify a lot the underlying planning problems as these functionalities
cannot be easily formalized in plain pddl3. This is illustrated by the
Tourism planning domain that features several trajectory preferences
(points of interest to visit before other ones or at most once, culinary
specialities to try), several numeric preferences (financial cost, travel
duration, comfort, entertainment and cultural scores) as well as several
constraints to respect. In addition, its plan metric is modelled by a
Choquet integral involving substitutability between criteria. One should
note that the Tourism domain contrasts with many IPC5 planning
domains that use at most one numeric preference.

One should also note that several mcda results can be used to assist
users during the creation of their preference models. For instance,
when preferences are represented by maut criteria aggregated with a
Choquet integral, the preference elicitation problem can be solved using
a method proposed by Labreuche and Grabisch (2003). The latter is
based on a questioning procedure in which the decision-maker is asked
a few questions regarding its preferences over hypothetical alternatives
maximizing subsets of criteria. This approach is quite interesting be-
cause (i) the decision-maker is not required to have any mathematical
background and (ii) no concrete plans have to be provided. Further-
more, this preference elicitation method can be performed efficiently
using the myriad software (Labreuche and Lehuédé, 2005).

5. PBP using the Choquet integral

In Section 4, the Choquet integral has been considered as a tool
for preference modelling. Hereafter, it is used to define a new family
of heuristics for planning with preferences (Section 5.1). In addition,
we present a new estimate of plan quality using fuzzy preferences
(Section 5.2). Moreover, we also describe an algorithm solving PBP
problems thanks to the aforementioned heuristics (Section 5.3).

5.1. Heuristics based on the Choquet integral

Heuristic search has been a time-honoured principle to solve clas-
sical planning problems in which several goals must be achieved.
However, when planning with preferences, finding a solution is not
enough as we are looking for good solutions according to user’s pref-
erences. If the search is focused on goals, it might be easier to find
solutions but these are likely to be mediocre ones with respect to
preferences. At the opposite, if the search is only focused on prefer-
ences, it is possible that no solution may be found at all. Our approach
utilizes a heuristic search that performs a trade-off between easiness
of achieving the goals and potential quality according to preferences.
To this end, we rely on a 2-additive Choquet integral with respect to a
capacity ⇢ along with two maut criteria respectively related to goals to
be achieved (denoted �) and preferences to be optimized (denoted ⇤). The
core idea is to define ⇢ to represent a complementarity (i.e. a positive
interaction) between goal and preference criteria. As a consequence, all
other things being equal, balanced solutions that are good on both goal
and preference criteria will obtained a better score than imbalanced
ones.

Definition 16 (Choquet-based Heuristic). Let I be a PBP problem in-
stance, C

⇢ be a Choquet integral and s a state, a Choquet-based heuristic
hc is defined as:

hc(I , s) = C⇢

�
�(I , s) , ⇤(I , s)

�

where �(I , s) and ⇤(I , s) are estimates related to goals to be achieved
and preferences to be optimized respectively.

We now introduce h1c a Choquet-based heuristic compatible with
the pddl3/maut formalism that is based on two criteria �1 and ⇤1. The
goal criterion �1 represents the progress made in order to achieve the
goals G from a given state s with respect to the initial state s0. Its



Fig. 2. Partial utility function u
c
.

value is computed using a relaxed planning graph along with the fast-
forward heuristic ff (Hoffman and Nebel, 2001). The latter estimates
the minimal number of actions that one has to execute from s in order
to achieve the goals G of the problem I .

Definition 17 (Estimate �1(IM , s)). Let IM be an instance of a pddl3/
maut problem with G the goals to be achieved, s be a state and uc the
partial utility function depicted on Fig. 2, then:

�1(IM , s) = uc

⇠ ff(IM , s,G)
ff(IM , s0,G)

⇡

Fig. 2 illustrates the partial utility function uc . The user is moder-
ately satisfied (uc (1) = 0.5) if the state s is at the same distance of the
goals than s0. His satisfaction is maximal when the goal is verified in s
(uc (0) = 1). Moreover, his satisfaction slowly decreases between 1 and 2
in order to allow the planner to search for long solutions (whose quality
might be better) even if the goals can be achieved quickly.

The preference criterion (denoted ⇤1) represents an estimate of the
quality of any plan that would be constructed by extending the state
s. It can be computed easily by evaluating the utility function of the
problem IM with respect to the trajectory Ís0,… , sÎ. This estimate is in-
herently optimistic (respectively pessimistic) regarding the preferences
satisfied (respectively violated) in Ís0,… , sÎ.

Definition 18 (Estimate ⇤1(IM , s)). Let IM be an instance of a pddl3/
maut problem with C� its Choquet integral and u

t

1,… , u
t

p
the partial

utility values of the p criteria of IM with respect to the trajectory
t = Ís0,… , sÎ,
⇤1(IM , s) = C� (ut1,… , u

t

p
)

Following the definition of �1 and ⇤1, we now describe the h
1
c

heuristic.

Definition 19 (Heuristic h1c). Let IM be a pddl3/maut problem and C⇢
be a Choquet integral,

h
1
c (IM , s) = C⇢

�
�1(IM , s) , ⇤1(IM , s)

�

5.2. Estimate of plan quality using fuzzy preferences

In this section, we describe an estimate of plan quality denoted ⇤2
that will be used to construct a second Choquet-based heuristic h2c . This
estimate is presented using the pddl3/maut formalism but is nonetheless
generic and could be built with any language supporting the notion of
fuzzy preferences.

Using the preference criterion ⇤1, one implicitly considers that the
utility of an intermediate state of a plan is a good estimate of its final
utility. Indeed, estimate ⇤1 takes into account the relative importance
of the preferences but does not consider any information regarding the
future evolution of their satisfiability. One can design a more informed
estimate by considering the likelihood that the preferences will be

satisfied in the final state given the current state s. For instance, one
of the heuristics proposed by Baier et al. (2009) evaluates the metric
function of the problem in various nodesNi of a relaxed planning graph
and then weights these values according to the depth i of the nodes Ni.
Moreover, the heuristic used in lprpg-p (Coles and Coles, 2011) can be
interpreted as a modification of the relaxed planning graph structure
in order to take into account the preferences of the problem and their
respective weights. The approach adopted in this work also exploits the
relaxed planning graph structure yet is based on the fuzzy nature of the
maut criteria used to represent the preferences.

The quantity ⇤2 is constructed by replacing in ⇤1 the usual se-
mantic interpretation of final preferences, sometime and sometime-
before preferences by an estimate of the effort to produce in order to
satisfy them from the state s. One should note that this interpretation is
compatible with the pddl preferences’ semantics since the two boundary
cases of a null effort or an infinite effort can be seen respectively
as a preference satisfied or violated in s. In order to redefine the
semantics of the maut criteria, one can use mechanisms similar to those
of Definition 17. For instance, ff(I , s,�) is an estimate of the number of
actions that one has to execute from a state s to achieve the predicate
�. Thus, it describes the effort to produce in order to satisfy the pref-
erence at-end � from s. We now introduce formally the semantically
redefined partial utility values associated to final preferences as well as
sometime and sometime-before preferences.

Definition 20 (Utility of Final Preferences in ⇤2). Let IM be a pddl3/maut
problem, t = Ís0,… , sÎ a trajectory, � the formula associated to the final
preference represented by the maut criterion k ÀMC and uc the partial
utility function depicted in Fig. 2. The semantically redefined utility
associated to the maut criterion k on the trajectory t is computed as:

Ñu
t

k
=

h
n
n
l
n
nj

uc

⇠ FF(IM , s,�)
FF(IM , s0,�)

⇡
if FF(IM , s0,�) ë 0

1 if FF(IM , s0,�) = 0 and FF(IM , s,�) = 0
0 if FF(IM , s0,�) = 0 and FF(IM , s,�) ë 0

Definition 21 (Utility of Sometime Preferences in ⇤2). Let IM be a
pddl3/maut problem, t = Ís0,… , sÎ a trajectory, � the formula associated
to the sometime preference represented by the maut criterion k ÀMC

and uc the partial utility function depicted in Fig. 2. The semantically
redefined utility associated to the maut criterion k on the trajectory t is
computed as:

Ñu
t

k
=

h
n
n
l
n
nj

uc

⇠ FF(IM , s,�)
FF(IM , s0,�)

⇡
if FF(IM , s0,�) ë 0

1 if FF(IM , s0,�) = 0 and FF(IM , s,�) = 0
0 if FF(IM , s0,�) = 0 and FF(IM , s,�) ë 0

Definition 22 (Utility of Sometime-before Preferences in ⇤2). Let
IM be a pddl3/maut problem, t = Ís0,… , sÎ a trajectory, p a sometime-
before (�  ) preference represented by the maut criterion k À MC

and uc the partial utility function depicted in Fig. 2. The semantically
redefined utility associated to the criterion k on the trajectory t is
computed as:

Ñu
t

k
=

h
n
n
n
n
n
l
n
n
n
n
nj

uc

⇠ FF(IM , s,�)
FF(IM , s0,�)

⇡
if t Ù p

and FF(IM , s0,�) ë 0
1 if t Ù p and FF(IM , s0,�) = 0
and FF(IM , s,�) = 0

0 if t Ù p and FF(IM , s0,�) = 0
and FF(IM , s,�) ë 0

0 if t Ù ¬ p



As always and at-most-once preferences do not have a natural
fuzzy interpretation, we define their utility in ⇤2 as Ñutk = u

t

k
where ut

k

is defined according to Definition 14. Thanks to Definitions 20 to 22,
we can now describe the ⇤2 estimate as well as the h2c heuristic.

Definition 23 (Estimate ⇤2(IM , s)). Let IM be an instance of a pddl3/
maut problem, C� its Choquet integral and Ñu

t

1,… , Ñu
t

p
the semantically

redefined partial utility values of the p criteria of IM regarding the
trajectory t = Ís0,… , sÎ, then:

⇤2(IM , s) = C� ( Ñut1,… , Ñu
t

p
)

Definition 24 (Heuristic h2c). Let IM be a pddl3/maut problem and C⇢
be a Choquet integral,

h
2
c (IM , s) = C⇢

�
�1(IM , s) , ⇤2(IM , s)

�

The Choquet integral C⇢ which is used to aggregate the goal and
preference criteria of h1c and h

2
c should not be confused with the

Choquet integral C� which is used to aggregate the various preferences
of the problem. In order to fully describe a Choquet-based heuristic, the
capacity ⇢ must be specified. It turns out that defining ⇢ in a domain-
independent way is not trivial. This problem is addressed in the next
session.

5.3. Algorithm using Choquet-based heuristics

Algorithm 1 has been designed to solve PBP problems. The lat-
ter uses standard planning techniques namely a forward search in a
graph (selectionRule) using a best first approach (BFS) based on
the aforementioned Choquet heuristics. In addition, it relies on two
standard pruning rules (prunningRules) that respectively sort out
actions whose prerequisites are not satisfied in the current state s and
actions whose execution would lead to a state s® in which one of the
trajectory constraints (also known as extended goals) of the problem
would be violated.

In a nutshell, the algorithm works as follows: first, the neigh-
bourhood of the initial state s0 is constructed (selectionRule.
initFrontier(s0)) by considering all the states s that can be ob-
tained by executing an action a of the problem in s0 (IsApplicable
(current, action)). During this step, the various pruning rules are
triggered (IsPrunable(prunningRules, current, action))
in order to not include in the neighbourhood of s0 states that can-
not be reached from s0 as well as the states violating one of the
trajectory constraints of the problem. Next, the various states consti-
tuting the neighbourhood of s0 are added to the list of nodes to be
considered (Expland(current, action) and selectionRule.
updateFrontier(child)). This list is sorted according to the cho-
sen Choquet-based heuristic (h1c or h

2
c) and the state s with the best

score is picked (selectionRule.selectNode()). The algorithm
continues by adding the neighbourhood of s to the aforementioned list.
This process is repeated until a state satisfying all the goals of the prob-
lem (current.evaluate(G)) is found. Finally, the utility (i.e. the
plan metric) of the solution is computed (current.getUtility()).

Algorithm 1 is iterative and as such does not terminate when a
solution is found (solution.add(current)) but instead continues
to look for better solutions, thus incrementally producing plans of
increased quality. This mechanism constitutes one of the key features
of the algorithm as it is used in order to avoid the formalization of the
heuristics’ capacity ⇢. Indeed, the algorithm will restart from the be-
ginning (selectionRule.nextIteration(s0)) using a different
capacity ⇢ each time a new solution is found. The capacity is chosen

so that each solution is generally harder to find than the previous ones
but is likely to have a better quality according to preferences. Using
Möbius representation, this can be done starting from capacity m0

⇢
(see

Table 2) by decreasing the weight of � by ↵ and increasing the weight
of �_⇤ by ↵ each time a solution is found until we get the capacity mf⇢
that models a perfect complementarity between goal and preference
criteria. Using this strategy, the Choquet-based heuristic is guided only
by goals at first but these become less and less important in favour
of preferences each time a new solution is found. This approach fully
exploits the expressiveness of the Choquet integral. Indeed, the capacity
⇢ is constructed by considering a positive interaction I�_⇤ between
goal and preference criteria thus modelling a complementarity between
them. The higher ↵ is, the more difficult the problem becomes to solve
between two iterations. It is therefore advisable to pick a small ↵
while ensuring that the quality improvement between two consecutive
solutions does not become negligible. Performed experimental tests
suggest that the empirical value ↵ = 0.1 is a good choice. Besides,
varying the value of ↵ over the interval [0.05, 0.15] have only a marginal
impact on the algorithm’s performances.

Algorithm 1: Choquet-based PBP algorithm

Input: s0 initial state of the problem
G goal formula of the problem
A set of actions of the problem

Output: solution list of solutions to the problem

Data: selectionRule heuristic-based BFS
prunningRules set of pruning rules
current current node used in the search
child node expanding current

Algorithm Search(s0, G, A, Ã)

selectionRule.initFrontier(s0)
while ResourcesNotExhausted and
selectionRule.isFrontierEmpty() = False do

current } selectionRule.selectNode()
if current.evaluate(G) = True then

if current.getUtility() >

solution.getBestUtility() then
solution.add(current)

end
selectionRule.nextIteration(s0)

else
for all action À A do

if IsApplicable(current, action)
and IsPrunable(prunningRules,
current, action) = False then

child } Expand(current, action)

selectionRule
.updateFrontier(child)end

end
end

end
return solution



Table 2
Evolution of m

⇢
through iterations.
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6. Implementation and evaluation

The proof-of-concept planner ChoPlan implements the algorithm
and heuristics presented in Section 5. It relies on the pddl4j library (Pel-
lier, 2015), solves maut-encoded PBP problems and supports all pddl3
operators except those relying on time (within for instance).

In order to evaluate ChoPlan’s performances, we have considered
problems from International Planning Competitions (IPC) involving the
whole set of pddl3 operators. Problems from the qualitative preferences
track of IPC5 (Gerevini et al., 2009) are the only ones satisfying these
conditions. We have restricted ourselves to the Rovers and Openstacks
domains as the three other candidates (Storage, TPP and Trucks) are
defined using forall and exists pddl keywords that are not yet
supported by ChoPlan. These domains are associated with 20 problems
(denoted as SP) using final preferences only as well as 20 problems
(denoted as QP) using any trajectory preferences. We have also cre-
ated 20 problems (denoted as MP) using several numeric preferences
and involving interactions between preferences for both considered
domains. In addition, we have designed 20 MP problems for the Tourism
domain introduced in Section 4.1. These problems aim to illustrate
that preference modelling is easier to perform using the pddl3/maut
extension .

ChoPlan has been compared to all planners that have attempted
Rovers and Openstacks domains during IPC5 namely SGPlan 5.1 (Hsu
et al., 2006), HPlan-P (Baier et al., 2009) and mips-xxl (Edelkamp
and Helmert, 2001). As SGPlan 5.1 performs some domain specific
optimizations, we have also included a variant SGPlan-w that disables
the aforementioned optimizations following the procedure described
by Coles and Coles (2011). We have also considered the lprpg-p plan-
ner (Coles and Coles, 2011) as well as three configurations of our
planner. The ChoPlan 1 and ChoPlan 2 configurations are respectively
instantiated with heuristics h1c and h

2
c . The Control configuration is a

non-iterative version of the algorithm presented in Section 5.3 instan-
tiated with heuristic h1. Consequently, executing the Control planner
is equivalent to performing a best-first search with the fast-forward
heuristic.

All the tests have been executed on the same machine, the latter
using a 3.4 GHz i5-3570K CPU. Planners have been allowed to use at
most 10 min of CPU-time to solve each problem and only the best solu-
tion found for each problem have been considered. Furthermore, plan
metric was computed using the plan validator val (Howey et al., 2004).
Val permits to compare ChoPlan to other planners in a meaningful way
even if the latter solves maut-encoded versions of the pddl problems.

Tables 3 and 4 respectively shows the number of solutions found
by each planner and the IPC score obtained by each planner (IPC
score computation is explained in Table 4 caption). We stress that
these results only constitute a preliminary evaluation of ChoPlan as
they exclusively include planning domains supported by the current
implementation of ChoPlan. In particular, one should note that this
evaluation is intrinsically biased against lprpg-p. Indeed, the latter
cannot solve the Openstacks problems but can solve some problems
that have not been considered here (see Coles and Coles, 2011 for a
precise evaluation of lprpg-p). Overall, SGPlan 5.1 is the best performing
planner. Nevertheless, its performances seems to heavily rely on the
domain-specific optimizations it employs as SGPlan-w is globally out-
performed by all other planners. Of the remaining planners, ChoPlan
obtains the best IPC scores on both SP and QP problems for the
considered domains. However, given the number of solutions it found

Table 3
Number of problem solved. Symbol ‘‘–’’ denotes problems that cannot be solved due
to unsupported pddl requirements.
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Rovers SP 20 20 20 – 20 20 20 20
Openstacks SP 18 20 0 20 20 – 18 18

Total SP 38 40 20 20 40 20 38 38
Rovers QP 16 20 4 14a 16 19 16 16
Openstacks QP 18 20 0 18a 20 – 18 18

Total QP 34 40 4 32a 36 19 34 34
Total 72 80 24 52 76 39 72 72
Rovers MP 20 – – – – – 20 20
Openstacks MP 20 – – – – – 20 20
Tourism MP 20 – – – – – 20 20

Total MP 60 – – – – – 60 60
aIndicates results from IPC5 competition (for planners that we have not succeeded to
operate properly).

Table 4
IPC quality score. Symbol ‘‘–’’ denotes problems that cannot be solved due to
unsupported pddl requirements. Let ⇧ be a set of planners and P be a set of
problems, the score of a planner ⇡ on a problem p is defined as score(⇡,⇧ , p) =
best * quality(⇧ , p) ÷ quality(⇡, p). IPC score of a planner ⇡ on P is defined as
IPC(⇡,⇧ ,P ) = ≥

pÀP score(⇡,⇧ , p).
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Rovers SP 15.30 19.06 15.41 – 15.73 13.09 15.73 15.60
Openstacks SP 1.85 15.82 0 10.03 2.32 – 3.74 9.97

Total SP 17.15 34.88 15.41 10.03 18.05 13.09 19.47 25.57
Rovers QP 8.90 18.02 1.53 9.76a 8.43 11.49 13.30 13.53
Openstacks QP 5.41 19.92 0 15.29a 6.21 – 15.93 11.71

Total QP 14.31 37.94 1.53 25.05 14.64 11.49 29.23 25.24
Total 31.46 72.82 16.94 35.08 32.69 24.58 48.70 50,81
Rovers MP 15.89 – – – – – 18.68 19.49
Openstacks MP 3.23 – – – – – 8.31 20
Tourism MP 14.48 – – – – – 18.50 17.14

Total MP 33.60 – – – – – 45.49 56.63
aIndicates results from IPC5 competition (for planners that we have not succeeded to
operate properly).

on various problems, ChoPlan might scale less efficiently than some
other planners. Regarding MP problems, both ChoPlan 1 and ChoPlan
2 bring significant improvements with respect to the Control planner.

IPC scores of ChoPlan 1 and ChoPlan 2 respectively corresponds to
performance improvements of 45% and 65% with respect to the Control
planner. Therefore, the h2c heuristic brings a greater improvement of
plans’ quality than heuristic h1c . This result is not surprising as the ⇤2
estimate can be seen as a more informed variant of the ⇤1 estimate
(see Section 5.2). Nevertheless, despite better overall performances,
ChoPlan 2 does not always outperform ChoPlan 1. On the contrary, the
latter obtains superior results in three out of seven types of considered
problems.

As appreciating planners’ relative performances using only the IPC
score may be complex (especially when some planners do not solve
the same problems than others), a comparison based on mutually
solved problems is provided in Fig. 3. It shows that regarding the
two considered domains, ChoPlan 1 is outperformed by SGPlan 5.1
and HPlan-P but outperforms SGPlan-w, mips-xxl and lprpg-p. Similarly,
ChoPlan 2 is outperformed by SGPlan 5.1, behaves similarly as HPlan-P
and outperforms SGPlan-w, mips-xxl and lprpg-p. Ultimately, results from
Tables 3 and 4 as well as Fig. 3 suggest that Choquet-based heuristics
are interesting candidates in order to solve PBP problems.



Fig. 3. Comparison of planners on mutually solved problems (based on metric function value).

7. Applications

In this section, we briefly discuss the use of automated planning
in crisis management contexts. This domain constitutes a natural ap-
plication for this work as it can greatly benefit from our mcda-based
planning with preferences approach. One can define a crisis as ‘‘a
situation with long-term consequences due to an event that has caused
extensive damage and losses resulting in an interruption of one or more
critical activities within some part of the world’’ (CCA, 2014). Such
situations may, for instance, result from natural disasters (tsunamis,

earthquakes, floods. . . ) or from industrial accidents. Planning problems
for crisis management are rather different from traditional automated
planning problems. They tend to be easier to solve as they are usually
less combinatorial while being much harder to model. Indeed, it is
quite difficult to represent the goals to achieve as determining the best
strategy to handle the situation efficiently is generally crisis-specific
and might be subject to debate amongst decision-makers. Planning in
crisis management contexts requires to use a user-centric approach in
order to convince the decision-makers that the proposed solutions are
of interest.



An example of crisis management planning illustrating the use of
our mcda-based approach is provided in Bidoux et al. (2017b). In the
considered scenario, decision-makers have to handle the crisis that
is going to be caused by a massive flood event in Northern Europe
using the capabilities of various first responder teams. To this end,
decision-makers realize several preference models using the following
criteria and their respective interactions: (i) the effectiveness of rescue
operations, (ii) the comfort of the inhabitants of an area exposed to an
isolation risk (which depends on whether food is supplied to them),
(iii) the financial cost of the response, (iv) the necessity to resort
on international aid proposed by neighbouring countries and (v) the
capability to provide electricity to a critical company during some part
of the crisis response. We defer the interested reader to Bidoux et al.
(2017b) and Bidoux (2016) for additional details on the solution plans
found by ChoPlan with respect to each preference model considered by
the decision makers.

8. Conclusion

In this paper, we have explored the problem of planning with pref-
erences expressed within the maut formalism along with a 2-additive
Choquet integral. It turns out that planning can benefit from this mcda
formalism on both practical and theoretical viewpoints. On the practi-
cal side, we have shown that the pddl3/maut extension has almost the
same expressiveness as the pddl3 language while facilitating preference
modelling. On the theoretical side, we have introduced two Choquet-
based heuristics as well as a new algorithm for PBP. This algorithm has
been implemented in the ChoPlan planner whose performances have
been compared to state of the art planners. Experimental results suggest
that ChoPlan is an efficient planner for solving problems in which
trade-offs between many goals and preferences have to be made. In
addition, ChoPlan can be employed to address real operational planning
problems as it has been incorporated in an information system for
planning in crisis management contexts. Future work may include the
improvement of ChoPlan to support all quantifiers, the improvement
of the pddl3/maut extension to support time-based operators as well as
the creation of new Choquet-based heuristics based on more advanced
estimates.
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