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Abstract

Graph Attention Networks(GATs) are useful deep learning mod-
els to deal with the graph data. However, recent works show
that the classical GAT is vulnerable to adversarial attacks.
It degrades dramatically with slight perturbations. Therefore,
how to enhance the robustness of GAT is a critical problem.
Robust GAT(RoGAT) is proposed in this paper to improve the robust-
ness of GAT based on the revision of the attention mechanism. Different
from the original GAT, which uses the attention mechanism for different
edges but is still sensitive to the perturbation, RoGAT adds an extra dy-
namic attention score progressively and improves the robustness. Firstly,
RoGAT revises the edge‘s weight based on the smoothness assumption
which is quite common for ordinary graphs. Secondly, RoGAT further
revises the features to suppress features’ noise. Then, an extra atten-
tion score is generated by the dynamic edge’s weight and can be used to
reduce the impact of adversarial attacks. Different experiments against
targeted and untargeted attacks on citation data on citation data demon-
strate that RoGAT outperforms most of the recent defensive methods.

Keywords: Graph Neural Networks, Adversarial attack, Graph Attention
Network, Robustness
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Figure 1: Original graphs can be attacked by the negative edges between node
1 and 7 with different labels. The update function of node 1 aggregates more
negative information from nodes 7, 9, 10 than positive information from nodes
2, 3, 4.

1 Introduction

Non-Euclid data occurs widely in our daily life and Graph Attention Net-
work(GAT) [7] achieves remarkable performance in these data represented
by graphs. It generates node embedding by using a local aggregation func-
tion [1, 3? ] with attention mechanism [21, 22], which computes the hidden
representation by the features of connected nodes with different attention
weight coefficients. The attention mechanism makes GAT focus on the relevant
part and perform well. However, GAT is vulnerable to the adversarial attacks,
which means subtle perturbations may degrade its performance significantly.
The lack of robustness makes GAT practical limited in several fields like mili-
tary and finance with high requirement of security. For instance, in the social
secure field, the criminal can create or hide some social relationship to escape
the examination of GAT. Hence, developing the robustness of GAT to resist
the different kinds of adversarial attacks [23] is important and urgent.

The vulnerability of GAT is due to its aggregation function. As is shown in
Figure 1, the aggregation function aggregates the information from different
kinds of neighbors. In intuition, information from the neighbors of similar
or same labels(positive edges) make positive effects, while information from
dissimilar or distinct neighbors(negative edges) may make negative effects on
the iteration of node features. However, adversarial attacks add extra negative
edges or delete positive edges, which degrades GAT. In this paper, we assume
graphs to be analyzed satisfies feature smoothness assumption [24] which is
common in most graphs. It means for most nodes in graph, there often exists
more neighbors with positive edges than that with negative edges. Note that
there also exists some heterogeneous graphs which don’t satisfy smoothness
assumption, we do not discuss these graphs here and will address them in the
future. We aim to design an improved GAT to defend the adversarial attacks
based on the prior information of graphs.



Springer Nature 2021 LATEX template

A Robust graph attention network with dynamic adjusted Graph 3

An intuitive idea of defensive technology is using prior information to
increase the positive effects and reduce negative effects of neighbors. Two prob-
lems are faced here: (1) What kind of methods helps us to distinguish two
kinds of neighbors? (2) How to design the attention scores for different edges?
This paper proposes a Robust GAT(RoGAT) to solve these problems. RoGAT
distinguishes the positive and negative neighbors based on the Laplacian reg-
ularization [24] and designs an extra dynamic scores to adjust the attention
effects for different edges.

The contribution of RoGAT can be summarized as follows.
(1) The mode defend against adversarial attacks by increasing extra edge

attention scores to distinguish two kinds from adversarial edges based on the
feature smoothness assumption [24].

(2) The model adjusts the graph structure and feature iteratively during
the training procedure, which leads to the ratio of attention scores between
real edges and adversarial edges increases.

(3) The experiments on various real-world graphs show that RoGAT can
adjust the ratio of attention scores between negative and positive edges itera-
tively and thus outperform other defensive methods in the node classification
task under different types of attacks.

The implementation of RoGAT is based on the DeepRobust [25] repository
for adversarial attacks and the experimental settings to reproduce our results
can be found in https://github.com/zhouxianchen/robustGAT. The rest of
the paper is organized as follows. Section 2 gives the notations and discusses
related works of adversarial attacks and defensive methods. Section 3 reviews
the original GAT and . In section 4, the relative merits of GAT is discussed
and RoGAT is proposed to improve the performance of defending attacks.
Section 5 gives some experiments to verify the conclusion. Section 6 gives
a further discussion and conclusion of our methods. The last section is the
acknowledgement.

2 Related works and Notations

2.1 Related Works

Recently, there is some research about adversarial attacks and defense on
Graph Neural Networks, which can be used in GAT. The graph adversarial
attacks can be divided into targeted attacks and untargeted attacks. The tar-
geted attacks like nettack [8] and RL-S2V [9] tend to let the trained model
misclassify a small set of test samples, while untargeted attacks like metat-
tack [10] aimed to let the trained model have bad overall performance on all
test data. Nettack introduces the unnoticeable perturbations on both struc-
tures and features. RL-S2V uses reinforcement learning to generate attacks
on GNNs. The metattack parameterized the graph structure and used the
gradient information to attack GAT.

As to the method of defending the adversarial attacks, one perspective to
achieve robustness is to eliminate the influence of perturbations such as adding
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or removing the adversarial edges or clearing up the change of node features.
The criteria of eliminating the influence are mainly based on the prior infor-
mation of the graph in specific applications. For example, Wu [11] applied
the Jaccard similarity to eliminate the edges between nodes with low simi-
larity. GNNguard [12] can detect and quantify the relationship between the
graph structure and node features based on the hypothesis that similar nodes
are more likely to interact than dissimilar nodes. It estimated an importance
weight for every edge to reduce the influence of fake edges. RGCN [13] added
the penalization of adversarial edges and modeled the hidden layers by Gaus-
sian distributions to reduce the effect of attacks. PTDNet [14] uses nuclear
norm regularization to drop some task-irrelevant edges and improve the ro-
bustness. ProGNN [15] assumed that the graph should be low-rank and sparse
and then gave a progressive model for adversarial training. These models used
the poisoned graph for training and estimated the clean graph by prior infor-
mation [13, 16]. Besides, another perspective tries to figure out the pattern of
adversarial attacks and design defensive methods. Wei [17] found that adver-
sarial attacks can destroy graph structure.They proposed SimPGCN which can
effectively and efficiently preserve node similarity while exploiting graph struc-
ture. In GCNSVD [18], it can defend the metattack [19] by reducing the rank
of the adjacency matrix. PA-GNN [16] designed a meta-optimization algorithm
by penalizing the perturbations to restrict the negative impact of adversar-
ial edges. HSC-GAT [? ] proposes a holistic semantic constraint GAT which
approaches the joint modeling of graphs to mitigate the perturbations. These
methods can defend the adversarial attacks under the different situations.

2.2 Notations

Let G = (V,E) be a graph, where V = {v1, v2, · · · , vN} is the set of nodes
and E is the set of edges. Each graph can be represented by the adjacency
matrix A ∈ RN×N , where aij , the (i, j)th elements of A, represents the link
weight of node vi and vj . In addition, X = [x1, x2, · · · , xN ]> ∈ RN×d denotes
the feature matrix where xi ∈ Rd is the feature vector of vi. Hence a simple
representation of a graph is G = (V,A,X).

Here we consider the semi-supervised node classification problem. Only
parts of nodes Vp = {v1, v2, · · · , vm},m < N are annotated. Yp =
{y1, y2, · · · , ym}, where yi is the label of vi. Given graph G = (V,A,X) with
partial label Yp, the goal of node classification is to predict the labels of
unlabeled nodes.

3 GAT

GAT generates the new feature of one node by combining the feature vector
of each node with attention in its neighbors. The attention mechanisms make
GAT more flexible in aggregation. The formulation of L-layer GAT can be
denoted by
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x(0)
v = xv, v ∈ {1, · · · , N},

x(k)
v = σ

 ∑
u∈N (v)

α(k−1)
uv W (k−1)x(k−1)

u

 , k = 1, 2, · · · , L
(1)

where

α(k−1)
uv =

exp
(

Leaky ReLU
(−→akT [W (k−1)x

(k−1)
v ‖W (k−1)x

(k−1)
u

]))
∑

l∈N (v) exp
(

LeakyReLU
(−→akT [W (k−1)x

(k−1)
v ‖W (k−1)x

(k−1)
l

])) .
(2)

W (k) ∈ Rdk×dk+1 are the parameters to learn and σ is the activation function.
d0 = d, dL = K is the number of class. ‖ represents a concatenation opera-
tor, −→ak ∈ R2dk is a weight vector multiplying the concatenation vector, N (v)
represents the neighbors of node v.

The multi-head attention is used to improve the performance of GAT:

x(k)
v = ‖Mp=1σ

 ∑
u∈N (v)

(α(k−1)
uv W (k−1))px(k−1)

u

 , k = 1, 2, · · · , L (3)

where x
(0)
v = xv, v ∈ {1, 2, · · · , N}. The update feature x

(k)
v relies on the

neighbors’ features x
(k−1)
u and the weights αij are computed according to the

features.
Denote the learning parameters of GAT by θ = {W (0), · · · ,W (L−1)} which

including all the W (k) in each layer. Then for node classification problem, GAT
learns a function fGAT

θ : V → Y by applying Boolean classification function to

x
(L)
v to predict unlabeled nodes. And the objective function is the sum of loss

for the labeled nodes,

LGAT(θ,A,X,Yp) =
∑
vi∈Vp

`(fθ(X,A)i, yi)

θ∗ = arg min
θ
LGAT(θ,A,X,Yp),

(4)

where θ is the parameters of GAT, fGAT
θ∗ (X,A)i is the predicted label of vi.

4 The proposed method

4.1 Analysis of GAT

To figure out the relationship between graph structure and accuracy of GAT,we
established an experiment both on the simulated and real graphs.

As to the simulated data, one thousand nodes are labeled by two classes
equally. Any two nodes are connected with probability p1 if they are in the
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same class and probability p2 while in the distinct class. The number N1 and
N2 represent the links between the same and distinct labels respectively. 10%
percent of nodes are set as the training nodes, while another 10% of nodes are
chosen randomly as the testing nodes. We compare the accuracy of GAT on
random graphs with different numbers N1/N2.

As is shown in Table 1, when N1 approximates N2, the accuracy of GAT
degrades to 50%. GAT performs better when the ratio increases. And for Cora,
Citeseer and Polblogs, the performance of GAT is also related to N1/N2.

In fact, the aggregation function for GAT is tightly connected with graph
structure and features [9, 11]. Although GAT aggregates the hidden features
of its neighbors with attention scores, it cannot distinguish the information
came from positive or negative neighbors well. When the labels in neighbors
tend to the same, the propagation of GAT preserves the feature well. While
the labels in neighbors have multiple labels, the features that came from dif-
ferent labels make considerable and negative effects on the iterated feature.
Therefore, N1/N2 affects the aggregation process of all nodes averagely.

Table 1: The accuracy of GAT on random graph and three datasets with
different link ratio(N1 and N2 represents the number of links between the same
and different labels, respectively)

.

Dataset N1 N2
N1
N2

GAT peformance

Random graph

4982 4864 1 0.5150
9894 4818 2 0.8125
14774 5076 3 0.9637
19714 4944 4 0.9988

Cora 8152 1986 4.10 0.8397

Citeseer 5402 1934 2.79 0.7326

Polblogs 30278 3150 9.61 0.9535

Therefore, some attack methods degrade GAT by affectingN1/N2 of graphs
based on various technologies. Since GAT uses the attention mechanisms
to mix various features, the intuition is that GAT can adjust the attention
scores for useful and useless neighbors’ information automatically to resist the
attacks during the training procedure. However, Table 2 displays the N1

N2
of

Cora and accuracy of GAT under different perturbations rates. The adver-
sarial attack can add or delete the edges to change N1/N2 and degrade GAT
significantly [13, 15].

Nevertheless, for a given graph with most unlabeled nodes, it is impossible
to change N1/N2 easily. In this paper, we tends to enhance the impact of N1

positive edges and reduce that of N2 negative edges.
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Table 2: The accuracy of GAT on Cora dataset with different perturbations
rates with mettack.

Perturbation rates N1 N2
N1
N2

GAT accuracy

0 8152 1986 4.10 0.8397
0.05 8232 2412 3.41 0.8044
0.10 8294 2840 2.92 0.7561
0.15 8286 3332 2.49 0.6978
0.20 8228 3852 2.13 0.5994
0.25 8252 4240 1.95 0.5478

4.2 RoGAT

Note that the original attention scores in GAT are computed based on the node
feature and labels of neighbors [26]. And the graph structure only decides the
choice of neighbors but cannot help to adjust the attention scores. Adversarial
attacks add negative edges or reduce the positive edges to affect the aggrega-
tion neighbors.Therefore, we tend to revise the aggregation function and insert
an extra attention score to reduce the effect of adversarial edges. Intuitively, it
should assign relatively small attention scores to those negative edges though
the prior information. Note that the proper attention score is related not only
to structure A but also to feature X, we establish a robust model which ad-
justs the graph structure and feature to generate an extra score, which helps
to reduce the negative edges bringing by adversarial attacks.

4.2.1 The optimization model

In most situations especially for homogeneous networks, the connected nodes
with the same labels in a graph tend to share similar features. For example, in
citation networks, the entities with similar bag-of-words features tend to con-
nect and belong to the same class [6]. And two connected individuals in social
graphs may share similar features since they tend to have related hobbies or
characters [27]. The characteristic can be represented by the feature smooth-
ness regularization tr

(
X>LX

)
, where L is the weighted Laplacian matrix of

the graph. Adjust the effect to enlarge the We propose the following optimiza-
tion model that obtains the revised structure Ā, feature X̄ and parameters θ,
which can be described as:

(Ā∗, X̄∗, θ∗) = arg min
θ,Ā∈Ā,X̄∈X

Lre(Ā, X̄, θ) + λLRoGAT(θ, Ā, X̄,YL)

with

Lre(Ā, X̄, θ) = ‖A− Ā‖2 + β‖X − X̄‖2 + α tr
(
X̄>L̄X̄

)
= ‖A− Ā‖2 + β‖X − X̄‖2 +

α

2

N∑
i,j=1

Āij (x̄i − x̄j)
2
,

(5)
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where LRoGAT(θ, Ā, X̄,YL) is given by

LRoGAT(θ,A,X,Yp) =
∑
vi∈Vp

`(fRoGAT
θ (X,A)i, yi) (6)

(4), α, β,γ are non-negative parameters. L̄ = D̄ − Ā is the laplacian matrix
whose diagonal element D̄ii = ΣjĀij . Ā represents the domain of adjacency
matrix, with element ranging from 0 to 1, while X̄ represents the domain of
feature matrix.

Different from the original GAT, fRoGAT
θ : V → Y revises the (1) by

inserting modified attention score determined by the revised structure Ā. The
revised aggregation function can be written as

x(k)
v = ‖Mm=1σ

 ∑
u∈N (v)

(ᾱ(k−1)
uv W (k−1))mx(k−1)

u

 , (7)

where ᾱuv is a modified attention combining the feature attention (2) and
graph structure attention obtained by the optimization model (5). The revised
attention is defined as

ᾱuv = Āuvαuv.

Here Āuv is the link weight of the current Ā computed by optimization model.

4.2.2 The optimization algorithm

We update the graph structure Ā and feature X̄ and the parameters of GAT
alternatively to solve the optimization model (5) as follows. To solve problem
(5), firstly we fix X̄ and consider the update of Ā by

min
Ā∈Ā
‖A− Ā‖2 + α tr

(
X̄>L̄X̄

)
. (8)

We initialize Ā = A, then update Ā by using projected gradient descent
method:

Ā←− PA(Ā− η1Ls) = Ā− η1∇Ā(‖A− Ā‖2 + α tr
(
X̄>L̄X̄

)
), (9)

where

PA(Ā) =


0, Āij < 0

1, Āij > 1

A, otherwise.

(10)

Then we fix Ā and consider the update of X̄ by

min
X̄∈X̄
‖X − X̄‖2 + γ tr

(
X̄>L̄X̄

)
+ λLRoGAT(θ, Ā, X̄,Yp). (11)
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We use gradient descent method to update X̄:

X̄ ←− PX (X̄ − η2∇X̄(‖X − X̄‖2 + γ tr
(
X̄>L̄X̄

)
+ λLGAT(θ, Ā, X̄,Yp))).

(12)
where PX (·) is the projection on the feature matrix domain.

The solving procedure of model (5) can be divided into the update of graph
structure, feature and parameters of RoGAT alternatively. Algorithm 1 gives
the iteration procedure.

Algorithm 1 RoGAT

Input: Graph G = (V,A,X) and part of nodes Vp with labels Yp.
Parameters:
α, γ, λ: the non-negative parameters
T1,T2: outer and inner maximum iteration steps
η1, η2, η: learning rates for sub-optimization problems.
Output: the RoGAT model with learned parameters θ.

1: Initialize the RoGAT model with given structure A and set Ā ←− A,
X̄ ←− X.

2: Randomly initialize the parameter θ of RoGAT.
3: for i = 1 to T1 do:
4: Ā←− Ā− η1∇Ā(‖A− Ā‖2 + α tr

(
X̄>L̄X̄

)
),

5: Ā←− PA(Ā),
6: X̄ ←− X̄ − η2∇X̄(‖X − X̄‖2 + γ tr

(
X̄>L̄X̄

)
+ λLRoGAT(θ, Ā, X̄,Yp)),

7: X̄ ←− PX (X̄),
8: for i = 1 to T2 do:

9: θ ← θ − η ∂LRoGAT(θ,Ā,X̄,yp)
∂θ .

10: end for
11: end for
12: Return θ and RoGAT.

5 Experiments

In this section, we firstly empirically evaluate RoGAT on semi-supervised
problems with the state of the art defense methods under different kinds of
adversarial attacks. Then we analyze the effect of parameters and explain why
our method works.

5.1 Experimental settings

5.1.1 Experimental datasets

We choose three benchmark datasets Cora, Citeseer and Polblogs as [8, 19].
The largest component of these datasets [15, 18] are used in this paper in
Table 3 .
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Table 3: Datasets

NLCC ELCC Classes Features
Cora 2, 485 5, 069 7 1, 433

Citeseer 2, 110 3, 668 6 3, 703
Polblogs 1, 222 16, 714 2 /

5.1.2 Baselines

Here we compare RoGAT with different Graph Neural Networks and imple-
ment the defensive models by the DeepRobust library [25].

• GCN [6]: The classical and widely used GCN defines the graph convolu-
tion in a spectral domain.

• GAT [7]: GAT uses the attention mechanism to learn the representation
of nodes.

• RGCN [13]: RGCN assumes that all the node representations are defined
by Gauss distributions and uses an attention mechanism to reduce the
influence of the nodes with high variance.

• GCN-Jaccard [11] : As attacks tend to link the nodes with huge feature
differences, GCN-Jaccard makes a judgment to eliminate part of edges
between nodes with small similarities.

• GCN-SVD [18]: Since nettack is a high-rank attack, GCN-SVD uses a
low-rank approximation of the perturbed graph for further training. This
model can also be extended to non-targeted and random attacks.

• ProGNN [15]: ProGNN assumes that graph data in reality is low-rank
and sparse. It uses the progressive procedure to adjust the structure and
parameters of GCN. This method performs robustly under three kinds of
attacks but is time-consuming.

• ADA-UGNN [? ]: A general GNN frameworks which is suited for
handling varying smoothness properties.

• HSC-GAT [? ]: A holistic semantic constraint GAT which approaches
the joint modeling of graphs to mitigate the perturbations.

5.1.3 Parameter settings

Since RoGAT is based on GAT, we choose the default settings about GAT in [7]
with a two-layer model. Here the dropout parameter p = 0.6 is applied to both
layers’ input. The learning rate for the training feature and adjacency matrix
for SGD is set by 0.01. For GCN, we use the default settings in [6]. For RGCN,
we use the same settings as the experiments in [15] with {16, 32, 64, 128} hidden
units. For GCN-Jaccard, {0.01, 0.02, 0.03, 0.04, 0.05, 0.1} are set as the thresh-
old of similarity for removing the edges for different perturbations ratios. For
GCN-SVD, {5, 10, 15, 50, 100, 200} are used as the reduced rank.

For all the tested graphs, we randomly choose 10% of nodes as the training
datasets and 10% of nodes as the validation datasets. The remaining 80% of
nodes are used for testing for the non-targeted attack. The inner and outer
iterations T1 and T2 are set by 10. The learning rate η1 and η2 are set by
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0.01.The other hyper-parameters are selected by the accuracy of the validation
and manual test. All the experiments are executed 10 times with different
random seeds.

5.2 Defensive performance

5.2.1 Under the non-targeted adversarial attack

First, we evaluate the performance of RoGAT against the non-targeted ad-
versarial attack, which aims to degrade the performance on all nodes. Here
we use the metattack as the non-targeted attack and adopt the same param-
eter settings as [19]. The Meta-self attack for Cora, CIteseer, and Polblogs is
considered the most effective attack. As is shown in Table 4, we compare Ro-
GAT with the other six methods and vary the perturbations rate from 0% to
25%. All the experiments are conducted 10 times, and then the average ac-
curacy and standard deviation are recorded. RoGAT performs the best under
the meta attack for all the tested datasets.

• RoGAT outperforms other methods almost for all the perturbations ra-
tios in Cora and Citeseer datasets and has better performance for larger
perturbations in the polblogs dataset. Specifically, the classification ac-
curacy of RoGAT when processing the Cora and Citeseer datasets with
25% disturbance is 13% and 2% higher than other methods, respectively.
In addition, for the Polblogs dataset, under 15% to 25% interference, the
performance of RoGAT is better than other methods by 2% to 15%.

• Although ProGNN has good performance when dealing with Cora and
Citeseer under the larger ratio of perturbations, RoGAT performs best.
Compared with ProGNN, RoGAT ignore the regularization of sparsity
and low-rank but can still adapt well to the non-targeted adversarial
attack. It means that the attention mechanism of RoGAT, which considers
the feature smoothing can adjust the weight of fake and real edges.

• Compared with ProGNN, RoGAT has a lower computation time without
the regularization of sparsity. ProGNN costs more than 15 minutes for one
script in cora with 2080Ti GPU, while the average time for one RoGAT
training is 20 seconds.

5.2.2 Under the targeted adversarial attack

In this part, we evaluate the performance of different methods for node clas-
sification problems against the targeted attacks, which aim to attack selected
nodes. Here we choose the nettack as the targeted-attack method and use the
default parameter in the original paper [8]. The number of perturbations per
node varies from 1 to 5. And similar to [15], all the nodes with a degree larger
than 10 are chosen as the targeted nodes. We display the performance of node
classification for different methods. In Figure 2(a) and 2(b), it shows that our
method outperforms most methods and has a similar performance with Pro-
GNN for the Cora and Citeseer. Our approach has 10% and 20% improvement,
respectively, in Cora and Citeseer compared with the original GCN. Since the
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Table 4: Node classification performance (Accuracy±Std) under non-targeted
attacks(metattack)

Dataset Ptb (%) GCN [6] GAT [7] RGCN [13] GCN-Jaccard [11] GCN-SVD [18] Pro-GNN [15] ADA-UGNN[? ] RoGAT

Cora

0 83.50±0.44 84.57±0.65 83.09±0.44 82.05±0.51 80.63±0.45 82.98±0.23 83.48±0.25 84.59 ±0.55
5 76.55±0.79 80.44±0.74 77.42±0.39 79.13±0.59 78.39±0.54 82.27±0.45 81.37±0.51 81.22 ±1.09
10 70.39±1.28 75.61±0.59 72.22±0.38 75.16±0.76 71.47±0.83 79.03±0.59 83.68±0.23 79.53 ±1.60
15 65.10±0.71 69.78±1.28 66.82±0.39 71.03±0.64 66.69±1.18 76.40±1.27 75.53±0.83 80.47 ±0.71
20 59.56±2.72 59.94±0.92 59.27±0.37 65.71±0.89 58.94±1.13 73.32±1.56 74.23±0.65 78.40 ±2.18
25 47.53±1.96 54.78±0.74 50.51±0.78 60.82±1.08 52.06±1.19 69.72±1.69 64.74±0.83 78.99 ±0.96

Citeseer

0 71.96±0.55 73.26±0.83 71.20±0.83 72.10±0.63 70.65±0.32 73.28±0.69 76.29±0.63 73.49 ±1.96
5 70.88±0.62 72.89±0.83 70.50±0.43 70.51±0.97 68.84±0.72 72.93±0.57 74.13±0.92 73.64 ±1.33
10 67.55±0.89 70.63±0.48 67.71±0.30 69.54±0.56 68.87±0.62 72.51±0.75 71.89±1.04 72.73 ±0.69
15 64.52±1.11 69.02±1.09 65.69±0.37 65.95±0.94 63.26±0.96 72.03±1.11 72.09±1.32 73.02 ±1.16
20 62.03±3.49 61.04±1.52 62.49±1.22 59.30±1.40 58.55±1.09 70.02±2.28 66.09±1.05 72.43 ±1.48
25 56.94±2.09 61.85±1.12 55.35±0.66 59.89±1.47 57.18±1.87 68.95±2.78 67.88±0.98 73.19 ±0.49

Polblogs

0 95.69±0.38 95.35±0.20 95.22±0.14 - 95.31±0.18 - - 95.67 ±0.36
5 73.07±0.80 83.69±1.45 74.34±0.19 - 89.09±0.22 - - 79.18 ±1.12
10 70.72±1.13 76.32±0.85 71.04±0.34 - 81.24±0.49 - - 74.95 ±1.08
15 64.96±1.91 68.80±1.14 67.28±0.38 - 68.10±3.73 - - 70.14 ±1.45
20 51.27±1.23 51.50±1.63 59.89±0.34 - 57.33±3.15 - - 65.85 ±1.38
25 49.23±1.36 51.19±1.49 56.02±0.56 - 48.66±9.93 - - 63.37 ±2.03

dataset polblogs do not have node features, our method performs better than
other methods except for GCN-SVD.

We also do some experiments to evaluate our methods when dealing with
the random attack, which adds the perturbation on nodes randomly. Different
ratios of perturbations varying from 0% to 100% are adopted to disturb the
graph structure. The result in Figure 3(a) and 3(b) shows that our RoGAT
outperforms other methods in dealing with Cora and Citeseer and has rela-
tively better performance with the dataset Polblogs. RoGAT has more than
15% and 13% improvement with Cora and Citeseer. It means that RoGAT can
successfully resist the random attack. The results in Figure 3(a) and Figure
3(b) show that our RoGAT performs significantly better than other methods
when dealing with Cora and Citeseer datasets, with an accuracy improvement
of 15% and 13%, respectively. Since Polblogs do not have exact node features,
RoGAT has relatively better performance, only slightly inferior to the gcn-svd
method in Figure 3(c). Overall, RoGAT has quite good performance compared
with most defensive methods when dealing with different types of adversarial
attacks.

5.3 Ablation study

In this part, we build ablation studies to figure out how different components
affect the model. As is shown in our model, two main pre-process procedures
occur before training RoGAT. To understand the different impacts of each
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(b)

(c)

Figure 2: Results of Cora, Citeseer, Polblogs under netttack
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(a)

(b)

(c)

Figure 3: Results of Cora, Citeseer, Polblogs under random attack
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procedure, we eliminate the modification of graph structure and feature respec-
tively to check the performance changes. Here we only report results on Cora,
since other datasets have a similar performance. We use RoGAT(no structure)
and RoGAT(no feature) to represent RoGAT without modification structure
and feature respectively. In Table 5, we observe that when the attack is in low-
level, RoGAT with no modification of structure has good performance, while
RoGAT with no modification of feature has relatively better performance when
the graph is heavily poisoned.

Table 5: Classfication accuracy performance of RoGAT variants under
metattack

ptb 0 0.05 0.10 0.15 0.20 0.25
RoGAT(no structure) 82.95 78.92 76.86 68.31 63.22 60.40
RoGAT(no feature) 77.41 76.11 75.40 75.35 74.95 74.60

RoGAT 84.59 81.22 79.53 80.47 78.40 78.90

5.3.1 Hyperparameter analysis

In this section, we discuss the influence of hyper-parameters for RoGAT. Here
we set α = γ and only consider the impact of α and λ on the Cora dataset with
perturbation rates of 25% metattack. We vary α and λ from 0.1 to 6.4 in a log
scale base 2 on the Cora dataset, respectively. Figure 4 shows the test accuracy
of RoGAT with different λ and α. The introduction of λ and α can contribute
to the robustness of GAT. And compared with λ, the appropriate value of α
has more influence on the performance of RoGAT. The performance of RoGAT
is not sensitive to α and λ with not too large α. It means that the feature
smoothness is tightly connected with the performance of RoGAT. For different
kinds of datasets, α decides the ratio between two parts loss, which thus needs
to be selected carefully. Therefore for RoGAT, using feature smoothness to
revise the structure’s attention is effective in defending adversarial attacks.

5.4 Attention weight analysis

Since we assume that the revised weight ᾱ gives more attention to positive
edges and reduces the influence of negative edges, we compute the ratio of
weight between the negative edges and positive edges during the training pro-
cedure. Here we set α = γ = 1 and compute the average weight ᾱ during the
training procedure under the metattack. The fake edges represent the edges
generated by adversarial attacks, while the real edges represent the edges in
the original graph. For different rates of perturbations and datasets, the weight
ratio between fake edges and real edges decreases from the initial value 1 to
a smaller value. And almost for all three datasets, the ratio decreases faster
for the smaller perturbations, which leads to better performance. RoGAT can
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Cora

Citeseer

Polblogs

Figure 4: The performance for different λ and γ under 25% ptb metat-
tack(Green color represents the performance)
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adjust the ratio of contributions for fake and real edges. Therefore, it is consis-
tent with the assumption that less attention will be given to the fake edges to
reduce the influence of negative information during the aggregation procedure.

6 Conclusion

Graph neural networks, including graph convolutional networks and graph at-
tention networks, are easily disturbed by graph adversarial attacks. This paper
adjusts the attention mechanism and then proposes the robust GAT called
RoGAT, which revises the structure and feature of the poisoned graph itera-
tively. The results of experiments show that RoGAT can reduce the influence
of fake edges and performs better than most of the recent baselines, especially
in defending the metattack. Therefore, the prior information can help us to re-
vise the attention score for fake and real edges progressively. Different graphs
including homogeneous and heterogeneous have different prior information,
which deserves further research in designing robust algorithms.
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