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Abstract. Solving the equation Pa(X) := Xq+1 + X + a = 0 over the
finite field FQ, where Q = pn, q = pk and p is a prime, arises in many dif-
ferent contexts including finite geometry, the inverse Galois problem [2],
the construction of difference sets with Singer parameters [8], determin-
ing cross-correlation between m-sequences [9, 15] and the construction
of error-correcting codes [5], as well as speeding up the index calculus
method for computing discrete logarithms on finite fields [11, 12] and on
algebraic curves [18].
Subsequently, in [3, 13, 14, 6, 4, 16, 7, 19], the FQ-zeros of Pa(X) have been
studied. It was shown in [3] that their number is 0, 1, 2 or pgcd(n,k) + 1.
Some criteria for the number of the FQ-zeros of Pa(x) were found in
[13, 14, 6, 16, 19]. However, while the ultimate goal is to identify all the
FQ-zeros, even in the case p = 2, it was solved only under the condition
gcd(n, k) = 1 [16].
We discuss this equation without any restriction on p and gcd(n, k).
Criteria for the number of the FQ-zeros of Pa(x) are proved by a new
methodology. For the cases of one or two FQ-zeros, we provide explicit ex-
pressions for these rational zeros in terms of a. For the case of pgcd(n,k)+1
rational zeros, we provide a parametrization of such a’s and express the
pgcd(n,k) + 1 rational zeros by using that parametrization.

Keywords: Equation · Finite fields · Zeros of a polynomial · Projective polyno-
mial.

Mathematics Subject Classification. 12E05, 12E12, 12E10.

1 Introduction

Let k and n be any positive integers with gcd(n, k) = d. Let Q = pn and q = pk

where p is a prime. We consider the polynomial

Pa(X) := Xq+1 +X + a, a ∈ F∗Q,
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where F∗Q := FQ \ {0}. Note that the more general polynomials

Xq+1 + rXq + sX + t,

with s 6= rq and t 6= rs can be transformed into this shape by the substitution

X = (s− rq)
1
qX1 − r.

It is clear that Pa(X) has no multiple roots.
Polynomials of the form

t∑
i=0

aiX
qi−1
q−1 , ai ∈ Fqm ,

are called projective polynomials. Projective polynomials were introduced by
Abhyankar [1]. His original motivation was to find polynomials with a given
Galois group. Pa(X) is a particular projective polynomial where t = 2, a1 =
a2 = 1, a0 = a and m = n

gcd(n,k) .

Projective polynomials have arisen in several different contexts including fi-
nite geometry, the inverse Galois problem [2], the construction of difference sets
with Singer parameters [8], determining cross-correlation between m-sequences
[9, 15], the construction of error-correcting codes [5] and the calculation of com-
position collisions [10]. These polynomials are also exploited to speed up (the
relation generation phase in) the index calculus method for the computation of
discrete logarithms on finite fields [11, 12] and on algebraic curves [18].

Let Na denote the number of zeros in FQ of the polynomial Pa(X) and Mi

denote the number of a ∈ F∗Q such that Pa(X) has exactly i zeros in FQ. In

2004, Bluher [3] proved that Na equals 0, 1, 2 or pd + 1 where d = gcd(k, n) and
computed Mi for every i. She also stated some criteria for the number of the
FQ-zeros of Pa(X).

The number of roots of any projective polynomial was determined implicitly
in [10] and explicitly in [19] from its coefficients. In particular, new criteria for
which Pa(X) has 0, 1, 2 or pd+1 roots were proved in [19] for any characteristic.

The ultimate goal in this direction of research is to identify all the FQ-zeros
of Pa(X). Really many efforts were made by several researchers toward this
goal, specifically for a particular instance of the problem over binary fields i.e.
p = 2. In 2008 and 2010, Helleseth and Kholosha [13, 14] found new criteria
for the number of F2n -zeros of Pa(X). In the cases when there is a unique zero
or exactly two zeros and d is odd, they provided explicit expressions of these
zeros as polynomials of a [14]. They also showed in [13] that if d = 1 then Na
equals 0, 1 or 3. In 2014, Bracken, Tan and Tan [6] presented a criterion for
Na = 0 in F2n when d = 1 and n is even. Very recently, Kim and Mesnager

[16] completely solved the equation X2k+1 + X + a = 0 over F2n when d = 1.
They showed that the problem of finding zeros in F2n of Pa(X) can be divided
into two problems with odd k : to find the unique preimage of an element in
F2n under a MCM polynomial and to find preimages of an element in F2n under
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a Dickson polynomial. By completely solving these two independent problems,
they explicitly calculated all possible zeros in F2n of Pa(X), with new criteria
for which Na is equal to 0, 1 or 3 as a by-product.

We discuss the equation Xpk+1 +X+a = 0, a ∈ Fpn , without any restriction
on p and gcd(n, k). After defining a sequence of polynomials and considering its
properties in Section 2, it is shown in Section 3 that if Na ≤ 2 then there exists
a quadratic equation that the rational zeros must satisfy. In Section 4, we state
some useful properties of the polynomials which appear as the coefficients of that
quadratic equation. In Section 5, criteria for the number of the FQ-zeros of Pa(x)
are proved. For the cases of one or two FQ-zeros, we provide explicit expressions
for these rational zeros in terms of a. We also provide a parametrization of the a’s
for which Pa(X) has pgcd(n,k) + 1 rational zeros. Based on that parametrization,
all the pgcd(n,k) + 1 rational zeros are expressed. For the case of pgcd(n,k) + 1
rational zeros, some results to explicitly express these rational zeros in terms of
a are presented in Section 6. Finally, we conclude in Section 7.

2 Preliminaries

Given positive integers k and l, define the polynomial

T klk (X) := X +Xpk + · · ·+Xpk(l−2)

+Xpk(l−1)

.

Usually we will abbreviate T l1(·) as Tl(·). For x ∈ Fpl , Tl(x) is the absolute trace

Trl1(x) of x. For x ∈ Fpkl , its norm Nrklk (x) over Fpk is defined by

Nrklk (x) := x1+p
k+···+pk(l−2)+pk(l−1)

.

The preimages of T klk (X) are studied in [20]. Let Fp denote the algebraic closure
of Fp. The following is, in essence, a restatement of Hilbert’s Theorem 90 (cf.
Theorem 2.25 in [17]).

Proposition 1. For any positive integers k and r,

{x ∈ Fp | T krk (x) = 0} = {u− up
k

| u ∈ Fpkr}.

Proof. Evidently, {u − up
k |u ∈ Fpkr} ⊂ ker(T krk ). The linear mapping u 7→

u− upk has the kernel Fpk and so #{u− upk |u ∈ Fpkr} = pk(r−1). On the other

hand, T krk cannot have a kernel of greater cardinality than its degree pk(r−1). ut

Define the sequence of polynomials {Ar(X)} as follows:

A0(X) = 0, A1(X) = 1, A2(X) = −1,

Ar+2(X) = −Ar+1(X)q −XqAr(X)q
2

for r ≥ 0.
(1)

This sequence of polynomials {Ar(X)} have also appeared in [13, 14] for p even
and in the independent study [19] for general p by a bit different form (see also
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Remarks 12 and 13). However, our motivation is different from [13, 14, 19] (see
Sec. 3).

Lemma 2 gives another identity which can be used as an alternative definition
of {Ar(X)} and an interesting property of this polynomial sequence which will
be important later. Its proof also appear in [14] for p even and in [19] for general
p. For completeness, we include here the proof.

Lemma 2. For any r ≥ 1, the following are true.

1.

Ar+2(X) = −Ar+1(X)−XqrAr(X). (2)

2.

Ar+1(X)q+1 −Ar(X)qAr+2(X) = X
q(qr−1)
q−1 . (3)

Proof. We will prove these identities by induction on r. It is easy to check that
they hold for r = 1, 2. Suppose that they hold for all indices less than r(≥ 3).
Then, we have

Ar+3(X) = −Ar+2(X)q −XqAr+1(X)q
2

=
(
Ar+1(X) +XqrAr(X)

)q
+Xq

(
Ar(X) +Xqr−1

Ar−1(X)
)q2

=
(
Aqr+1(X) +XqAq

2

r (X)
)

+Xqr+1
(
Aqr(X) +XqAq

2

r−1(X)
)

= −Ar+2(X)−Xqr+1

Ar+1(X),

which proves (2) for all r. Also, using the proved equality (2), we have

Ar+2(X)q+1 −Ar+1(X)qAr+3(X)

= Ar+2(X)q+1 +Ar+1(X)q
(
Ar+2(X) +Xqr+1

Ar+1(X)
)

= Xqr+1 (
Ar+1(X)q+1 −Ar(X)qAr+2(X)

)
+Ar+2(X)

(
Ar+2(X)q +Ar+1(X)q +Xqr+1

Ar(X)q
)

(2)
= Xqr+1 (

Ar+1(X)q+1 −Ar(X)qAr+2(X)
)

= Xqr+1

X
q(qr−1)
q−1 = X

q(qr+1−1)
q−1 ,

which proves (3) for all r. ut

The zero set of Ar(X) can be completely determined for all r:

Proposition 3. For any r ≥ 3,

{x ∈ Fp | Ar(x) = 0} =

{
(u− uq)q2+1

(u− uq2)q+1
, u ∈ Fqr \ Fq2

}
.
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Proof. Given any x ∈ Fp \ {0}, there exists at least one element v ∈ Fp such

that x = vq
2+1

(v+vq)q+1 and v + vq 6= 0. Then, for any r ≥ 2, we have

Ar(x) = (−1)r+1

∑r
j=1 v

qj

vq + vq2

r−1∏
j=2

(
v

v + vq

)qj
,

where for i = 2 it is assumed that the product over the empty set is equal to 1.
Indeed, this can be proved by induction on r as follows. For r = 2 and r = 3, we
have

A2(x) = −1 = (−1)3
∑2
j=1 v

qj

vq + vq2

and

A3(x) = 1− xq = 1− vq+q
3

(v + vq)q+q2
= (−1)4

∑3
j=1 v

qj

vq + vq2

(
v

v + vq

)q2
.

Assuming this identity holds for all indices less than r, we have

Ar(x)
(2)
= −Ar−1(x)− xq

r−2

Ar−2(x)

= (−1)r+1

∑r−1
j=1 v

qj

vq + vq2

r−2∏
j=2

(
v

v + vq

)qj
− (−1)r+1

vq
r∑r−2

j=1 v
qj

(v + vq)qr−1+q

r−2∏
j=2

(
v

v + vq

)qj

= (−1)r+1
(v + vq)q

r−1 ∑r−1
j=1 v

qj − vqr
∑r−2
j=1 v

qj

vqr−1(v + vq)q

r−1∏
j=2

(
v

v + vq

)qj

= (−1)r+1

∑r
j=1 v

qj

vq + vq2

r−1∏
j=2

(
v

v + vq

)qj
.

Thus Ar(x) = 0 if and only if
∑r
j=1 v

qj = (T krk (v))q = 0 and v + vq 6= 0,
which by Proposition 1 is equivalent to v = u− uq for some u ∈ Fqr \ Fq2 .

Therefore, Ar(x) = 0 if and only if x = (u−uq)q
2+1

(u−uq2 )q+1
for some u ∈ Fqr \Fq2 . ut

Later we will need the following lemma.

Lemma 4 ([3]).

1. Na = pd + 1 if and only if Pa(X) splits in Fqm .
2. The number of a ∈ F∗Q such that Pa(X) has exactly pd + 1 zeros in FQ is

Mpd+1 =
p(m−1)d − pεd

p2d − 1
,

where ε = 0 if m is odd and ε = 1 otherwise.

Proof. The first item follows from Theorem 4.3 and Corollary 7.2 of [3] since
Fqm is the smallest field containing both Fq and FQ. The second item is from
Theorem 5.6 of [3]. ut
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3 Quadratic equation satisfied by rational zeros of Pa(X)

Put m = n/d and define the polynomials

F (X) := Am(X),

G(X) := −Am+1(X)−XAqm−1(X).

We will show that if F (a) 6= 0 then the FQ-zeros of Pa(X) satisfy a quadratic
equation and therefore necessarily Na ≤ 2.

Lemma 5. Let a ∈ F∗Q. If Pa(x) = 0 for x ∈ FQ then

F (a)x2 +G(a)x+ aF q(a) = 0. (4)

Proof. If xq+1 + x+ a = 0 for x ∈ FQ, then x 6= 0 and thus we get

xq =
−x− a
x

. (5)

Now, we prove that for any r ≥ 1

xq
r

(Ar(a)x− aAr−1(a)q)−Ar+1(a)x+ aAr(a)q = 0 (6)

with the assumption A0(x) = 0. In fact, if r = 1 then the left side of (6) is Pa(x)
and so it holds for r = 1. Suppose that it holds for r ≥ 1. Taking q−th powers
of (6) and substituting (5), we have

xq
r+1
(
Ar(a)qxq − aqAr−1(a)q

2
)
−Ar+1(a)qxq + aqAr(a)q

2

= 0⇒

xq
r+1
(
−Ar(a)q x+ax − a

qAr−1(a)q
2
)

+Ar+1(a)q x+ax + aqAr(a)q
2

= 0⇒

xq
r+1
((
−Ar(a)q − aqAr−1(a)q

2)
x− aAr(a)q

)
+
(
Ar+1(a)q + aqAr(a)q

2
)
x+

aAr+1(a)q = 0⇒
xq

r+1

(Ar+1(a)x− aAr(a)q)−Ar+2(a)x+ aAr+1(a)q = 0.

This shows that (6) holds for r + 1 and so for all r.

Taking r = m in (6) and using the fact that xq
m

= xQ
k/d

= x when x ∈ FQ,
we obtain the result of the lemma. ut

4 Some equalities involving F and G

To determine the FQ−rational zeros of Pa(X) when Na ≤ 2, we will need the
following properties of the polynomials F and G which appear as coefficients of
the quadratic equation (4).

Proposition 6. For any x ∈ Fqm , the following are true.

1.
(G(x)− 2F (x))

q
= −G(x). (7)
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2.
G(x)

2 − 4xF (x)
q+1 ∈ Fq. (8)

3.
G(x) = −xqF q

2

(x) + F q(x) + xF (x). (9)

Proof. The first item follows from

(G(x)− 2F (x))
q

= G(x)
q − 2F (x)

q
= −Am+1(x)

q − xqAm−1(x)
q2 − 2Am(x)q

(2)
= (Am(x) + xq

m−1

Am−1(x))q − xqAm−1(x)
q2 − 2Am(x)q

= xAm−1(x)q − xqAm−1(x)
q2 −Am(x)q (since xq

m

= x)

(1)
= xAm−1(x)q +Am+1(x) = −G(x).

The second item is proved as follows. Let E = G(x)
2 − 4xF (x)

q+1
. Then

Eq − E =
(
Am+1(x)

q
+ xqAm−1(x)

q2
)2
− 4xqAm(x)

q(q+1)

− (Am+1(x) + xAm−1(x)
q
)
2

+ 4xAm(x)
q+1

.

Consider Am+1(x)q
(2)
= (−Am(x) − xqm−1

Am−1(x))q = −Am(x)q − xAm−1(x)q.
By substituting this and using (1), we have

Eq − E =
(
−Am(x)q − xAm−1(x)q + xqAm−1(x)

q2
)2
− 4xqAm(x)

q(q+1)

−
(
−Am(x)q − xqAm−1(x)

q2
+ xAm−1(x)

q
)2

+ 4xAm(x)
q+1

= 4Am(x)q
(
xAm−1(x)q − xqAm−1(x)

q2
)
− 4xqAm(x)

q(q+1)
+ 4xAm(x)

q+1

= 4Am(x)q
(
xAm−1(x)q − xqAm−1(x)

q2 − xqAm(x)
q2

+ xAm(x)
)
.

If m = 1, then obviously Eq − E = 0. Now, assume m ≥ 2. Then, by using

xqAm−1(x)
q2

+ xqAm(x)
q2

= xq(Am−1(x) +Am(x))q
2

(2)
= −xq(xq

m−2

Am−2(x))q
2

= −xq+1Am−2(x)q
2

,

we get Eq − E = 4xAm(x)q
(
Am−1(x)q + xqAm−2(x)q

2

+Am(x)
)

(1)
= 0, that is,

E = G(x)
2 − 4xF (x)

q+1 ∈ Fq.
Finally, the third item is verified as follows:

G(x) = −Am+1(x)− xAm−1(x)q
(1)
= Am(x)q + xqAm−1(x)q

2

− xAm−1(x)q

(1)
= Am(x)q + xqAm−1(x)q

2

+ x
(
xqAm−2(x)q

2

+Am(x)
)

= xq
(
Am−1(x) + xq

m−2

Am−2(x)
)q2

+Am(x)q + xAm(x)

(2)
= −xqAm(x)q

2

+Am(x)q + xAm(x).
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ut

When p = 2, Item 1 and 2 of Proposition 6 are reduced to

G(x) ∈ Fq for any x ∈ Fqm . (10)

For p even, we will further need the following proposition.

Proposition 7. Let p = 2. Let a ∈ FQ with G(a) 6= 0. Let E = aF (a)q+1

G2(a) and

H = Trd1

(
Nrnd (a)
G2(a)

)
. The followings hold.

1.
Trn1 (E) = mH. (11)

2.

Tk(E) =
G(a) + F (a)q

G(a)
+
k

d
H. (12)

Proof. From the fact that modulo n the sets {0, k, 2k, . . . , (m−1)k} and {0, d, 2d, . . . , (m−
1)d} coincide, Nrmkk (a) = Nrnd (a) follows and we have

E =
aF (a)q+1

G(a)2
(3)
=
aAm−1(a)qAm+1(a) + Nrnd (a)

G(a)2

=
(Am+1(a) +G(a))Am+1(a) + Nrnd (a)

G(a)2

=
Am+1(a)

G(a)
+

(
Am+1(a)

G(a)

)2

+
Nrnd (a)

G(a)2
.

Hence, (11) immediately follows from the facts Nrnd (a) ∈ Fpd and G(a) ∈ Fpmd ∩
Fpk = Fpd (which follows from (10) as a ∈ Fpmd). And also

Tk (E) =
Am+1(a)

G(a)
+

(
Am+1(a)

G(a)

)q
+
k

d
H

(10)
=

Am+1(a) +Am+1(a)q

G(a)
+
k

d
H

=
G(a) + aAm−1(a)q +Am+1(a)q

G(a)
+
k

d
H

(2)
=
G(a) + aAm−1(a)q +

(
Am(a) + aq

m−1

Am−1(a)
)q

G(a)
+
k

d
H

=
G(a) + F (a)q

G(a)
+
k

d
H.

ut

5 Rational zeros of Pa(X)

By exploiting the results of the previous sections, now we represent the rational
zeros of Pa(X) in terms of a.
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5.1 Na = pd + 1

Theorem 8. Let a ∈ F∗Q. The following are equivalent.

1. Na = pd + 1 i.e. Pa(X) has exactly pd + 1 zeros in FQ.
2. F (a) = 0, or equivalently, by Proposition 3, there exists u ∈ Fqm \ Fq2 such

that a = (u−uq)q
2+1

(u−uq2 )q+1
.

3. There exists u ∈ FQ \ Fp2d such that a = (u−uq)q
2+1

(u−uq2 )q+1
. Then the pd + 1 zeros

in FQ of Pa(X) are x0 = −1
1+(u−uq)q−1 and xα = −(u+α)q

2−q

1+(u−uq)q−1 for α ∈ Fpd .

Proof. (Item 1 ⇐⇒ Item 2)
We already showed that if F (a) 6= 0, then Na ≤ 2, i.e. Na 6= pd + 1.

If F (a) = 0 i.e. there exists u ∈ Fqm \ Fq2 such that a = (u−uq)q
2+1

(u−uq2 )q+1
, then the

set given by

⋃
α∈Fq

{
−(u+ α)q

2−q

1 + (u− uq)q−1

}⋃{
−1

1 + (u− uq)q−1

}

is the set of all q+ 1 zeros of Pa(X). In fact, the cardinality of this set is exactly
q + 1 as u is not in Fq. Also, we have

Pa

(
−1

1 + (u− uq)q−1

)
=

−1

1 + (u− uq)q−1

(
1− 1

1 + (u− uq)q−1

)q
+

(u− uq)q2+1

(u− uq2)q+1

=
−(u− uq)
u− uq2

(
(u− uq)q

u− uq2
)q

+
(u− uq)q2+1

(u− uq2)q+1
= 0

and

Pa

(
−(u+ α)q

2−q

1 + (u− uq)q−1

)
=
−(u+ α)q

2−q

1 + (u− uq)q−1

(
1 +

−(u+ α)q
2−q

1 + (u− uq)q−1

)q
+

(u− uq)q2+1

(u− uq2)q+1

=
−(u− uq)

(u− uq2)q+1(u+ α)q

(
(u− uq

2

)(u+ α)q − (u− uq)(u+ α)q
2
)q

+
(u− uq)q2+1

(u− uq2)q+1

=
−(u− uq)

(u− uq2)q+1(u+ α)q

(
(u− uq

2

)(uq + α)− (u− uq)(uq
2

+ α)
)q

+
(u− uq)q2+1

(u− uq2)q+1

=
−(u− uq)

(u− uq2)q+1(u+ α)q
((u− uq)q(u+ α))

q
+

(u− uq)q2+1

(u− uq2)q+1
= 0.

Lemma 4 concludes Na = pd + 1.
(Item 1 ⇐⇒ Item 3)
To begin with, define S0 = FQ \ Fq2 , S1 = {u − uq | u ∈ S0}, S2 = {vq−1 |

v ∈ S1} and S = {a ∈ FQ | Na = pd + 1}.
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Now, we will show that the mapping

Ψ : u ∈ S0 7−→
(u− uq)q2+1

(u− uq2)q+1
∈ S,

which is well-defined by Proposition 3 and by the equivalence between Item 1
and Item 2, is surjective.

Regarding (u−uq)q
2+1

(u−uq2 )q+1
= ((u−uq)q−1)q

(1+(u−uq)q−1)q+1 , we can write Ψ = ϕ3 ◦ ϕ2 ◦ ϕ1

where ϕ1 : u ∈ S0 7−→ u− uq ∈ S1, ϕ2 : v ∈ S1 7−→ vq−1 ∈ S2, ϕ3 : w ∈ S2 7−→
wq

(1+w)q+1 ∈ S. Here, we note that −1 /∈ S2 (and hence ϕ3 is well-defined) since

(u− uq)q−1 = −1 would yield u = uq
2

, i.e. u ∈ Fq2 .

Consider ϕ1(u + Fpd) = ϕ1(u) for any u ∈ S0 and #S1 = p(m−1)d − (pd −
(pd − 1) · (m mod 2)) = (pmd − p(2−m mod 2)d)/pd = #S0/p

d. Therefore ϕ1

is pd-to-one and surjective. Next, note that ϕ2(v1) = ϕ2(v2) for v1, v2 ∈ FQ
if and only if v2 = βv1 for some β ∈ F∗pd and that if v1 ∈ S1 then βv1 ∈ S1

for any β ∈ F∗pd since Trnd (βv1) = βTrnd (v1) = 0. Hence ϕ2 is (pd − 1)-to-one

and surjective. On the other hand, if a = ϕ3(w) for w ∈ S2, then Pa(− 1
1+w ) =(

− 1
1+w

)q+1

+
(
− 1

1+w

)
+ wq

(1+w)q+1 = 0. Since a ∈ S and so Na = pd + 1, there

are at most pd + 1 such w ∈ S2 that ϕ3(w) = a. Therefore we get

#Ψ(S0) ≥ #S2

pd + 1
=
p(m−1)d − p(1−m mod 2)d

p2d − 1
.

Since #S = p(m−1)d−p(1−m mod 2)d

p2d−1 by the second item of Lemma 4, we have a

sequence of inequalities #S ≤ #Ψ(S0) ≤ #S which concludes that Ψ(S0) = S,
i.e. Ψ is surjective (note that it also follows that ϕ3 is (pd + 1)-to-one and Ψ is
pd(p2d − 1)-to-one). This means that Item 1 and Item 3 are equivalent. ut

5.2 Na ≤ 2: Odd p

Theorem 9. Let p be odd. Let a ∈ F∗Q and E(a) = G(a)2 − 4aF (a)
q+1

.

1. Na = 1 if and only if F (a) 6= 0 and E(a) = 0. In this case, the unique zero

in FQ of Pa(X) is − G(a)
2F (a) .

2. Na = 0 if and only if E(a) is not a quadratic residue in Fpd (i.e. E(a)
pd−1

2 6=
0, 1).

3. Na = 2 if and only if E(a) is a non-zero quadratic residue in Fpd (i.e.

E
pd−1

2 = 1). In this case, the two zeros in FQ of Pa(X) are x1,2 = ±E(a)
1
2−G(a)

2F (a) ,

where E(a)
1
2 represents a quadratic root in Fpd of E(a).

Proof. To begin with, note E(a) ∈ Fq by (8) and so E(a) ∈ Fq ∩ FQ = Fpd .
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Theorem 8 shows that Na ≤ 2 if and only if F (a) 6= 0. Now, assume F (a) 6= 0.
Then Equation (4) can be rewritten as(

x+
G(a)

2F (a)

)2

=
E(a)

4F (a)
2 . (13)

Now, we will show that the solutions x1,2 = ±E
1
2−G(a)
2F (a) of (13) become the zeros

of Pa(X) if and only if E(a) is a quadratic residue in Fq. In fact,
(
E(a)

1
2

)q
=

E(a)
1
2 + δ for some δ and then we have

Pa(x1,2) = x1,2(x1,2 + 1)q + a =
±E(a)

1
2 −G(a)

2F (a)

(
1 +
±E(a)

1
2 −G(a)

2F (a)

)q
+ a

=
(±E(a)

1
2 −G(a))

(
±E(a)

1
2 + δ + (2F (a)−G(a))q

)
+ 4aF (a)

q+1

4F (a)
q+1

(7)
=

(±E(a)
1
2 −G(a))

(
±E(a)

1
2 + δ +G(a)

)
+ 4aF (a)

q+1

4F (a)
q+1 =

(±E(a)
1
2 −G(a))δ

4F (a)
q+1 ,

and so Pa(x1,2) = 0 if and only if δ = 0, that is, E(a)
1
2 ∈ Fq. On the other hand,

x1,2 ∈ FQ if and only if E(a)
1
2 ∈ FQ. ut

Remark 10. In the last two cases of Theorem 9 (i.e. the cases of Na = 0 or 2),
the condition F (a) 6= 0 is implied because E 6= 0 implies F (a) 6= 0. Indeed, if
F (a) = 0, then from Equality (9) G(a) = 0 follows and so E(a) = 0.

5.3 Na ≤ 2: p = 2

Theorem 11. Let p = 2 and a ∈ F∗Q. Let H = Trd1

(
Nrnd (a)
G2(a)

)
and E(a) =

aF (a)q+1

G2(a) .

1. Na = 1 if and only if F (a) 6= 0 and G(a) = 0. In this case, (aF (a)q−1)
1
2 is

the unique zero in FQ of Pa(X).
2. Na = 0 if and only if G(a) 6= 0 and H 6= 0.
3. Na = 2 if and only if G(a) 6= 0 and H = 0. In this case the two zeros in FQ

are x1 = G(a)
F (a) · Tn

(
E
ζ+1

)
and x2 = x1 + G(a)

F (a) , where ζ ∈ µ
∗
Q+1 := {z ∈ FQ2 |

zQ+1 = 1} \ {1}.

Proof. By Theorem 8 we may assume F (a) 6= 0 since this is equivalent to Na ∈
{0, 1, 2}.

If G(a) = 0, then the Equation (4) has a unique solution x0 = (aF (a)q−1)1/2.

Then P 2
a (x0) = a

F (a)

(
aqF q

2

(a) + F q(a) + aF (a)
)

(9)
= a

F (a)G(a) = 0 and thus it

follows that Pa(X) has exactly one zero (aF (a)q−1)1/2 in FQ when G(a) = 0.
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Now consider the case of G(a) 6= 0. Note that (9) shows that G(a) 6= 0 implies

F (a) 6= 0. The equation (4) can be rewritten as
(
F (a)
G(a)x

)2
+ F (a)

G(a)x = E(a) and

so it has a solution in FQ if and only if

Trn1 (E(a)) = 0. (14)

If Equation (4) has a solution then it has exactly two solutions x1 and x2 in FQ.

Indeed,
(
F (a)
G(a)x1

)2
+ F (a)
G(a)x1 =

(
F (a)
G(a)x2

)2
+ F (a)
G(a)x2 = Tn

(
E(a)
ζ+1

)2
+Tn

(
E(a)
ζ+1

)
=(

E(a)
ζ+1

)Q
+
(
E(a)
ζ+1

)
= E( 1

1
ζ+1

+ 1
ζ+1 ) = E(a), and so x1 and x2 are two solutions of

(4). And, both x1 and x2 are in FQ since Tn

(
E(a)
ζ+1

)Q
+Tn

(
E(a)
ζ+1

)
= Tn(E(a)) =

Trn1 (E(a))
(14)
= 0 i.e. Tn

(
E(a)
ζ+1

)
∈ FQ.

Let x be a solution of (4). Then we have Tk

((
F (a)
G(a)x

)2
+ F (a)

G(a)x

)
= Tk(E(a)),

i.e.
(
F (a)
G(a)x

)q
+ F (a)

G(a)x = Tk(E(a)), hence xq =
(
G(a)
F (a)

)q (
F (a)
G(a)x+ Tk(E(a))

)
(10)
=

F (a)x+G(a)Tk(E(a))
F (a)q and Pa(x) = x(xq+1)+a = x(F (a)x+G(a)Tk(E(a))+F (a)q)

F (a)q +a
(4)
=

x(G(a)Tk(E(a))+F (a)q+G(a))
F (a)q .

Thus, it follows that the solution x of (4) is a zero of Pa(X) if and only if

Tk (E(a)) =
G(a) + F (a)q

G(a)
. (15)

Equalities (11), (12), (14) and (15) together leads us to conclude that when
G(a) 6= 0, Pa(X) has a zero (equivalently, exactly two zeros) in FQ if and only if
mH = 0 and k

dH = 0 which is equivalent to H = 0 since at least one of m and
k/d must be odd as gcd(m, k/d) = 1.

Combining the discussion above with Theorem 8 completes the proof. ut

Remark 12. When p = 2, Ar(X) defined in this paper coincides with Cr(X)
introduced in [14]. Many of our results for p = 2 appears also in [14] with
relatively longer and more complicated proofs.

Remark 13. On the other hand, very recently, the number of roots of linearized
and projective polynomials was studied in [7, 19]. In particular, criteria for which
Pa(X) has 0, 1, 2 or pd+1 roots were stated by Theorem 8 of [19] using some poly-
nomial sequence Gr(X) which are related by Ar(X) = Gr−1(X)q with Ar(X)
defined in this paper. Using the notation of our paper, Theorem 8 of [19] states
that Na = pd + 1 if and only if Am(a) = 0 and Am+1(a) ∈ Fpd . Firstly, here,
the condition Am+1(a) ∈ Fpd is surplus because this follows from the condition
Am(a) = 0. In fact, if F (a) = Am(a) = 0 then by (1) Am+1(a) = (−aAm−1(a)q)q

and by (9) G(a) = 0 i.e. Am+1(a) = −aAm−1(a)q, so Am+1(a) = Am+1(a)q that
is Am+1(a) ∈ Fq ∩ FQ = Fpd .

Secondly, when p = 2, the criteria for Na = 0, 1, 2 in [19] are false. In the
criteria for Na = 0, 1, 2 of Theorem 8 of [19], Gn ∈ Fq or Gn /∈ Fq must be fixed
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by Gn+Gn
σ +Gn−1

σ = 0 or Gn+Gn
σ +Gn−1

σ 6= 0 respectively. Note that the

quantity Gn +Gn
σ +Gn−1

σ (∆L for p odd, resp.) therein equals G(a)
1
q (E(a)

1
q

for p odd, resp.) with the notation of our paper.

6 More for the case Na = pd + 1

Let Sa = {x ∈ Fpmd = FQ | Pa(x) = 0}. The following problem remained : when
Na = pd + 1 i.e. Am(a) = 0, express Sa explicitly in terms of a.
For this problem, the following facts are the only things we know at the moment.

1. When m = 3 and A3(a) = 1− aq = 0 i.e. a = 1, we have

Sa = {(b− bq)q−1, b ∈ Fp3d \ Fpd}.

2. When p = 2, m = 4 and A4(a) = 1 + aq + aq
2

= 0, we have
√
a ∈ Sa.

3. When p = 2, m = 5 and A5(a) = 1 + aq + aq
2

+ aq
3

(1 + aq) = 0, we have

a(a+ aq)

1 + aq + aq+1
∈ Sa.

4. When p = 2, m = 6 and A6(a) = 1+aq+aq
2

+aq
3

(1+aq)+aq
4

(1+aq+aq
2

) =
0, we have√

a2(1 + a+ aq + aq2+1) + aq2+q+1(1 + a+ aq)q

a2q2+q + (1 + a+ aq)(1 + a2 + aq)q
∈ Sa.

All these can be checked by direct substitutions to Pa(X).

Lemma 14. If xq+1 + x+ a = 0 for a ∈ F∗Q, then for any r ≥ 1

xq
r

=
Ar+1(a)x− aAr(a)q

Ar(a)x− aAr−1(a)q
, (16)

where the denominator never equals zero.

Proof. This is an alternation of (6). The only thing to be verified is the fact
that the denominator never equals zero. In fact, if Ar(a)x − aAr−1(a)q = 0

(and so also Ar+1(a)x − aAr(a)q = 0 by (6)), then x = aAr−1(a)
q

Ar(a)
= aAr(a)

q

Ar+1(a)

and thus it follows that a(Ar(a)q+1 − Ar−1(a)qAr+1(a)) = 0. But (3) shows

a(Ar(a)q+1 −Ar−1(a)qAr+1(a)) = a
qr−1
q−1 6= 0, a contradiction. ut

Lemma 15. If Am(a) = 0, then for any x ∈ FQ such that xq+1 + x+ a = 0, it
holds

Nrkmk (x) = Am+1(a).

Furthermore, for any t ≥ 0

Am+t(a) = Am+1(a) ·At(a).
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Proof. By Proposition 3 and the premise Am(a) = 0, we have a ∈ Fqm . By
multiplying all equalities (16) for r ranging from 1 to m− 1 side by side we get

x
qm−1
q−1 = −aAm−1(a)q = Am+1(a)1/q, i.e. Am+1(a) = Nrkmk (x)q = Nrkmk (x) ∈

Fq. Then, an induction on t leads to the conclusion of the lemma. ut

7 Conclusions

We studied the equation Pa(X) = Xpk+1 +X + a = 0, a ∈ Fpn and proved some
new criteria for the number of the Fpn-zeros of Pa(x). In case of one or two Fpn -
zeros, we expressed these zeros in terms of a. For the case of pgcd(n,k)+1 rational
zeros, we provided a parametrization of such a’s and expressed all the pgcd(n,k)+1
rational zeros by using this parametrization. An important open problem is to
explicitly express in terms of a the Fpn -zeros when there are pgcd(n,k) + 1 zeros
in Fpn .
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