STATE-MORPHISM ALGEBRAS - GENERAL APPROACH

MICHAL BOTUR¹ AND ANATOLIJ DVUREČENSKIJ²

 ¹ Department of Algebra and Geometry Faculty of Science, Palacký University
 17. listopadu 12, CZ-771 46 Olomouc, Czech Republic
 ² Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK-814 73 Bratislava, Slovakia
 E-mail: michal.botur@upol.cz, dvurecen@mat.savba.sk

ABSTRACT. We present a complete description of subdirectly irreducible state BL-algebras as well as of subdirectly irreducible state-morphism BL-algebras. In addition, we present a general theory of state-morphism algebras, that is, algebras of general type with state-morphism which is an idempotent endomorphism. We define a diagonal state-morphism algebra and we show that every subdirectly irreducible state-morphism algebra can be embedded into a diagonal one. We describe generators of varieties of state-morphism algebras, in particular ones of state-morphism BL-algebras, state-morphism MTL-algebras, state-morphism non-associative BL-algebras, and state-morphism pseudo MValgebras.

1. INTRODUCTION

A state, as an analogue of a probability measure, is a basic notion of the theory of quantum structures, see e.g. [14]. However, for MV-algebras, the state as averaging the truth value in the Łukasiewicz logic was introduced firstly by Mundici in [22], 40 years after introducing MV-algebras, [6]. We recall that a state on an MV-algebra **M** is a mapping $s: M \to [0, 1]$ such that (i) $s(a \oplus b) = s(a) + s(b)$, if $a \odot b = 0$, and (ii) s(1) = 1. The property (i) says that s is additive on mutually excluding events a and b. It is important note that every non-degenerate MV-algebra admits at least one state. The set of states is a convex set, which in the weak topology of states is a compact Hausdorff set, and every extremal state is in fact an MV-algebra homomorphism from **M** into the MV-algebra of the real interval [0, 1], and vice-versa, [22]. In addition, extremal states generate the set of all states because by the Krein-Mil'man Theorem, [18, Thm 5.17], every state is a weak limit of a net of convex combinations of these special homomorphisms.

In the last decade, the states entered into theory of MV-algebras in a very ambitious manner. In [23, 21], authors have showed a relation between states

¹Keywords: State MV-algebra, state BL-algebra, state-morphism algebra, Congruence Extension Property, generator, diagonal subalgebra, t-norm, non-associative t-norm, MTL-algebra, non-associative BL-algebra, pseudo MV-algebra.

AMS classification: 06D35, 03G12, 03B50,

MB thanks for the support by SAIA, Slovakia, by MSM 6198959214 of the RDC of the Czech Government, and by GAČR P201/11/P346, Czech Republic, AD thanks for the support by Center of Excellence SAS - Quantum Technologies -, ERDF OP R&D Projects CE QUTE ITMS 26240120009 and meta-QUTE ITMS 26240120022, the grant VEGA No. 2/0032/09 SAV.

and de Finetti's approach to probability in terms of bets. In addition, Panti and independently Kroupa in [24, 20] have showed that every state on \mathbf{M} is an integral through a unique regular Borel probability measure concentrated on the set of extremal states on \mathbf{M} .

Nevertheless as we have seen states are not a proper notion of universal algebra, and therefore, they do not provide an algebraizable logic for probabilistic reasoning of the many-valued approach.

Recently, Flaminio and Montagna in [16] presented an algebraizable logic containing probabilistic reasoning, and its equivalent algebraic semantic is the variety of state MV-algebras. We recall that a *state MV-algebra* is an MV-algebra whose language is extended adding an operator, τ (called also an *internal state*), whose properties are inspired by the ones of states. The analogues of extremal states are *state-morphism operators*, introduced in [7]. By definition, it is an idempotent endomorphism on an MV-algebra.

State MV-algebras generalize, for example, Hájek's approach, [19], to fuzzy logic with modality Pr (interpreted as *probably*) which has the following semantic interpretation: The probability of an event a is presented as the truth value of Pr(a). On the other hand, if s is a state, then s(a) is interpreted as averaging of appearing the many valued event a.

We note that if (\mathbf{M}, τ) is a state MV-algebra, assuming that that the range $\tau(\mathbf{M})$ is simple, we see that it is a subalgebra of the real interval [0, 1] and therefore, τ can be regarded as a standard state on \mathbf{M} . On the other hand, every MV-algebra \mathbf{M} can be embedded into the tensor product $[0, 1] \otimes \mathbf{M}$, therefore, given a state s on \mathbf{M} , we define an operator τ_s on $[0, 1] \otimes \mathbf{M}$ via $\tau_s(t \otimes a) := t \cdot s(a)$, [16, Thm 5.3]. Then due to [7, Thm 3.2], τ_s is a state-operator that is a state-morphism operator iff s is an extremal state. Thus, there is a natural correspondence between the notion of a state and an extremal state on one side, and a state-operator and a state-morphism operator on the other side.

Subdirectly irreducible state-morphism MV-algebras were described in [7, 9] and this was extended also for state-morphism BL-algebras in [11]. A complete description of both subdirectly irreducible state MV-algebras as well as subdirectly irreducible state-morphism MV-algebras can be found in [13]. In [8], it was shown that if (\mathbf{M}, τ) is a state MV-algebra whose image $\tau(\mathbf{M})$ belongs to the variety generated by the L_1, \ldots, L_n , where $L_i := \{0, 1/i, \ldots, i/i\}$, then τ has to be a state-morphism operator. The same is true if \mathbf{M} is linearly ordered, [7]. Recently, in [13], we have shown that the unit square $[0, 1]^2$ with the diagonal operator generates the whole variety of state-morphism MV-algebras; it answered in positive an open problem posed in [7]. In addition, there was shown that in contrast to MV-algebras, the lattice of subvarieties is uncountable. Moreover, it was shown that every subdirectly irreducible state-morphism MV-algebra can be embedded into some diagonal one.

In this paper, we continue in the study of state BL-algebras and state-morphism BL-algebras. Because the methods developed in [13] are so general that, it is possible to study more general structures than MV-algebras or BL-algebras under a common umbrella. Hence, we introduce state-morphism algebras (\mathbf{A}, τ) , where the algebra \mathbf{A} is an arbitrary algebra of type F and τ is an idempotent endomorphism of \mathbf{A} . Then general results applied to special types of algebras give interesting new results.

The main goals of the paper are:

(1) Complete characterizations of subdirectly irreducible state BL-algebras and state-morphism BL-algebras.

(2) Showing that every subdirectly state-morphism algebra can be embedded into some diagonal one $D(\mathbf{B}) := (\mathbf{B} \times \mathbf{B}, \tau_B)$, where $\tau(a, b) = (a, a), a, b \in B$, which is also subdirectly irreducible.

(3) We show that if \mathcal{K} is a generator of some variety \mathcal{V} of algebras of type F, then the system of diagonal state-morphism algebras $\{D(\mathbf{B}) : \mathbf{B} \in \mathcal{K}\}$ is a generator of the variety of state-morphism algebras whose F-reduct belongs to \mathcal{V} .

(4) We exhibit cases when the Congruence Extension Property holds for a variety of state-morphism algebras.

(5) In particular, a generator of the variety of state-morphism BL-algebras is the class of all BL-algebras of the real interval [0, 1] equipped with a continuous t-norm. Similarly, a generator of the variety of state-morphism MTL-algebras is the class of all MTL-algebras of the real interval equipped with a left-continuous tnorm, similarly for non-associative BL-algebras one is the set of all non-associative BL-algebras of the real interval [0, 1] equipped with a non-associative t-norm, and a generator of the variety of state-morphism pseudo MV-algebras is any pseudo MV-algebra $\Gamma(G, u)$, where (G, u) is a doubly transitive unital ℓ -group.

2. Subdirectly Irreducible State BL-Algebras

In this section, we define state BL-algebras and state-morphism BL-algebras and we present a complete description of their subdirectly irreducible algebras. These results generalize those from [7, 9, 11, 13].

We recall that according to [19], a *BL-algebra* is an algebra $\mathbf{M} = (M; \land, \lor, \odot, \rightarrow , 0, 1)$ of the type $\langle 2, 2, 2, 2, 0, 0 \rangle$ such that $(M; \land, \lor, 0, 1)$ is a bounded lattice, $(M; \odot, 1)$ is a commutative monoid, and for all $a, b, c \in M$,

- (1) $c \leq a \rightarrow b$ iff $a \odot c \leq b$;
- (2) $a \wedge b = a \odot (a \rightarrow b);$
- (3) $(a \rightarrow b) \lor (b \rightarrow a) = 1.$

For any $a \in M$, we define a complement $a^- := a \to 0$. Then $a \leq a^{--}$ for any $a \in M$ and a BL-algebra is an MV-algebra iff $a^{--} = a$ for any $a \in M$.

A non-empty set $F \subseteq M$ is called a *filter* of **M** (or a *BL-filter* of **M**) if for every $x, y \in M$: (1) $x, y \in F$ implies $x \odot y \in F$, and (2) $x \in F$, $x \leq y$ implies $y \in F$. A filter $F \neq M$ is called a *maximal filter* if it is not strictly contained in any other filter $F' \neq M$. A BL-algebra is called *local* if it has a unique maximal filter.

We denote by $\operatorname{Rad}_1(\mathbf{M})$ the intersection of all maximal filters of \mathbf{M} .

Let ${\bf M}$ be a BL-algebra. A mapping $\tau: M \to M$ such that, for all $x,y \in M,$ we have

 $(1)_{BL} \tau(0) = 0;$ $(2)_{BL} \tau(x \to y) = \tau(x) \to \tau(x \land y);$ $(3)_{BL} \tau(x \odot y) = \tau(x) \odot \tau(x \to (x \odot y));$ $(4)_{BL} \tau(\tau(x) \odot \tau(y)) = \tau(x) \odot \tau(y);$ $(5)_{BL} \tau(\tau(x) \to \tau(y)) = \tau(x) \to \tau(y)$

is said to be a *state-operator* on \mathbf{M} , and the pair (\mathbf{M}, τ) is said to be a *state BL-algebra*, or more precisely, a *BL-algebra with internal state*.

If $\tau : M \to M$ is a BL-endomorphism such that $\tau \circ \tau = \tau$, then τ is a stateoperator on **M** and it is said to be a *state-morphism operator* and the couple (\mathbf{M}, τ) is said to be a *state-morphism BL-algebra*.

A filter F of a BL-algebra **M** is said to be a τ -filter if $\tau(F) \subseteq F$. If τ is a state-operator on **M**, we denote by

$$\operatorname{Ker}(\tau) = \{a \in M : \tau(a) = 1\}.$$

then $\operatorname{Ker}(\tau)$ is a τ -filter. A state-operator τ is said to be *faithful* if $\operatorname{Ker}(\tau) = \{1\}$.

We recall that there is a one-to-one relation between congruences and τ -filters on a state BL-algebra (\mathbf{M}, τ) as follows. If F is a τ -filter, then the relation \sim_F given by $x \sim_F y$ iff $x \to y, y \to x \in F$ is a congruence of the BL-algebra \mathbf{M} and \sim_F is also a congruence of the state BL-algebra (\mathbf{M}, τ) .

Conversely, let ~ be a congruence of state BL-algebra (\mathbf{M}, τ) and set $F_{\sim} := \{x \in M : x \sim 1\}$. Then F_{\sim} is a τ -filter of (\mathbf{M}, τ) and $\sim_{F_{\sim}} = \sim$ and $F = F_{\sim_F}$.

By [5, Lem 3.5(k)], $(\tau(\mathbf{M}), \tau)$ is a subalgebra of (\mathbf{M}, τ) , τ on $\tau(M)$ is the identity, and hence, $(\text{Ker}(\tau); \rightarrow, 0, 1)$ is a subhoop of \mathbf{M} . We say that two subhoops, A and B, of a BL-algebra \mathbf{M} have the *disjunction property* if for all $x \in A$ and $y \in B$, if $x \lor y = 1$, then either x = 1 or y = 1.

Nevertheless a subdirectly irreducible state BL-algebra (\mathbf{M}, τ) is not necessarily linearly ordered, according to [5, Thm 5.5], $\tau(\mathbf{M})$ is always linearly ordered.

We note that according to [5, Prop 3.13], if **M** is an MV-algebra, then the notion of a state MV-algebra coincides with the notion of a state BL-algebra.

The following three characterizations were originally proved in [13] for state MValgebras. Here we show that the original proofs from [13] slightly improved work also for state BL-algebras.

Lemma 2.1. Suppose that (\mathbf{M}, τ) is a state BL-algebra. Then:

(1) If τ is faithful, then (\mathbf{M}, τ) is a subdirectly irreducible state BL-algebra if and only if $\tau(\mathbf{M})$ is a subdirectly irreducible BL-algebra.

Now let (\mathbf{M}, τ) be subdirectly irreducible. Then:

- (2) $\operatorname{Ker}(\tau)$ is (either trivial or) a subdirectly irreducible hoop.
- (3) $\operatorname{Ker}(\tau)$ and $\tau(\mathbf{M})$ have the disjunction property.

Proof. (1) Suppose τ is faithful. Let F denote the least nontrivial τ -filter of (\mathbf{M}, τ) . There are two cases: (i) If $\tau(M) \cap F \neq \{1\}$, then $\tau(M) \cap F$ is the least nontrivial filter of $\tau(\mathbf{M})$ and $\tau(\mathbf{M})$ is subdirectly irreducible. (ii) If $\tau(\mathbf{M}) \cap F = \{1\}$, then for all $x \in F$, $\tau(x) = 1$ because $\tau(x) \in \tau(M) \cap F$ and $F \subseteq \text{Ker}(\tau) = \{1\}$ is the trivial filter, a contradiction. Therefore, only the first case is possible and $\tau(\mathbf{M})$ is subdirectly irreducible.

Conversely, let $\tau(\mathbf{M})$ be subdirectly irreducible and let G be the least nontrivial filter of $\tau(\mathbf{M})$. Then the τ -filter F of (\mathbf{M}, τ) generated by G is the least nontrivial τ -filter of (\mathbf{M}, τ) . Indeed, if K is another nontrivial τ -filter of (\mathbf{M}, τ) , then $K \cap \tau(M) \supseteq F \cap \tau(M) = G$. Then K contains the τ -filter generated by G, that is $F \subseteq K$ which proves F is the least and (\mathbf{M}, τ) is subdirectly irreducible.

Now let (\mathbf{M}, τ) be subdirectly irreducible and let F denote the least nontrivial filter of (\mathbf{M}, τ) .

(2) Suppose that τ is not faithful. Then $\operatorname{Ker}(\tau)$ is a nontrivial τ -filter. If (\mathbf{M}, τ) is subdirectly irreducible, it has a least nontrivial τ -filter, F say. So, $F \subseteq \operatorname{Ker}(\tau)$,

and hence F is the least nontrivial filter of the hoop $\text{Ker}(\tau)$. Hence, $\text{Ker}(\tau)$ is a subdirectly irreducible hoop.

(3) Suppose, by way of contradiction, that for some $x \in \text{Ker}(\tau)$ and $y = \tau(y) \in \tau(M)$ one has x < 1, y < 1 and $x \lor y = 1$. It is easy to see that the BL-filters generated by x and by y, respectively, are τ -filters. Therefore they both contain F. Hence, the intersection of these filters contains F. Now let c < 1 be in F. Then there is a natural number n such that $x^n \leq c$ and $y^n \leq c$. It follows that $1 = (x \lor y)^n = x^n \lor y^n \leq c$, a contradiction.

Lemma 2.2. If (\mathbf{M}, τ) is a subdirectly irreducible state BL-algebra, then $\tau(M)$ and $\operatorname{Ker}(\tau)$ are linearly ordered.

Proof. According to [5, Thm 5.5], $\tau(M)$ is always linearly ordered. On the other hand, by Lemma 2.1, Ker(τ) is either a trivial hoop or a subdirectly irreducible hoop, and hence it is linearly ordered.

Theorem 2.3. Let (\mathbf{M}, τ) be a state *BL*-algebra satisfying conditions (1), (2) and (3) in Lemma 2.1. Then (\mathbf{M}, τ) is subdirectly irreducible.

Proof. Suppose first that τ is faithful and that $\tau(\mathbf{M})$ is subdirectly irreducible. Let F_0 be the least nontrivial filter of $\tau(\mathbf{M})$ and let F be the BL-filter of \mathbf{M} generated by F_0 . Then F is a τ -filter. Indeed, if $x \in F$, then there is $\tau(a) \in F_0$ and a natural number n such that $\tau(a)^n \leq x$. It follows that $\tau(x) \geq \tau(\tau(a)^n) = \tau(a)^n$, and $\tau(x) \in F$.

We assert that F is the least nontrivial τ -filter of (\mathbf{M}, τ) . First of all, $\tau(\mathbf{M})$, being a subdirectly irreducible BL-algebra, is linearly ordered. Now in order to prove that F is the least nontrivial τ -filter of (\mathbf{M}, τ) , it suffices to prove that every τ -filter G not containing F is trivial. Now let c < 1 in $F \setminus G$. Then since $\operatorname{Ker}(\tau) = \{1\}, \tau(c) < 1$. Next, let $d \in G$. Then $\tau(d) \in G$, and for every n it cannot be $\tau(d)^n \leq \tau(c)$, otherwise $\tau(c) \in G$. Hence, for every $n, \tau(c) < \tau(d)^n$, and hence $\tau(c)$ does not belong to the τ -filter of $\tau(\mathbf{M})$ generated by $\tau(d)$. By the minimality of F in $\tau(\mathbf{M}), \tau(d) = 1$ and since τ is faithful, we conclude that d = 1 and G is trivial, as desired.

Now suppose that $\operatorname{Ker}(\tau)$ is nontrivial. By condition (2), $\operatorname{Ker}(\tau)$ is subdirectly irreducible. Thus, let F be the least nontrivial filter of $\operatorname{Ker}(\tau)$. Then F is a non trivial τ -filter, and we have to prove that F is the least nontrivial τ -filter of (\mathbf{M}, τ) . Let G be any non trivial τ -filter of (\mathbf{M}, τ) . If $G \subseteq \operatorname{Ker}(\tau)$, then it contains the least filter, F, of $\operatorname{Ker}(\tau)$, and $F \subseteq G$. Otherwise, G contains some $x \notin \operatorname{Ker}(\tau)$, and hence it contains $\tau(x) < 1$. Now by the disjunction property, for all y < 1in $\operatorname{Ker}(\tau), \tau(x) \lor y < 1$ and $\tau(x) \lor y \in \operatorname{Ker}(\tau) \cap G$. Thus, G contains the filter generated by $\tau(x) \lor y$, which is a non trivial filter of the hoop $\operatorname{Ker}(\tau)$, and hence it contains F, the least nontrivial filter of $\operatorname{Ker}(\tau)$. This proves the claim. \Box

By [13, Thm 3.5], conditions (1), (2), and (3) from Lemma 2.1 are independent ones even for state BL-algebras. In addition, Theorem 2.3 gives a characterization of subdirectly irreducible state BL-algebras. If (\mathbf{M}, τ) is a state-morphism BLalgebra, combining [11, Thm 4.5] we can say more about subdirectly irreducible state-morphism BL-algebras. The following examples are from [11].

Example 2.4. Let **M** be a BL-algebra. On $M \times M$ we define two operators, τ_1 and τ_2 , as follows

$$\tau_1(a,b) = (a,a), \quad \tau_2(a,b) = (b,b), \quad (a,b) \in M \times M.$$
 (2.0)

Then τ_1 and τ_2 are two state-morphism operators on $\mathbf{M} \times \mathbf{M}$. Moreover, $(\mathbf{M} \times \mathbf{M}, \tau_1)$ and $(\mathbf{M} \times \mathbf{M}, \tau_2)$ are isomorphic state BL-algebras under the isomorphism $(a, b) \mapsto (b, a)$.

We say that an element $a \in M$ is *Boolean* if $a^{--} = a$ and $a \odot a = a$. Let $B(\mathbf{M})$ be the set of Boolean elements. Then $0, 1 \in B(\mathbf{M}), B(\mathbf{M})$ is a subset of the MV-skeleton $MV(\mathbf{M}) := \{x \in M : x^{--} = x\}$, and $a \in B(\mathbf{M})$ implies $a^{-} \in B(\mathbf{M})$. We recall that according to [26, Thm 2], $MV(\mathbf{M})$ is an MV-algebra, therefore, $B(\mathbf{M})$ is a Boolean subalgebra of $MV(\mathbf{M})$.

Example 2.5. Let **B** be a local MV-algebra such that $\operatorname{Rad}_1(\mathbf{B}) \neq \{1\}$ is a unique nontrivial filter of *B*. Let **M** be a subalgebra of $\mathbf{B} \times \mathbf{B}$ that is generated by $\operatorname{Rad}_1(\mathbf{B}) \times \operatorname{Rad}_1(\mathbf{B})$, that is $M = (\operatorname{Rad}_1(\mathbf{B}) \times \operatorname{Rad}_1(\mathbf{B})) \cup (\operatorname{Rad}_1(\mathbf{B}) \times \operatorname{Rad}_1(\mathbf{B}))^-$. Let $\tau(x, y) := (x, x)$ for all $x, y \in M$. Then τ is a state-morphism operator on **M**, $\operatorname{Ker}(\tau) = \{1\} \times \operatorname{Rad}_1(\mathbf{B}) \subset \operatorname{Rad}_1(\mathbf{M}) = \operatorname{Rad}_1(\mathbf{B}) \times \operatorname{Rad}_1(\mathbf{B})$, **M** has no Boolean nontrivial elements, and (\mathbf{M}, τ) is a subdirectly irreducible state-morphism MV-algebra that is not linear.

Example 2.6. Let \mathbf{A} be a linear nontrivial BL-algebra and \mathbf{B} a nontrivial subdirectly irreducible BL-algebra with the smallest nontrivial BL-filter F_B and let $h : \mathbf{A} \to \mathbf{B}$ be a BL-homomorphism. On $M = \mathbf{A} \times \mathbf{B}$ we define a mapping $\tau_h : M \to M$ by

$$\tau_h(a,b) = (a,h(a)), \quad (a,b) \in M.$$
 (2.2)

If we set y = (0, 1) and $y^- = (1, 0)$, then y and y^- are unique nontrivial Boolean elements.

Then τ_h is a state-morphism operator on **M** and (\mathbf{M}, τ_h) is a subdirectly irreducible state-morphism BL-algebra iff $\operatorname{Ker}(h) = \{a \in A : h(a) = 1\} = \{1\}$. In such a case, $\operatorname{Ker}(\tau_h) = \{1\} \times B$ and $F := \{1\} \times F_B$ is the least nontrivial state-morphism filter on **M**.

Now we present the main result on the complete characterization of subdirectly irreducible state-morphism BL-algebras which is a combination of [11, Thm 4.5] and Theorem 2.3.

Theorem 2.7. A state-morphism BL-algebra (\mathbf{M}, τ) is subdirectly irreducible if and only if one of the following three possibilities holds.

- (i) **M** is linear, $\tau = \text{Id}_M$ is the identity on *M*, and the *BL*-reduct **M** is a subdirectly irreducible *BL*-algebra.
- (ii) The state-morphism operator τ is not faithful, **M** has no nontrivial Boolean elements, and the BL-reduct **M** of (**M**, τ) is a local BL-algebra, Ker(τ) is a subdirectly irreducible irreducible hoop, and Ker(τ) and τ(**M**) have the disjunction property.

Moreover, \mathbf{M} is linearly ordered if and only if $\operatorname{Rad}_1(\mathbf{M})$ is linearly ordered, and in such a case, \mathbf{M} is a subdirectly irreducible BL-algebra such that if F is the smallest nontrivial state-filter for (\mathbf{M}, τ) , then F is the smallest nontrivial BL-filter for \mathbf{M} .

If $\operatorname{Rad}_1(\mathbf{M}) = \operatorname{Ker}(\tau)$, then \mathbf{M} is linearly ordered.

(iii) The state-morphism operator τ is not faithful, **M** has a nontrivial Boolean element. There are a linearly ordered BL-algebra **A**, a subdirectly irreducible BL-algebra **B**, and an injective BL-homomorphism $h : \mathbf{A} \to \mathbf{B}$ such that (\mathbf{M}, τ) is isomorphic as a state-morphism BL-algebra with the state-morphism BL-algebra $(\mathbf{A} \times \mathbf{B}, \tau_h)$, where $\tau_h(x, y) = (x, h(x))$ for any $(x, y) \in A \times B$.

Proof. It follows from [11, Thm 4.5] and Theorem 2.3.

We recall that a *t*-norm is a function $t : [0,1] \times [0,1] \rightarrow [0,1]$ such that (i) t is commutative, associative, (ii) $t(x,1) = x, x \in [0,1]$, and (iii) t is nondecreasing in both components. If t is continuous, we define $x \odot_t y = t(x,y)$ and $x \to_t y = \sup\{z \in [0,1] : t(z,x) \leq y\}$ for $x, y \in [0,1]$, then $\mathbb{I}_t := ([0,1]; \min, \max, \odot_t, \to_t, 0, 1)$ is a BL-algebra. Moreover, according to [3, Thm 5.2], the variety of all BL-algebras is generated by all \mathbb{I}_t with a continuous t-norm t. Let \mathcal{T} denote the system of all BL-algebras \mathbb{I}_t , where t is any continuous t-norm.

The proof of the following result will follow from Theorem 5.2.

Theorem 2.8. The variety of all state-morphism BL-algebras is generated by the system $\{D(\mathbb{I}_t) : t \in \mathcal{T}\}.$

3. General State-Morphism Algebras

In this section, we generalize the notion of state-morphism BL-algebras to an arbitrary variety of algebras of some type. It is interesting that many results known only for state-morphism MV-algebras or state-morphism BL-algebras have a very general presentation as state-morphism algebras. The main result of this section, Theorem 3.7, says that every subdirectly irreducible state-morphism algebra can be embedded into some diagonal one.

Let \mathbf{A} be any algebra of type F and let Con \mathbf{A} be the system of congruences on \mathbf{A} with the least congruence $\Delta_{\mathbf{A}}$. An endomorphisms $\tau : \mathbf{A} \longrightarrow \mathbf{A}$ satisfying $\tau \circ \tau = \tau$ is said to be a *state-morphism* on \mathbf{A} and a couple (\mathbf{A}, τ) is said to be a *state-morphism algebra* or an algebra with internal state-morphism. Clearly, if \mathcal{K} is a variety of algebras of type F, then the class \mathcal{K}_{τ} of all state-morphism algebras (\mathbf{A}, τ) , where $\mathbf{A} \in \mathcal{K}$ and τ is any state-morphism on \mathbf{A} , forms a variety, too.

In the rest of the paper, we will assume that \mathbf{A} is an arbitrary algebra with a fixed type F; if \mathbf{A} is of a specific type, it will be said that and specified.

Definition 3.1. Let $\mathbf{B} \in \mathcal{K}$. Then an algebra $D(\mathbf{D}) := (\mathbf{B} \times \mathbf{B}, \tau_B)$, where τ_B is defined by $\tau_B(x, y) = (x, x), x, y \in B$, is a state-morphism algebra (more precisely $(\mathbf{B} \times \mathbf{B}, \tau_B) \in \mathcal{K}_{\tau}$); we call τ_B also a *diagonal state-operator*. If a state-morphism algebra (\mathbf{C}, τ) can be embedded into some diagonal state-morphism algebra, $(\mathbf{B} \times \mathbf{B}, \tau_B), (\mathbf{C}, \tau)$ is said to be a *subdiagonal* state-morphism algebra, *or*, *more precisely*, **B**-*subdiagonal*.

Let (\mathbf{A}, τ) be a state-morphism algebra. We introduce the following sets:

$$\theta_{\tau} = \{ (x, y) \in A \times A : \tau(x) = \tau(y) \}, \tag{3.1}$$

$$\tau(A) = \{\tau(x) : x \in A\}.$$

The subalgebra which is an image of \mathbf{A} by τ is denoted by $\tau(\mathbf{A})$ and thus $\tau(\mathbf{A}) \in \mathcal{K}$ and $(\tau(\mathbf{A}), \mathrm{Id}_{\tau(A)}) \in \mathcal{K}_{\tau}$, where $\mathrm{Id}_{\tau(A)}$ is the identity on $\tau(A)$; we have also $\tau | \tau(A) = \mathrm{Id}_{\tau(A)}$.

If $\phi \in \operatorname{Con} \tau(\mathbf{A})$, we define

$$\theta_{\phi} := \{ (x, y) \in A \times A : (\tau(x), \tau(y)) \in \phi \}.$$

$$(3.2)$$

Finally, if $\phi \subseteq A^2$ then the congruence on **A** generated by ϕ is denoted by $\Theta(\phi)$ and the congruence on (\mathbf{A}, τ) generated by ϕ is denoted by $\Theta_{\tau}(\phi)$. Clearly $\operatorname{Con}(\mathbf{A}, \tau) \subseteq \operatorname{Con} \mathbf{A}$ and also $\Theta(\phi) \subseteq \Theta_{\tau}(\phi)$.

Lemma 3.2. Let (\mathbf{A}, τ) be a state-morphism algebra. For any $\phi \in \operatorname{Con} \tau(\mathbf{A})$, we have $\theta_{\phi} \in \operatorname{Con} (\mathbf{A}, \tau)$, and $\theta_{\phi} \cap \tau(A)^2 = \phi$. In addition, $\theta_{\tau} \in \operatorname{Con} (\mathbf{A}, \tau)$, $\phi \subseteq \theta_{\phi}$, and $\Theta_{\tau}(\phi) \subseteq \theta_{\phi}$.

Proof. Clearly, θ_{ϕ} is reflexive and symmetric. Moreover, if $(x, y), (y, z) \in \theta_{\phi}$, then $(\tau(x), \tau(y)), (\tau(y), \tau(z)) \in \phi$ and thus $(\tau(x), \tau(z)) \in \phi$ which gives $(x, z) \in \theta_{\phi}$.

Let $f^{\mathbf{A}}$ be an *n*-ary operation on \mathbf{A} and let $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ be such that $(x_i, y_i) \in \theta_{\phi}$ for any $i = 1, \ldots, n$. Then $(\tau(x_i), \tau(y_i)) \in \phi$ holds for any $i = 1, \ldots, n$. Due to $\phi \in \operatorname{Con} \tau(\mathbf{A})$, we obtain $(f^{\tau(\mathbf{A})}(\tau(x_1), \ldots, \tau(x_n)), f^{\tau(\mathbf{A})}(\tau(y_1), \ldots, \tau(y_n))) \in \phi$.

Because τ is an endomorphism, $\tau(f^{\mathbf{A}}(x_1,\ldots,x_n)) = f^{\tau(\mathbf{A})}(\tau(x_1),\ldots,\tau(x_n))$ and $\tau(f^{\mathbf{A}}(y_1,\ldots,y_n)) = f^{\tau(\mathbf{A})}(\tau(y_1),\ldots,\tau(y_n))$ which gives $(\tau(f^{\mathbf{A}}(x_1,\ldots,x_n)),$ $\tau(f^{\mathbf{A}}(y_1,\ldots,y_n))) \in \phi$ and finally also $(f^{\mathbf{A}}(x_1,\ldots,x_n),f^{\mathbf{A}}(y_1,\ldots,y_n)) \in \theta_{\phi}$.

Moreover, take an arbitrary $(x, y) \in \theta_{\phi}$. Then $(\tau(\tau(x)), \tau(\tau(y))) = (\tau(x), \tau(y)) \in \phi$ which gives $(\tau(x), \tau(y)) \in \theta_{\phi}$.

Hence, $\theta_{\phi} \in \text{Con}(\mathbf{A}, \tau)$ and if $\phi = \Delta_{\tau(\mathbf{A})}$, then $\theta_{\phi} = \theta_{\tau}$.

It is clear that $\theta_{\phi} \cap \tau(A)^2 \supseteq \phi$. Now let $(x, y) \in \theta_{\phi} \cap \tau(A)^2$. Then $x, y \in \tau(A)$, $(\tau(x), \tau(y)) \in \phi \subseteq \tau(A)^2$, so that $x = \tau(x) \in \tau(A)$, $y = \tau(y) \in \tau(A)$, and consequently, $(x, y) \in \phi$.

It is evident that θ_{τ} is a congruence on (\mathbf{A}, τ) .

Finally, if $(x, y) \in \phi$ then $\tau(x) = x$ and $\tau(y) = y$ which gives $(\tau(x), \tau(y)) = (x, y) \in \phi$. Thus $(x, y) \in \theta_{\phi}$ which finishes the proof that $\phi \subseteq \theta_{\phi}$ and $\Theta_{\tau}(\phi) \subseteq \theta_{\phi}$.

Lemma 3.3. Let $\theta \in \text{Con } \mathbf{A}$ be such that $\theta \subseteq \theta_{\tau}$. Then $\theta \in \text{Con } (\mathbf{A}, \tau)$ holds. Moreover, if $x, y \in A$ are such that $(x, y) \in \theta_{\tau}$, then $\Theta(x, y) = \Theta_{\tau}(x, y)$.

Proof. If $(x, y) \in \theta \subseteq \theta_{\tau}$, then $\tau(x) = \tau(y)$ and thus $(\tau(x), \tau(y)) = (\tau(x), \tau(x)) \in \theta$ proves that $\theta \in \text{Con}(\mathbf{A}, \tau)$.

Moreover, if $(x, y) \in \theta_{\tau}$, then $\Theta(x, y) \subseteq \theta_{\tau}$. Due to the first part of Lemma, we obtain $\Theta(x, y) \in \text{Con}(\mathbf{A}, \tau)$ and thus $\Theta_{\tau}(x, y) \subseteq \Theta(x, y)$ holds. The second inclusion is trivial.

Lemma 3.4. If $x, y \in \tau(\mathbf{A})$, then $\Theta(x, y) = \Theta_{\tau}(x, y)$. Consequently, $\Theta(\phi) = \Theta_{\tau}(\phi)$ whenever $\phi \subseteq \tau(A)^2$.

Proof. Let us denote by ϕ the congruence on $\tau(\mathbf{A})$ generated by (x, y). Clearly we obtain the chain of inclusions $\phi \subseteq \Theta(x, y) \subseteq \Theta(\phi) \subseteq \theta_{\phi}$ (because $(x, y) \in \phi$ and $\phi \subseteq \theta_{\phi}$, see Lemma 3.2).

Assume $(a,b) \in \Theta(x,y)$, then $(a,b) \in \theta_{\phi}$ and thus $(\tau(a),\tau(b)) \in \phi \subseteq \Theta(x,y)$. Thus $\Theta(x,y) \in \text{Con}(\mathbf{A},\tau)$ and $\Theta_{\tau}(x,y) \subseteq \Theta(x,y)$ holds. The second inclusion is trivial.

Finally, let $\phi \subseteq \tau(A)^2$. By [2, Thm 5.3], the both congruence lattices of **A** and (\mathbf{A}, τ) are complete sublattices of the lattice of equivalencies on **A**, and therefore, they have the same infinite suprema. Hence, by the first part of the lemma,

$$\Theta(\phi) = \bigvee_{(x,y)\in\phi} \Theta(x,y) = \bigvee_{(x,y)\in\phi} \Theta_{\tau}(x,y) = \Theta_{\tau}(\phi).$$

Remark 3.5. By Lemma 3.2, if ϕ is a congruence on $\tau(\mathbf{A})$, then θ_{ϕ} is an extension of ϕ on (\mathbf{A}, τ) and $\Theta(\phi) = \Theta_{\tau}(\phi) \subseteq \theta_{\phi}$. There is a natural question whether $\Theta(\phi) = \theta_{\phi}$? The answer is positive if and only if τ is the identity on A. Indeed, if τ is the identity on A, the statement is evident, in the opposite case, we have $\theta_{\Delta_{\tau}(\mathbf{A})} = \theta_{\tau} \neq \Delta_{\mathbf{A}} = \Theta(\Delta_{\tau(\mathbf{A})}).$

Theorem 3.6. Let (\mathbf{A}, τ) be a subdirectly irreducible state-morphism algebra such that \mathbf{A} is subdirectly reducible. Then there is a subdirectly irreducible algebra \mathbf{B} such that (\mathbf{A}, τ) is \mathbf{B} -subdiagonal.

Proof. First, if $\theta_{\tau} = \Delta_{\mathbf{A}}$, then for any $x \in A$, the equality $\tau(x) = x$ holds and thus Con $\mathbf{A} = \text{Con}(\mathbf{A}, \tau)$ which is absurd because \mathbf{A} is subdirectly irreducible and (\mathbf{A}, τ) is not subdirectly irreducible.

The subdirect irreducibility of (\mathbf{A}, τ) implies that there is a least proper congruence $\theta_{\min} \in \text{Con}(\mathbf{A}, \tau)$. Moreover, due to Lemma 3.3, the congruence θ_{\min} is also a least proper congruence θ on \mathbf{A} with $\theta \subseteq \theta_{\tau}$ and thus θ_{\min} is an atom in Con \mathbf{A} . Let us denote

$$\theta_{\tau}^{\perp} = \{ \theta \in \operatorname{Con} \mathbf{A} : \theta \cap \theta_{\tau} = \Delta_{\mathbf{A}} \}.$$

First, we prove that there exists proper $\theta \in \theta_{\tau}^{\perp}$. The subdirect reducibility of **A** shows that there exists proper $\theta \in \text{Con } \mathbf{A}$ with $\theta_{\min} \not\subseteq \theta$. Hence, $\theta_{\tau} \cap \theta = \Delta_{\mathbf{A}}$ holds (because if $\theta_{\tau} \cap \theta \neq \Delta_{\mathbf{A}}$, then $\theta_{\tau} \cap \theta$ is a proper congruence contained in θ_{τ} and minimality of θ_{\min} yields $\theta_{\min} \subseteq \theta \cap \theta_{\tau} \subseteq \theta$, which is absurd).

Moreover, let us have $\theta_n \in \theta_{\tau}^{\perp}$ for any $n \in \mathbb{N}$ with $\theta_n \subseteq \theta_{n+1}$, then clearly $\bigvee_{n \in \mathbb{N}} \theta_n = \bigcup_{n \in \mathbb{N}} \theta_n \in \theta_{\tau}^{\perp}$. Due to Zorn's Lemma, there is maximal $\theta^* \in \theta_{\tau}^{\perp}$.

We have proved that both θ_{τ} and θ^* are proper congruences on \mathbf{A} with $\theta_{\tau} \cap \theta^* = \Delta_{\mathbf{A}}$. By the Birkhoff Theorem about subdirect reducibility, \mathbf{A} is a subdirect product of two algebras \mathbf{A}/θ_{τ} and \mathbf{A}/θ^* with an embedding $h : \mathbf{A} \longrightarrow \mathbf{A}/\theta_{\tau} \times \mathbf{A}/\theta^*$ defined by $h(x) = (x/\theta_{\tau}, x/\theta^*)$.

Now we define the mapping $\psi : A/\theta_{\tau} \longrightarrow A/\theta^*$ by $\psi(x/\theta_{\tau}) = \tau(x)/\theta^*$. Clearly ψ is well-defined because $x/\theta_{\tau} = y/\theta_{\tau}$ yields $\tau(x) = \tau(y)$ and thus $\psi(x/\theta_{\tau}) = \tau(x)/\theta^* = \tau(y)/\theta^* = \psi(y/\theta_{\tau})$. Let us suppose that $\psi(x/\theta_{\tau}) = \psi(y/\theta_{\tau})$. Then $\tau(x)/\theta^* = \tau(y)/\theta^*$ and $(\tau(x), \tau(y)) \in \theta^*$. Hence, $\Theta(\tau(x), \tau(y)) \subseteq \theta^*$ holds. Finally, if $\tau(x) \neq \tau(y)$ (thus $\Theta(\tau(x), \tau(y))$ is a proper congruence), then $\tau(x), \tau(y) \in \tau(\mathbf{A})$ and Lemma 3.4 yields $\Theta(\tau(x), \tau(y)) \in \operatorname{Con}(\mathbf{A}, \tau)$ and thus $\theta_{\min} \subseteq \Theta(\tau(x), \tau(y)) \subseteq \theta^*$ which is absurd $(\theta_{\min} \subseteq \theta_{\tau} \cap \theta^* = \Delta_{\mathbf{A}})$. Therefore, the mapping ψ is injective.

We shall prove that ψ is a homomorphism (and thus an embedding). If $f^{\mathbf{A}}$ is an *n*-ary operation and $x_1/\theta_{\tau}, \ldots, x_n/\theta_{\tau} \in \mathbf{A}/\theta_{\tau}$, then

$$\psi(f^{\mathbf{A}/\theta_{\tau}}(x_{1}/\theta_{\tau},\ldots,x_{n}/\theta_{\tau})) = \psi(f^{\mathbf{A}}(x_{1},\ldots,x_{n})/\theta_{\tau})$$

$$= \tau(f^{\mathbf{A}}(x_{1},\ldots,x_{n}))/\theta^{*}$$

$$= f^{\mathbf{A}}(\tau(x_{1}),\ldots,\tau(x_{n}))/\theta^{*}$$

$$= f^{\mathbf{A}/\theta^{*}}(\tau(x_{1})/\theta^{*},\ldots,\tau(x_{n})/\theta^{*})$$

$$= f^{\mathbf{A}/\theta^{*}}(\psi(x_{1}/\theta_{\tau}),\ldots,\psi(x_{n}/\theta_{\tau})).$$

Now we prove that **A** is \mathbf{A}/θ^* -diagonal. Let $g : A \longrightarrow (A/\theta^*)^2$ be defined via $g(x) = (\psi(x/\theta_\tau), x/\theta^*) = (\tau(x)/\theta^*, x/\theta^*)$. Because the mapping g is the composition of two functions h and ψ which are embeddings, g is also an embedding of **A**

into $(\mathbf{A}/\theta^*)^2$. Now we can compute:

$$g(\tau(x)) = (\tau(\tau(x))/\theta^*, \tau(x)/\theta^*)$$

= $(\tau(x)/\theta^*, \tau(x)/\theta^*)$
= $\tau_{\mathbf{A}/\theta^*}(\tau(x)/\theta^*, x/\theta^*)$
= $\tau_{\mathbf{A}/\theta^*}(g(x)),$

where $\tau_{\mathbf{A}/\theta^*}$ is the diagonal state-morphism on the product $\mathbf{A}/\theta^* \times \mathbf{A}/\theta^*$. Therefore, $g: (\mathbf{A}, \tau) \longrightarrow (\mathbf{A}/\theta^* \times \mathbf{A}/\theta^*, \tau_{\mathbf{A}/\theta^*})$ is an embedding and (\mathbf{A}, τ) is \mathbf{A}/θ^* -diagonal.

Finally, we prove the subdirect irreducibility of \mathbf{A}/θ^* . Of course, $\theta_{\min} \cap \theta^* = \Delta_{\mathbf{A}}$ yields $\theta_{\min} \not\subseteq \theta^*$ and thus $\theta^* \subset \theta^* \lor \theta_{\min}$. Moreover, if $\theta^* \subset \theta$, from maximality of θ^* we obtain $\theta \cap \theta_\tau \neq \Delta_{\mathbf{A}}$ and thus $\theta_{\min} \subseteq \theta_\tau \cap \theta$. Finally, $\theta_{\min} \lor \theta^* \subseteq (\theta_\tau \cap \theta) \lor \theta^* \subseteq (\theta_\tau \cap \theta) \lor \theta = \theta$ holds. Hence, for any congruence $\theta \in \text{Con } \mathbf{A}$, the inequality $\theta^* \subset \theta^* \cap \theta_{\min} \subseteq \theta$ holds. Due to the Birkhoff's Theorem and the Second Homomorphism Theorem, an algebra \mathbf{A}/θ^* is subdirectly irreducible.

Theorem 3.6 can be extended as follows.

Theorem 3.7. For every subdirectly irreducible state-morphism algebra (\mathbf{A}, τ) , there is a subdirectly irreducible algebra \mathbf{B} such that (\mathbf{A}, τ) is \mathbf{B} -subdiagonal.

Proof. There are two cases: (1) (\mathbf{A}, τ) and \mathbf{A} are subdirectly irreducible, and (2) (\mathbf{A}, τ) is a subdirectly irreducible state-morphism algebra and \mathbf{A} is a subdirectly reducible algebra

(1) Assume that (\mathbf{A}, τ) and \mathbf{A} are subdirectly irreducible. Define two statemorphism algebras $(\tau(\mathbf{A}) \times \mathbf{A}, \tau_1)$ and $(\mathbf{A} \times \mathbf{A}, \tau_2)$, where $\tau_1(a, b) = (a, a), (a, b) \in \tau(A) \times A$, and $\tau_2(a, b) = (a, a), a, b \in A$. Then the first one is a subalgebra of the second one.

Define a mapping $\phi : A \to \tau(A) \times A$ defined by $\phi(a) = (\tau(a), a), a \in A$. Then ϕ is injective because if $\phi(a) = \phi(b)$ then $(\tau(a), a) = (\tau(b), b)$ and a = b. We show that ϕ is a homomorphism. Let $f^{\mathbf{A}}$ be an *n*-ary operation on \mathbf{A} and let $a_1, \ldots, a_n \in A$. Then

$$\phi(f^{\mathbf{A}}(a_1,\ldots,a_n)) = (\tau(f^{\mathbf{A}}(a_1,\ldots,a_n)), f^{\mathbf{A}}(a_1,\ldots,a_n))$$
$$= (f^{\mathbf{A}}(\tau(a_1),\ldots,\tau(a_n)), f^{\mathbf{A}}(a_1,\ldots,a_n))$$
$$= f^{\tau(\mathbf{A})\times\mathbf{A}}((\tau(a_1),a_1),\ldots,(\tau(a_n),a_n))$$
$$= f^{\tau(\mathbf{A})\times\mathbf{A}}(\phi(a_1),\ldots,\phi(a_n)).$$

Since $\phi : \mathbf{A} \to \tau(\mathbf{A}) \times \mathbf{A} \subseteq \mathbf{A} \times \mathbf{A}$, ϕ can be assumed also as an injective homomorphism from the state-morphism algebra (\mathbf{A}, τ) into the state-morphism algebra $D(\mathbf{B})$, where $\mathbf{B} := \mathbf{A}$ is a subdirectly irreducible algebra.

(2) This case was proved in Theorem 3.6.

For example, a state-morphism algebra $(\mathbf{A}, \mathrm{Id}_A)$, where Id_A is the identity on A, is subdirectly irreducible if and only if \mathbf{A} is subdirectly irreducible. Therefore, $(\mathbf{A}, \mathrm{Id}_A)$ can be embedded into $(\mathbf{A} \times \mathbf{A}, \tau_A)$ under the mapping $a \mapsto (a, a), a \in A$. Consequently, every subdirectly irreducible state-morphism algebra $(\mathbf{A}, \mathrm{Id}_A)$ is \mathbf{A} -subdiagonal with \mathbf{A} subdirectly irreducible.

We note that in the same way as in [13, Lem 6.1], it is possible to show that the class of subdiagonal state-morphism algebras is closed under subalgebras and ultraproducts, and not closed under homomorphic images, see [13, Lem 6.6].

4. VARIETIES OF STATE-MORPHISM ALGEBRAS AND THEIR GENERATORS

In this section, we study varieties of state-morphism algebras and their generators. It is interesting to note that some similar results proved for state-morphism MV-algebras in [13] can be obtained in an analogous way also for a general variety of algebras.

Let τ be a state-morphism operator on an algebra **A**. We set

$$\operatorname{Ker}(\tau) := \{ (x, y) \in A \times A : \tau(x) = \tau(y) \},\$$

the kernel of τ . We say that τ is faithful if $\text{Ker}(\tau) = \Delta_{\mathbf{A}}$. It is evident that τ is faithful iff $\tau(x) = x$ for each $x \in A$. In addition, τ is faithful iff τ is injective.

For every class \mathcal{K} of same type algebras, we set $\mathsf{D}(\mathcal{K}) = \{D(\mathbf{A}) : \mathbf{A} \in \mathcal{K}\}$, where $D(\mathbf{A}) = (\mathbf{A} \times \mathbf{A}, \tau_A)$.

As usual, given a class \mathcal{K} of algebras of the same type, $I(\mathcal{K})$, $H(\mathcal{K})$, $S(\mathcal{K})$ and $P(\mathcal{K})$ and $P_U(\mathcal{K})$ will denote the class of isomorphic images, of homomorphic images, of subalgebras, of direct products and of ultraproducts of algebras from \mathcal{K} , respectively. Moreover, $V(\mathcal{K})$ will denote the variety generated by \mathcal{K} .

Lemma 4.1. (1) Let \mathcal{K} be a class of algebras of the same type F. Then $\mathsf{VD}(\mathcal{K}) \subseteq \mathsf{V}(\mathcal{K})_{\tau}$.

(2) Let \mathcal{V} be any variety. Then $\mathcal{V}_{\tau} = \mathsf{ISD}(\mathcal{V})$.

Proof. (1) If $D(\mathbf{A}) \in \mathsf{D}(\mathcal{K})$ (thus $\mathbf{A} \in \mathcal{K}$), then the *F*-reduct of the algebra $D(\mathbf{A})$ is the algebra $\mathbf{A} \times \mathbf{A}$ which belongs to the variety $\mathsf{V}(\mathcal{K})$. Due to definition of $\mathsf{V}(\mathcal{K})_{\tau}$, we obtain also $D(\mathbf{A}) \in \mathsf{V}(\mathcal{K})_{\tau}$. We have proved that $\mathsf{D}(\mathcal{K}) \subseteq \mathsf{V}(\mathcal{K})_{\tau}$. Because $\mathsf{V}(\mathcal{K})_{\tau}$ is a variety then also $\mathsf{VD}(\mathcal{K}) \subseteq \mathsf{V}(\mathcal{K})_{\tau}$

(2) Let $(\mathbf{A}, \tau) \in \mathcal{V}_{\tau}$. As we have seen in the proof of Theorem 3.7, the map $\phi : a \mapsto (\tau(a), a)$ is an injective homomorphism of (\mathbf{A}, τ) into $D(\mathbf{A})$. Hence, ϕ is compatible with τ , and $(\mathbf{A}, \tau) \in \mathsf{ISD}(\mathcal{V})$. Conversely, the *F*-reduct of any algebra in $\mathsf{D}(\mathcal{V})$ is in \mathcal{V} , (being a direct product of algebras in \mathcal{V}), and hence the *F*-reduct of any member of $\mathsf{ISD}(\mathcal{V})$ is in $\mathsf{ISD}(\mathcal{V}) = \mathcal{V}$. Hence, any member of $\mathsf{ISD}(\mathcal{V})$ is in \mathcal{V}_{τ} . \Box

Lemma 4.2. Let \mathcal{K} be a class of algebras of the same type F. Then:

- (1) $\mathsf{DH}(\mathcal{K}) \subseteq \mathsf{HD}(\mathcal{K}).$ (2) $\mathsf{DS}(\mathcal{K}) \subseteq \mathsf{ISD}(\mathcal{K}).$
- (3) $\mathsf{DP}(\mathcal{K}) \subseteq \mathsf{IPD}(\mathcal{K})$.
- (4) $VD(\mathcal{K}) = ISD(V(\mathcal{K})).$

Proof. (1) Let $D(\mathbf{C}) \in \mathsf{DH}(\mathcal{K})$. Then there are $\mathbf{A} \in \mathcal{K}$ and a homomorphism h from \mathbf{A} onto \mathbf{C} . Let for all $a, b \in A$, $h^*(a, b) = (h(a), h(b))$. We claim that h^* is a homomorphism from $D(\mathbf{A})$ onto $D(\mathbf{C})$. That h^* is a homomorphism is clear. We verify that h^* is compatible with τ_A . We have $h^*(\tau_A(a, b)) = h^*(a, a) = (h(a), h(a)) = \tau_C(h(a), h(b)) = \tau_C(h^*(a, b))$. Finally, since h is onto, given $(c, d) \in C \times C$, there are $a, b \in A$ such that h(a) = c and h(b) = d. Hence, $h^*(a, b) = (c, d)$, h^* is onto, and $D(\mathbf{C}) \in \mathsf{HD}(\mathcal{K})$.

(2) It is trivial.

(3) Let $\mathbf{A} = \prod_{i \in I} (\mathbf{A}_i) \in \mathsf{P}(\mathcal{K})$, where each \mathbf{A}_i is in \mathcal{K} . Then the map

$$\Phi: ((a_i: i \in I), (b_i: i \in I)) \mapsto ((a_i, b_i): i \in I)$$

is an isomorphism from $D(\mathbf{A})$ onto $\prod_{i \in I} D(\mathbf{A}_i)$. Indeed, it is clear that Φ is an *F*-isomorphism. Moreover, denoting the state-morphism of $\prod_{i \in I} D(\mathbf{A}_i)$ by τ^* , we

$$\Phi(\tau_A((a_i:i\in I),(b_i:i\in I))) = \Phi((a_i:i\in I),(a_i:i\in I)) = \\ = ((a_i,a_i):i\in I) = (\tau_{\mathbf{A}_i}(a_i,b_i):i\in I) = \tau^*(\Phi((a_i:i\in I),(b_i:i\in I))),$$

and hence Φ is an isomorphism.

(4) By (1), (2) and (3), $\mathsf{DV}(\mathcal{K}) = \mathsf{DHSP}(\mathcal{K}) \subseteq \mathsf{HSPD}(\mathcal{K}) = \mathsf{VD}(\mathcal{K})$, and hence $\mathsf{ISDV}(\mathcal{K}) \subseteq \mathsf{ISVD}(\mathcal{K}) = \mathsf{VD}(\mathcal{K})$. Conversely, by Lemma 4.1(1), $\mathsf{VD}(\mathcal{K}) \subseteq \mathsf{V}(\mathcal{K})_{\tau}$, and by Lemma 4.1(2), $\mathsf{V}(\mathcal{K})_{\tau} = \mathsf{ISDV}(\mathcal{K})$. This proves the claim.

Theorem 4.3. (1) For every class \mathcal{K} of algebras of the same type F, $V(D(\mathcal{K})) = V(\mathcal{K})_{\tau}$.

(2) Let \mathcal{K}_1 and \mathcal{K}_2 be two classes of same type algebras. Then $V(D(\mathcal{K}_1)) = V(D(\mathcal{K}_2))$ if and only if $V(\mathcal{K}_1) = V(\mathcal{K}_2)$.

Proof. (1) By Lemma 4.2(4), $VD(\mathcal{K}) = ISD(V(\mathcal{K}))$. Moreover, by Lemma 4.1(2), $V(\mathcal{K})_{\tau} = ISDV(\mathcal{K})$. Hence, $V(D(\mathcal{K})) = V(\mathcal{K})_{\tau}$.

(2) We have $V(D(\mathcal{K}_1)) = V(\mathcal{K}_1)_{\tau}$ and $V(D(\mathcal{K}_2)) = V(\mathcal{K}_2)_{\tau}$. Clearly, $V(\mathcal{K}_1) = V(\mathcal{K}_2)$ implies $V(\mathcal{K}_1)_{\tau} = V(\mathcal{K}_2)_{\tau}$, and hence $V(D(\mathcal{K}_1)) = V(D(\mathcal{K}_2))$. Conversely, $V(D(\mathcal{K}_1)) = V(D(\mathcal{K}_2))$ implies $V(\mathcal{K}_1)_{\tau} = V(\mathcal{K}_2)_{\tau}$. But any algebra $\mathbf{A} \in V(\mathcal{K}_1)$ is the *F*-reduct of a state-morphism algebra in $V(\mathcal{K}_1)_{\tau}$, namely of $(\mathbf{A}, \mathrm{Id}_A)$.

It follows that, if $V(\mathcal{K}_1)_{\tau} = V(\mathcal{K}_2)_{\tau}$, then the classes of *F*-reducts of $V(\mathcal{K}_1)_{\tau}$ and of $V(\mathcal{K}_2)_{\tau}$ coincide, and hence $V(\mathcal{K}_1) = V(\mathcal{K}_2)$.

As a direct corollary of Theorem 4.3, we have:

Theorem 4.4. If a system \mathcal{K} of algebras of the same type F generates the whole variety $\mathcal{V}(F)$ of all algebras of type F, then the variety $\mathcal{V}(F)_{\tau}$ of all state-morphism algebras (\mathbf{A}, τ) , where $\mathbf{A} \in \mathcal{V}(F)$, is generated by the class $\{D(\mathbf{A}) : \mathbf{A} \in \mathcal{K}\}$.

Some applications of the latter theorem for different varieties of algebras will be done in Section 5.

Theorem 4.5. If **A** is a subdirectly irreducible algebra, then any state-morphism algebra (\mathbf{A}, τ) is subdirectly irreducible.

Proof. Let **A** be a subdirectly irreducible algebra and let τ be a state-morphism operator on **A**. If τ is the identity on A, then Con $\mathbf{A} = \text{Con}(\mathbf{A}, \tau)$ and, consequently, (\mathbf{A}, τ) is subdirectly irreducible. If τ is not the identity on A, then θ_{τ} , defined by (3.1), is a nontrivial congruence on **A**, and thus $\theta_{\min} \subseteq \theta_{\tau}$, where $\theta_{\min} \in \text{Con } \mathbf{A}$ is the least nontrivial congruence. Hence, θ_{\min} belongs to the set Con (\mathbf{A}, τ) , see Lemma 3.3. Therefore, Con $(\mathbf{A}, \tau) \subseteq$ Con **A** yields the subdirect irreducibility of the algebra (\mathbf{A}, τ) , more precisely, θ_{\min} is also the least proper congruence in Con (\mathbf{A}, τ) .

We remind the following Mal'cev Theorem, [2, Lem 3.1].

Theorem 4.6. Let **A** be an algebra and $\phi \subseteq A^2$. Then $(a,b) \in \Theta(\phi)$ if and only if there exist two finite sequences of terms $t_1(\overline{x}_1, x), \ldots, t_n(\overline{x}_n, x)$ and pairs $(a_1, b_1), \ldots, (a_n, b_n) \in \phi$ with

$$a = t_1(\overline{x}_1, a_1), t_i(\overline{x}_i, b_i) = t_{i+1}(\overline{x}_{i+1}, a_{i+1}) \text{ and } t_n(\overline{x}_n, b_n) = b$$

for some $\overline{x}_1, \ldots, \overline{x}_n \in A$.

12

We say that an algebra **B** has the Congruence Extension Property (CEP for short) if, for any algebra **A** such that **B** is a subalgebra of **A** and for any congruence $\theta \in \text{Con } \mathbf{B}$, there is a congruence $\phi \in \text{Con } \mathbf{A}$ such that $\theta = (B \times B) \cap \phi$. A variety \mathcal{K} has the CEP if every algebra in \mathcal{K} has the CEP. For example, the variety of MValgebra, or the variety of BL-algebras or the variety of state-morphism MV-algebras (see [13, Lem 6.1]) satisfies the CEP.

Theorem 4.7. A variety \mathcal{V}_{τ} satisfy the CEP if and only if \mathcal{V} satisfies the CEP.

Proof. Let us have a variety \mathcal{V} with the CEP. If $\mathbf{A} \in \mathcal{V}$ is such that (\mathbf{A}, τ) is an algebra with state-morphism, for any subalgebra $(\mathbf{B}, \tau) \subseteq (\mathbf{A}, \tau)$ and any $\phi \in \text{Con}(\mathbf{B}, \tau)$, the condition $\phi = B^2 \cap \Theta(\phi)$ holds.

Now we prove $\Theta(\phi) = \Theta_{\tau}(\phi)$. To show that, assume $(a, b) \in \Theta(\phi)$. Mal'cev's Theorem shows the existence of finite sequences of terms $t_1(\overline{x}_1, x), \ldots, t_n(\overline{x}_n, x)$ and pairs $(a_1, b_1), \ldots, (a_n, b_n) \in \phi$ with

$$a = t_1(\overline{x}_1, a_1), t_i(\overline{x}_i, b_i) = t_{i+1}(\overline{x}_{i+1}, a_{i+1}) \text{ and } t_n(\overline{x}_n, b_n) = b$$

for some $\overline{x}_1, \ldots, \overline{x}_n \in A$. Because τ is an endomorphism, we obtain also equalities

$$\tau(a) = t_1(\tau(\overline{x}_1), \tau(a_1)), \ t_i(\tau(\overline{x}_i), \tau(b_i)) = t_{i+1}(\tau(\overline{x}_{i+1}), \tau(a_{i+1}))$$

and

$$t_n(\tau(\overline{x}_n), \tau(b_n)) = \tau(b).$$

We have assumed that $\phi \in \text{Con}(\mathbf{B}, \tau)$, thus $(a_i, b_i) \in \phi$ yields $(\tau(a_i), \tau(b_i)) \in \phi$ for any i = 1, ..., n. Now, we have obtained $(\tau(a), \tau(b)) \in \Theta(\phi)$. In other words, $\Theta(\phi) \in \text{Con}(\mathbf{A}, \tau)$ and thus $\Theta(\phi) = \Theta_{\tau}(\phi)$.

If \mathcal{V}_{τ} has the CEP, then for any $\mathbf{A} \in \mathcal{V}$, we have $\operatorname{Con} \mathbf{A} = \operatorname{Con}(\mathbf{A}, \operatorname{Id}_A)$. Clearly, the CEP on $(\mathbf{A}, \operatorname{Id}_A)$ yields the CEP on \mathbf{A} .

5. Applications to Special Types of Algebras

In this section, we apply a general result concerning generators of some varieties of state-morphism algebras, Theorem 4.3, to the variety of state-morphism BL-algebras, state-morphism MTL-algebras, state-morphism non-associative BLalgebras, and state-morphism pseudo MV-algebras, when we use different systems of t-norms on the real interval [0, 1] and a special type of pseudo MV-algebras, respectively.

Algebras for which the logic MTL is sound are called MTL-algebras. They can be characterized as prelinear commutative bounded integral residuated lattices. In more detail, according to [15], an algebraic structure $\mathbf{A} = (A; \land, \lor, *, \rightarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 0, 0 \rangle$ is an *MTL-algebra* if

- (M1) $(A; \land, \lor, 0, 1)$ is a bounded lattice with the top element 0 and bottom element 1,
- (M2) (A; *, 1) is a commutative monoid,
- (M3) * and \rightarrow form an adjoint pair, that is, $z * x \leq y$ if and only if $z \leq x \rightarrow y$, where \leq is the lattice order of $(A; \land, \lor)$ for all $x, y, z \in A$, (the residuation condition),
- (M4) $(x \to y) \lor (y \to x) = 1$ holds for all $x, y \in A$ (the prelinearity condition).

If t is any left-continuous t-norm on [0, 1], we define two binary operations $*_t \to_t$ on [0, 1] via $x *_t y = t(x, y)$ and $x \to_t y = \sup\{z \in [0, 1] : t(z, x) \le y\}$ for $x, y \in [0, 1]$, then $\mathbb{I}_t = ([0, 1]; \min, \max, *_t, \rightarrow_t, 0, 1)$ is an example of an MTL-algebra. An MTL-algebra \mathbb{I}_t is a BL-algebra iff t is continuous.

Due to [15], the class \mathcal{T}_{lc} , which denotes the system of all BL-algebras \mathbb{I}_t , where t is a left-continuous t-norm on the interval [0, 1], generates the variety of MTL-algebras. This result was strengthened in [27] who introduced the class of regular left-continuous t-norms which is strictly smaller than the class of left-continuous t-norms, but they generate the variety of MTL-algebras.

According to [1], we say that an algebra $\mathbf{A} = (A; \lor, \land, \cdot, \rightarrow, 0, 1)$ of type $\langle 2, 2, 2, 2, 0, 0 \rangle$ is a *non-associative BL-algebra* (naBL-algebra in short) if

- (A1) $(A; \lor, \land, 0, 1)$ is a bounded lattice,
- (A2) $(A; \cdot, 1)$ is a commutative groupoid with the neutral element 1,
- (A3) any $x, y, z \in A$ satisfy $x \cdot y \leq z$ if and only if $x \leq y \rightarrow z$,
- (A4) algebra satisfy the divisibility axiom $(x \cdot (x \to y) = x \land y)$,
- (A5) algebra satisfy the α -prelinearity and β -prelinearity $(x \to y \lor \alpha_b^a(y \to x) = x \to y \lor \beta_b^a(y \to x) = 1)$, where $\alpha_b^a(x) = (a \cdot b) \to (a \cdot (b \cdot x))$ and $\beta_b^a(x) = b \to (a \to ((a \cdot b) \cdot x))$.

A function $t : [0,1] \times [0,1] \rightarrow [0,1]$ on the interval [0,1] of reals is said to be a *non-associative* t-norm (nat-norm briefly) if

(nat1) ([0,1];t,1) is a commutative groupoid with the neutral element 1,

(nat2) t is continuous in the usual sense,

(nat3) if $x, y, z \in [0, 1]$ are such that $x \leq y$, then $t(x, z) \leq t(y, z)$.

According to [1, Thm 5], for any nat-norm there is a unique binary operation \rightarrow_t satisfying the adjointness condition, i.e. $t(x,y) \leq z$ if and only if $x \leq y \rightarrow_t z$. Moreover, an algebra $\mathbb{I}_t^{na} := ([0,1]; \min, \max, t, \rightarrow_t, 0, 1)$ is an naBL-algebra.

The class of all naBL-algebras is denoted by $na\mathcal{BL}$ and $na\mathcal{T}$ denotes the class of all naBL-algebras \mathbb{I}_t^{na} for any non-associative t-norm. The main result on nonassociative BL-algebras says that $na\mathcal{T}$ is the generating class for the variety $na\mathcal{BL}$, [1, Thm 8]:

Theorem 5.1. There hods

$$na\mathcal{BL} = \mathsf{IP}_{\mathsf{S}}\mathsf{SP}_{\mathsf{U}}(na\mathcal{T}).$$

Finally, we recall that a noncommutative generalization of MV-algebras was introduced in [17] as pseudo MV-algebras or in [25] as generalized MV-algebras. According to [10], every pseudo MV-algebra $(M; \oplus, \neg, \sim, 0, 1)$ of type $\langle 2, 1, 1, 0, 0 \rangle$ is an interval in a unital ℓ -group (G, u) with strong unit u, i.e. $M \cong \Gamma(G, u) := [0, u]$, where $x \oplus y = (x + y) \land$, $x^{\neg} = u - x$, $x^{\sim} = -x + u$, 0 = 0, and 1 = u. If (G, u)is double transitive (for definitions and details see [12]), then $\Gamma(G, u)$ generates the variety of pseudo MV-algebras, [12, Thm 4.8]. For example, if Aut(\mathbb{R}) is the set of all automorphisms of the real line \mathbb{R} preserving the natural order in \mathbb{R} and u(t) := t + 1, $t \in \mathbb{R}$, let Aut_u(\mathbb{R}) = { $g \in Aut(\mathbb{R}) : g \leq nu$ for some integer $n \geq 1$ }. Then $\Gamma(Aut_u(\mathbb{R}), u)$ is double transitive and it generates the variety of pseudo MV-algebras, see [12, Ex 5.3].

Now we apply the general statement, Theorem 4.4, on generators to different types of state-morphism algebras. We recall that \mathcal{T} was defined as the class of all BL-algebras \mathbb{I}_t , where t is a continuous t-norm on [0, 1].

Theorem 5.2. (1) The variety of all state-morphism MV-algebras is generated by the diagonal state-morphism MV-algebra $D([0,1]_{MV})$.

14

(2) The variety of all state-morphism BL-algebras is generated by the class $\{D(\mathbb{I}_t) : \mathbb{I}_t \in \mathcal{T}\}.$

(3) The variety of all state-morphism MTL-algebras is generated by the class $\{D(\mathbb{I}_t) : \mathbb{I}_t \in \mathcal{T}_{lc}\}.$

(4) The variety of all state-morphism naBL-algebras is generated by the class $\{D(\mathbb{I}_t^{na}) : \mathbb{I}_t \in na\mathcal{T}\}.$

(5) If a unital ℓ -group (G, u) is double transitive, then $D(\Gamma(G, u))$ generates the variety of state-morphism pseudo MV-algebras.

Proof. (1) It follows from the fact that the MV-algebra of the real interval [0,1] generates the variety of MV-algebras, see e.g. [4, Prop 8.1.1], and then apply Theorem 4.4.

(2) The statement follows from the fact that $V(\mathcal{T})$ is by [3, Thm 5.2] the variety \mathcal{BL} of all BL-algebras. Now it suffices to apply Theorem 4.4.

(3) By [15], the class \mathcal{T}_{lc} of all \mathbb{I}_t , where t is any left-continuous t-norms on the interval [0, 1], generates the variety of MTL-algebras; then apply Theorem 4.4.

(4) By [1, Thm 8] or Theorem 5.1, the class $na\mathcal{T}$ of all \mathbb{I}_t , where t is any non-associative t-norms on the interval [0, 1], generates the variety of non-associative BL-algebras; then apply again Theorem 4.4.

(5) By the above, $\Gamma(G, u)$ generates the variety of pseudo MV-algebras, see also [12, Thm 4.8]; then apply Theorem 4.4.

We note that the case (1) in Theorem 4.4 was an open problem posed in [7] and was positively solved in [13, Thm 5.4(3)].

6. CONCLUSION

In the paper, we have presented a general approach to theory of state-morphism algebras which generalizes state-morphism MV-algebras and state-morphism BL-algebras as pairs (\mathbf{A}, τ) , where \mathbf{A} is an algebra of type F and τ is an endomorphism of \mathbf{A} such that $\tau \circ \tau = \tau$.

This enables us to present complete characterizations of subdirectly irreducible state BL-algebras and subdirectly irreducible state-morphism BL-algebras, Theorem 2.7, which generalizes the results from [7, 9, 11, 13].

A general approach is studied in the third section where the main result, Theorem 3.7, says that every subdirectly irreducible state-morphism algebra can be embedded into a diagonal one.

The fourth section describes some generators of the varieties of state-morphism algebras, and Theorem 4.4 shows that if a class \mathcal{K} generates a variety \mathcal{V} of algebras of the same type F, then the variety of state-morphism algebras whose F-reduct belongs to the class \mathcal{K} is generated by the class of diagonal state-morphism algebras $D(\mathbf{A})$, where $\mathbf{A} \in \mathcal{K}$. In addition, Theorem 4.7 deals with the CEP for the variety of state-morphism algebras.

In Theorem 5.2, Theorem 4.4 was applied to the special class of algebras: MValgebras, BL-algebras, MTL-algebras, non-associative BL-algebras, and pseudo MValgebras to obtain the generators of the corresponding varieties of state-morphism algebras.

During the study on this paper, we found some interesting open problems like: (1) find a characterization of an analogue of a state-operator that is not necessarily a state-morphism operator, (2) if the lattice of varieties of some variety is countable,

how big is the lattice of corresponding state-morphism algebras, e.g. in the case of MV-algebras, the lattice under question is uncountable [13], (3) decidability of the variety of state-morphism algebras.

References

- M. Botur, A non-associative generalization of Hájek's BL-algebras, Fuzzy Sets and Systems, DOI:10.1016/j.fss.2011.02.015
- [2] S. Burris and H.P. Sankappanavar, "A Course in Universal Algebra", Springer Verlag, New York 1981.
- [3] R. Cignoli, F. Esteva, L. Godo, A. Torrens, Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft Computing 4 (2000), 106–112.
- [4] R. Cignoli, I. D'Ottaviano and D. Mundici, "Algebraic Foundations of Many-valued Reasoning", Kluwer Academic Publishers, Dordrecht 2000.
- [5] L.C. Ciungu, A. Dvurečenskij, M. Hyčko, State BL-algebras, Soft Computing 15 (2011), 619–634. DOI: 10.1007/s00500-010-0571-5
- [6] C.C. Chang, A new proof of the completeness of Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1989), 74–80.
- [7] A. Di Nola, A. Dvurečenskij, State-morphism MV-algebras, Ann. Pure Appl. Logic 161 (2009), 161–173.
- [8] A. Di Nola, A. Dvurečenskij, A. Lettieri, On varieties of MV-algebras with internal states, Inter. J. Approx. Reasoning 51 (2010), 680–694.
- [9] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum "State-morphism MV-algebras" [Ann. Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605–1607.
- [10] A. Dvurečenskij, Pseudo-MV algebras are intervals of l-groups, J. Australian Math. Soc. 72 (2002), 427–445.
- [11] A. Dvurečenskij, Subdirectly irreducible state-morphism BL-algebras, Archive Math. Logic 50 (2011), 145–160. DOI:10.1007/s00153-010-0206-7
- [12] A. Dvurečenskij, W.C. Holland, Top varieties of generalized MV-algebras and unital lattice-ordered groups, Comm. Algebra 35 (2007), 3370–3390.
- [13] A. Dvurečenskij, T. Kowalski, F. Montagna, State morphism MV-algebras, http://arxiv.org/abs/1102.1088
- [14] A. Dvurečenskij, S. Pulmannová, "New Trends in Quantum Structures", Kluwer Acad. Publ., Dordrecht-Boston-London, 2000.
- [15] F. Esteva, L. Godo, Monoidal t-norm based logic: Towards a logic for left-continuous t-norms, Fuzzy Sets Syst. 124 (2001), 271–288.
- [16] T. Flaminio and F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, Inter. J. Approx. Reasoning 50 (2009), 138–152.
- [17] G. Georgescu and A. Iorgulescu, Pseudo MV algebras, Mult.-Valued Log. 6 (2001), 95– 135.
- [18] K.R. Goodearl, "Partially Ordered Abelian Groups with Interpolation", Math. Surveys and Monographs No. 20, Amer. Math. Soc., Providence, Rhode Island, 1986.
- [19] P. Hájek, "Metamathematics of Fuzzy Logic", Kluwer Academic Publishers, Dordrecht 1998.
- [20] T. Kroupa, Every state on a semisimple MV algebra is integral, Fuzzy Sets and Systems, 157 (2006), 2771–2787.
- [21] J. Kühr and D. Mundici, De Finetti theorem and Borel states in [0,1]-valued algebraic logic, Inter. J. Approx. Reasoning 46 (2007), 605–616.
- [22] D. Mundici, Averaging the truth value in Lukasiewicz logic, Studia Logica 55 (1995), 113–127.
- [23] D. Mundici, Bookmaking over infinite-valued events, Inter. J. Approx. Reasoning 46 (2006), 223–240.
- [24] G. Panti, Invariant measures in free MV-algebras, Comm. Algebra 36 (2008), 2849–2861.
- [25] J. Rachůnek, A non-commutative generalization of MV-algebras, Czechoslovak Math. J. 52 (2002), 255–273.
- [26] E. Turunen, S. Sessa, Local BL algebras, Multiple Valued Logic 6 (2001), 229–249.
- [27] T. Vetterlein, Regular left-continuous t-norms, Semigroup Forum 77 (2008), 339–379.