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ABSTRACT. We present a complete description of subdirectly irreducible state
BL-algebras as well as of subdirectly irreducible state-morphism BL-algebras.
In addition, we present a general theory of state-morphism algebras, that is,
algebras of general type with state-morphism which is an idempotent endomor-
phism. We define a diagonal state-morphism algebra and we show that every
subdirectly irreducible state-morphism algebra can be embedded into a diag-
onal one. We describe generators of varieties of state-morphism algebras, in
particular ones of state-morphism BL-algebras, state-morphism MTL-algebras,
state-morphism non-associative BL-algebras, and state-morphism pseudo MV-
algebras.

1. INTRODUCTION

A state, as an analogue of a probability measure, is a basic notion of the theory of
quantum structures, see e.g. [I4]. However, for MV-algebras, the state as averaging
the truth value in the Lukasiewicz logic was introduced firstly by Mundici in [22], 40
years after introducing MV-algebras, [6]. We recall that a state on an MV-algebra
M is a mapping s : M — [0,1] such that (i) s(a ®b) = s(a) + s(b), if a® b =0,
and (ii) s(1) = 1. The property (i) says that s is additive on mutually excluding
events a and b. It is important note that every non-degenerate MV-algebra admits
at least one state. The set of states is a convex set, which in the weak topology
of states is a compact Hausdorff set, and every extremal state is in fact an MV-
algebra homomorphism from M into the MV-algebra of the real interval [0, 1], and
vice-versa, [22]. In addition, extremal states generate the set of all states because
by the Krein-Mil’'man Theorem, [I8, Thm 5.17], every state is a weak limit of a net
of convex combinations of these special homomorphisms.

In the last decade, the states entered into theory of MV-algebras in a very
ambitious manner. In [23] 2I], authors have showed a relation between states
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and de Finetti’s approach to probability in terms of bets. In addition, Panti and
independently Kroupa in [24, 20] have showed that every state on M is an integral
through a unique regular Borel probability measure concentrated on the set of
extremal states on M.

Nevertheless as we have seen states are not a proper notion of universal algebra,
and therefore, they do not provide an algebraizable logic for probabilistic reasoning
of the many-valued approach.

Recently, Flaminio and Montagna in [I6] presented an algebraizable logic con-
taining probabilistic reasoning, and its equivalent algebraic semantic is the variety
of state MV-algebras. We recall that a state MV-algebra is an MV-algebra whose
language is extended adding an operator, T (called also an internal state), whose
properties are inspired by the ones of states. The analogues of extremal states
are state-morphism operators, introduced in [7]. By definition, it is an idempotent
endomorphism on an MV-algebra.

State MV-algebras generalize, for example, Hdjek’s approach, [19], to fuzzy logic
with modality Pr (interpreted as probably) which has the following semantic inter-
pretation: The probability of an event a is presented as the truth value of Pr(a).
On the other hand, if s is a state, then s(a) is interpreted as averaging of appearing
the many valued event a.

We note that if (M, 7) is a state MV-algebra, assuming that that the range 7(M)
is simple, we see that it is a subalgebra of the real interval [0, 1] and therefore, T
can be regarded as a standard state on M. On the other hand, every MV-algebra
M can be embedded into the tensor product [0,1] ® M, therefore, given a state s
on M, we define an operator 7, on [0,1] ® M via 74(t ® a) := ¢ - s(a), [16, Thm
5.3]. Then due to [7, Thm 3.2], 75 is a state-operator that is a state-morphism
operator iff s is an extremal state. Thus, there is a natural correspondence between
the notion of a state and an extremal state on one side, and a state-operator and a
state-morphism operator on the other side.

Subdirectly irreducible state-morphism MV-algebras were described in [7, 9] and
this was extended also for state-morphism BL-algebras in [I1]. A complete descrip-
tion of both subdirectly irreducible state MV-algebras as well as subdirectly irre-
ducible state-morphism MV-algebras can be found in [I3]. In []], it was shown that
if (M, 7) is a state MV-algebra whose image 7(M) belongs to the variety generated
by the L1,..., Ly, where L; := {0,1/4,...,4/i}, then 7 has to be a state-morphism
operator. The same is true if M is linearly ordered, [7]. Recently, in [I3], we have
shown that the unit square [0,1]? with the diagonal operator generates the whole
variety of state-morphism MV-algebras; it answered in positive an open problem
posed in [7]. In addition, there was shown that in contrast to MV-algebras, the lat-
tice of subvarieties is uncountable. Moreover, it was shown that every subdirectly
irreducible state-morphism MV-algebra can be embedded into some diagonal one.

In this paper, we continue in the study of state BL-algebras and state-morphism
BL-algebras. Because the methods developed in [I3] are so general that, it is
possible to study more general structures than MV-algebras or BL-algebras under a
common umbrella. Hence, we introduce state-morphism algebras (A, 7), where the
algebra A is an arbitrary algebra of type F' and 7 is an idempotent endomorphism
of A. Then general results applied to special types of algebras give interesting new
results.

The main goals of the paper are:
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(1) Complete characterizations of subdirectly irreducible state BL-algebras and
state-morphism BL-algebras.

(2) Showing that every subdirectly state-morphism algebra can be embedded
into some diagonal one D(B) := (B x B, 75), where 7(a,b) = (a,a), a,b € B, which
is also subdirectly irreducible.

(3) We show that if I is a generator of some variety V of algebras of type F, then
the system of diagonal state-morphism algebras {D(B) : B € K} is a generator of
the variety of state-morphism algebras whose F-reduct belongs to V.

(4) We exhibit cases when the Congruence Extension Property holds for a variety
of state-morphism algebras.

(5) In particular, a generator of the variety of state-morphism BL-algebras is
the class of all BL-algebras of the real interval [0,1] equipped with a continuous
t-norm. Similarly, a generator of the variety of state-morphism MTL-algebras is
the class of all MTL-algebras of the real interval equipped with a left-continuous t-
norm, similarly for non-associative BL-algebras one is the set of all non-associative
BL-algebras of the real interval [0, 1] equipped with a non-associative t-norm, and
a generator of the variety of state-morphism pseudo MV-algebras is any pseudo
MV-algebra I'(G, u), where (G, u) is a doubly transitive unital ¢-group.

2. SUBDIRECTLY IRREDUCIBLE STATE BL-ALGEBRAS

In this section, we define state BL-algebras and state-morphism BL-algebras and
we present a complete description of their subdirectly irreducible algebras. These
results generalize those from [7, 9, [1T], [13].

We recall that according to [19], a BL-algebra is an algebra M = (M; A, V, ®, —
,0,1) of the type (2,2,2,2,0,0) such that (M;A,V,0,1) is a bounded lattice,
(M;®,1) is a commutative monoid, and for all a,b,c € M,

(1) e<a—=bif a®c < b;
(2) anb=a® (a = b);
3) (a—=b)V(b—a) =1

For any a € M, we define a complement a~ := a — 0. Then a < a~~ for any
a € M and a BL-algebra is an MV-algebra iff a™= = a for any a € M.

A non-empty set F' C M is called a filter of M (or a BL-filter of M) if for every
x,y € M: (1) z,y € F implies x @y € F, and (2) x € F, x < y implies y € F. A
filter F' # M is called a mazimal filter if it is not strictly contained in any other
filter F’ # M. A BL-algebra is called local if it has a unique maximal filter.

We denote by Rad; (M) the intersection of all maximal filters of M.

Let M be a BL-algebra. A mapping 7 : M — M such that, for all z,y € M, we
have

(L ™

5)pr T(1(z) = 7(y)) = () — 7(y)

is said to be a state-operator on M, and the pair (M, 1) is said to be a state BL-
algebra, or more precisely, a BL-algebra with internal state.
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If 7: M — M is a BL-endomorphism such that 7 o 7 = 7, then 7 is a state-
operator on M and it is said to be a state-morphism operator and the couple (M, 7)
is said to be a state-morphism BL-algebra.

A filter F of a BL-algebra M is said to be a 7-filter if 7(F) C F. If 7 is a
state-operator on M, we denote by

Ker(r) ={a € M : 7(a) = 1}.

then Ker(7) is a 7-filter. A state-operator 7 is said to be faithful if Ker(r) = {1}.

We recall that there is a one-to-one relation between congruences and 7-filters
on a state BL-algebra (M, 7) as follows. If F' is a 7-filter, then the relation ~p
given by z ~p y iff ¢ — y,y — = € F is a congruence of the BL-algebra M and
~ is also a congruence of the state BL-algebra (M, 7).

Conversely, let ~ be a congruence of state BL-algebra (M, 7) and set Fl. := {z €
M :x ~1}. Then F. is a 7-filter of (M, 7) and ~p_=~ and F' = F,,.

By [5} Lem 3.5(k)], (7(M), 7) is a subalgebra of (M, ), 7 on 7(M) is the identity,
and hence, (Ker(7); —,0,1) is a subhoop of M. We say that two subhoops, A and
B, of a BL-algebra M have the disjunction property if for all z € A and y € B, if
xVy =1, then either x =1 or y = 1.

Nevertheless a subdirectly irreducible state BL-algebra (M, 7) is not necessarily
linearly ordered, according to [5, Thm 5.5], 7(M) is always linearly ordered.

We note that according to [5] Prop 3.13], if M is an MV-algebra, then the notion
of a state MV-algebra coincides with the notion of a state BL-algebra.

The following three characterizations were originally proved in [13] for state MV-
algebras. Here we show that the original proofs from [I3] slightly improved work
also for state BL-algebras.

Lemma 2.1. Suppose that (M, 1) is a state BL-algebra. Then:

(1) If 7 is faithful, then (M, T) is a subdirectly irreducible state BL-algebra if
and only if T (M) is a subdirectly irreducible BL-algebra.

Now let (M, 1) be subdirectly irreducible. Then:

(2) Ker(7) is (either trivial or) a subdirectly irreducible hoop.
(3) Ker(r) and 7(M) have the disjunction property.

Proof. (1) Suppose 7 is faithful. Let F' denote the least nontrivial 7-filter of (M, 7).
There are two cases: (i) If 7(M) N F # {1}, then 7(M) N F is the least nontrivial
filter of 7(M) and 7(M) is subdirectly irreducible. (ii) If 7(M) N F = {1}, then
for all z € F, 7(xz) = 1 because 7(z) € 7(M) N F and F C Ker(r) = {1} is the
trivial filter, a contradiction. Therefore, only the first case is possible and 7(M) is
subdirectly irreducible.

Conversely, let 7(IM) be subdirectly irreducible and let G be the least nontrivial
filter of 7(M). Then the 7-filter F of (M, 7) generated by G is the least nontrivial 7-
filter of (M, 7). Indeed, if K is another nontrivial 7-filter of (M, 7), then KN (M) 2
FN7(M)=G. Then K contains the 7-filter generated by G, that is F' C K which
proves F' is the least and (M, 7) is subdirectly irreducible.

Now let (M, 7) be subdirectly irreducible and let F' denote the least nontrivial
filter of (M, 7).

(2) Suppose that 7 is not faithful. Then Ker(7) is a nontrivial 7-filter. If (M, 7)
is subdirectly irreducible, it has a least nontrivial 7-filter, F' say. So, F' C Ker(7),
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and hence F is the least nontrivial filter of the hoop Ker(7). Hence, Ker(7) is a
subdirectly irreducible hoop.

(3) Suppose, by way of contradiction, that for some x € Ker(7) and y = 7(y) €
7(M) one has z < 1, y < 1 and 2z Vy = 1. Tt is easy to see that the BL-filters
generated by x and by y, respectively, are 7-filters. Therefore they both contain
F. Hence, the intersection of these filters contains F. Now let ¢ < 1 be in F.
Then there is a natural number n such that 2™ < ¢ and y™ < ¢. It follows that
l=(zVvy™=az"Vy" <c acontradiction. O

Lemma 2.2. If (M, 1) is a subdirectly irreducible state BL-algebra, then 7(M) and
Ker(7) are linearly ordered.

Proof. According to [B, Thm 5.5], 7(M) is always linearly ordered. On the other
hand, by Lemma 2] Ker(7) is either a trivial hoop or a subdirectly irreducible
hoop, and hence it is linearly ordered. O

Theorem 2.3. Let (M, T) be a state BL-algebra satisfying conditions (1), (2) and
(3) in Lemma 2l Then (M, 1) is subdirectly irreducible.

Proof. Suppose first that 7 is faithful and that 7(M) is subdirectly irreducible. Let
Fpy be the least nontrivial filter of 7(IM) and let F' be the BL-filter of M generated
by Fy. Then F is a 7-filter. Indeed, if € F', then there is 7(a) € Fy and a natural
number n such that 7(a)” < z. It follows that 7(z) > 7(7(a)”) = 7(a)", and
T(x) € F.

We assert that F' is the least nontrivial 7-filter of (M, 7). First of all, 7(M),
being a subdirectly irreducible BL-algebra, is linearly ordered. Now in order to
prove that F is the least nontrivial 7-filter of (M, ), it suffices to prove that
every 7-filter G not containing F' is trivial. Now let ¢ < 1 in F\G. Then since
Ker(7) = {1}, 7(¢) < 1. Next, let d € G. Then 7(d) € G, and for every n it cannot
be 7(d)™ < 7(c), otherwise 7(c) € G. Hence, for every n, 7(c) < 7(d)", and hence
7(c) does not belong to the 7-filter of 7(M) generated by 7(d). By the minimality
of F in 7(M), 7(d) = 1 and since 7 is faithful, we conclude that d = 1 and G is
trivial, as desired.

Now suppose that Ker(7) is nontrivial. By condition (2), Ker(7) is subdirectly
irreducible. Thus, let F' be the least nontrivial filter of Ker(7). Then F' is a non
trivial T-filter, and we have to prove that F is the least nontrivial 7-filter of (M, 7).
Let G be any non trivial m-filter of (M, 7). If G C Ker(7), then it contains the
least filter, F', of Ker(7), and F C G. Otherwise, G contains some z ¢ Ker(7),
and hence it contains 7(z) < 1. Now by the disjunction property, for all y < 1
in Ker(7), 7(z) Vy < 1 and 7(z) Vy € Ker(7) N G. Thus, G contains the filter
generated by 7(x) V y, which is a non trivial filter of the hoop Ker(7), and hence it
contains F', the least nontrivial filter of Ker(7). This proves the claim. (]

By [13] Thm 3.5], conditions (1), (2), and (3) from Lemma 2] are independent
ones even for state BL-algebras. In addition, Theorem gives a characterization
of subdirectly irreducible state BL-algebras. If (M, 7) is a state-morphism BL-
algebra, combining [11, Thm 4.5] we can say more about subdirectly irreducible
state-morphism BL-algebras. The following examples are from [IT].

Example 2.4. Let M be a BL-algebra. On M x M we define two operators, 7
and 7o, as follows

71(a,b) = (a,a), m2(a,b) = (b,b), (a,b) € M x M. (2.0)
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Then 71 and 79 are two state-morphism operators on M x M. Moreover, (M xM, 71)
and (M x M, 73) are isomorphic state BL-algebras under the isomorphism (a, b) —

(b,a).

We say that an element a € M is Boolean if a=~ = a and a ©® a = a. Let B(M)
be the set of Boolean elements. Then 0,1 € B(M), B(M) is a subset of the MV-
skeleton MV(M) := {x € M : 2=~ =z}, and a € B(M) implies a~ € B(M). We
recall that according to [26] Thm 2], MV(M) is an MV-algebra, therefore, B(M)
is a Boolean subalgebra of MV (M).

Example 2.5. Let B be a local MV-algebra such that Rad;(B) # {1} is a unique
nontrivial filter of B. Let M be a subalgebra of B x B that is generated by Rad; (B) x
Rad;(B), that is M = (Rad;(B)xRad;(B))U(Rad;(B)xRad;(B)) . Let 7(x,y) :=
(x,z) for all z,y € M. Then 7 is a state-morphism operator on M, Ker(r) =
{1} x Rad;(B) C Rad;(M) = Rad;(B) x Rad;(B), M has no Boolean nontrivial
elements, and (M, 7) is a subdirectly irreducible state-morphism MV-algebra that
is not linear.

Example 2.6. Let A be a linear nontrivial BL-algebra and B a nontrivial sub-
directly irreducible BL-algebra with the smallest nontrivial BL-filter Fp and let
h : A — B be a BL-homomorphism. On M = A x B we define a mapping
T M — M by

Tn(a,b) = (a,h(a)), (a,b) € M. (2.2)
If we set y = (0,1) and y~ = (1,0), then y and y~ are unique nontrivial Boolean
elements.

Then 7, is a state-morphism operator on M and (M, 7,) is a subdirectly irre-
ducible state-morphism BL-algebra iff Ker(h) = {a € A : h(a) = 1} = {1}. In such
a case, Ker(r,) = {1} x B and F := {1} x Fp is the least nontrivial state-morphism
filter on M.

Now we present the main result on the complete characterization of subdirectly
irreducible state-morphism BL-algebras which is a combination of [I1, Thm 4.5]
and Theorem 23

Theorem 2.7. A state-morphism BL-algebra (M, 1) is subdirectly irreducible if
and only if one of the following three possibilities holds.

(i) M is linear, 7 = Idps is the identity on M, and the BL-reduct M is a
subdirectly irreducible BL-algebra.

(ii) The state-morphism operator T is not faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, 7) is a local BL-algebra, Ker(r) is
a subdirectly irreducible irreducible hoop, and Ker(r) and 7(M) have the
disjunction property.

Moreover, M is linearly ordered if and only if Rad; (M) is linearly or-
dered, and in such a case, M is a subdirectly irreducible BL-algebra such
that if F is the smallest nontrivial state-filter for (M, T), then F is the
smallest nontrivial BL-filter for M.

If Rad; (M) = Ker(r), then M is linearly ordered.

(iii) The state-morphism operator T is not faithful, M has a nontrivial Boolean
element. There are a linearly ordered BL-algebra A, a subdirectly irre-
ducible BL-algebra B, and an injective BL-homomorphism h : A — B
such that (M, 1) is isomorphic as a state-morphism BL-algebra with the
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state-morphism BL-algebra (A x B, 1), where m,(x,y) = (z, h(x)) for any
(z,y) € Ax B.

Proof. Tt follows from [I1, Thm 4.5] and Theorem 23 O

We recall that a t-norm is a function ¢ : [0,1] x [0,1] — [0,1] such that (i) ¢
is commutative, associative, (ii) ¢(z,1) = x, = € [0, 1], and (iii) ¢ is nondecreasing
in both components. If ¢ is continuous, we define z ©; y = t(z,y) and z — y =
sup{z € [0,1] : t(z,z) <y} for z,y € [0,1], then I, := ([0, 1]; min, max, ®;, —,0,1)
is a BL-algebra. Moreover, according to [3] Thm 5.2], the variety of all BL-algebras
is generated by all I; with a continuous t-norm ¢. Let 7 denote the system of all
BL-algebras II;, where ¢ is any continuous t-norm.

The proof of the following result will follow from Theorem

Theorem 2.8. The variety of all state-morphism BL-algebras is generated by the
system {D(I;) : t € T}.

3. GENERAL STATE-MORPHISM ALGEBRAS

In this section, we generalize the notion of state-morphism BL-algebras to an
arbitrary variety of algebras of some type. It is interesting that many results known
only for state-morphism MV-algebras or state-morphism BL-algebras have a very
general presentation as state-morphism algebras. The main result of this section,
Theorem B says that every subdirectly irreducible state-morphism algebra can
be embedded into some diagonal one.

Let A be any algebra of type F' and let Con A be the system of congruences
on A with the least congruence Aa. An endomorphisms 7 : A — A satisfying
To7 =7 is said to be a state-morphism on A and a couple (A, 7) is said to be a
state-morphism algebra or an algebra with internal state-morphism. Clearly, if K
is a variety of algebras of type F', then the class I, of all state-morphism algebras
(A, 7), where A € K and 7 is any state-morphism on A, forms a variety, too.

In the rest of the paper, we will assume that A is an arbitrary algebra with a
fixed type F; if A is of a specific type, it will be said that and specified.

Definition 3.1. Let B € K. Then an algebra D(D) := (B x B, 75), where 75 is
defined by 75(z,y) = (x,z), z,y € B, is a state-morphism algebra (more precisely
(B x B, 1) € K;); we call 7 also a diagonal state-operator. If a state-morphism
algebra (C, 7) can be embedded into some diagonal state-morphism algebra, (B x
B, 75), (C, 7) is said to be a subdiagonal state-morphism algebra, or, more precisely,
B-subdiagonal.

Let (A, T) be a state-morphism algebra. We introduce the following sets:
0 ={(z,y) e Ax A:7(x) = 7(y)}, (3.1)

T(A) = {r(z) : x € A}.
The subalgebra which is an image of A by 7 is denoted by 7(A) and thus 7(A) €
K and (7(A),Id;4)) € K;, where Id,(4) is the identity on 7(A); we have also
T|T(A) = Id ().
If ¢ € ConT(A), we define

Oy :={(z,y) € Ax A: (7(z),7(y)) € ¢}. (3.2)
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Finally, if ¢ C A? then the congruence on A generated by ¢ is denoted by
O(¢) and the congruence on (A, 7) generated by ¢ is denoted by O,(¢). Clearly
Con (A, 7) C Con A and also ©(¢) C O.(¢).

Lemma 3.2. Let (A, 7) be a state-morphism algebra. For any ¢ € Con7(A), we
have 65 € Con (A, 1), and 0, N 7(A)? = ¢. In addition, 0, € Con(A,T), ¢ C 0y,
and ©,(4) C 0.

Proof. Clearly, 0, is reflexive and symmetric. Moreover, if (x,y), (y,z) € 0, then
(t(z),7(y)), (r(y), 7(2)) € ¢ and thus (7(z),7(z)) € ¢ which gives (z,z) € 0.

Let fA be an n-ary operation on A and let 1, ...,Zpn,y1,...,yn € Abe such that
(zi,yi) € 0 forany i = 1,...,n. Then (7(x;),7(yi)) € ¢ holds for any i =1,...,n
Due to ¢ € Con7(A), we obtain (™) (7(z1),...,7(xn)), [FA) (7 (1), ... T(yn))) €
&,

Because 7 is an endomorphism, 7(f2(z1,...,2,)) = fTA)(r ( 21 ,T(2))
and 7(fA (Y1, yn)) = T (7(y1),...,7(yn)) which glves (r(fA (@1, 2a)),
T(fA(W1, -, yn))) € ¢ and finally also (fA(z1,...,2n), f y1 Yn

Moreover, take an arbitrary (z,y) € 64. Then (7(7(z)), 7(1(y))) = (7 (y)) €
¢ which gives (7(x),7(y)) € 0.

Hence, 64 € Con (A, 7) and if ¢ = A;(a), then 4 = 0.

It is clear that 6, N 7(A)? D ¢. Now let (z,y) € 65N 7(A)2. Then z,y € 7(A),
(1(z),7(y)) € ¢ C 7(A4)?, so that = = 7(x) € 7(A), y = 7(y) € 7(A4), and conse-
quently, (z,y) € ¢.

It is evident that 6, is a congruence on (A, 7).

Finally, if (z,y) € ¢ then 7(z) = 2 and 7(y) = y which gives (7(z),7(y))
(x,y) € ¢. Thus (x,y) € 64 which finishes the proof that ¢ C 84 and ©,(9)
0.

Lemma 3.3. Let § € Con A be such that 0 C 0,. Then 6 € Con (A, 7) holds.
Moreover, if x,y € A are such that (z,y) € 0., then ©(x,y) = O,(z,y).

Proof. 1f (z,y) € 6 C 0., then 7(z) = 7(y) and thus (7(z),7(y)) = (7(2),7(z)) €6
proves that 6 € Con (A, 7).

Moreover, if (z,y) € 6., then O(z,y) C 6,. Due to the first part of Lemma,
we obtain ©(z,y) € Con (A, 7) and thus ©,(z,y) C O(z,y) holds. The second
inclusion is trivial. O

Lemma 3.4. Ifz,y € 7(A), then O(z,y) = O,(x,y). Consequently, ©(p) = O,(¢)
whenever ¢ C 7(A)2.

)s -
)6%
(2)

O

Proof. Let us denote by ¢ the congruence on 7(A) generated by (x,y). Clearly we
obtain the chain of inclusions ¢ C O(z,y) C ©(¢) C 0, (because (z,y) € ¢ and
¢ C 04, see Lemma [3.2)).

Assume (a,b) € O(z,y), then (a,b) € 04 and thus (7(a),7(b)) € ¢ C O(z,y).
Thus O(z,y) € Con (A,7) and ©,(z,y) C O(x,y) holds. The second inclusion is
trivial.

Finally, let ¢ C 7(A4)2. By [2, Thm 5.3], the both congruence lattices of A and
(A, T) are complete sublattices of the lattice of equivalencies on A, and therefore,
they have the same infinite suprema. Hence, by the first part of the lemma,

= \/ Oy =\ 0O:(z,y)=06.(¢).

(z,y)€h (z,y)€9
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O

Remark 3.5. By Lemma[3.2] if ¢ is a congruence on 7(A), then 0 is an extension
of » on (A,7) and ©(¢) = O,(¢) C 6y. There is a natural question whether
©(¢) = 04 7 The answer is positive if and only if 7 is the identity on A. Indeed,
if 7 is the identity on A, the statement is evident, in the opposite case, we have

On.n = Or # An = O(Ar(a)).

Theorem 3.6. Let (A, T) be a subdirectly irreducible state-morphism algebra such
that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B
such that (A, T) is B-subdiagonal.

Proof. First, if 0, = Aa, then for any x € A, the equality 7(x) = z holds and
thus Con A = Con (A, 7) which is absurd because A is subdirectly irreducible and
(A, 7) is not subdirectly irreducible.

The subdirect irreducibility of (A, 7) implies that there is a least proper congru-
ence Omin € Con (A, 7). Moreover, due to Lemma B3] the congruence 6, is also
a least proper congruence # on A with 8 C 6, and thus 6, is an atom in Con A.
Let us denote

0 ={0cConA:0N0, = Ap}.

First, we prove that there exists proper # € 0. The subdirect reducibility of A
shows that there exists proper § € Con A with 0, € 6. Hence, 8. N6 = Aa holds
(because if 6. N O # Aa, then 6, N6 is a proper congruence contained in 6, and
minimality of O, yields Omin € 0N 6O, C 6, which is absurd).

Moreover, let us have 6, € GTL for any n € N with 6, C 6,41, then clearly
Voen 0n = U, en On € 1. Due to Zorn’s Lemma, there is maximal 6* € 6.

We have proved that both 6, and 6* are proper congruences on A with 6, N6* =
A . By the Birkhoff Theorem about subdirect reducibility, A is a subdirect product
of two algebras A /0, and A/0* with an embedding h: A — A /0, x A/6* defined
by h(z) = (x/0,,2/6%).

Now we define the mapping ¢ : A/0, — A/0* by (x/0;) = 7(x)/0*. Clearly
¥ is well-defined because z/0, = y/0, yields 7(x) = 7(y) and thus ¢ (z/0,) =
7(x)/0* = 7(y)/0* = ¥(y/0;). Let us suppose that ¥ (x/0;) = ¥(y/6;). Then
7(z)/0* = 7(y)/0* and (7(z),7(y)) € 6*. Hence, O(7(z),7(y)) C 6* holds. Finally,
if 7(x) # 7(y) (thus O(7(z),7(y)) is a proper congruence), then 7(z),7(y) € 7(A)
and Lemma B4 yields O(7(z), 7(y)) € Con (A, 7) and thus O, C O(7(z),7(y)) C
6* which is absurd (Omin € 6 N0* = Aa). Therefore, the mapping v is injective.

We shall prove that v is a homomorphism (and thus an embedding). If f4 is an
n-ary operation and x1/0;,...,2,/0; € A/6., then

A (@1)0n, w0 )02) = B(FA s, 30)/07)
= T(fA(xl,..., n))/0"
= A T(@0))/6°
A a8 () 8
= fAO ((2/6,), ...,@b(xn/&))-

Now we prove that A is A/0*-diagonal. Let g : A — (A/0*)? be defined via
g(x) = (W(x/0;),2/0%) = (T(x)/0*,2/0*). Because the mapping g is the composi-
tion of two functions h and i which are embeddings, g is also an embedding of A
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into (A/6*)2. Now we can compute:
g(r(x)) = (r(r(x))/0",7(x)/0")
= (r(2)/0",7(x)/07)
= TA/G*(T(x)/e*ax/e*)
= Tas-(9(2)),
where 74 ¢+ is the diagonal state-morphism on the product A/6* x A /6*. Therefore,
g: (A, 1) — (A/0* x AJ0*,Tp/p+) is an embedding and (A, 7) is A/0*-diagonal.
Finally, we prove the subdirect irreducibility of A/8*. Of course, OiinNO* = Aa
yields Oy € 6* and thus 0* C 6* V O;,. Moreover, if * C 6, from maximality
of 8* we obtain # N0, # Aa and thus Opin C 0, N 6. Finally, O V 0* C (6, N
0)Vv o C (6 Nn0)VvEHO = 6 holds. Hence, for any congruence § € Con A, the

inequality 0% C 0* NOnin C 6 holds. Due to the Birkhoff’s Theorem and the Second
Homomorphism Theorem, an algebra A /6* is subdirectly irreducible. ]

Theorem can be extended as follows.

Theorem 3.7. For every subdirectly irreducible state-morphism algebra (A,T),
there is a subdirectly irreducible algebra B such that (A, T) is B-subdiagonal.

Proof. There are two cases: (1) (A,7) and A are subdirectly irreducible, and (2)
(A, 7) is a subdirectly irreducible state-morphism algebra and A is a subdirectly
reducible algebra

(1) Assume that (A,7) and A are subdirectly irreducible. Define two state-
morphism algebras (7(A) x A, 7) and (A x A, 13), where 71(a,b) = (a,a), (a,b) €
T7(A) x A, and 72(a,b) = (a,a), a,b € A. Then the first one is a subalgebra of the
second one.

Define a mapping ¢ : A — 7(A) x A defined by ¢(a) = (7(a),a), a € A. Then ¢ is
injective because if ¢(a) = ¢(b) then (7(a),a) = (7(b),b) and a = b. We show that
¢ is a homomorphism. Let f# be an n-ary operation on A and let ay,...,a, € A.
Then

o(fAar,.. an)) = (T(f(a1,.. . an)), fAla1, ... an))
= (fA(T(al),...,T(an)),fA(al,...,an))
= [fTAXA((1(a1),a1), ..., (T(an), an))
= [T A(G(ar), ..., dlan)).

Since ¢ : A — 7(A) x A C A x A, ¢ can be assumed also as an injective
homomorphism from the state-morphism algebra (A, 7) into the state-morphism
algebra D(B), where B := A is a subdirectly irreducible algebra.

(2) This case was proved in Theorem O

For example, a state-morphism algebra (A,;Id4), where Id4 is the identity on
A, is subdirectly irreducible if and only if A is subdirectly irreducible. Therefore,
(A,1d4) can be embedded into (A x A, 74) under the mapping a — (a,a), a € A.
Consequently, every subdirectly irreducible state-morphism algebra (A,Id4) is A-
subdiagonal with A subdirectly irreducible.

We note that in the same way as in [I3, Lem 6.1], it is possible to show that
the class of subdiagonal state-morphism algebras is closed under subalgebras and
ultraproducts, and not closed under homomorphic images, see [13, Lem 6.6].
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4. VARIETIES OF STATE-MORPHISM ALGEBRAS AND THEIR GENERATORS

In this section, we study varieties of state-morphism algebras and their genera-
tors. It is interesting to note that some similar results proved for state-morphism
MV-algebras in [I3] can be obtained in an analogous way also for a general variety
of algebras.

Let 7 be a state-morphism operator on an algebra A. We set

Ker(r) :={(z,y) e Ax A:7(x) =7(y)},

the kernel of 7. We say that 7 is faithful if Ker(r) = Aa. It is evident that 7 is
faithful iff 7(x) = x for each x € A. In addition, 7 is faithful iff 7 is injective.

For every class K of same type algebras, we set D(K) = {D(A) : A € K}, where
D(A) = (A x A, 74).

As usual, given a class K of algebras of the same type, I(K), H(K), S(K) and
P(K) and Py(K) will denote the class of isomorphic images, of homomorphic im-
ages, of subalgebras, of direct products and of ultraproducts of algebras from K,
respectively. Moreover, V(K) will denote the variety generated by K.

Lemma 4.1. (1) Let K be a class of algebras of the same type F'. Then VD(K) C
V(K),.
(2) Let V be any variety. Then V. = ISD(V).

Proof. (1) If D(A) € D(K) (thus A € K), then the F-reduct of the algebra D(A) is
the algebra A x A which belongs to the variety V(/C). Due to definition of V(K),,
we obtain also D(A) € V(K),. We have proved that D(K) C V(K),. Because
V(K). is a variety then also VD(K) C V(K),

(2) Let (A,7) € V.. As we have seen in the proof of Theorem 377 the map
¢ : a+ (7(a),a) is an injective homomorphism of (A, 7) into D(A). Hence, ¢ is
compatible with 7, and (A, 7) € ISD(V). Conversely, the F-reduct of any algebra
in D(V) is in V, (being a direct product of algebras in V), and hence the F-reduct of
any member of ISD(V) is in IS(V) = V. Hence, any member of ISD(V) isin V,. O

Lemma 4.2. Let K be a class of algebras of the same type F. Then:
(1) DH(K) € HD(K).

(2) DS(K) C ISD(K).

(3) DP(K) € IPD(K).

(4) VD(K) = ISD(V(K)).

Proof. (1) Let D(C) € DH(K). Then there are A € K and a homomorphism

h from A onto C. Let for all a,b € A, h*(a,b) = (h(a),h(b)). We claim that
h* is a homomorphism from D(A) onto D(C). That h* is a homomorphism is
clear. We verify that h* is compatible with 74. We have h*(74(a,b)) = h*(a,a) =
(h(a),h(a)) = 1c(h(a), h(b)) = 7c(h*(a,b)). Finally, since h is onto, given (c,d) €
C x C, there are a,b € A such that h(a) = c and h(b) = d. Hence, h*(a,b) = (¢, d),
h* is onto, and D(C) € HD(K).

(2) Tt is trivial.

(3) Let A = [[;c;(As) € P(K), where each A; is in K. Then the map

@Z((aiiiEI),(biZiEI))H ((al,bl) ZiEI)

is an isomorphism from D(A) onto [[;c; D(A;). Indeed, it is clear that ® is an

F-isomorphism. Moreover, denoting the state-morphism of [],.; D(A;) by 7%, we
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get:
D(ra((a;:iel),(bi:iel)))=®((a;:i€l),(a;:i€l)) =
= ((ai,ai) NS I) = (TAi(ai,bi) NS I) :T*((I)((ai NS I),(bz NS I))),

and hence ® is an isomorphism.

(4) By (1), (2) and (3), DV(K) = DHSP(K) C HSPD(K) = VD(K), and hence
ISDV(K) C ISVD(K) = VD(K). Conversely, by Lemma [TI[(1), VD(K) C V(K),,
and by Lemma F1}(2), V(K), = ISDV(K). This proves the claim. O

Theorem 4.3. (1) For every class K of algebras of the same type F, V(D(K)) =
V(K)-.

(2) Let K1 and Ko be two classes of same type algebras. Then V(D(Ky)) =
V(D(Kz2)) if and only if V(K1) = V(K2).

Proof. (1) By Lemma [L24), VD(K) = ISD(V(K)). Moreover, by Lemma [1](2),
V(K), =ISDV(K). Hence, V(D(K)) = V(K)-.

(2) We have V(D(K1)) = V(K1), and V(D(K2)) = V(Ks),. Clearly, V(K;) =
V(K2) implies V(K1) = V(K2)-, and hence V(D(K;)) = V(D(K2)). Conversely,
V(D(K1)) = V(D(K2)) implies V(K1) = V(K2)r. But any algebra A € V(K;) is
the F-reduct of a state-morphism algebra in V(K;),, namely of (A,Id4).

It follows that, if V(K1), = V(K2),, then the classes of F-reducts of V(K1), and
of V(Ks2), coincide, and hence V(K1) = V(Ks). O

As a direct corollary of Theorem 43l we have:

Theorem 4.4. If a system K of algebras of the same type F' generates the whole
variety V(F) of all algebras of type F, then the variety V(F), of all state-morphism
algebras (A, 1), where A € V(F), is generated by the class {D(A) : A € K}.

Some applications of the latter theorem for different varieties of algebras will be
done in Section 5.

Theorem 4.5. If A is a subdirectly irreducible algebra, then any state-morphism
algebra (A, T) is subdirectly irreducible.

Proof. Let A be a subdirectly irreducible algebra and let 7 be a state-morphism
operator on A. If 7 is the identity on A, then Con A = Con (A, 7) and, consequently,
(A, 7) is subdirectly irreducible. If 7 is not the identity on A, then ., defined by
(3.1), is a nontrivial congruence on A, and thus 0,;, C 6., where 0, € Con A
is the least nontrivial congruence. Hence, 0, belongs to the set Con (A, T), see
Lemma B3l Therefore, Con(A,7) C ConA yields the subdirect irreducibility
of the algebra (A, 7), more precisely, Omin is also the least proper congruence in
Con (A, 7). O

We remind the following Mal’cev Theorem, [2, Lem 3.1].

Theorem 4.6. Let A be an algebra and ¢ C A?. Then (a,b) € O(¢) if and
only if there exist two finite sequences of terms t1(T1,x),...,tn(Tn,x) and pairs

(@1,01), ..., (an,by) € ¢ with
a=1t1(T1,a1), ti(Ti, b;) = tiz1(Tig1, @ig1) and tp(Tn,by) = b

for some T1,..., T, € A.
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We say that an algebra B has the Congruence Extension Property (CEP for
short) if, for any algebra A such that B is a subalgebra of A and for any congruence
6 € Con B, there is a congruence ¢ € Con A such that § = (B x B) N ¢. A variety
K has the CEP if every algebra in K has the CEP. For example, the variety of MV-
algebra, or the variety of BL-algebras or the variety of state-morphism MV-algebras
(see [13| Lem 6.1]) satisfies the CEP.

Theorem 4.7. A variety V, satisfy the CEP if and only if V satisfies the CEP.

Proof. Let us have a variety V with the CEP. If A € V is such that (A, 7) is
an algebra with state-morphism, for any subalgebra (B,7) C (A, 7) and any ¢ €
Con (B, 7), the condition ¢ = B? N O(¢) holds.

Now we prove ©(¢) = O,(¢). To show that, assume (a,b) € O(¢). Mal’cev’s
Theorem shows the existence of finite sequences of terms t1(Z1,x),. .., tn(Tn, x)
and pairs (a1,b1),. .., (an,by) € ¢ with

a = t1(T1,a1), ti(Ti, b)) = tix1(Tiz1, aiy1) and t,(Tp, by) = b
for some T1,...,T, € A. Because 7 is an endomorphism, we obtain also equalities

7(a) = t1(1(F1), T(a1)), ti(7(Ti), 7(bi)) = tis1 (7(Tit1), T(ait1))
and

tn(T(Tn), 7(bn)) = 7(b).
We have assumed that ¢ € Con (B, 1), thus (a;,b;) € ¢ yields (7(a;),7(b;)) € ¢
for any ¢ = 1,...,n. Now, we have obtained (7(a),7(b)) € O(¢). In other words,
O(¢) € Con (A,T) and thus O(¢) = 0,(¢).
If V; has the CEP, then for any A € V, we have Con A = Con (A,Id4). Clearly,
the CEP on (A,Id4) yields the CEP on A. O

5. APPLICATIONS TO SPECIAL TYPES OF ALGEBRAS

In this section, we apply a general result concerning generators of some vari-
eties of state-morphism algebras, Theorem 4.3 to the variety of state-morphism
BL-algebras, state-morphism MTL-algebras, state-morphism non-associative BL-
algebras, and state-morphism pseudo MV-algebras, when we use different systems
of t-norms on the real interval [0,1] and a special type of pseudo MV-algebras,
respectively.

Algebras for which the logic MTL is sound are called MTL-algebras. They can
be characterized as prelinear commutative bounded integral residuated lattices. In
more detail, according to [I5], an algebraic structure A = (A4;A,V,*,—,0,1) of
type (2,2,2,2,0,0) is an MTL-algebra if

(M1) (A;A,V,0,1) is a bounded lattice with the top element 0 and bottom ele-
ment 1,

(M2) (A;*,1) is a commutative monoid,

(M3) * and — form an adjoint pair, that is, z x x < y if and only if 2 <z — y,
where < is the lattice order of (4; A, V) for all z,y,z € A, (the residuation
condition),

(M4) (x — y) V (y — x) = 1 holds for all 2,y € A (the prelinearity condition).

If ¢ is any left-continuous t-norm on [0, 1], we define two binary operations *; —;
on [0,1] via x*y = t(z,y) and x —; y = sup{z € [0,1] : t(z,z) < y} for z,y € [0, 1],
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then I; = ([0, 1]; min, max, *;, —¢, 0, 1) is an example of an MTL-algebra. An MTL-
algebra I; is a BL-algebra iff ¢ is continuous.
Due to [15], the class Tj., which denotes the system of all BL-algebras I;, where
t is a left-continuous t-norm on the interval [0, 1], generates the variety of MTL-
algebras. This result was strengthened in [27] who introduced the class of regular
left-continuous t-norms which is strictly smaller than the class of left-continuous
t-norms, but they generate the variety of MTL-algebras.
According to [1], we say that an algebra A = (4;V, A, -, —,0, 1) of type (2,2,2,2,0,0)
is a non-associative BL-algebra (naBL-algebra in short) if
(A1) (A V, A,0,1) is a bounded lattice,
(A2) (4;-,1) is a commutative groupoid with the neutral element 1,
(A3) any z,y,z € A satisfy x -y < z if and only if z < y — 2,
(A4) algebra satisfy the divisibility axiom (z - (x — y) =z A y),
(Ab) algebra satisfy the a-prelinearity and S-prelinearity (z — y VvV ag(y — x) =
z = yV By = x) = 1), where af(z) = (a-b) — (a-(b-z)) and
Bi(x) = b— (a— ((a-b) -2)).
A function ¢ : [0,1] x [0,1] — [0, 1] on the interval [0, 1] of reals is said to be a
non-associative t-norm (nat-norm briefly) if

(natl) ([0,1];¢,1) is a commutative groupoid with the neutral element 1,
(nat2) t is continuous in the usual sense,
(nat3) if z,y, z € [0, 1] are such that z <y, then t(x, z) < t(y, 2).

According to [I, Thm 5], for any nat-norm there is a unique binary operation
—¢ satisfying the adjointness condition, i.e. ¢(z,y) < z if and only if x < y — 2.
Moreover, an algebra I?* := ([0, 1]; min, max, t, —¢,0, 1) is an naBL-algebra.

The class of all naBL-algebras is denoted by naBL and na7 denotes the class
of all naBL-algebras I}'* for any non-associative t-norm. The main result on non-
associative BL-algebras says that naT is the generating class for the variety naBL,
[1, Thm 8]:

Theorem 5.1. There hods
naBL = IPsSPy(naT).

Finally, we recall that a noncommutative generalization of MV-algebras was
introduced in [I7] as pseudo MV-algebras or in [25] as generalized MV-algebras.
According to [I0], every pseudo MV-algebra (M;®,”,~,0,1) of type (2,1,1,0,0)
is an interval in a unital £-group (G, u) with strong unit u, i.e. M 2 T'(G,u) := [0, u,
where x @y = (x+y)A\, 27 =u—x, 2~ = —z+u, 0 =0, and 1 = u. If (G,u)
is double transitive (for definitions and details see [12]), then I'(G,u) generates
the variety of pseudo MV-algebras, [12 Thm 4.8]. For example, if Aut(R) is the
set of all automorphisms of the real line R preserving the natural order in R and
ut) = t+1, ¢t € R, let Aut,(R) = {g € Aut(R) : g < nu for some integer
n > 1}. Then I'(Aut,(R),u) is double transitive and it generates the variety of
pseudo MV-algebras, see [12 Ex 5.3].

Now we apply the general statement, Theorem 4.4l on generators to different
types of state-morphism algebras. We recall that 7 was defined as the class of all
BL-algebras I;, where ¢ is a continuous t-norm on [0, 1].

Theorem 5.2. (1) The variety of all state-morphism MV-algebras is generated by
the diagonal state-morphism MV-algebra D([0,1]pv).
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(2) The wvariety of all state-morphism BL-algebras is generated by the class
{D@M}): I, € T}.

(3) The variety of all state-morphism MTL-algebras is generated by the class
{D(]It) I € 770}

(4) The variety of all state-morphism naBL-algebras is generated by the class
{D(@}*) : 1; € naT}.

(5) If a unital ¢-group (G, u) is double transitive, then D(T'(G,u)) generates the
variety of state-morphism pseudo MV-algebras.

Proof. (1) It follows from the fact that the MV-algebra of the real interval [0, 1]
generates the variety of MV-algebras, see e.g. [4) Prop 8.1.1], and then apply
Theorem [4.4]

(2) The statement follows from the fact that V(7)) is by [3, Thm 5.2] the variety
BL of all BL-algebras. Now it suffices to apply Theorem .4

(3) By [15], the class Tj. of all I, where ¢ is any left-continuous t-norms on the
interval [0, 1], generates the variety of MTL-algebras; then apply Theorem (.41

(4) By [1Il Thm 8] or Theorem [B11 the class naT of all I;, where ¢ is any non-
associative t-norms on the interval [0, 1], generates the variety of non-associative
BL-algebras; then apply again Theorem [£.41

(5) By the above, T'(G, u) generates the variety of pseudo MV-algebras, see also
[12, Thm 4.8]; then apply Theorem 4 O

We note that the case (1) in Theorem 4] was an open problem posed in [7] and
was positively solved in [I3] Thm 5.4(3)].

6. CONCLUSION

In the paper, we have presented a general approach to theory of state-morphism
algebras which generalizes state-morphism MV-algebras and state-morphism BL-
algebras as pairs (A, 7), where A is an algebra of type F' and 7 is an endomorphism
of A such that To7 =17.

This enables us to present complete characterizations of subdirectly irreducible
state BL-algebras and subdirectly irreducible state-morphism BL-algebras, Theo-
rem [2.7] which generalizes the results from [7], 9} 111 [13].

A general approach is studied in the third section where the main result, The-
orem [3.7] says that every subdirectly irreducible state-morphism algebra can be
embedded into a diagonal one.

The fourth section describes some generators of the varieties of state-morphism
algebras, and Theorem [£.4] shows that if a class K generates a variety V of algebras
of the same type F, then the variety of state-morphism algebras whose F-reduct
belongs to the class K is generated by the class of diagonal state-morphism algebras
D(A), where A € K. In addition, Theorem 7] deals with the CEP for the variety
of state-morphism algebras.

In Theorem [5.2] Theorem [£.4] was applied to the special class of algebras: MV-
algebras, BL-algebras, MTL-algebras, non-associative BL-algebras, and pseudo MV-
algebras to obtain the generators of the corresponding varieties of state-morphism
algebras.

During the study on this paper, we found some interesting open problems like:
(1) find a characterization of an analogue of a state-operator that is not necessarily
a state-morphism operator, (2) if the lattice of varieties of some variety is countable,
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how big is the lattice of corresponding state-morphism algebras, e.g. in the case of
MV-algebras, the lattice under question is uncountable [I3], (3) decidability of the
variety of state-morphism algebras.
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