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Abstract. We present a complete description of subdirectly irreducible state
BL-algebras as well as of subdirectly irreducible state-morphism BL-algebras.
In addition, we present a general theory of state-morphism algebras, that is,
algebras of general type with state-morphism which is an idempotent endomor-
phism. We define a diagonal state-morphism algebra and we show that every
subdirectly irreducible state-morphism algebra can be embedded into a diag-
onal one. We describe generators of varieties of state-morphism algebras, in
particular ones of state-morphism BL-algebras, state-morphism MTL-algebras,
state-morphism non-associative BL-algebras, and state-morphism pseudo MV-
algebras.

1. Introduction

A state, as an analogue of a probability measure, is a basic notion of the theory of
quantum structures, see e.g. [14]. However, for MV-algebras, the state as averaging
the truth value in the  Lukasiewicz logic was introduced firstly by Mundici in [22], 40
years after introducing MV-algebras, [6]. We recall that a state on an MV-algebra
M is a mapping s : M → [0, 1] such that (i) s(a ⊕ b) = s(a) + s(b), if a ⊙ b = 0,
and (ii) s(1) = 1. The property (i) says that s is additive on mutually excluding
events a and b. It is important note that every non-degenerate MV-algebra admits
at least one state. The set of states is a convex set, which in the weak topology
of states is a compact Hausdorff set, and every extremal state is in fact an MV-
algebra homomorphism from M into the MV-algebra of the real interval [0, 1], and
vice-versa, [22]. In addition, extremal states generate the set of all states because
by the Krein-Mil’man Theorem, [18, Thm 5.17], every state is a weak limit of a net
of convex combinations of these special homomorphisms.

In the last decade, the states entered into theory of MV-algebras in a very
ambitious manner. In [23, 21], authors have showed a relation between states
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and de Finetti’s approach to probability in terms of bets. In addition, Panti and
independently Kroupa in [24, 20] have showed that every state on M is an integral
through a unique regular Borel probability measure concentrated on the set of
extremal states on M.

Nevertheless as we have seen states are not a proper notion of universal algebra,
and therefore, they do not provide an algebraizable logic for probabilistic reasoning
of the many-valued approach.

Recently, Flaminio and Montagna in [16] presented an algebraizable logic con-
taining probabilistic reasoning, and its equivalent algebraic semantic is the variety
of state MV-algebras. We recall that a state MV-algebra is an MV-algebra whose
language is extended adding an operator, τ (called also an internal state), whose
properties are inspired by the ones of states. The analogues of extremal states
are state-morphism operators, introduced in [7]. By definition, it is an idempotent
endomorphism on an MV-algebra.

State MV-algebras generalize, for example, Hájek’s approach, [19], to fuzzy logic
with modality Pr (interpreted as probably) which has the following semantic inter-
pretation: The probability of an event a is presented as the truth value of Pr(a).
On the other hand, if s is a state, then s(a) is interpreted as averaging of appearing
the many valued event a.

We note that if (M, τ) is a state MV-algebra, assuming that that the range τ(M)
is simple, we see that it is a subalgebra of the real interval [0, 1] and therefore, τ
can be regarded as a standard state on M. On the other hand, every MV-algebra
M can be embedded into the tensor product [0, 1] ⊗M, therefore, given a state s
on M, we define an operator τs on [0, 1] ⊗ M via τs(t ⊗ a) := t · s(a), [16, Thm
5.3]. Then due to [7, Thm 3.2], τs is a state-operator that is a state-morphism
operator iff s is an extremal state. Thus, there is a natural correspondence between
the notion of a state and an extremal state on one side, and a state-operator and a
state-morphism operator on the other side.

Subdirectly irreducible state-morphism MV-algebras were described in [7, 9] and
this was extended also for state-morphism BL-algebras in [11]. A complete descrip-
tion of both subdirectly irreducible state MV-algebras as well as subdirectly irre-
ducible state-morphism MV-algebras can be found in [13]. In [8], it was shown that
if (M, τ) is a state MV-algebra whose image τ(M) belongs to the variety generated
by the L1, . . . , Ln, where Li := {0, 1/i, . . . , i/i}, then τ has to be a state-morphism
operator. The same is true if M is linearly ordered, [7]. Recently, in [13], we have
shown that the unit square [0, 1]2 with the diagonal operator generates the whole
variety of state-morphism MV-algebras; it answered in positive an open problem
posed in [7]. In addition, there was shown that in contrast to MV-algebras, the lat-
tice of subvarieties is uncountable. Moreover, it was shown that every subdirectly
irreducible state-morphism MV-algebra can be embedded into some diagonal one.

In this paper, we continue in the study of state BL-algebras and state-morphism
BL-algebras. Because the methods developed in [13] are so general that, it is
possible to study more general structures than MV-algebras or BL-algebras under a
common umbrella. Hence, we introduce state-morphism algebras (A, τ), where the
algebra A is an arbitrary algebra of type F and τ is an idempotent endomorphism
of A. Then general results applied to special types of algebras give interesting new
results.

The main goals of the paper are:
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(1) Complete characterizations of subdirectly irreducible state BL-algebras and
state-morphism BL-algebras.

(2) Showing that every subdirectly state-morphism algebra can be embedded
into some diagonal one D(B) := (B×B, τB), where τ(a, b) = (a, a), a, b ∈ B, which
is also subdirectly irreducible.

(3) We show that if K is a generator of some variety V of algebras of type F, then
the system of diagonal state-morphism algebras {D(B) : B ∈ K} is a generator of
the variety of state-morphism algebras whose F -reduct belongs to V .

(4) We exhibit cases when the Congruence Extension Property holds for a variety
of state-morphism algebras.

(5) In particular, a generator of the variety of state-morphism BL-algebras is
the class of all BL-algebras of the real interval [0, 1] equipped with a continuous
t-norm. Similarly, a generator of the variety of state-morphism MTL-algebras is
the class of all MTL-algebras of the real interval equipped with a left-continuous t-
norm, similarly for non-associative BL-algebras one is the set of all non-associative
BL-algebras of the real interval [0, 1] equipped with a non-associative t-norm, and
a generator of the variety of state-morphism pseudo MV-algebras is any pseudo
MV-algebra Γ(G, u), where (G, u) is a doubly transitive unital ℓ-group.

2. Subdirectly Irreducible State BL-algebras

In this section, we define state BL-algebras and state-morphism BL-algebras and
we present a complete description of their subdirectly irreducible algebras. These
results generalize those from [7, 9, 11, 13].

We recall that according to [19], a BL-algebra is an algebra M = (M ;∧,∨,⊙,→
, 0, 1) of the type 〈2, 2, 2, 2, 0, 0〉 such that (M ;∧,∨, 0, 1) is a bounded lattice,
(M ;⊙, 1) is a commutative monoid, and for all a, b, c ∈M,

(1) c ≤ a→ b iff a⊙ c ≤ b;
(2) a ∧ b = a⊙ (a→ b);
(3) (a → b) ∨ (b→ a) = 1.

For any a ∈ M, we define a complement a− := a → 0. Then a ≤ a−− for any
a ∈M and a BL-algebra is an MV-algebra iff a−− = a for any a ∈M.

A non-empty set F ⊆M is called a filter of M (or a BL-filter of M) if for every
x, y ∈ M : (1) x, y ∈ F implies x ⊙ y ∈ F, and (2) x ∈ F, x ≤ y implies y ∈ F. A
filter F 6= M is called a maximal filter if it is not strictly contained in any other
filter F ′ 6= M. A BL-algebra is called local if it has a unique maximal filter.

We denote by Rad1(M) the intersection of all maximal filters of M.
Let M be a BL-algebra. A mapping τ : M →M such that, for all x, y ∈M, we

have

(1)BL τ(0) = 0;
(2)BL τ(x → y) = τ(x) → τ(x ∧ y);
(3)BL τ(x ⊙ y) = τ(x) ⊙ τ(x → (x⊙ y));
(4)BL τ(τ(x) ⊙ τ(y)) = τ(x) ⊙ τ(y);
(5)BL τ(τ(x) → τ(y)) = τ(x) → τ(y)

is said to be a state-operator on M, and the pair (M, τ) is said to be a state BL-
algebra, or more precisely, a BL-algebra with internal state.
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If τ : M → M is a BL-endomorphism such that τ ◦ τ = τ, then τ is a state-
operator on M and it is said to be a state-morphism operator and the couple (M, τ)
is said to be a state-morphism BL-algebra.

A filter F of a BL-algebra M is said to be a τ -filter if τ(F ) ⊆ F. If τ is a
state-operator on M, we denote by

Ker(τ) = {a ∈M : τ(a) = 1}.

then Ker(τ) is a τ -filter. A state-operator τ is said to be faithful if Ker(τ) = {1}.
We recall that there is a one-to-one relation between congruences and τ -filters

on a state BL-algebra (M, τ) as follows. If F is a τ -filter, then the relation ∼F

given by x ∼F y iff x → y, y → x ∈ F is a congruence of the BL-algebra M and
∼F is also a congruence of the state BL-algebra (M, τ).

Conversely, let ∼ be a congruence of state BL-algebra (M, τ) and set F∼ := {x ∈
M : x ∼ 1}. Then F∼ is a τ -filter of (M, τ) and ∼F∼

=∼ and F = F∼F
.

By [5, Lem 3.5(k)], (τ(M), τ) is a subalgebra of (M, τ), τ on τ(M) is the identity,
and hence, (Ker(τ);→, 0, 1) is a subhoop of M. We say that two subhoops, A and
B, of a BL-algebra M have the disjunction property if for all x ∈ A and y ∈ B, if
x ∨ y = 1, then either x = 1 or y = 1.

Nevertheless a subdirectly irreducible state BL-algebra (M, τ) is not necessarily
linearly ordered, according to [5, Thm 5.5], τ(M) is always linearly ordered.

We note that according to [5, Prop 3.13], if M is an MV-algebra, then the notion
of a state MV-algebra coincides with the notion of a state BL-algebra.

The following three characterizations were originally proved in [13] for state MV-
algebras. Here we show that the original proofs from [13] slightly improved work
also for state BL-algebras.

Lemma 2.1. Suppose that (M, τ) is a state BL-algebra. Then:

(1) If τ is faithful, then (M, τ) is a subdirectly irreducible state BL-algebra if
and only if τ(M) is a subdirectly irreducible BL-algebra.

Now let (M, τ) be subdirectly irreducible. Then:

(2) Ker(τ) is (either trivial or) a subdirectly irreducible hoop.
(3) Ker(τ) and τ(M) have the disjunction property.

Proof. (1) Suppose τ is faithful. Let F denote the least nontrivial τ -filter of (M, τ).
There are two cases: (i) If τ(M) ∩ F 6= {1}, then τ(M) ∩ F is the least nontrivial
filter of τ(M) and τ(M) is subdirectly irreducible. (ii) If τ(M) ∩ F = {1}, then
for all x ∈ F , τ(x) = 1 because τ(x) ∈ τ(M) ∩ F and F ⊆ Ker(τ) = {1} is the
trivial filter, a contradiction. Therefore, only the first case is possible and τ(M) is
subdirectly irreducible.

Conversely, let τ(M) be subdirectly irreducible and let G be the least nontrivial
filter of τ(M). Then the τ -filter F of (M, τ) generated by G is the least nontrivial τ -
filter of (M, τ). Indeed, if K is another nontrivial τ -filter of (M, τ), then K∩τ(M) ⊇
F ∩ τ(M) = G. Then K contains the τ -filter generated by G, that is F ⊆ K which
proves F is the least and (M, τ) is subdirectly irreducible.

Now let (M, τ) be subdirectly irreducible and let F denote the least nontrivial
filter of (M, τ).

(2) Suppose that τ is not faithful. Then Ker(τ) is a nontrivial τ -filter. If (M, τ)
is subdirectly irreducible, it has a least nontrivial τ -filter, F say. So, F ⊆ Ker(τ),
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and hence F is the least nontrivial filter of the hoop Ker(τ). Hence, Ker(τ) is a
subdirectly irreducible hoop.

(3) Suppose, by way of contradiction, that for some x ∈ Ker(τ) and y = τ(y) ∈
τ(M) one has x < 1, y < 1 and x ∨ y = 1. It is easy to see that the BL-filters
generated by x and by y, respectively, are τ -filters. Therefore they both contain
F . Hence, the intersection of these filters contains F . Now let c < 1 be in F .
Then there is a natural number n such that xn ≤ c and yn ≤ c. It follows that
1 = (x ∨ y)n = xn ∨ yn ≤ c, a contradiction. �

Lemma 2.2. If (M, τ) is a subdirectly irreducible state BL-algebra, then τ(M) and
Ker(τ) are linearly ordered.

Proof. According to [5, Thm 5.5], τ(M) is always linearly ordered. On the other
hand, by Lemma 2.1, Ker(τ) is either a trivial hoop or a subdirectly irreducible
hoop, and hence it is linearly ordered. �

Theorem 2.3. Let (M, τ) be a state BL-algebra satisfying conditions (1), (2) and
(3) in Lemma 2.1. Then (M, τ) is subdirectly irreducible.

Proof. Suppose first that τ is faithful and that τ(M) is subdirectly irreducible. Let
F0 be the least nontrivial filter of τ(M) and let F be the BL-filter of M generated
by F0. Then F is a τ -filter. Indeed, if x ∈ F , then there is τ(a) ∈ F0 and a natural
number n such that τ(a)n ≤ x. It follows that τ(x) ≥ τ(τ(a)n) = τ(a)n, and
τ(x) ∈ F .

We assert that F is the least nontrivial τ -filter of (M, τ). First of all, τ(M),
being a subdirectly irreducible BL-algebra, is linearly ordered. Now in order to
prove that F is the least nontrivial τ -filter of (M, τ), it suffices to prove that
every τ -filter G not containing F is trivial. Now let c < 1 in F\G. Then since
Ker(τ) = {1}, τ(c) < 1. Next, let d ∈ G. Then τ(d) ∈ G, and for every n it cannot
be τ(d)n ≤ τ(c), otherwise τ(c) ∈ G. Hence, for every n, τ(c) < τ(d)n, and hence
τ(c) does not belong to the τ -filter of τ(M) generated by τ(d). By the minimality
of F in τ(M), τ(d) = 1 and since τ is faithful, we conclude that d = 1 and G is
trivial, as desired.

Now suppose that Ker(τ) is nontrivial. By condition (2), Ker(τ) is subdirectly
irreducible. Thus, let F be the least nontrivial filter of Ker(τ). Then F is a non
trivial τ -filter, and we have to prove that F is the least nontrivial τ -filter of (M, τ).
Let G be any non trivial τ -filter of (M, τ). If G ⊆ Ker(τ), then it contains the
least filter, F , of Ker(τ), and F ⊆ G. Otherwise, G contains some x /∈ Ker(τ),
and hence it contains τ(x) < 1. Now by the disjunction property, for all y < 1
in Ker(τ), τ(x) ∨ y < 1 and τ(x) ∨ y ∈ Ker(τ) ∩ G. Thus, G contains the filter
generated by τ(x) ∨ y, which is a non trivial filter of the hoop Ker(τ), and hence it
contains F , the least nontrivial filter of Ker(τ). This proves the claim. �

By [13, Thm 3.5], conditions (1), (2), and (3) from Lemma 2.1 are independent
ones even for state BL-algebras. In addition, Theorem 2.3 gives a characterization
of subdirectly irreducible state BL-algebras. If (M, τ) is a state-morphism BL-
algebra, combining [11, Thm 4.5] we can say more about subdirectly irreducible
state-morphism BL-algebras. The following examples are from [11].

Example 2.4. Let M be a BL-algebra. On M ×M we define two operators, τ1
and τ2, as follows

τ1(a, b) = (a, a), τ2(a, b) = (b, b), (a, b) ∈M ×M. (2.0)
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Then τ1 and τ2 are two state-morphism operators on M×M. Moreover, (M×M, τ1)
and (M×M, τ2) are isomorphic state BL-algebras under the isomorphism (a, b) 7→
(b, a).

We say that an element a ∈M is Boolean if a−− = a and a⊙ a = a. Let B(M)
be the set of Boolean elements. Then 0, 1 ∈ B(M), B(M) is a subset of the MV-
skeleton MV(M) := {x ∈ M : x−− = x}, and a ∈ B(M) implies a− ∈ B(M). We
recall that according to [26, Thm 2], MV(M) is an MV-algebra, therefore, B(M)
is a Boolean subalgebra of MV(M).

Example 2.5. Let B be a local MV-algebra such that Rad1(B) 6= {1} is a unique
nontrivial filter ofB. Let M be a subalgebra of B×B that is generated by Rad1(B)×
Rad1(B), that is M = (Rad1(B)×Rad1(B))∪(Rad1(B)×Rad1(B))−. Let τ(x, y) :=
(x, x) for all x, y ∈ M. Then τ is a state-morphism operator on M, Ker(τ) =
{1} × Rad1(B) ⊂ Rad1(M) = Rad1(B) × Rad1(B), M has no Boolean nontrivial
elements, and (M, τ) is a subdirectly irreducible state-morphism MV-algebra that
is not linear.

Example 2.6. Let A be a linear nontrivial BL-algebra and B a nontrivial sub-
directly irreducible BL-algebra with the smallest nontrivial BL-filter FB and let
h : A → B be a BL-homomorphism. On M = A × B we define a mapping
τh : M → M by

τh(a, b) = (a, h(a)), (a, b) ∈M. (2.2)

If we set y = (0, 1) and y− = (1, 0), then y and y− are unique nontrivial Boolean
elements.

Then τh is a state-morphism operator on M and (M, τh) is a subdirectly irre-
ducible state-morphism BL-algebra iff Ker(h) = {a ∈ A : h(a) = 1} = {1}. In such
a case, Ker(τh) = {1}×B and F := {1}×FB is the least nontrivial state-morphism
filter on M.

Now we present the main result on the complete characterization of subdirectly
irreducible state-morphism BL-algebras which is a combination of [11, Thm 4.5]
and Theorem 2.3.

Theorem 2.7. A state-morphism BL-algebra (M, τ) is subdirectly irreducible if
and only if one of the following three possibilities holds.

(i) M is linear, τ = IdM is the identity on M, and the BL-reduct M is a
subdirectly irreducible BL-algebra.

(ii) The state-morphism operator τ is not faithful, M has no nontrivial Boolean
elements, and the BL-reduct M of (M, τ) is a local BL-algebra, Ker(τ) is
a subdirectly irreducible irreducible hoop, and Ker(τ) and τ(M) have the
disjunction property.

Moreover, M is linearly ordered if and only if Rad1(M) is linearly or-
dered, and in such a case, M is a subdirectly irreducible BL-algebra such
that if F is the smallest nontrivial state-filter for (M, τ), then F is the
smallest nontrivial BL-filter for M.

If Rad1(M) = Ker(τ), then M is linearly ordered.
(iii) The state-morphism operator τ is not faithful, M has a nontrivial Boolean

element. There are a linearly ordered BL-algebra A, a subdirectly irre-
ducible BL-algebra B, and an injective BL-homomorphism h : A → B

such that (M, τ) is isomorphic as a state-morphism BL-algebra with the
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state-morphism BL-algebra (A×B, τh), where τh(x, y) = (x, h(x)) for any
(x, y) ∈ A×B.

Proof. It follows from [11, Thm 4.5] and Theorem 2.3. �

We recall that a t-norm is a function t : [0, 1] × [0, 1] → [0, 1] such that (i) t
is commutative, associative, (ii) t(x, 1) = x, x ∈ [0, 1], and (iii) t is nondecreasing
in both components. If t is continuous, we define x ⊙t y = t(x, y) and x →t y =
sup{z ∈ [0, 1] : t(z, x) ≤ y} for x, y ∈ [0, 1], then It := ([0, 1]; min,max,⊙t,→t, 0, 1)
is a BL-algebra. Moreover, according to [3, Thm 5.2], the variety of all BL-algebras
is generated by all It with a continuous t-norm t. Let T denote the system of all
BL-algebras It, where t is any continuous t-norm.

The proof of the following result will follow from Theorem 5.2.

Theorem 2.8. The variety of all state-morphism BL-algebras is generated by the
system {D(It) : t ∈ T }.

3. General State-Morphism Algebras

In this section, we generalize the notion of state-morphism BL-algebras to an
arbitrary variety of algebras of some type. It is interesting that many results known
only for state-morphism MV-algebras or state-morphism BL-algebras have a very
general presentation as state-morphism algebras. The main result of this section,
Theorem 3.7, says that every subdirectly irreducible state-morphism algebra can
be embedded into some diagonal one.

Let A be any algebra of type F and let ConA be the system of congruences
on A with the least congruence ∆A. An endomorphisms τ : A −→ A satisfying
τ ◦ τ = τ is said to be a state-morphism on A and a couple (A, τ) is said to be a
state-morphism algebra or an algebra with internal state-morphism. Clearly, if K
is a variety of algebras of type F , then the class Kτ of all state-morphism algebras
(A, τ), where A ∈ K and τ is any state-morphism on A, forms a variety, too.

In the rest of the paper, we will assume that A is an arbitrary algebra with a
fixed type F ; if A is of a specific type, it will be said that and specified.

Definition 3.1. Let B ∈ K. Then an algebra D(D) := (B ×B, τB), where τB is
defined by τB(x, y) = (x, x), x, y ∈ B, is a state-morphism algebra (more precisely
(B ×B, τB) ∈ Kτ ); we call τB also a diagonal state-operator. If a state-morphism
algebra (C, τ) can be embedded into some diagonal state-morphism algebra, (B×
B, τB), (C, τ) is said to be a subdiagonal state-morphism algebra, or, more precisely,
B-subdiagonal.

Let (A, τ) be a state-morphism algebra. We introduce the following sets:

θτ = {(x, y) ∈ A×A : τ(x) = τ(y)}, (3.1)

τ(A) = {τ(x) : x ∈ A}.

The subalgebra which is an image of A by τ is denoted by τ(A) and thus τ(A) ∈
K and (τ(A), Idτ(A)) ∈ Kτ , where Idτ(A) is the identity on τ(A); we have also
τ |τ(A) = Idτ(A).

If φ ∈ Con τ(A), we define

θφ := {(x, y) ∈ A×A : (τ(x), τ(y)) ∈ φ}. (3.2)
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Finally, if φ ⊆ A2 then the congruence on A generated by φ is denoted by
Θ(φ) and the congruence on (A, τ) generated by φ is denoted by Θτ (φ). Clearly
Con (A, τ) ⊆ ConA and also Θ(φ) ⊆ Θτ (φ).

Lemma 3.2. Let (A, τ) be a state-morphism algebra. For any φ ∈ Con τ(A), we
have θφ ∈ Con (A, τ), and θφ ∩ τ(A)2 = φ. In addition, θτ ∈ Con (A, τ), φ ⊆ θφ,
and Θτ (φ) ⊆ θφ.

Proof. Clearly, θφ is reflexive and symmetric. Moreover, if (x, y), (y, z) ∈ θφ, then
(

τ(x), τ(y)
)

,
(

τ(y), τ(z)
)

∈ φ and thus
(

τ(x), τ(z)
)

∈ φ which gives (x, z) ∈ θφ.

Let fA be an n-ary operation on A and let x1, . . . , xn, y1, . . . , yn ∈ A be such that
(xi, yi) ∈ θφ for any i = 1, . . . , n. Then

(

τ(xi), τ(yi)
)

∈ φ holds for any i = 1, . . . , n.

Due to φ ∈ Con τ(A), we obtain
(

f τ(A)(τ(x1), . . . , τ(xn)), f τ(A)(τ(y1), . . . , τ(yn))
)

∈
φ.

Because τ is an endomorphism, τ(fA(x1, . . . , xn)) = f τ(A)(τ(x1), . . . , τ(xn))
and τ(fA(y1, . . . , yn)) = f τ(A)(τ(y1), . . . , τ(yn)) which gives

(

τ(fA(x1, . . . , xn)),

τ(fA(y1, . . . , yn))
)

∈ φ and finally also
(

fA(x1, . . . , xn), fA(y1, . . . , yn)
)

∈ θφ.

Moreover, take an arbitrary (x, y) ∈ θφ. Then
(

τ(τ(x)), τ(τ(y))
)

=
(

τ(x), τ(y)
)

∈

φ which gives
(

τ(x), τ(y)
)

∈ θφ.
Hence, θφ ∈ Con (A, τ) and if φ = ∆τ(A), then θφ = θτ .

It is clear that θφ ∩ τ(A)2 ⊇ φ. Now let (x, y) ∈ θφ ∩ τ(A)2. Then x, y ∈ τ(A),
(τ(x), τ(y)) ∈ φ ⊆ τ(A)2, so that x = τ(x) ∈ τ(A), y = τ(y) ∈ τ(A), and conse-
quently, (x, y) ∈ φ.

It is evident that θτ is a congruence on (A, τ).
Finally, if (x, y) ∈ φ then τ(x) = x and τ(y) = y which gives

(

τ(x), τ(y)
)

=
(x, y) ∈ φ. Thus (x, y) ∈ θφ which finishes the proof that φ ⊆ θφ and Θτ (φ) ⊆
θφ. �

Lemma 3.3. Let θ ∈ ConA be such that θ ⊆ θτ . Then θ ∈ Con (A, τ) holds.
Moreover, if x, y ∈ A are such that (x, y) ∈ θτ , then Θ(x, y) = Θτ (x, y).

Proof. If (x, y) ∈ θ ⊆ θτ , then τ(x) = τ(y) and thus
(

τ(x), τ(y)
)

=
(

τ(x), τ(x)
)

∈ θ
proves that θ ∈ Con (A, τ).

Moreover, if (x, y) ∈ θτ , then Θ(x, y) ⊆ θτ . Due to the first part of Lemma,
we obtain Θ(x, y) ∈ Con (A, τ) and thus Θτ (x, y) ⊆ Θ(x, y) holds. The second
inclusion is trivial. �

Lemma 3.4. If x, y ∈ τ(A), then Θ(x, y) = Θτ (x, y). Consequently, Θ(φ) = Θτ (φ)
whenever φ ⊆ τ(A)2.

Proof. Let us denote by φ the congruence on τ(A) generated by (x, y). Clearly we
obtain the chain of inclusions φ ⊆ Θ(x, y) ⊆ Θ(φ) ⊆ θφ (because (x, y) ∈ φ and
φ ⊆ θφ, see Lemma 3.2).

Assume (a, b) ∈ Θ(x, y), then (a, b) ∈ θφ and thus (τ(a), τ(b)) ∈ φ ⊆ Θ(x, y).
Thus Θ(x, y) ∈ Con (A, τ) and Θτ (x, y) ⊆ Θ(x, y) holds. The second inclusion is
trivial.

Finally, let φ ⊆ τ(A)2. By [2, Thm 5.3], the both congruence lattices of A and
(A, τ) are complete sublattices of the lattice of equivalencies on A, and therefore,
they have the same infinite suprema. Hence, by the first part of the lemma,

Θ(φ) =
∨

(x,y)∈φ

Θ(x, y) =
∨

(x,y)∈φ

Θτ (x, y) = Θτ (φ).
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�

Remark 3.5. By Lemma 3.2, if φ is a congruence on τ(A), then θφ is an extension
of φ on (A, τ) and Θ(φ) = Θτ (φ) ⊆ θφ. There is a natural question whether
Θ(φ) = θφ ? The answer is positive if and only if τ is the identity on A. Indeed,
if τ is the identity on A, the statement is evident, in the opposite case, we have
θ∆τ(A)

= θτ 6= ∆A = Θ(∆τ(A)).

Theorem 3.6. Let (A, τ) be a subdirectly irreducible state-morphism algebra such
that A is subdirectly reducible. Then there is a subdirectly irreducible algebra B

such that (A, τ) is B-subdiagonal.

Proof. First, if θτ = ∆A, then for any x ∈ A, the equality τ(x) = x holds and
thus ConA = Con (A, τ) which is absurd because A is subdirectly irreducible and
(A, τ) is not subdirectly irreducible.

The subdirect irreducibility of (A, τ) implies that there is a least proper congru-
ence θmin ∈ Con (A, τ). Moreover, due to Lemma 3.3, the congruence θmin is also
a least proper congruence θ on A with θ ⊆ θτ and thus θmin is an atom in ConA.
Let us denote

θ⊥τ = {θ ∈ ConA : θ ∩ θτ = ∆A}.

First, we prove that there exists proper θ ∈ θ⊥τ . The subdirect reducibility of A

shows that there exists proper θ ∈ ConA with θmin 6⊆ θ. Hence, θτ ∩ θ = ∆A holds
(because if θτ ∩ θ 6= ∆A, then θτ ∩ θ is a proper congruence contained in θτ and
minimality of θmin yields θmin ⊆ θ ∩ θτ ⊆ θ, which is absurd).

Moreover, let us have θn ∈ θ⊥τ for any n ∈ N with θn ⊆ θn+1, then clearly
∨

n∈N
θn =

⋃

n∈N
θn ∈ θ⊥τ . Due to Zorn’s Lemma, there is maximal θ∗ ∈ θ⊥τ .

We have proved that both θτ and θ∗ are proper congruences on A with θτ ∩θ
∗ =

∆A. By the Birkhoff Theorem about subdirect reducibility, A is a subdirect product
of two algebras A/θτ and A/θ∗ with an embedding h : A −→ A/θτ ×A/θ∗ defined
by h(x) = (x/θτ , x/θ

∗).
Now we define the mapping ψ : A/θτ −→ A/θ∗ by ψ(x/θτ ) = τ(x)/θ∗. Clearly

ψ is well-defined because x/θτ = y/θτ yields τ(x) = τ(y) and thus ψ(x/θτ ) =
τ(x)/θ∗ = τ(y)/θ∗ = ψ(y/θτ ). Let us suppose that ψ(x/θτ ) = ψ(y/θτ ). Then
τ(x)/θ∗ = τ(y)/θ∗ and

(

τ(x), τ(y)
)

∈ θ∗. Hence, Θ(τ(x), τ(y)) ⊆ θ∗ holds. Finally,
if τ(x) 6= τ(y) (thus Θ(τ(x), τ(y)) is a proper congruence), then τ(x), τ(y) ∈ τ(A)
and Lemma 3.4 yields Θ(τ(x), τ(y)) ∈ Con (A, τ) and thus θmin ⊆ Θ(τ(x), τ(y)) ⊆
θ∗ which is absurd (θmin ⊆ θτ ∩ θ∗ = ∆A). Therefore, the mapping ψ is injective.

We shall prove that ψ is a homomorphism (and thus an embedding). If fA is an
n-ary operation and x1/θτ , . . . , xn/θτ ∈ A/θτ , then

ψ(fA/θτ (x1/θτ , . . . , xn/θτ )) = ψ(fA(x1, . . . , xn)/θτ )

= τ(fA(x1, . . . , xn))/θ∗

= fA(τ(x1), . . . , τ(xn))/θ∗

= fA/θ∗

(τ(x1)/θ∗, . . . , τ(xn)/θ∗)

= fA/θ∗

(ψ(x1/θτ ), . . . , ψ(xn/θτ)).

Now we prove that A is A/θ∗-diagonal. Let g : A −→ (A/θ∗)2 be defined via
g(x) = (ψ(x/θτ ), x/θ∗) = (τ(x)/θ∗, x/θ∗). Because the mapping g is the composi-
tion of two functions h and ψ which are embeddings, g is also an embedding of A
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into (A/θ∗)2. Now we can compute:

g(τ(x)) =
(

τ(τ(x))/θ∗ , τ(x)/θ∗
)

=
(

τ(x)/θ∗, τ(x)/θ∗
)

= τA/θ∗(τ(x)/θ∗, x/θ∗)

= τA/θ∗(g(x)),

where τA/θ∗ is the diagonal state-morphism on the product A/θ∗×A/θ∗. Therefore,
g : (A, τ) −→ (A/θ∗ ×A/θ∗, τA/θ∗) is an embedding and (A, τ) is A/θ∗-diagonal.

Finally, we prove the subdirect irreducibility of A/θ∗. Of course, θmin∩θ
∗ = ∆A

yields θmin 6⊆ θ∗ and thus θ∗ ⊂ θ∗ ∨ θmin. Moreover, if θ∗ ⊂ θ, from maximality
of θ∗ we obtain θ ∩ θτ 6= ∆A and thus θmin ⊆ θτ ∩ θ. Finally, θmin ∨ θ∗ ⊆ (θτ ∩
θ) ∨ θ∗ ⊆ (θτ ∩ θ) ∨ θ = θ holds. Hence, for any congruence θ ∈ ConA, the
inequality θ∗ ⊂ θ∗∩θmin ⊆ θ holds. Due to the Birkhoff’s Theorem and the Second
Homomorphism Theorem, an algebra A/θ∗ is subdirectly irreducible. �

Theorem 3.6 can be extended as follows.

Theorem 3.7. For every subdirectly irreducible state-morphism algebra (A, τ),
there is a subdirectly irreducible algebra B such that (A, τ) is B-subdiagonal.

Proof. There are two cases: (1) (A, τ) and A are subdirectly irreducible, and (2)
(A, τ) is a subdirectly irreducible state-morphism algebra and A is a subdirectly
reducible algebra

(1) Assume that (A, τ) and A are subdirectly irreducible. Define two state-
morphism algebras (τ(A) ×A, τ1) and (A×A, τ2), where τ1(a, b) = (a, a), (a, b) ∈
τ(A) × A, and τ2(a, b) = (a, a), a, b ∈ A. Then the first one is a subalgebra of the
second one.

Define a mapping φ : A→ τ(A)×A defined by φ(a) = (τ(a), a), a ∈ A. Then φ is
injective because if φ(a) = φ(b) then (τ(a), a) = (τ(b), b) and a = b. We show that
φ is a homomorphism. Let fA be an n-ary operation on A and let a1, . . . , an ∈ A.
Then

φ(fA(a1, . . . , an)) =
(

τ(fA(a1, . . . , an)), fA(a1, . . . , an)
)

=
(

fA(τ(a1), . . . , τ(an)), fA(a1, . . . , an)
)

= f τ(A)×A
(

(τ(a1), a1), . . . , (τ(an), an)
)

= f τ(A)×A(φ(a1), . . . , φ(an)).

Since φ : A → τ(A) × A ⊆ A × A, φ can be assumed also as an injective
homomorphism from the state-morphism algebra (A, τ) into the state-morphism
algebra D(B), where B := A is a subdirectly irreducible algebra.

(2) This case was proved in Theorem 3.6. �

For example, a state-morphism algebra (A, IdA), where IdA is the identity on
A, is subdirectly irreducible if and only if A is subdirectly irreducible. Therefore,
(A, IdA) can be embedded into (A×A, τA) under the mapping a 7→ (a, a), a ∈ A.
Consequently, every subdirectly irreducible state-morphism algebra (A, IdA) is A-
subdiagonal with A subdirectly irreducible.

We note that in the same way as in [13, Lem 6.1], it is possible to show that
the class of subdiagonal state-morphism algebras is closed under subalgebras and
ultraproducts, and not closed under homomorphic images, see [13, Lem 6.6].
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4. Varieties of State-Morphism Algebras and Their Generators

In this section, we study varieties of state-morphism algebras and their genera-
tors. It is interesting to note that some similar results proved for state-morphism
MV-algebras in [13] can be obtained in an analogous way also for a general variety
of algebras.

Let τ be a state-morphism operator on an algebra A. We set

Ker(τ) := {(x, y) ∈ A×A : τ(x) = τ(y)},

the kernel of τ. We say that τ is faithful if Ker(τ) = ∆A. It is evident that τ is
faithful iff τ(x) = x for each x ∈ A. In addition, τ is faithful iff τ is injective.

For every class K of same type algebras, we set D(K) = {D(A) : A ∈ K} , where
D(A) = (A×A, τA).

As usual, given a class K of algebras of the same type, I(K), H(K), S(K) and
P(K) and PU(K) will denote the class of isomorphic images, of homomorphic im-
ages, of subalgebras, of direct products and of ultraproducts of algebras from K,
respectively. Moreover, V(K) will denote the variety generated by K.

Lemma 4.1. (1) Let K be a class of algebras of the same type F . Then VD(K) ⊆
V(K)τ .
(2) Let V be any variety. Then Vτ = ISD(V).

Proof. (1) If D(A) ∈ D(K) (thus A ∈ K), then the F -reduct of the algebra D(A) is
the algebra A×A which belongs to the variety V(K). Due to definition of V(K)τ ,
we obtain also D(A) ∈ V(K)τ . We have proved that D(K) ⊆ V(K)τ . Because
V(K)τ is a variety then also VD(K) ⊆ V(K)τ

(2) Let (A, τ) ∈ Vτ . As we have seen in the proof of Theorem 3.7, the map
φ : a 7→ (τ(a), a) is an injective homomorphism of (A, τ) into D(A). Hence, φ is
compatible with τ , and (A, τ) ∈ ISD(V). Conversely, the F -reduct of any algebra
in D(V) is in V , (being a direct product of algebras in V), and hence the F -reduct of
any member of ISD(V) is in IS(V) = V . Hence, any member of ISD(V) is in Vτ . �

Lemma 4.2. Let K be a class of algebras of the same type F . Then:
(1) DH(K) ⊆ HD(K).
(2) DS(K) ⊆ ISD(K).
(3) DP(K) ⊆ IPD(K).
(4) VD(K) = ISD(V(K)).

Proof. (1) Let D(C) ∈ DH(K). Then there are A ∈ K and a homomorphism
h from A onto C. Let for all a, b ∈ A, h∗(a, b) = (h(a), h(b)). We claim that
h∗ is a homomorphism from D(A) onto D(C). That h∗ is a homomorphism is
clear. We verify that h∗ is compatible with τA. We have h∗(τA(a, b)) = h∗(a, a) =
(h(a), h(a)) = τC(h(a), h(b)) = τC(h∗(a, b)). Finally, since h is onto, given (c, d) ∈
C ×C, there are a, b ∈ A such that h(a) = c and h(b) = d. Hence, h∗(a, b) = (c, d),
h∗ is onto, and D(C) ∈ HD(K).

(2) It is trivial.
(3) Let A =

∏

i∈I(Ai) ∈ P(K), where each Ai is in K. Then the map

Φ :
(

(ai : i ∈ I), (bi : i ∈ I)
)

7→
(

(ai, bi
)

: i ∈ I)

is an isomorphism from D(A) onto
∏

i∈I D(Ai). Indeed, it is clear that Φ is an
F -isomorphism. Moreover, denoting the state-morphism of

∏

i∈I D(Ai) by τ∗, we
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get:

Φ
(

τA
(

(ai : i ∈ I), (bi : i ∈ I)
))

= Φ
(

(ai : i ∈ I), (ai : i ∈ I)
)

=

=
(

(ai, ai) : i ∈ I
)

=
(

τAi
(ai, bi) : i ∈ I

)

= τ∗
(

Φ
(

(ai : i ∈ I), (bi : i ∈ I)
))

,

and hence Φ is an isomorphism.
(4) By (1), (2) and (3), DV(K) = DHSP(K) ⊆ HSPD(K) = VD(K), and hence

ISDV(K) ⊆ ISVD(K) = VD(K). Conversely, by Lemma 4.1(1), VD(K) ⊆ V(K)τ ,
and by Lemma 4.1(2), V(K)τ = ISDV(K). This proves the claim. �

Theorem 4.3. (1) For every class K of algebras of the same type F, V(D(K)) =
V(K)τ .

(2) Let K1 and K2 be two classes of same type algebras. Then V(D(K1)) =
V(D(K2)) if and only if V(K1) = V(K2).

Proof. (1) By Lemma 4.2(4), VD(K) = ISD(V(K)). Moreover, by Lemma 4.1(2),
V(K)τ = ISDV(K). Hence, V(D(K)) = V(K)τ .

(2) We have V(D(K1)) = V(K1)τ and V(D(K2)) = V(K2)τ . Clearly, V(K1) =
V(K2) implies V(K1)τ = V(K2)τ , and hence V(D(K1)) = V(D(K2)). Conversely,
V(D(K1)) = V(D(K2)) implies V(K1)τ = V(K2)τ . But any algebra A ∈ V(K1) is
the F -reduct of a state-morphism algebra in V(K1)τ , namely of (A, IdA).

It follows that, if V(K1)τ = V(K2)τ , then the classes of F -reducts of V(K1)τ and
of V(K2)τ coincide, and hence V(K1) = V(K2). �

As a direct corollary of Theorem 4.3, we have:

Theorem 4.4. If a system K of algebras of the same type F generates the whole
variety V(F ) of all algebras of type F, then the variety V(F )τ of all state-morphism
algebras (A, τ), where A ∈ V(F ), is generated by the class {D(A) : A ∈ K}.

Some applications of the latter theorem for different varieties of algebras will be
done in Section 5.

Theorem 4.5. If A is a subdirectly irreducible algebra, then any state-morphism
algebra (A, τ) is subdirectly irreducible.

Proof. Let A be a subdirectly irreducible algebra and let τ be a state-morphism
operator on A. If τ is the identity on A, then ConA = Con (A, τ) and, consequently,
(A, τ) is subdirectly irreducible. If τ is not the identity on A, then θτ , defined by
(3.1), is a nontrivial congruence on A, and thus θmin ⊆ θτ , where θmin ∈ ConA

is the least nontrivial congruence. Hence, θmin belongs to the set Con (A, τ), see
Lemma 3.3. Therefore, Con (A, τ) ⊆ ConA yields the subdirect irreducibility
of the algebra (A, τ), more precisely, θmin is also the least proper congruence in
Con (A, τ). �

We remind the following Mal’cev Theorem, [2, Lem 3.1].

Theorem 4.6. Let A be an algebra and φ ⊆ A2. Then (a, b) ∈ Θ(φ) if and
only if there exist two finite sequences of terms t1(x1, x), . . . , tn(xn, x) and pairs
(a1, b1), . . . , (an, bn) ∈ φ with

a = t1(x1, a1), ti(xi, bi) = ti+1(xi+1, ai+1) and tn(xn, bn) = b

for some x1, . . . , xn ∈ A.
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We say that an algebra B has the Congruence Extension Property (CEP for
short) if, for any algebra A such that B is a subalgebra of A and for any congruence
θ ∈ ConB, there is a congruence φ ∈ ConA such that θ = (B ×B) ∩ φ. A variety
K has the CEP if every algebra in K has the CEP. For example, the variety of MV-
algebra, or the variety of BL-algebras or the variety of state-morphism MV-algebras
(see [13, Lem 6.1]) satisfies the CEP.

Theorem 4.7. A variety Vτ satisfy the CEP if and only if V satisfies the CEP.

Proof. Let us have a variety V with the CEP. If A ∈ V is such that (A, τ) is
an algebra with state-morphism, for any subalgebra (B, τ) ⊆ (A, τ) and any φ ∈
Con (B, τ), the condition φ = B2 ∩ Θ(φ) holds.

Now we prove Θ(φ) = Θτ (φ). To show that, assume (a, b) ∈ Θ(φ). Mal’cev’s
Theorem shows the existence of finite sequences of terms t1(x1, x), . . . , tn(xn, x)
and pairs (a1, b1), . . . , (an, bn) ∈ φ with

a = t1(x1, a1), ti(xi, bi) = ti+1(xi+1, ai+1) and tn(xn, bn) = b

for some x1, . . . , xn ∈ A. Because τ is an endomorphism, we obtain also equalities

τ(a) = t1(τ(x1), τ(a1)), ti(τ(xi), τ(bi)) = ti+1(τ(xi+1), τ(ai+1))

and

tn(τ(xn), τ(bn)) = τ(b).

We have assumed that φ ∈ Con (B, τ), thus (ai, bi) ∈ φ yields (τ(ai), τ(bi)) ∈ φ
for any i = 1, . . . , n. Now, we have obtained (τ(a), τ(b)) ∈ Θ(φ). In other words,
Θ(φ) ∈ Con (A, τ) and thus Θ(φ) = Θτ (φ).

If Vτ has the CEP, then for any A ∈ V , we have ConA = Con (A, IdA). Clearly,
the CEP on (A, IdA) yields the CEP on A. �

5. Applications to Special Types of Algebras

In this section, we apply a general result concerning generators of some vari-
eties of state-morphism algebras, Theorem 4.3, to the variety of state-morphism
BL-algebras, state-morphism MTL-algebras, state-morphism non-associative BL-
algebras, and state-morphism pseudo MV-algebras, when we use different systems
of t-norms on the real interval [0, 1] and a special type of pseudo MV-algebras,
respectively.

Algebras for which the logic MTL is sound are called MTL-algebras. They can
be characterized as prelinear commutative bounded integral residuated lattices. In
more detail, according to [15], an algebraic structure A = (A;∧,∨, ∗,→, 0, 1) of
type 〈2, 2, 2, 2, 0, 0〉 is an MTL-algebra if

(M1) (A;∧,∨, 0, 1) is a bounded lattice with the top element 0 and bottom ele-
ment 1,

(M2) (A; ∗, 1) is a commutative monoid,
(M3) ∗ and → form an adjoint pair, that is, z ∗ x ≤ y if and only if z ≤ x → y,

where ≤ is the lattice order of (A;∧,∨) for all x, y, z ∈ A, (the residuation
condition),

(M4) (x→ y) ∨ (y → x) = 1 holds for all x, y ∈ A (the prelinearity condition).

If t is any left-continuous t-norm on [0, 1], we define two binary operations ∗t →t

on [0, 1] via x∗ty = t(x, y) and x→t y = sup{z ∈ [0, 1] : t(z, x) ≤ y} for x, y ∈ [0, 1],
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then It = ([0, 1]; min,max, ∗t,→t, 0, 1) is an example of an MTL-algebra. An MTL-
algebra It is a BL-algebra iff t is continuous.

Due to [15], the class Tlc, which denotes the system of all BL-algebras It, where
t is a left-continuous t-norm on the interval [0, 1], generates the variety of MTL-
algebras. This result was strengthened in [27] who introduced the class of regular
left-continuous t-norms which is strictly smaller than the class of left-continuous
t-norms, but they generate the variety of MTL-algebras.

According to [1], we say that an algebra A = (A;∨,∧, ·,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉
is a non-associative BL-algebra (naBL-algebra in short) if

(A1) (A;∨,∧, 0, 1) is a bounded lattice,
(A2) (A; ·, 1) is a commutative groupoid with the neutral element 1,
(A3) any x, y, z ∈ A satisfy x · y ≤ z if and only if x ≤ y → z,
(A4) algebra satisfy the divisibility axiom (x · (x→ y) = x ∧ y),
(A5) algebra satisfy the α-prelinearity and β-prelinearity (x→ y ∨αa

b (y → x) =
x → y ∨ βa

b (y → x) = 1), where αa
b (x) = (a · b) → (a · (b · x)) and

βa
b (x) = b→ (a → ((a · b) · x)).

A function t : [0, 1] × [0, 1] → [0, 1] on the interval [0, 1] of reals is said to be a
non-associative t-norm (nat-norm briefly) if

(nat1) ([0, 1]; t, 1) is a commutative groupoid with the neutral element 1,
(nat2) t is continuous in the usual sense,
(nat3) if x, y, z ∈ [0, 1] are such that x ≤ y, then t(x, z) ≤ t(y, z).

According to [1, Thm 5], for any nat-norm there is a unique binary operation
→t satisfying the adjointness condition, i.e. t(x, y) ≤ z if and only if x ≤ y →t z.
Moreover, an algebra I

na
t := ([0, 1]; min,max, t,→t, 0, 1) is an naBL-algebra.

The class of all naBL-algebras is denoted by naBL and naT denotes the class
of all naBL-algebras I

na
t for any non-associative t-norm. The main result on non-

associative BL-algebras says that naT is the generating class for the variety naBL,
[1, Thm 8]:

Theorem 5.1. There hods

naBL = IPSSPU(naT ).

Finally, we recall that a noncommutative generalization of MV-algebras was
introduced in [17] as pseudo MV-algebras or in [25] as generalized MV-algebras.
According to [10], every pseudo MV-algebra (M ;⊕,− ,∼ , 0, 1) of type 〈2, 1, 1, 0, 0〉
is an interval in a unital ℓ-group (G, u) with strong unit u, i.e. M ∼= Γ(G, u) := [0, u],
where x ⊕ y = (x + y)∧, x− = u − x, x∼ = −x + u, 0 = 0, and 1 = u. If (G, u)
is double transitive (for definitions and details see [12]), then Γ(G, u) generates
the variety of pseudo MV-algebras, [12, Thm 4.8]. For example, if Aut(R) is the
set of all automorphisms of the real line R preserving the natural order in R and
u(t) := t + 1, t ∈ R, let Autu(R) = {g ∈ Aut(R) : g ≤ nu for some integer
n ≥ 1}. Then Γ(Autu(R), u) is double transitive and it generates the variety of
pseudo MV-algebras, see [12, Ex 5.3].

Now we apply the general statement, Theorem 4.4, on generators to different
types of state-morphism algebras. We recall that T was defined as the class of all
BL-algebras It, where t is a continuous t-norm on [0, 1].

Theorem 5.2. (1) The variety of all state-morphism MV-algebras is generated by
the diagonal state-morphism MV-algebra D([0, 1]MV ).
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(2) The variety of all state-morphism BL-algebras is generated by the class
{D(It) : It ∈ T }.

(3) The variety of all state-morphism MTL-algebras is generated by the class
{D(It) : It ∈ Tlc}.

(4) The variety of all state-morphism naBL-algebras is generated by the class
{D(Inat ) : It ∈ naT }.

(5) If a unital ℓ-group (G, u) is double transitive, then D(Γ(G, u)) generates the
variety of state-morphism pseudo MV-algebras.

Proof. (1) It follows from the fact that the MV-algebra of the real interval [0, 1]
generates the variety of MV-algebras, see e.g. [4, Prop 8.1.1], and then apply
Theorem 4.4.

(2) The statement follows from the fact that V(T ) is by [3, Thm 5.2] the variety
BL of all BL-algebras. Now it suffices to apply Theorem 4.4.

(3) By [15], the class Tlc of all It, where t is any left-continuous t-norms on the
interval [0, 1], generates the variety of MTL-algebras; then apply Theorem 4.4.

(4) By [1, Thm 8] or Theorem 5.1, the class naT of all It, where t is any non-
associative t-norms on the interval [0, 1], generates the variety of non-associative
BL-algebras; then apply again Theorem 4.4.

(5) By the above, Γ(G, u) generates the variety of pseudo MV-algebras, see also
[12, Thm 4.8]; then apply Theorem 4.4. �

We note that the case (1) in Theorem 4.4 was an open problem posed in [7] and
was positively solved in [13, Thm 5.4(3)].

6. Conclusion

In the paper, we have presented a general approach to theory of state-morphism
algebras which generalizes state-morphism MV-algebras and state-morphism BL-
algebras as pairs (A, τ), where A is an algebra of type F and τ is an endomorphism
of A such that τ ◦ τ = τ.

This enables us to present complete characterizations of subdirectly irreducible
state BL-algebras and subdirectly irreducible state-morphism BL-algebras, Theo-
rem 2.7, which generalizes the results from [7, 9, 11, 13].

A general approach is studied in the third section where the main result, The-
orem 3.7, says that every subdirectly irreducible state-morphism algebra can be
embedded into a diagonal one.

The fourth section describes some generators of the varieties of state-morphism
algebras, and Theorem 4.4 shows that if a class K generates a variety V of algebras
of the same type F , then the variety of state-morphism algebras whose F -reduct
belongs to the class K is generated by the class of diagonal state-morphism algebras
D(A), where A ∈ K. In addition, Theorem 4.7 deals with the CEP for the variety
of state-morphism algebras.

In Theorem 5.2, Theorem 4.4 was applied to the special class of algebras: MV-
algebras, BL-algebras, MTL-algebras, non-associative BL-algebras, and pseudo MV-
algebras to obtain the generators of the corresponding varieties of state-morphism
algebras.

During the study on this paper, we found some interesting open problems like:
(1) find a characterization of an analogue of a state-operator that is not necessarily
a state-morphism operator, (2) if the lattice of varieties of some variety is countable,
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how big is the lattice of corresponding state-morphism algebras, e.g. in the case of
MV-algebras, the lattice under question is uncountable [13], (3) decidability of the
variety of state-morphism algebras.
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[9] A. Di Nola, A. Dvurečenskij, A. Lettieri, Erratum “State-morphism MV-algebras” [Ann.

Pure Appl. Logic 161 (2009) 161-173], Ann. Pure Appl. Logic 161 (2010), 1605–1607.
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