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Abstract. The paper is a continuation of the research on a one-to-one correspondence between n-
dimensional spectral resolutions and n-dimensional observables on lexicographic types of quantum struc-
tures which started in [DvLa4]. In Part I, we presented the main properties of n-dimensional spectral
resolutions and observables, and we deeply studied characteristic points which are crucial for our study.
In present Part II, there is a main body of our research. We investigate a one-to-one correspondence
between n-dimensional observables and n-dimensional spectral resolutions with values in a kind of a
lexicographic form of quantum structures like perfect MV-algebras or perfect effect algebras. The mul-
tidimensional version of this problem is more complicated than a one-dimensional one because if our
algebraic structure is k-perfect for k > 1, then even for the two-dimensional case of spectral resolutions we
have more characteristic points. The obtained results are applied to existence of an n-dimensional meet
joint observable of n one-dimensional observables on a perfect MV-algebra and a sum of n-dimensional
observables.

Introduction

In this paper we continue the research from [DvLa4], where we have introduced n-dimensional ob-
servables and n-dimensional spectral resolutions defined on k-perfect effect algebras and k-perfect MV-
algebras. In the first part, we have presented basic properties of observables and of spectral resolutions
and we have concentrated to characteristic points of n-dimensional spectral resolutions which are im-
portant for the study of spectral resolutions. We underline that characteristic points are appearing only
when the algebraic structure is of a lexicographic form. We note that an n-dimensional spectral resolution
is a mapping F : Rn → Γea(H

−→
× G, (u, 0)), where (H,u) is a unital po-group with interpolation and G is

a directed Dedekind σ-complete po-group with interpolation.
In the second part, we present the main results of our research which deal with establishing a one-to-one

correspondence between n-dimensional spectral resolutions and n-dimensional observables showing that
every n-dimensional spectral resolution can be uniquely extended to a unique n-dimensional observable.
In addition, we apply the results to show existence of a kind of a joint n-dimensional observable of n
one-dimensional observables and to show how we can define a sum of n-dimensional observables.
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Sections, theorems, propositions, lemmas, examples, and equations are numbered in continuation of
[DvLa4], where there are basic notions used also in this part.

5. General Spectral Resolutions and Two-Dimensional Ones

In the section, we present a strengthened definition of an n-dimensional spectral resolution and of an
n-dimensional pseudo spectral resolution valid for both MV-algebras as well as for effect algebras. This
new definition will be sufficient in the next sections in order to extend an n-dimensional spectral resolution
on a perfect MV-algebra to an n-dimensional observable x such that F = Fx. First, the extension will
be done for n = 2 and then for general n ≥ 1 for perfect MV-algebras and perfect effect algebras, and
later also for k-perfect ones.

It is important to note that if M is a σ-complete MV-algebra or a Dedekind monotone σ-complete
effect algebra with (RDP), to show a one-to-one relationship between n-dimensional spectral resolutions
and n-dimensional observables, the definition of a spectral resolution using (3.3)–(3.7) was sufficient, see
[DvKu, DvLa2, DvLa3]. However, if M is perfect or k-perfect, that was not sufficient, see [DDL, DvLa,
DvLa1]. Therefore, the definition of an n-dimensional spectral resolution for k-perfect MV-algebras has
to be strengthened and in this paper we need the following definition. The same is true for effect algebras.
We note that every F = Fx, where x is an n-dimensional observable does satisfy this new definition.

Definition 5.1. A mapping F : Rn → M is said to be an n-dimensional spectral resolution if the
following conditions hold

(i) the volume condition,
(ii) ∨

(s1,...,sn)≪(t1,...,tn)

F (s1, . . . , sn) = F (t1, . . . , tn),

(iii)
∧

ti
F (s1, . . . , si−1, ti, si+1, . . . , sn) = 0 for each i = 1, . . . , n,

(iv)
∨

(s1,...,sn)
F (s1, . . . , sn) = 1,

(v) If (tB1 , . . . , t
B
n ) is a characteristic point of F corresponding to a block B, then the element

aB =
∧

{F (s1, . . . , sn) : (s1, . . . , sn) ≫ (tB1 , . . . , t
B
n )} (5.1)

exists in M (and it belongs to B).

If a mapping F : Rn → M satisfies (i)–(iv), where instead of (iv) we have

(iv)’
∨

(s1,...,sn)
F (s1, . . . , sn) = u0 and u0 is not necessarily 1, F is said to be an n-dimensional pseudo

spectral resolution.

It is necessary to notify that according to Propositions 3.3–3.4, property (v) of Definition 5.1 is a
necessary condition for existence of an n-dimensional observable x such that F = Fx.

We note that for an n-dimensional pseudo spectral resolution, it can happen that F has no charac-
teristic point. Indeed, this can happen if M is a perfect MV-algebra and u0 ∈ Rad(M). For example,

if F is an n + 1-dimensional spectral resolution on a Γ(Z
−→
× G, (1, 0)), n > 1. Given fixed t ∈ R, the

mapping Ft : Rn → M defined by Ft(t1, . . . , tn) := F (t1, . . . , tn, t), t1, . . . , tn ∈ R, is an n-dimensional
pseudo spectral resolution, for more info see Lemma 6.4. If u0 = F (∞, . . . ,∞, t) ∈ Rad(M), then Ft has
no characteristic point. This can happen always t ≤ t0n+1, where (t01, . . . , t

0
n+1) is a unique characteristic

point of F .
It is important to notify that the characteristic points of n-dimensional pseudo spectral resolutions are

evaluated in the same way as ones for F with (i)–(iv) if they exist.
Moreover, if u0 ∈ Rad(M), M = Γ(Z×Z, (1, 0)), then the n-dimensional pseudo spectral resolution F is

in fact an n-dimensional spectral resolution on the interval σ-complete MV-algebra (monotone σ-complete
effect algebra) [0, u0] ⊂ Rad(M). If u0 ∈ Rad(M)′, then F is an n-dimensional spectral resolution on
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the interval algebra [0, u0] = Γ(Z
−→
× Z, (1,−g0)), where (1,−g0) = u0, g0 ∈ G−, satisfying (i)–(v) and

it is “almost close” to a perfect MV-algebra, with Rad([0, u0]) = Rad(M) = {(0, g) : g ∈ G+} which is
a Dedekind σ-complete poset. The “almost close” means that F has a (unique) characteristic point on
[0, u0]. Then our task is to find an n-dimensional observable x on [0, u0] such that x((−∞, t1) × · · · ×
(−∞, tn)) = F (t1, . . . , tn), t1, . . . , tn ∈ R.

A one-to-one correspondence between n-dimensional spectral resolutions and n-dimensional observ-
ables for σ-complete MV-algebras and for Dedekind σ-complete effect algebras with the Riesz Decompo-
sition property was established in [DvLa3, Thm 5.1, Thm 5.2]. Therefore, in what follows, we concentrate

to n-dimensional spectral resolutions on lexicographic MV-algebras Γ(H
−→
× G, (u, 0)) or on lexicographic

effect algebras Γea(H
−→
× G, (u, 0)), where in the first case (H,u) is a unital linearly ordered group and G

is a Dedekind σ-complete ℓ-group, and in the second case (H,u) is a unital po-group with interpolation
and G is a directed Dedekind monotone σ-complete po-group with interpolation.

If M = Γ(G, u), where (G, u) is a Dedekind σ-complete ℓ-group, then (iv) and (v) are superfluous and
F can be extended to an n-dimensional observable, see [DvLa2] for n = 2 and [DvLa3] for any n ≥ 1. The

same holds for a perfect effect algebra Γea(Z
−→
× G, (1, 0)), where G is a directed Dedekind monotone σ-

complete po-group with interpolation, and for Γea(G, u), where (G, u) is a monotone Dedekind σ-complete
unital po-group with interpolation, (iv) and (v) are also superfluous.

In what follows, we will use the lexicographic product Z
−→
× G, where G is an Abelian directed po-group

with interpolation or G is an Abelian ℓ-group. Then due to [Go, Cor 2.12], Z
−→
× G is with interpolation.

Consequently, the effect algebra Γea(Z
−→
× G, (n,−g0)), where g0 ∈ G+, is an effect algebra with (RDP),

and Γea(Z
−→
× G, (n,−g0)) is an MV-effect algebra if G is an ℓ-group.

We establish an important corollary of the definition of spectral resolutions holding for lexicographic
effect algebras.

Lemma 5.2. Let F be an n-dimensional spectral resolution with the finiteness property on an effect
algebra E = Γea(H

−→
× G, (u, 0)), where G is a directed Dedekind monotone σ-complete po-group with

interpolation and (H,u) is a unital po-group with interpolation. If i1 < · · · < ij is any non-empty subset
of {1, . . . , n}, then the element

∨
si1 ,...,sij

F (s1, . . . , sn) exists in M and we denote

F (ŝ1, . . . , ŝn) :=
∨

si1 ,...,sij

F (s1, . . . , sn),

where ŝi = +∞ if i = ik for some k = 1, . . . , j and ŝi = si otherwise.

Proof. Due to [Go, Cor 2.12], the po-group H
−→
× G has the interpolation property. Let tu = (tu1 , . . . , t

u
n)

be a unique characteristic point of Tu = {(t1, . . . , tn) : F (t1, . . . , tn) ∈ Eu}. We will establish that

∨

s1,...,sj

F (s1, . . . , sj, tj+1, . . . , tn),

exists in E for all fixed tj+1, . . . , tn ∈ R.
There are two cases. Case (i): There are s01, . . . , s

0
j ∈ R such that F (s1, . . . , sj , tj+1, . . . , tn) ∈ Eu :=

{(u, g) : g ∈ G−} for all s1, . . . sj ∈ R with s1 > s01, . . . , sj > s0j ; then the statement trivially holds.
Case (ii): Case (i) does not hold. Since F has the finiteness property, we can assume that there

are s01, . . . , s
0
j ∈ R and h ∈ [0, u)H such that (s1, . . . , sj, tj+1, . . . , tn) ∈ Th for all s1 > s01, . . . , sj > s0j .

Without loss of generality, we can assume that s01 ≥ tu1 , . . . , s
0
j ≥ tuj .

We denote by i the number of tk’s below tuk , k = j + 1, . . . , n. Then i ≥ 1.
We prove the statement using induction on i and j. Assume that i = 1 and let k = j +1 be such that

tk = tj+1 ≤ tuj+1 and F (s1, . . . , sj , tj+1, . . . , tn) ∈ Eh.
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For every ǫ > 0, we have the following volume condition

F (s1, . . . , sj−1, sj , tj+1, . . . , tn)−F (s1, . . . , sj−1, t
u
j + ǫ, tj+1, . . . , tn)

≤ F (s1, . . . , sj−1, sj, t
u
j+1 + ǫ, . . . , tn)−F (s1, . . . , sj−1, t

u
j + ǫ, tuj+1 + ǫ, . . . , tn).

So

F (s1, . . . , sj−1, sj , tj+1, . . . , tn) (5.2)

has an upper bound

F (s1, . . . , sj−1, t
u
j + ǫ, tj+1, . . . , tn) + [F (s1, . . . , sj−1, sj, t

u
j+1 + ǫ, . . . , tn)

− F (s1, . . . , sj−1, t
u
j + ǫ, tuj+1 + ǫ, . . . , tn)].

Since we have finitely many blocks, we can choose h, h′ ∈ [0, u]H , ǫ > 0, and sufficiently large variables
s1, . . . , sj ∈ R such that F (s1, . . . , sj−1, sj , tj+1, . . . , tn) ∈ Eh, F (s1, . . . , sj−1, t

u
j + ǫ, tj+1, . . . , tn) ∈ Eh,

and F (s1, . . . , sj−1, sj , t
u
j+1 + ǫ, . . . , tn) and F (s1, . . . , sj−1, t

u
j + ǫ, tuj+1 + ǫ, . . . , tn) belong to Eh′ .

Now, we follow the induction with respect to i with fixed j = 1. Then

F (s1, t2, . . . , tn) ≤ F (tu1 + ǫ, t2, . . . , tn) + [F (s1, t
u
2 + ǫ, t3, . . . , tn)− F (tu1 + ǫ, tu2 + ǫ, t3, . . . , tn)]. (5.3)

Since i = 1, then h′ = u, Eu ∋ F (s1, t
u
2 + ǫ, t3, . . . , tn) ≤ 1 and E0 ∋ F (s1, t

u
2 + ǫ, t3, . . . , tn) − F (tu1 +

ǫ, tu2 + ǫ, t3, . . . , tn) ≤ 1 − F (tu1 + ǫ, tu2 + ǫ, t3, . . . , tn) ∈ E0 which shows that {F (s1, t2, . . . , tn) : s1 ∈ R}
has an upper bound in Eh.

Now, assume that i > 1. Due to the induction hypothesis, we assume that the lemma holds for j = 1
and every 1 ≤ i′ < i. From (5.3) we conclude by induction that

∨
s1
F (s1, t

u
2 + ǫ, t3, . . . , tn) exists in

E and it belongs to Eh′ . Therefore,
∨

s1
[F (s1, t

u
2 + ǫ, t3, . . . , tn) − F (tu1 + ǫ, tu2 + ǫ, t3, . . . , tn)] ∈ E0 and∨

s1
{F (s1, t2, . . . , tn) : s1 ∈ R} has the supremum in Eh.

Consequently,
∨

s1
F (s1, t2, . . . , tn) exists in Eh for all t2, . . . , tn ∈ R.

Now, we assume that the lemma holds for each j′ with 1 ≤ j′ < j. We use an upper bound for (5.2)
that is just after (5.2). Due to the induction hypothesis,

a1 :=
∨

{F (s1, . . . , sj−1, t
u
j + ǫ, tj+1, . . . , tn) : s1, . . . , sj−1 ∈ R}

exists in E and it belongs to Eh. Since F (s1, . . . , sj−1, t
u
j + ǫ, tuj+1 + ǫ, . . . , tn) belongs to Eh′ for suf-

ficiently large s1, . . . , sj−1, it belongs to some block B ⊆ Eh′ . Using definition of spectral resolutions,
the element aB =

∧
{F (u1, . . . , un) : (u1, . . . , un) ∈ B} exists in E and it belongs to Eh′ . Finally,

as in the previous case for j = 1, we can show {F (s1, . . . , sj−1, sj, t
u
j+1 + ǫ, . . . , tn) : s1, . . . , sj ∈ R}

has an upper bound, say a2, in Eh′ : First we show it for i = 1 and then for i > 1. Altogether,
{F (s1, . . . , sj , tj+1, . . . , tn) : s1, . . . , sj ∈ R} has an upper bound in Eh, namely a1 + a2 − aB, which
finishes the proof. �

If F is two-dimensional, then, in particular, we have F (s, t+0 ) :=
∧

t>t0
F (s, t) exists in M and

F (s, t+0 ) ∈ Rad(M) if s < s0 and F (s, t+0 ) ∈ Rad(M)′ if s > s0. Dually, F (s+0 , t) ∈ Rad(M) if t ≤ t0 and,
F (s+0 , t) ∈ Rad(M)′ if t ≥ t0.

Lemma 5.3. Let G be a directed monotone σ-complete unital po-group with interpolation, fix g0 ∈ G+,

and let (ai)i, (bi)i, (ci)i, (di)i be sequences from E = Γea(Z
−→
× G, (n,−g0)), n ≥ 1.

(1) If (ai)i, (bi)i, (ci)i, (di)i are non-decreasing with suprema a, b, c, d, such that (ai + di − bi − ci)i is
non-decreasing and from E. Then

∨
i(ai+di−bi−ci) and a+b−b−c exist in E and

∨
i(ai+di−bi−ci) =

a+ d− b− c.
(2) If (ai)i, (bi)i, (ci)i, (di)i are non-increasing with infima a, b, c, d, such that (ai + di − bi − ci)i is

non-increasing and from E. Then
∧

i(ai+di−bi−ci) and a+b−b−c exist in E and
∧

i(ai+di−bi−ci) =
a+ d− b− c.
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(3) If (ai)i, (bi)i, (ci)i, (di)i are non-decreasing with suprema a, b, c, d, such that (ai + di − bi− ci)i is
non-increasing and from E. Then

∧
i(ai+di−bi−ci) and a+b−b−c exist in E and

∧
i(ai+di−bi−ci) =

a+ d− b− c.
(4) If (ai)i, (bi)i, (ci)i, (di)i are non-increasing with infima a, b, c, d, such that (ai + di − bi − ci)i is

non-decreasing and from E. Then
∨

i(ai+di−bi−ci) and a+b−b−c exist in E and
∨

i(ai+di−bi−ci) =
a+ d− b− c.

In particular, these hold when ci, di equal constantly zero.
Moreover, the statements hold also for E = Γea(G, u), if u is a strong unit for G.

Proof. First we note that a sequence (ei)i of elements of E = Γea(Z
−→
× G, (n,−g0)) has a supremum

(infimum) in E iff there are k = 0, . . . , n, i0 ≥ 1, and a, b ∈ G such that (k, a) ≤ ei = (k, gi) ≤ (k, b) for

each i ≥ i0. Moreover, the supremum/infimum of (ei)i taken in E and in Z
−→
× G exists simultaneously

and then they are the same.
Therefore, we can without loss of generality assume the four sequences are constant in the first compo-

nent, and hence so is the fifth one. More concretely, there is some k = 1, . . . , n−1 such that ai+di−bi−ci
belong to {k}×G (respectively {0} ×G+ or {n}× {−g : g ≥ g0, g ∈ G+} in the case k = 0 or k = n) for
each i ≥ 1. This sequence is monotone and bounded in {k} × G (respectively {0} × G+ or {n} × G−):
In the case of (1) it has an upper bound a + d − b1 − c1 (respective (n,−g0) in the case k = n) and
similarly one can find an upper bound in the case (3) and a lower bound in the cases (2) and (4). By the
assumptions on G, we see, that S =

∨
i(ai + di − bi − ci) (respectively S =

∧
i(ai + di − bi − ci)) exists

in E.
It remains to prove, for each of the four cases, the desired equality (the existence of a+ d− b− c in E

is then a consequence, as it exists in the po-group Z
−→
× G).

(1) Denote S =
∨

i(ai+di−bi−ci), then for each i, we have ai+di ≤ S+bi+ci, hence a+d ≤ S+b+c
which gives us one inequality. To prove the second one, we have to verify that for each i we have the
inequality

ai + di − bi − ci ≤ a+ d− b− c.

Equivalently, ai + di + b + c ≤ bi + ci + a+ d. But due to monotonicity of (ai + bi − ci − di)i, for each
j ≥ i, we have ai + di + bj + cj ≤ bi + ci + aj + dj .

(2) The proof is dual to (1).
(3) The proof is similar to (1). Denote S =

∧
i(ai+ di− bi− ci). We have ai+ di ≥ S+ bi+ ci for each

i, which gives us a+ d− b− c ≥ S. And for each i, a− b− c+ d ≤ ai − bi − ci + di, as this is equivalent
to a+ d+ bi + ci ≤ b+ c+ ai + di, which follows from:

∀j > i, aj + dj + bi + ci ≤ bj + cj + ai + di.

The last case (4) is dual to (3). �

To lighten the notation, we will write F (s+, t) in place of
∧

s′>s F (s′, t) and F (s−, t) in place of∨
s<s′ F (s′, t) and similarly for the second coordinate.

Lemma 5.4. For each t1 ∈ R∪{−∞}, s1 ∈ R∪{+∞}, and for each two-dimensional spectral resolution
F (s, t), we have ∨

s<s1

∧

t>t1

F (s, t) =
∧

t>t1

∨

s<s1

F (s, t), (5.4)

provided the infima exist. Consequently F (s−, t+) is well defined.

Proof. Let s1, t1 ∈ R. We are going to prove that the left hand side of (5.4) equals
∧

t>t1
F (s1, t). We

can deduce from the volume condition

0 ≤
∧

t>t1

F (s1, t)−
∧

t>t1

F (s, t) ≤ F (s1, t
′)− F (s, t′)
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for each t′ > t1 and each s < s1. But F (s1, t
′)− F (s, t′) ց 0 as s ր s1, hence

0 =
∧

s<s1

[
∧

t>t1

F (s1, t)−
∧

t>t1

F (s, t)] =
∧

t>t1

F (s1, t)−
∨

s<s1

∧

t>t1

F (s, t),

which is the desired equation. The case s1 = +∞ proceed in almost the same way and the case t1 = −∞
is trivial. �

The last two lemmas will be frequently used.
Now, we present the first basic result on a one-to-one correspondence between spectral resolutions and

observables for n = 2.

Theorem 5.5. Let M = Γ(Z
−→
× G, (1, 0)) be a perfect MV-algebra, where G is a Dedekind σ-complete

ℓ-group. If F is a two-dimensional spectral resolution on M , then there is a unique two-dimensional
observable x on M such that x((−∞, s)× (−∞, t)) = F (s, t) for each (s, t) ∈ R2.

Proof. Denote by (s0, t0) ∈ R2 the characteristic point of F . We divide the plane R2 into four blocks
by cutting R2 in each coordinate of the characteristic point. Denote B0,0 = {(s, t) : (s, t) ≤ (s0, t0)},
B0,1 = {(s, t) : s ≤ s0, t0 < t}, B1,0 = {(s, t) : s0 < s, t ≤ t0} and B1,1 = {(s, t) : (s0, t0) ≪ (s, t)}. For
each block we define a spectral resolution which encodes what is the essential increase on the block. The
case of B0,0 is trivial: Define

F0,0(s, t) := F (s′, t′),where s′ = min{s0, s} and t′ = min{t0, t}.

In the case of B0,1, we define

F0,1(s, t) =

{
F (s′, t)− F (s′, t+0 ) if t > t0, where s′ = min{s0, s},
0 if t ≤ t0.

Similarly, we define

F1,0(s, t) =

{
F (s, t′)− F (s+0 , t

′) if s > s0, where t′ = min{t0, t},
0 if s ≤ s0.

The most important is of course F1,1 which is defined as follows

F1,1(s, t) =

{
F (s, t)−

∧
s′>s0

F (s′, t)−
∧

t′>t0
F (s, t′) +

∧
s′>s0,t′>t0

F (s′, t′), if s > s0, t > t0,

0, otherwise.

Using the above notation, F1,1 can be rewritten

F1,1(s, t) = F (s, t)− F (s+0 , t)− F (s, t+0 ) + F (s+0 , t
+
0 ), (s, t) ∈ B1,1.

From the volume condition we conclude that F1,1(s, t) ≥ 0 and F1,1(s, t) ∈ Rad(M) for each s, t ∈ R:
Indeed, let (s, t) ∈ B1,1 and take s′, t′ such that s0 < s′ < s and t0 < t′ < t. Then the volume condition

yields F (s′, t′) + F (s, t) ≥ F (s, t′) + F (s′, t), so that F (s+0 , t
+
0 ) + F (s, t) ≥ F (s, t+0 ) + F (s+0 , t).

Just defined Fi,j ’s are two-dimensional pseudo spectral resolutions. Pseudo means that the top element
for Fi,j , ui,j :=

∨
s,t Fi,j(s, t), is defined in M and Fi,j is in fact a two-dimensional observable in the

interval [0, ui,j]. Indeed, the first three Fi,j are evidently so, because due to the volume condition and
Lemma 5.3, each of them is monotone in each variable.

The volume condition for F1,1: Let (s1, t1), (s2, t2) ∈ B1,1 with (s1, t1) ≤ (s2, t2) be given, then the
volume condition for F gives

F (s2, t2) + F (s1, t1) ≥ F (s1, t2) + F (s2, t1).

Adding to both sides −F (s2, t
+
0 )− F (s+0 , t2) + F (s+0 , t

+
0 ) − F (s1, t

+
0 )− F (s+0 , t1) + F (s+0 , t

+
0 ), we obtain

F1,1(s2, t2) + F1,1(s1, t1) ≥ F1,1(s1, t2) + F1,1(s2, t1). The other possibilities of (s1, t1), (s2, t2) ∈ R2 are
trivial. In addition, F1,1(s1, t) ≤ F1,1(s2, t) and F1,1(s, t1) ≤ F1,1(s, t2) whenever s1 ≤ s2, t1 ≤ t2,
s, t ∈ R: Take s0 < s′ ≤ s1 < s2 and t2 ≥ t > t′ > t0. Then from the volume conditions for F on
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semi-closed rectangles A1 = [s′, s1)× [t′, t) and A2 = [s′, s2)× [t′, t), we have V (F,A1) ≤ V (F,A2), which
entails

F (s2, t) + F (s′, t′)− F (s′, t)− F (s2, t
′) ≥ F (s1, t) + F (s′, t′)− F (s′, t)− F (s1, t

′)

F (s2, t) + F (s+0 , t
+
0 )− F (s+0 , t)− F (s2, t

+
0 ) ≥ F (s1, t) + F (s+0 , t

+
0 )− F (s+0 , t)− F (s1, t

+
0 )

F1,1(s2, t) ≥ F1,1(s1, t).

Similarly for the second coordinate.
The continuity

∧
s F1,1(s, t) = 0 =

∧
t F1,1(s, t) is trivial due to definition of F1,1 because, for each

s < s0 or t < t0, we have F1,1(s, t) = 0.
The continuity

∨
(s1,t1)<(s,t) F1,1(s1, t1) = F1,1(s, t) follows from Lemma 5.3(1) and Lemma 5.4.

Then all four mappings take values in the radical Rad(M). Denote ui,j =
∨

s,t Fi,j(s, t). We have

u0,0 = F (s0, t0), u0,1 = F (s0,∞) − F (s0, t
+
0 ), F1,0 = F (∞, t0) − F (s+0 , t0), and u1,1 = u − F (s+0 ,∞) −

F (∞, t+0 ) + F (s+0 , t
+
0 ) = F (∞,∞) − F (s+0 ,∞) − F (∞, t+0 ) + F (s+0 , t

+
0 ). Therefore, each Fi,j is a two-

dimensional spectral resolution on the σ-complete interval MV-algebra [0, ui,j] ⊂ Rad(M), and so they
could be extended to two-dimensional observables xi,j , i, j = 0, 1, on [0, ui,j], see [DvLa2], such that
xi,j((−∞, s)× (−∞, t)) = Fi,j(s, t), s, t ∈ R. In addition, xi,j(A) = xi,j(A ∩Bi,j), A ∈ B(R2).

We would like to glue the observables, but obviously the four observables does not take care of what
is happening on the characteristic point and rays going through the characteristic point. So we have to
define, in addition, two one-dimensional spectral resolutions:

F0(s) =
∧

t>t0

F (s, t)− F (s, t0) = F (s, t+0 )− F (s, t0), s ∈ R,

F1(t) =
∧

s>s0

F (s, t)− F (s0, t) = F (s+0 , t)− F (s0, t), t ∈ R.

Claim: F0 and F1 are two-dimensional pseudo spectral resolutions.

Proof. We prove the case of F0. Monotonicity of F0: For each t > t0 and s1 < s2, we have F (s1, t) −
F (s1, t0) ≤ F (s2, t) − F (s2, t0) (by the volume condition). Denote F (s, t+0 ) :=

∧
t>t0

F (s, t). Then

F (s, t+0 ) ∈ Rad(M) if s < s0, otherwise F (s, t+0 ) ∈ Rad(M)′. Clearly the mapping s 7→ F (s, t+0 ) is
monotone and bounded, so there is F (∞, t+0 ) ∈ Rad(M)′. The same holds for s 7→ F (s, t0): It is
surely monotone and it is bounded as, for each real s > s0 + 1, we have F (s, t0) − F (s0 + 1, t0) ≤
F (s, t+0 ) − F (s0 + 1, t+0 ) ≤ F (∞, t+0 ) − F (s0 + 1, t+0 ) ∈ Rad(M). So we can define F (∞, t0). Using
Lemma 5.3, we observe that

∨
s(F (s, t+0 ) − F (s, t0)) = F (∞, t+0 ) − F (∞, t0). In the opposite case, we

get 0 ≤
∧

s(F (s, t+0 ) − F (s, t0)) ≤ F (−∞, t+0 ) = 0. An application of the special case in Lemma 5.3(1)
together with Lemma 5.4 gives us for each t1 ∈ R:

∨

t<t1

F0(t) =
∨

t<t1

(F (s+0 , t)− F (s0, t)) =
∨

t<t1

F (s+0 , t)−
∨

t<t1

F (s0, t)

=
∨

t<t1

∧

s>s0

F (s, t)−
∨

t<t1

F (s0, t) =
∧

s>s0

F (s, t1)− F (s0, t1) = F0(t1).

Now, we show that
∧

s F0(t) = 0: Using monotonicity of F0 and Lemma 5.3(2), we have
∧

s

F0(s) =
∧

s

(F (s, t+0 )− F (s, t0)) =
∧

s

F (s, t+0 )−
∧

s

F (s, t0) ≤
∧

s

(F (s, t+0 + 1)− 0) = 0− 0 = 0.

Then F0 is a one-dimensional spectral resolution on a lexicographic MV-algebra Γ(Z
−→
× G, (1,−g0)) =

[0, u0], with g0 ∈ G+ such that (1,−g0) = u0, where u0 = F (∞, t+0 )− F (∞, t0) ∈ Rad(M)′.
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Similarly, F1 is a one-dimensional spectral resolution on a lexicographicMV-algebra Γ(Z
−→
× G, (1,−g1)) =

[0, u1], where g1 ∈ G+ is such that (1,−g1) = u1 and u1 =
∨

t F0(t) = F (s+0 ,∞) − F (s0,∞) ∈
Rad(M)′. �

Now, we continue in the proof of Theorem 5.5. The result [DDL, Thm 4.8], which holds also for our
lexicographic MV-algebras, gives us an existence of one-dimensional observables x0 and x1 on [0, u0] and
[0, u1], respectively, extending the spectral resolutions F0 and F1.

Finally, we can glue the above observables to define an observable x on M by the prescription:

x(A) =
∑

i,j=0,1

xi,j(A) +

1∑

i=0

xi(πi(A \ {(s0, t0)})) + χ(s0,t0)(A) · x0({s0}), A ∈ B(R2), (5.5)

or, equivalently,

x(A) =
∑

i,j=0,1

xi,j(A) +

1∑

i=0

xi(πi(A)) − χ(s0,t0)(A) · x0({s0}), A ∈ B(R2), (5.6)

where π0 and π1 are projections from R2 onto R such that π0(s, t) = s, π1(s, t) = t, (s, t) ∈ R2. One can
verify

x0({s0}) =
∧

s>s0

(
∧

t>t0

F (s, t)− F (s, t0))− (
∧

t>t0

F (s0, t)− F (s0, t0))

=
∧

s>s0,t>t0

[(F (s, t)− F (s, t0))− (F (s0, t) + F (s0, t0))]

= F (s+0 , t
+
0 )− F (s+0 , t0)− F (s0, t

+
0 ) + F (s0, t0)

= x1({t0}).

Moreover, x0({s0}) = x1({t0}) ∈ Rad(M)′.
We need to verify x is really a two-dimensional observable on M . See that (what should be the

“measure” of the upper half-plane)

x(B0,1 ∪B1,1) = x0,1(R
2) + x1((t0,∞)) + x1,1(R

2)

= [F (s0,∞)− F (s0, t
+
0 )]

+ [F (s+0 ,∞)− F (s0,∞)− F (s+0 , t
+
0 ) + F (s0, t

+
0 )]

+ [F (∞,∞)− F (∞, t+0 )− F (s+0 ,∞) + F (s+0 , t
+
0 )]

= F (∞,∞)− F (∞, t+0 ).

Similarly (the “measure” of the lower half-plane), x(B0,0 ∪B1,0) = x0,0(R2) + x1((−∞, t0)) + x1,0(R2) +

x0(R) = F (∞, t0)+x0(R). Now putting all the pieces together we obtain x(R2) = F (∞,∞)−F (∞, t+0 )+
F (∞, t0) + x0(R) = F (∞,∞) = u. Since 0 ≤ x(A) ≤ x(R2) = u, we see that x(A) is correctly defined by
(5.6) and it belongs to M for every A ∈ B(R2). Moreover, (i) x is monotone (see (5.5)), (ii) if A1 and A2

are disjoint Borel sets in R2, then x(A1 ∪ A2) = x(A1) + x(A2), and (iii) if A =
⋃

iAi, where (Ai)i is a
sequence of non-decreasing Borel sets from B(R2), then x(A) =

∨
i x(Ai).
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It is tedious but straightforward to check the equality F (s, t) = x((−∞, s)× (−∞, t)). For example, if
(s, t) ∈ B1,1, then

x((−∞, s)× (−∞, t)) = F1,1(s, t) + F0,1(s0, t) + F0,0(s0, t0) + F1,0(s, t0) + F0(s) + F1(t)− x0({s0})

= [F (s, t)− F (s+0 , t)− F (s, t+0 ) + F (s+0 , t
+
0 )]

+ [F (s0, t)− F (s0, t
+
0 )] + F (s0, t0) + [F (s, t0)− F (s+0 , t0)]

+ [F (s, t+0 )− F (s, t0)] + [F (s+0 , t)− F (s0, t)]

− [F (s+0 , t
+
0 )− F (s+0 , t0)− F (s0, t

+
0 ) + F (s0, t0)]

= F (s, t).

Uniqueness: Let y be a two-dimensional observable on M such that F (s, t) = y((−∞, s) × (−∞, t)),
s, t ∈ R2 and let K = {A ∈ B(R2) : y(A) = x(A)}. Then K contains R2, all intervals of the form
(−∞, s)× (−∞, t), and is closed under complements and unions of disjoint sequences, i.e. K is a Dynkin
system and by the Sierpiński Theorem, [Kal, Thm 1.1], K = B(R2), i.e. x = y. Hence, x is a unique
two-dimensional observable on M in question. �

The following second basic theorem for perfect effect algebras with (RDP) follows the same proof
as that of Theorem 5.5. We notify that perfect effect algebras are categorically equivalent to Abelian
directed po-group with interpolation, see [Dvu1, Thm 5.7], and one-dimensional spectral resolutions on
perfect effect algebras were studied in [Dvu3, DvLa1].

Theorem 5.6. If E = Γea(Z
−→
× G, (1, 0)) is a perfect effect algebra, where G is a directed monotone

σ-complete po-group with interpolation, then every two-dimensional spectral resolution can be extended to
a unique two-dimensional observable on E.

6. n-dimensional Spectral Resolutions

Now, we deal with the general case of n-dimensional spectral resolutions for general lexicographic effect
algebras E = Γea(H

−→
× G, (u, 0)).

The following lemma describes what does happen with monotone sequences appearing in the volume
condition:

Lemma 6.1. Suppose we have a non-decreasing sequence (aiδ)i of elements of an effect algebra E, such
that all the sequences are non-decreasing (non-increasing, respectively) for each δ ∈ {0, 1}n. Moreover,
suppose (

∑
δ(−1)π(δ)aiδ)i is non-decreasing or non-increasing. Then

∨

i

∑

δ

(−1)π(δ)aiδ =
∑

δ

(−1)π(δ)
∨

i

aiδ, (respectively,
∨

i

∑

δ

(−1)π(δ)aiδ =
∑

δ

(−1)π(δ)
∧

i

aiδ),

or ∧

i

∑

δ

(−1)π(δ)aiδ =
∑

δ

(−1)π(δ)
∨

i

aiδ, (respectively,
∧

i

∑

δ

(−1)π(δ)aiδ =
∑

δ

(−1)π(δ)
∧

i

aiδ),

where π(δ) = |{di : δ = (δ1, . . . , δn)}| is the number of zero coordinates in δ = (δ1, . . . , δn) ∈ {0, 1}n.
The appropriate version of the equation holds in each of the four combinations in the following sense:

(aiδ)i’s are non-decreasing/non-increasing and (
∑

δ sgn(δ)a
i
δ)i is non-decreasing/non-increasing.

Proof. The proof proceeds in a similar way as that for Lemma 5.3, only more sequences are involved. �

Lemma 6.2. The value F (t△1

1 , . . . , t△n
n ), where △i ∈ {+,−} is well defined. That is, whenever we have

an expression of the form Ξ1 · · ·ΞnF (s1, . . . , sn), where each Ξi is either
∨

ti>si
or

∧
ti<si

, we may change
an order of the Ξi’s without changing the value of the expression.
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Proof. It holds in the case n = 2 by Lemma 5.4. If we fix any coordinate in F , we get an (n − 1)-
dimensional pseudo spectral resolution, so we can freely permute the Ξ2, . . . ,Ξn by the induction. Using
this and some re-indexing, it is enough to prove for each t̄ ∈ (R ∪ {±∞})n the equation

∨

s1<t1

· · ·
∨

sk<tk

∧

sk+1<tk+1

· · ·
∧

sn<tn

F (s1, . . . , sn) =
∧

sk+1<tk+1

· · ·
∧

sn<tn

∨

s1<t1

· · ·
∨

sk<tk

F (s1, . . . , sn).

Let us rewrite it in an easier form: For each s̄ ∈ (R ∪ {±∞})k and t̄ ∈ (R ∪ {±∞})n−k,
∨

q̄≪s̄

∧

r̄≫t̄

F (q̄, r̄) =
∧

r̄≫t̄

F (s̄, r̄).

(We have used the continuity property.) For each q̄ ≪ s̄ and r̄ ≫ t̄, we shall prove the second inequality
(the first one is trivial) in

0 ≤
∧

r̄≫t̄

F (s̄, r̄)−
∧

r̄≫t̄

F (q̄, r̄) ≤ F (s̄, r̄)− F (q̄, r̄). (6.1)

If we prove (6.1), we are done, as the last expression clearly goes to 0 as q̄ goes to s̄. We prove
∧

r̄≫t̄

F (s̄, r̄)−
∧

r̄≫t̄

F (q̄, r̄) =
∧

r̄≫t̄

[F (s̄, r̄)− F (q̄, r̄)] (6.2)

which is clearly enough for us. We would like to apply the special case of Lemma 5.3, but the infima are
not taken over countable non-increasing sequences. The two infima on the left hand side may be in the
obvious way (using monotony of F ) rewritten to be taken over countable monotone sequences. In the case
of right hand infimum, we have to verify that whenever r̄0 ≤ r̄1 then F (s̄, r̄0)−F (q̄, r̄0) ≤ F (s̄, r̄1)−F (q̄, r̄1)
(which in fact proves the infimum is well defined). To achieve this, we cannot use the volume condition
directly (as the occurring points of Rn are generally not vertices of some rectangle with edges parallel to
axis), we have to find a sequence s̄ = s̄0 ≥ s̄1 ≥ · · · ≥ s̄k = q̄ such that two consecutive elements differ at
most in one coordinate. Then we can write

F (s̄, r̄0)− F (q̄, r̄0) = (F (s̄0, r̄0)− F (s̄1, r̄0)) + · · ·+ (F (s̄k−1, r̄0)− F (s̄k, r̄0))

and

F (s̄, r̄1)− F (q̄, r̄1) = (F (s̄0, r̄1)− F (s̄1, r̄1)) + · · ·+ (F (s̄k−1, r̄1)− F (s̄k, r̄1)).

Now (F (s̄j , r̄0)− F (s̄j+1, r̄0)) ≤ (F (s̄j , r̄1)− F (s̄j+1, r̄1)), this could be proved finding another sequence
r̄0 ≤ · · · ≤ r̄1 similar to (s̄i)i and using the volume condition in each step.

Hence, we can apply the particular case of Lemma 5.3, to prove (6.2) and so to finish the whole
proof. �

Using Lemma 6.2, we can extend the notion of the difference operators ∆i for i = 1, . . . , n as follows.
Let σi, τi ∈ {+,−, ∅} for i = 1, . . . , n. We set −∞ = −∞+ = −∞∅, ∞ = ∞− = ∞∅, moreover −∞− and
∞+ are not defined. For each t ∈ R ∪ {±∞}, we put t∅ = t. We linearly order these symbols as follows:
If s < t, then sσ ≤ tτ . If s = t, we assume s− ≤ s = s∅ ≤ s+.

Lemma 6.2 shows that we can define unambiguously expressions of the form F (s+, t−, u, w−,∞),

etc. Therefore, we can extend the domain of F in the following sense. Let R̂ := {r, r+, r−, r∅ : r ∈

R}∪{−∞,∞}. Then we use the same symbol F also for expressions F (u1, . . . , un), where u1, . . . , un ∈ R̂,
that is, F will be a function from (R̂)n into the MV-algebra M or into an effect algebra E. Hence, let
i = 1, . . . , n be given. We extend formally ∆i in the following way: Let s, t ∈ R∪{±∞}, σi, τi ∈ {−,+, ∅},
sσi ≤ tτi . Then

∆i(s
σi , tτi)F (u1, . . . , un) := F (u1, . . . , ui−1, t

τi , ui+1, . . . , un)− F (u1, . . . , ui−1, s
σi , ui+1, . . . , un),
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where u1, . . . , un ∈ R̂, assuming that sσi and tτi are defined. Whence

∆i(s
σi , tτi)

(
∆j(s

σj , tτj )F
)
= ∆j(s

σj , tτj )
(
∆i(s

σi , tτi)F
)

(6.3)

for each i < j. More generally, let (i1, . . . , in) be any permutation of (1, . . . , n), si ≤ ti from R ∪ {±∞}
be such that sσi

i ≤ tτii are defined.
Then

∆1(s
σ1

1 , tτ11 )
(
· · ·

(
∆n(s

σn

n , tτnn )F
)
· · ·

)
= ∆i1(s

σi1

i1
, t

τi1
i1

)
(
· · ·

(
∆in(s

σin

in
, t

τin
in

)F
)
· · ·

)
. (6.4)

Therefore, we can put unambiguously

∆1(s
σ1

1 , tτ11 ) · · ·∆n(s
σn

n , tτnn )F := ∆1(s
σ1

1 , tτ11 )
(
· · ·

(
∆n(s

σn

n , tτnn )F
)
· · ·

)
.

If s ≤ t ≤ v, σi, τi ∈ {+,−, ∅} such that sσi ≤ tτi ≤ vτi , then

∆i(s
σi , vτi)F = ∆i(s

σi , tτj )F +∆i(t
τj , vτi)F. (6.5)

We note that if s ≤ t, then ∆i(s
−, tτi) = ∆i(s, t

τi) and ∆i(s
σi , t−) = ∆i(s

σi , t). Therefore, we have
the following lemma.

Lemma 6.3. If i1 < · · · < ik are elements of {1, . . . , n}, 1 ≤ k ≤ n, then

∆i1(s
σi1

i1
, t

τi1
i1

) · · ·∆ik(s
σik

ik
, t

τik
ik

)F (v1, . . . , vn) ≥ 0, (v1, . . . , vn) ∈ Rn, (6.6)

where σil and τil satisfy conditions to be the left hand side defined.

Proof. Due to (6.3), we can assume that il = l for each l = 1, . . . , k. Choose sequences (sml )m ց sl
and (tml )m ց tl for l = 1, . . . , k, sml ≤ tml such that sml = sl if σl ∈ {−, ∅} and tml = tl if τl ∈ {−, ∅},
m ≥ 1. Due to the volume condition, ∆1(s

m
1 , tm1 ) · · ·∆k(s

m
k , tmk )(v1, . . . , vn) ≥ 0. Expanding the left hand

side and putting on the left hand side all members with the negative sign and on the right hand side all
members with the positive sign. Let

∑
LS(m) and

∑
RS(m) be their sums. Then

∑
LS(m) ≤

∑
RS(m)

for each m ≥ 1 which yields
∧

m

∑
LS(m) ≤

∧
m

∑
RS(m). So we obtain on the left hand side the sum of

all members of (6.6) with the negative sign and on the right hand we get the sum of all members of (6.6)
with the positive sign which establishes (6.6). �

Lemma 6.4. Let F be an n-dimensional spectral resolution on a lexicographic effect algebra E, n > 1, i =
1, . . . , n, and let t1 ≤ t2 be from R∪{±∞}. Then F ′(s1, . . . , si−1, si+1, . . . , sn) := ∆i(t

σi

1 , tτi2 )F (s1, . . . , sn),
s1, . . . , si−1, si+1, . . . , sn ∈ R, where σi and τi satisfy conditions to be F ′ defined, is an n− 1-dimensional
pseudo spectral resolution.

Let E = Γea(Z
−→
× G, (1, 0)) be perfect and t1 ≤ t2, where t1, t2 ∈ R. Then

(i) F ′ = ∆i(t1, t2)F has a characteristic point if and only if t1 ≤ t0i and t2 > t0i ;
(ii) F ′ = ∆i(t1, t

+
2 )F has a characteristic point if and only if t1 ≤ t0i and t2 ≥ t0i ;

(iii) F ′ = ∆i(t
+
1 , t

+
2 )F has a characteristic point if and only if t1 < t0i and t2 ≥ t0i ;

(iv) F ′ = ∆i(−∞, t2)F has a characteristic point if and only if t2 > t0i ;
(v) F ′ = ∆i(−∞, t+2 )F has a characteristic point if and only if t2 ≥ t0i ;
(vi) F ′ = ∆i(t1,∞)F has a characteristic point if and only if t1 < t0i ;
(vii) F ′ = ∆i(t

+
1 ,∞)F has a characteristic point if and only if t1 < t0i ;

(viii) F ′ = ∆i(−∞,∞)F has always a characteristic point.

In either case, if (t01, . . . , t
0
n) is a unique characteristic point of F , then (t01, . . . , t

0
i−1, t

0
i+1, . . . , t

0
n) is a

unique characteristic point of F ′. Moreover, F ′ satisfies (v) of Definition 5.1.
In particular, ∆i(t

0
i , t

0+
i )F has a unique characteristic point, namely (t01, . . . , t

0
i−1, t

0
i+1, . . . , t

0
n).

Proof. Without loss of generality, we can assume that i = 1.
(1) First we deal with F ′ := ∆1(t1, t2)F . The volume condition is trivially satisfied, and using Lemma

5.3, we see that F ′ satisfies conditions (ii), (iii), and (iv’).
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(vi). Assume that E is perfect and let (t01, . . . , t
0
n) be the unique characteristic point of F . We note

that F ′(v′2, . . . , v
′
n) ∈ Rad(E)′ iff F (t2, v

′
2, . . . , v

′
n) ∈ Rad(E)′ and F (t1, v

′
2, . . . , v

′
n) ∈ Rad(E). The first

condition entails (t2, v
′
2, . . . , v

′
n) ≫ (t01, . . . , t

0
n), i.e. t2 > t01 and (v′2, . . . , v

′
n) ≫ (t02, . . . , t

0
n), and therefore,

from the second condition we conclude t1 ≤ t01. In other words, F ′ has a characteristic point iff t1 ≤ t01
and t2 > t01. Put T1(F

′) := {(v2, . . . , vn) ∈ Rn−1 : F ′(v2, . . . , vn) ∈ Rad(E)} 6= ∅. Let (v′2, . . . , v
′
n) ∈

T1(F
′). Then F (t2, v

′
2, . . . , v

′
n) ∈ Rad(E)′ and F (t1, v

′
2, . . . , v

′
n) ∈ Rad(E). Whence (t2, v

′
2, . . . , v

′
n) ≫

(t01, . . . , t
0
n) and (v′2, . . . , v

′
n) ≫ (t02, . . . , t

0
n). Then F (t2, v

′
2, . . . , v

′
n) ≥

∧
{F (t1, . . . , tn) : F (t1, . . . , tn) ∈

Rad(E)′}, so that a2 :=
∧
{F (t2, v

′
2, . . . , v

′
n) : F

′(v′2, . . . , v
′
n) ∈ Rad(E)′} exists in E and it belongs also

to Rad(E)′. Since {F (t1, v
′
2, . . . , v

′
n) ∈ Rad(E)} has a lower bound in Rad(E), the element a1 :=∧

{F (t1, v
′
2, . . . , v

′
n) ∈ Rad(E)} exists in E and it belongs to Rad(E). Applying Lemma 5.3, we see

a2 − a1 =
∧
{F ′(v′2, . . . , v

′
n) : F

′(v′2, . . . , v
′
n) ∈ Rad(E)′} and, consequently, (vi) holds for F ′. In addition,∧

{(v′2, . . . , v
′
n) : F

′(v′2, . . . , v
′
n) ∈ Rad(E)′} = (t02, . . . , t

0
n), so that (t02, . . . , t

0
n) is a unique characteristic

point of F ′ and it exists iff t1 ≤ t01 and t2 > t01.
(2) Let F ′ = ∆1(t

σ
1 , t

τ
2)F . Using Lemmas 5.3, 6.2, 6.3, we can follow basic ideas of part (1).

(i) If F ′ = ∆1(t1, t2)F , the unique characteristic point was described in (1).
(ii) Let F ′ = ∆1(t1, t

+
2 )F . Then we have (u′

2, . . . , u
′
n) ∈ T1(F

′) iff F (t+2 , u
′
2, . . . , u

′
n) ∈ Rad(E)′

and F (t1, u
′
2, . . . , u

′
n) ∈ Rad(E). Take a sequence of real numbers (tm)m ց t2 and tm > t2 for each

m ≥ 1. Then F (t+2 , u
′
2, . . . , u

′
n) ≤ F (tm, u′

2, . . . , u
′
n) ∈ Rad(E)′ for each m ≥ 1. Therefore, tm > t01,

(u′
2, . . . , u

′
n) ≫ (t02, . . . , t

0
n), and t2 = limm tm ≥ t01. In addition, F (t1, u

′
2, . . . , u

′
n) ∈ Rad(E) entails

t1 ≤ t01. This implies that (t02, . . . , t
0
n) is a characteristic point of F ′ and it exists iff t1 ≤ t01 and t2 ≥ t01.

In addition,

a2 :=
∧

(u′

2
,...,u′

n)

F (t+2 , u
′
2, . . . , u

′
n) =

∧

(u′

2
,...,u′

n)

∧

m

F (tm2 , u′
2, . . . , u

′
n) ∈ Rad(E)′,

a1 =
∧

(u′

2
,...,u′

n)

F (t1, u
′
2, . . . , u

′
n) ∈ Rad(E),

a = a2 − a1 =
∧

(u′

2
,...,u′

n)

F ′(u′
2, . . . , u

′
n) ∈ Rad(E)′.

(iii) Let F ′ = ∆1(t
+
1 , t

+
2 )F . Then we conclude (u′

2, . . . , u
′
n) ∈ T1(F

′) iff F (t+2 , u
′
2, . . . , u

′
n) ∈ Rad(E)′

and F (t+1 , u
′
2, . . . , u

′
n) ∈ Rad(E). The first condition entails by (ii) t2 ≥ t01, (u

′
2, . . . , u

′
n) ≫ (t02, . . . , t

0
n).

Let (tm)m ց t1. The second condition gets there is m0 such that F (t+1 , u
′
2, . . . , u

′
n) ≤ F (tm, u′

2, . . . , u
′
n) ∈

Rad(E) for each m ≥ m0. Hence, tm ≤ t01 form ≥ m0, so that t1 = limm tm ≤ t01 which entails (t02, . . . , t
0
n)

is a characteristic point. Moreover,

a2 :=
∧

(u′

2
,...,u′

n)

∧

m

F (tm2 , u′
2, . . . , u

′
n) ∈ Rad(E)′,

a1 :=
∧

(u′

2
,...,u′

n)

F (t1, u
′
2, . . . , u

′
n) =

∧

(u′

2
,...,u′

n)

∧

m

F (tm, u′
2, . . . , u

′
n) ∈ Rad(E),

a := a2 − a1 =
∧

(u′

2
,...,u′

n)

F ′(u′
2, . . . , u

′
n) ∈ Rad(E)′.

In a similar way we proceed in cases (iv)–(viii), so that condition (vi) holds also in (2).
The last statement on ∆i(t

0
i , t

0+
i )F follows from (2)(ii). �

Remark 6.5. The latter result can be extended: Let i1 < · · · < ik be integers from {1, . . . , n}. If F is an
n-dimensional (pseudo) spectral resolution, then the left hand side of (6.6) defines an (n−k)-dimensional
pseudo spectral resolution. In particular, ∆i1(t

0
i1
, t0+i1 ) · · ·∆ik(t

0
ik
, t0+ik )F has a unique characteristic point
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(t0j1 , . . . , t
0
jn−k

), where j1 < · · · < jn−k is the natural ordering of the set {j1, . . . , jn−k} = {1, . . . , n} \

{i1, . . . , ik}, whenever 1 ≤ k < n.

Suppose we have an n-dimensional spectral resolution F on a lexicographic effect algebra E with only
finitely many characteristic points. We will construct an n-dimensional observable x extending F . We
will use the abbreviation for points in Rn in the form of vectors, so that t̄ = (t1, . . . , tn), s̄ = (s1, . . . , sn),
and r̄ = (r1, . . . , rn), etc. In analogy with the case of perfect MV-algebras, lets chop Rn by hyperplanes
{t̄ ∈ Rn : ti = s} whenever s is the i-th coordinate of some characteristic point. So we obtain a cover of

Rn by a collection of cells Bj , j ∈ J , where each Bj is of the form
∏n

i=1(t
j
i , s

j
i ], where some sji may equals

∞, in which case we, of course, replace the bracket ] by ), and similarly some tji can be also −∞.
Now, for each Bj we define an n-dimensional pseudo spectral resolution Fj which has its support on

Bj . To avoid to many indexes, let B = (t̄, s̄] be one of the blocks Bj ’s (we will leave the index j): Let us
define

FB(r1, . . . , rn) =

{
∆1(t

+
1 ,min{s1, r1}) · · ·∆n(t

+
n ,min{sn, rn})F if t̄ ≤ r̄,

0 if t̄ � r̄.
(6.7)

Lemma 6.1 guarantees that, for t̄ ≤ r̄, the value FB(r̄) equals infimum from V r̄
t̄i
(F ), where t̄ ≪ t̄i and

(t̄i)i ց t̄. Then FB is monotone.
The volume condition: Take real numbers ai ≤ bi for i = 1, . . . , n. If bi < t+i for some i, then

∆i(ai, bi)FB = 0, so that ∆1(a1, b1) · · ·∆n(an, bn)FB = 0. So let t+i ≤ bi for each i = 1, . . . , n. Then it is
possible to show ∆1(a1, b1) · · ·∆n(an, bn)FB = ∆′

1(a1, b1) · · ·∆
′
n(an, bn)F , where

∆′
i(ai, bi) =

{
∆i(t

+
i ,min{si, bi}) if ai < t+i ,

∆i(min{si, ai},min{si, bi}) if t+i ≤ ai,

which entails ∆1(a1, b1) · · ·∆n(an, bn)FB ≥ 0.

7. n-dimensional Spectral Resolutions on a Perfect MV-algebra

If n = 1, then F can be extended to a one-dimensional observable due to [DDL, Thm 4.8], and if n = 2,
it was proved in Theorem 5.5. The same is true also if F is a pseudo spectral resolution, then we can find
an observable on [0, u0

n], n = 1, 2, where u0
n = F (∞, . . . ,∞). We will suppose that every i-dimensional

pseudo spectral resolution, where 1 ≤ i ≤ n−1, can be extended to an i-dimensional observable on [0, ui
0].

Our aim is to show that then this is true also for i = n.
Let t0 = (t01, . . . , t

0
n) be a unique characteristic point of an n-dimensional spectral resolution F . We

divide Rn by hyper-planes going through t0 whose normals are parallel with the main axes. We obtain
2n blocks. For any n-tuple (i1, . . . , in) ∈ {0, 1}n, we define Bi1,...,in as follows Bi1,...,in = Ai1 × · · · ×Ain ,
where

Aij =

{
(−∞, t0ij ] if ij = 0,

(t0ij ,∞) if ij = 1.
(7.1)

Then we define new difference operators ∆
ij
j , ij ∈ {0, 1}, j = 1, . . . , n, as

∆
ij
j =

{
∆j(−∞, t0j) if ij = 0,

∆j(t
0+
j ,∞) if ij = 1.

(7.2)

In addition, we set
ui1,...,in = un

i1,...,in
= ∆i1

1 · · ·∆in
n F.

Due to Lemma 6.4, ui1,...,in ∈ Rad(M). Let Fi1,...,in be a function defined by (6.7) for B = Bi1,...,in , then
Fi1,...,in is an n-dimensional pseudo spectral resolution on [0, ui1,...,in ] ⊆ Rad(M).

Let n1 < · · · < nk be any system of k integers from {1, . . . , n}, where 0 < k < n, {m1, . . . ,mn−k} =
{1, . . . , n} \ {n1, . . . , nk}, and m1 < · · · < mn−k. Let us determine a k-dimensional subspace going
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through the characteristic point t0 and determined by vectors parallel with axes xn1
, . . . , xnk

. For every
fixed n1 < · · · < nk, we put

Fn1,...,nk
(tn1

, . . . , tnk
) = ∆m1

(t0m1
, t0+m1

) · · ·∆mn−k
(t0mn−k

, t0+mn−k
)F (t1, . . . , tn), (tn1

, . . . , tnk
) ∈ Rk.

According to Lemma 6.4 and Remark 6.5, Fn1,...,nk
is a k-dimensional pseudo spectral resolution. If

we set

un
n1,...,nk

=
∨

tn1
,...,tnk

Fn1,...,nk
(tn1

, . . . , tnk
),

then

un
n1,...,nk

= ∆̂n
1 (n1, . . . , nk) · · · ∆̂

n
n(n1, . . . , nk)F,

where

∆̂n
i (n1, . . . , nk) =

{
∆nj

(−∞,∞) if i = nj for some j = 1, . . . , k,
∆mj

(t0mj
, t0+mj

) if i = mj for some j = 1, . . . , n− k,
i = 1, . . . , n.

Due to Lemma 6.4, Fn1,...,nk
is a k-dimensional spectral resolution with a unique characteristic point

(t0n1
, . . . , t0nk

) on the interval MV-algebra [0, un1,...,nk
] = Γ(Z

−→
× G, (1,−g0)), where (1,−g0) = un1,...,nk

,
with un1,...,nk

∈ Rad(M)′ which is “almost close” to be a perfect MV-algebra for all n1 < · · · < nk, where
1 ≤ k ≤ n.

The mapping Fi1,...,in , where i1, . . . , in ∈ {0, 1}, is in fact an n-dimensional spectral resolution on
the σ-complete interval MV-algebra [0, ui1,...,in ] with ui1,...,in ∈ Rad(M). Due to [DvLa3, Thm 5.1],
there is an n-dimensional observable xi1,...,in on [0, ui1,...,in ] which is an extension of Fi1,...,in . Moreover,
xi1,...,in(A) = xi1,...,in(A ∩ Bi1,...,in), A ∈ B(Rn), and xi1,...,in(R

n) = ui1,...,in . On the other hand,
let xn1,...,nk

be a k-dimensional observable uniquely determined by the k-dimensional pseudo spectral
resolution Fn1,...,nk

, n1 < · · · < nk, k = 1, . . . , n − 1, on the interval algebra [0, un1
, . . . , nk], see the

induction assumption from the beginning of the section. In addition, xn1,...,nk
(Rk) = un

n1,...,nk
.

It is possible to show that

xn1,...,nk
({t0n1

, . . . , t0nk
}) = ∆1(t

0
1, t

0+
1 ) · · ·∆n(t

0
n, t

0+
n )F =: un

∅ (7.3)

for all n1, . . . , nk ∈ {1, . . . , n}. We notify un
∅ ∈ Rad(M)′. We assert

1 =
∑

i1,...,in∈{0,1}

un
i1,...,in

+

n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

un
n1,...,nk

)
+ (−1)n+1un

∅ . (7.4)

We prove (7.4). If n = 1, the formula follows from [DDL, Thm 4.8], and if n = 2, it was proved
in Theorem 5.5. We denote ∆i(t

0
i ) := ∆i(t

0
i , t

0+
i ), i = 1, . . . , n. If we fix the last coordinate, we have

the n-dimensional pseudo observable Ft(t1, . . . , tn) = F (t1, . . . , tn, t), (t1, . . . , tn) ∈ Rn, so for it we have

formula (7.4) with un,t
i1,...,in

and un,t
n1,...,nk

. If we put t = ∞, then F∞ is also an n-dimensional spectral
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resolution. Using the induction holding for F∞, we have

1 = ∆1(−∞,∞) · · ·∆n(−∞,∞)∆n+1(−∞,∞)F = ∆1(−∞,∞) · · ·∆n(−∞,∞)F∞

=
∑

i1,...,in∈{0,1}

un,∞
i1,...,in

+

n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

un,∞
n1,...,nk

)
+ (−1)n+1un,∞

∅

=
{ ∑

i1,...,in

∆i1
1 · · ·∆in

n +

n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

∆̂1(n1, . . . , nk) · · · ∆̂n(n1, . . . , nk)
)

+ (−1)n+1∆1(t
0
1) · · ·∆n(t

0
n)
}
F∞

=
{ ∑

i1,...,in

∆i1
1 · · ·∆in

n +
n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

∆̂1(n1, . . . , nk) · · · ∆̂n(n1, . . . , nk)
)

+ (−1)n+1∆1(t
0
1) · · ·∆n(t

0
n)
}
∆n+1(−∞,∞)F

=
{ ∑

i1,...,in

∆i1
1 · · ·∆in

n +
n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

∆̂1(n1, . . . , nk) · · · ∆̂n(n1, . . . , nk)
)

+ (−1)n+1∆1(t
0
1) · · ·∆n(t

0
n)
)}(

∆n+1(−∞, t0n+1) + ∆n+1(t
0
n+1, t

0+
n+1) + ∆n+1(t

0+
n+1,∞)

)
F

=
{ ∑

i1,...,in

∆i1
1 · · ·∆in

n +

n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

∆̂1(n1, . . . , nk) · · · ∆̂n(n1, . . . , nk)
)

+ (−1)n+1∆1(t
0
1) · · ·∆n(t

0
n)
)}

(∆0
n+1 +∆n+1(t

0
n+1) + ∆1

n+1)F

=
{ ∑

i1,...,in,in+1

∆i1
1 · · ·∆in

n ∆
in+1

n+1 +
∑

i1,...,in

∆i1
1 · · ·∆in

n ∆n+1(t
0
n+1)

+

n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

∆̂1(n1, . . . , nk) · · · ∆̂n(n1, . . . , nk)∆n+1(−∞,∞)
)

+ (−1)n+1∆1(t
0
1) · · ·∆n(t

0
n)∆n+1(−∞,∞)

}
F

= (A) + (B) + (C) + (D),

where

(A) =
∑

i1,...,in,in+1
∆i1

1 · · ·∆in
n ∆

in+1

n+1F,

(B) =
∑

i1,...,in
∆i1

1 · · ·∆in
n ∆n+1(t

0
n+1)F

=
(
∆1(−∞,∞)−∆1(t

0
1)
)
· · ·

(
∆n(−∞,∞)−∆n(t

0
n)
)
∆n+1(t

0
n+1)F

=
∑n

k=1(−1)n−k
∑

n1<···<nk≤n u
n+1
n1,...,nk

+ (−1)n+2un+1
∅ ,

(C) =
∑n−1

k=1 (−1)n−k+1
(∑

n1<···<nk≤n ∆̂1(n1, . . . , nk) · · · ∆̂n(n1, . . . , nk)∆n+1(−∞,∞)F
)

=
∑n−1

k=1 (−1)n−k+1
∑

n1<···<nk≤n u
n+1
n1,...,nk,n+1,

and

(D) = (−1)n+1∆1(t
0
1) · · ·∆n(t

0
n)∆n+1(−∞,∞)F = (−1)n+1un+1

n+1.
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Then

1 = (A) + (B) + (C) + (D)

=
∑

i1,...,in+1

un+1
i1,...,in+1

+

n∑

k=1

(−1)n−k+2
( ∑

i1,...,ik≤n+1

un+1
n1,...,nk

)
+ (−1)n+2un+1

∅ .

We define a mapping x : B(Rn) → M corresponding to F , as follows

x(A) =
∑

i1,...,in∈{0,1}

xi1,...,in(A) +

n−1∑

k=1

(−1)n−k+1
( ∑

n1<···<nk≤n

xn1,...,nk
(πn

n1,...,nk
(A))

)

+ (−1)n+1un
∅χ(t0

1
,...,t0n)

(A), A ∈ B(Rn),

(7.5)

where πn
n1,...,nk

is the projection from Rn onto Rk given by πn
n1,...,nk

(t1, . . . , tn) = (tn1
, . . . , tnk

) for each
(t1, . . . , tn) ∈ Rn. We note that the latter expression generalizes (5.6) for n = 2 and n = 1 from [DDL,
Thm 4.8].

We assert that x can be expressed as the sum of positive elements of M as follows.

Lemma 7.1. The function x defined by (7.5) takes positive values on each A ∈ B(Rn).

Proof. Define Hi, i = 1, . . . , n, to be the hyperplane passing through the characteristic point and orthog-
onal to the xi-th axis.

x(A) =
∑

i1,...,in∈{0,1}

xi1,...,in(A) + x2,...,n

(
(πn

2,...,n(A ∩H1))
)
+ x1,3,...,n

(
πn
1,3,...,n(A ∩ (H2 \H1))

)

+ · · ·+ x1,2,...,n−1

(
πn
1,...,n−1(A ∩ (Hn \ (

⋃

j<n

Hj)))
)
, A ∈ B(Rn).

(7.6)

Let A ∈ B(Rn) be fixed. Denote by xi(B) := x1,...,i−1,i+1,...,n(π
n
1,...,i−1,i+1,...,n(A∩B)), B ∈ B(Rn). Then

xi is additive and subtractive on M i.e. B1 ⊆ B2 yields xi(B2 \B1) = xi(B2)− xi(B1). Hence, we have

xi(Hi \
⋃

j<i

Hj) = xi(Hi ∩Hc
1 ∩ · · · ∩Hc

i−1) = xi(Hi) +

i−1∑

k=1

(−1)k
∑

n1<···<nk<i

xi(Hi ∩
⋂

l≤k

Hnl
),

where c denotes the set complement. Let {m1, . . . ,mn−k−1} = {1, . . . , n}\{i, n1, . . . , nk} and m1 < · · · <
mn−k−i. Then

xi(Hi) = x1,...,i−1,i+1,...,n(π
n
1,...,i−1,i+1,...,n(A))

and

xi(Hi ∩
⋂

l≤k

Hnl
) =

{
xm1,...,mn−k−1

(πn
m1,...,mn−k−1

(A)) if k < n− 1,

χt0
1
,...,t0n

(A)un
∅ if k = n− 1.

Therefore, both right hand sides of formulas (7.5) and (7.6) for x(A) are identical and x(A) ≥ 0. �

Now, we see that the mapping x takes values in M , it is additive, monotone, and x(Rn) = 1 due to
(7.4). In addition, similarly as for n = 2, we can show that

(
x(Ai)

)
i
ր x(A) whenever (Ai)i ր A. In

other words, x is an n-dimensional observable on M .
In what follows, we show that x is an extension of F , that is, x((−∞, t1) × · · · × (−∞, tn)) =

F (t1, . . . , tn), t1, . . . , tn ∈ R.

Lemma 7.2. If x is determined by (7.5), then x is an extension of F .
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Proof. Assume that x is defined by (7.5). We show that x is an extension of F . Due to [DDL, Thm 4.8]
and Theorem 5.5, the statement is true for n = 1 and n = 2. So let n > 2.

If (k1, . . . , kn) is any permutation of (1, . . . , n), then F ′(t1, . . . , tn) := F (tk1
, . . . , tkn

), t1, . . . , tn ∈ R, is
an n-dimensional spectral resolution whose characteristic point is (t0k1

, . . . , t0kn
).

It is evident that if (t1, . . . , tn) ∈ B0,...,0, then x((−∞, t1)× · · · × (−∞, tn)) = F (t1, . . . , tn).
Now, let i1, . . . , in ∈ {0, 1}. Assume that some ij = 0 and ik = 1. Let (j1, . . . , jn) be a permutation

of {1, . . . , n} such that ij1 = · · · = ijk = 1 and ijk+1
= · · · = iijn = 0. If (t1, . . . , tn) ∈ Bi1,...,in ,

then due to (7.1), we have (tj1 , . . . , tjn) ∈ Bij1 ,...,ijn
. Therefore, if (tj1 , . . . , tjn) ∈ Bij1 ,...,ijn

implies

F ′(tj1 , . . . , tjn) = x((−∞, tj1 )× · · · × (−∞, tjn)), then F (t1, . . . , tn) = x((−∞, t1)× · · · × (−∞, tn)).
Let B = (−∞, t1)× · · · × (−∞, tn). Assume (t1, . . . , tn) ∈ B1,0,...,0. Then

x(B) = F0,...,0(t
0
1, t2, . . . , tn) + F1,0,...,0(t1, . . . , tn) + F2,...,n(t2, . . . , tn)

= ∆1(−∞, t01)∆2(−∞, t2) · · ·∆n(−∞, tn)F +∆1(t
0+
1 , t1)∆2(−∞, t2) · · ·∆n(−∞, tn)F

+∆1(t
0
1, t

0+
1 )∆2(−∞, t2) · · ·∆n(−∞, tn)F

= ∆1(−∞, t1) · · ·∆n(−∞, tn)F = F (t1, . . . , tn).

Due to the previous paragraph, if (t1, . . . , tn) ∈ Bi1,...,in , where ik = 1 and ij = 0 for j 6= k, then
x(B) = F (t1, . . . , tn); this holds for each k = 1, . . . , n.

Take (t1, . . . , tn) ∈ B1,1,0,...,0 and denote ∆3 = ∆3(−∞, t3) · · ·∆n(−∞, tn). Then

x(B) = F0,0,0,...,0(t
0
1, t

0
2, t3, . . . , tn) (=) ∆1(−∞, t01)∆2(−∞, t02)∆

3F

+ F0,1,0,...,0(t
0
1, t2, t3, . . . , tn) (=) ∆1(−∞, t01)∆2(t

0+
2 , t2)∆

3F

+ F1,0,0,...,0(t1, t
0
2, t3, . . . , tn) (=) ∆1(t

0+
1 , t1)∆2(−∞, t02)∆

3F

+ F1,1,0,...,0(t1, t2, t3, . . . , tn) (=) ∆1(t
0+
1 , t1)∆2(t

0+
2 , t2)∆

3F

+ F1,3,4,...,n(t1, t3, t4, . . . , tn) (=) ∆1(−∞, t1)∆2(t
0
2, t

0+
2 )∆3F

+ F2,3,4,...,n(t2, t3, t4, . . . , tn) (=) ∆1(t
0
1, t

0+
1 )∆2(−∞, t2)∆

3F

− F3,4,...,n(t3, t4, . . . , tn) (=) −∆1(t
0
1, t

0+
1 )∆2(t

0
2, t

0+
2 )∆3F

= ∆1(−∞, t1)∆2(−∞, t2)∆
3F = F (t1, . . . , tn).

Finally, let A = (−∞, t1) × · · · × (−∞, tn). Due to the last paragraphs, we can assume that if
(t1, . . . , tn) ∈ Bi1,...,ik,0,...,0, then x(A) = F (t1, . . . , tn), where 1 ≤ k < n. Without loss of generality and
for simplicity, we assume that k = n− 1. Whence, if (t1, . . . , tn) ∈ B1,...,1,0, then x(A) = F (t1, . . . , tn).

Now, take (t1, . . . , tn) ∈ B1,...,1. Thus, let ti > t0i for each i = 1, . . . , n. Express A = (−∞, t1) ×
· · · × (−∞, tn) in the form A = A0 ∪ A1, where A0 = (−∞, t1) × · · · × (−∞, tn−1) × (−∞, t0n] and
A1 = (−∞, t1)×· · ·×(−∞, tn−1)×(t0n, tn). We have x(A0) = x((−∞, t1)×· · ·×(−∞, tn−1)×(−∞, t0n))+
x((−∞, t1)× · · · × (−∞, tn−1)× {t0n}). Due to the assumption, we have

x((−∞, t1)× · · · × (−∞, tn−1)× (−∞, t0n)) = F (t1, . . . , tn−1, t
0
n)

and

x((−∞, t1)× · · · × (−∞, tn−1)× {t0n}) = F1,...,n−1(t1, . . . , tn−1)

= ∆1(−∞, t1) · · ·∆n−1(−∞, tn−1)∆n(t
0
n, t

0+
n )F,

so that

x(A0) = F (t1, . . . , tn−1, t
0
n) + F1,...,n−1(t1, . . . , tn−1) = F (t1, . . . , tn−1, t

0+
n ).

To calculate x(A1), we use (7.2) and (7.5): Let 1 ≤ n1 < · · · < nk < n and m1 < · · · < mn−k, where
{m1, . . . ,mn−1−k} = {1, . . . , n− 1} \ {n1, . . . , nk}, we get
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x(A1) =
∑

i1,...,in−1∈{0,1}

xi1,...,in−1,0((−∞, t1)× · · · × (−∞, tn−1)× (t0n, tn))

+

n−2∑

k=0

(−1)n−k
( ∑

n1<···<nk<n

xn1,...,nk,n((−∞, tn1
)× · · · × (−∞, tnk

)× (t0n, tn)
)

=
∑

i1,...,in−1∈{0,1}

∆i1
1 · · ·∆

in−1

n−1∆n(t
0+
n , tn)F

+

n−2∑

k=0

(−1)n−k
( ∑

n1<···<nk<n

∆m1
(t0m1

, t0+m1
) · · ·∆mn−k

(t0mn−1−k
, t0+mn−1−k

)∆n(t
0+
n , tn)F

)

=
( ∑

i1,...,in−1∈{0,1}

∆i1
1 · · ·∆

in−1

n−1 +
n−2∑

k=1

(−1)n−k

( ∑

n1<···<nk<n

∆m1
(t0m1

, t0+m1
) · · ·∆mn−k

(t0mn−1−k
, t0+mn−1−k

)
))

∆n(t
0+
n , tn)F

=∆1(−∞, t1) · · ·∆n−1(−∞, tn−1)∆n(t
0+
n , tn)F = F (t1, . . . , tn)− F (t1, . . . , tn−1, t

0+
n ).

Whence, x(A) = x(A0) + x(A1) = F (t1, . . . , tn−1, tn). �

In the following result, we define an n-dimensional observable on M which is an extension of F in
another way as in formula (7.5).

On ∆i’s operators we define addition + usually as
(
∆i(t, t

′) + ∆i(s, s
′)
)
F = ∆i(t, t

′)F +∆i(s, s
′)F .

Lemma 7.3. Let F be an n-dimensional spectral resolution on E = Γea(Z
−→
× G, (1, 0)), where G is a

directed Dedekind monotone σ-complete po-group with interpolation. For each g ∈ {−1, 0, 1}{1,...,n}, we
define

Fg(t1, . . . , tn) =
∏

i∈g−1(−1)

∆i(−∞,min{t0i , ti})
∏

i∈g−1(0)

∆i(min{t0i , ti},min{t0i
+
, ti})

∏

i∈g−1(1)

∆i(min{t0i
+
, ti}, ti)F,

where (t01, . . . , t
0
n) is the characteristic point of F . Then the mapping Fg is an n-dimensional pseudo

spectral resolution. Unless the case g equals constantly zero, Fg has its range included in Rad(E).

Proof. First of all, we establish the following useful Claim.

Claim. Let F ′ : Rn → E be an n-dimensional pseudo spectral resolution on E. For every i = 1, . . . , n,
each of the mappings

F ′
−1(t1, . . . , tn) := ∆i(−∞,min{t0i , ti})F

′(t1, . . . , tn),

F ′
0(t1, . . . , tn) := ∆i(min{t0i , ti},min{t0i

+
, ti})F

′(t1, . . . , tn), (t1, . . . , tn) ∈ Rn,

F ′
1(t1, . . . , tn) := ∆i(min{t0i

+
, ti}, ti)F

′(t1, . . . , tn),

is an n-dimensional pseudo spectral resolution. Moreover, if (t01, . . . , t
0
n) is the characteristic point of F ′,

then F ′
−1 and F ′

1 have no characteristic but F ′
0 has a unique characteristic point, namely (t01, . . . , t

0
n).

Indeed, let si ≤ s′i for each i = 1, . . . , n.
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(1) Then

∆i(si, s
′
i)F

′
−1 = ∆i(si, s

′
i)∆i(−∞,min{ti, t

0
i })F

′ = ∆i(min{si, t
0
i },min{s′i, t

0
i })F

′. (7.7)

Therefore,

∆1(s1, s
′
1) · · ·∆n(sn, s

′
n)F

′
−1 = ∆1(s1, s

′
1) · · ·∆i−1(si−1, s

′
i−1)∆i(min{si, t

0
i },min{s′i, t

0
i })

∆i+1(si+1, si+1) · · ·∆n(sn, s
′
n)F

′ ≥ 0.

(2)

∆i(si, s
′
i)F

′
1 = ∆i(si, s

′
i)∆i(min{ti, t

0
i

+
}, ti)F

′ = ∆i(max{si, t
0
i

+
},max{s′i, t

0
i

+
})F ′, (7.8)

which yields as in (1) ∆1(s1, s
′
1) · · ·∆n(sn, s

′
n)F

′
1 ≥ 0.

(3) There are two cases: (i) t0i ∈ [si, s
′
i) which implies

∆i(si, s
′
i)F

′
0 = ∆i(si, s

′
i)∆i(min{t0i , ti},min{t0i

+
, ti})F

′ = ∆i(t
0
i , t

0
i

+
)F ′.

(ii) t0i /∈ [si, s
′
i) which implies

∆i(si, s
′
i)F

′
0 = ∆i(si, s

′
i)∆i(min{t0i , ti},min{t0i

+
, ti})F

′ = 0.

In either case, we have ∆1(s1, s
′
1) · · ·∆n(sn, s

′
n)F

′
0 ≥ 0.

Altogether (1)–(3) show that every F ′
j for j = −1, 0, 1 satisfies the volume condition.

Applying Lemma 5.3, we see that every F ′
j satisfies conditions (ii), (iii), (iv)’ of Definition 5.1, so that

F ′
j is an n-dimensional pseudo spectral resolution. In addition, from the form of F ′

−1 and F ′
1 we see that

they have no characteristic point, whereas, F ′
0 does have it, namely (t01, . . . , t

0
n), which finishes the proof

of Claim.
Now, let g : {1, . . . , n} → {−1, 0, 1} be non-zero. Claim shows that Fg can be obtained from an

appropriate sequence of n operators ∆’s applied to a sequence of n appropriate functions of type F ′
−1, F

′
0,

and F ′
1, consequently, Fg is an n-dimensional pseudo spectral resolution from Rn into Rad(E) whenever

g 6= 0.

If g = 0, then Fg(t1, . . . , tn) = ∆1(min{t01, t1},min{t01
+
, t1}) · · ·∆n(min{t0n, tn},min{t0n

+
, tn})F is a

two-valued mapping from Rn into {0, un
∅}, where un

∅ = ∆1(t
0
1, t

0+
1 ) · · ·∆n(t

0
n, t

0+
n )F ∈ Rad(E)′, see (7.3).

Hence, Fg is an n-dimensional pseudo spectral resolution from Rn into {0, un
∅}. Its characteristic point

is (t01, . . . , t
0
n) and Fg fulfils (v) of Definition 5.1. �

Using ideas of the present section, we establish one of the main results of the paper.

Theorem 7.4. Let M = Γ(Z
−→
× G, (1, 0)), where G is a Dedekind σ-complete ℓ-group and let F be an

n-dimensional spectral resolution. Then there is a unique n-dimensional observable x on M such that
x((−∞, t1)× · · · × (−∞, tn)) = F (t1, . . . , tn), (t1, . . . , tn) ∈ Rn.

Proof. We present two different proofs of the statement

Proof 1.

Take x determined by (7.5). Lemma 7.2 says x is an extension of F .

Proof 2. Take the family {Fg : g ∈ {−1, 0, 1}{1,...,n}} of n-dimensional pseudo spectral resolutions on M

defined by Lemma 7.3. Therefore, F can be decomposed as follows

F (t1, . . . , tn) =
(
∆1(−∞,min{t01, t1}) + ∆1(min{t01, t1},min{t01

+
, t1}) + ∆1(min{t01

+
, t1}, t1)

)
· · ·

(
∆n(−∞,min{t0n, tn}) + ∆n(min{t0n, tn},min{t0n

+
, tn}) + ∆n(min{t0n

+
, tn}, tn)

)
F

=
∑

g

Fg(t1, . . . , tn).

(7.9)
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Equation (7.9) holds thanks to two points: (a) For each i = 1, . . . , n, we have
(
∆i(−∞,min{t01, t1}) + ∆i(min{t01, t1},min{t01

+
, t1}) + ∆i(min{t01

+
, t1}, t1)

)
F = ∆i(−∞, t1)F.

(b) We are using several identities: commutativity (6.4) and distributivity of ∆i’s operators: For each
i 6= j and reals t ≤ t′ ≤ t′′ and s ≤ s′ ≤ s′′ we have

(
∆i(t, t

′) + ∆i(t
′, t′′)

)
∆j(s, s

′)F = ∆i(t, t
′)∆j(s, s

′)F +∆i(t
′, t′′)∆j(s, s

′)F, (7.10)

∆i(t, t
′)
(
∆j(s, s

′) + ∆j(s
′, s′′)

)
F = ∆i(t, t

′)∆j(s, s
′)F +∆i(t, t

′)∆j(s
′, s′′)F. (7.11)

Equation (7.10) holds immediately by definition and the equation (7.11) follows from (7.10) and the
commutativity (6.3).

Unless the case g equals constantly 0, Fg is an n-dimensional pseudo spectral resolution with support

included in Ag := A
g(1)
i × · · · ×A

g(n)
n , where

Aj
i =





(−∞, t0i ) if j = −1,
{t0i } if j = 0,
(t0i ,∞) if j = −1,

and Fg(Rn) ⊆ Rad(M). Let ug = Fg(∞, . . . ,∞). Then Fg is an n-dimensional spectral resolution on
the interval algebra [0, ug] which is a σ-complete MV-algebra. So we may apply the result from [DvLa3,
Thm 5.1] and extend each Fg with g 6= 0 to an n-dimensional observable xg on [0, ug]. In the case of
g equals constantly zero, Fg trivially extends to an unique n-dimensional observable xg with support
{(t01, . . . , t

0
n)}, that is, xg(A) = un

∅ if (t01, . . . , t
0
n) ∈ A, otherwise xg(A) = 0, A ∈ B(Rn). Finally, we define

x =
∑

g

xg. (7.12)

From formula (7.9) all the conditions on x to be an observable immediately follow. From the construction
of all Fg’s, we see that x((−∞, t1)× · · · × (−∞, tn)) = F (t1, . . . , tn), (t1, . . . , tn) ∈ Rn.

Using the Sierpiński Theorem, [Kal, Thm 1.1], we have the uniqueness of x in both proofs. �

We note that x’s defined by (7.5) or by (7.12) or by (7.6) are the same, compare with Theorem 5.6.
The following theorem follows the same proof as that of Theorem 7.4.

Theorem 7.5. If E = Γea(Z
−→
× G, (1, 0)) is a perfect effect algebra, where G is a directed monotone

σ-complete po-group with interpolation, then every n-dimensional spectral resolution can be extended to
a unique n-dimensional observable on E.

8. n-dimensional Spectral Resolutions on k-perfect MV-algebras and k-perfect Effect

Algebras

Let M = Γ(Z
−→
× G, (k, 0)) and E = Γea(Z

−→
× G, (k, 0)) be a k-perfect MV-algebra and a k-perfect effect

algebra, respectively. We will suppose that G is a Dedekind σ-complete ℓ-group in the first case and a
directed Dedekind monotone σ-complete po-group with interpolation in the second case. We say that an
n-dimensional spectral resolution F has the ordering property if (1) every non-empty Tkj

, kj = 1, . . . , k,

has at most one characteristic point tj = (tj01 , . . . , tj0n ), and (2) if ti and tj are characteristic points of
Tki

and Tkj
then ti ≤ tj whenever 0 < ki < kj ≤ k. We remind that M0 = {0} ×G+, Mj = {j} ×G if

0 < j < k, and Mk = {k} ×G−.
First, we establish an analogous result as Claim of Lemma 7.3. The ordering property gives for each

i = 1, . . . , n

−∞ < t1,0i ≤ min{t1,0i

+
, ti} ≤ min{t2,0i , ti} ≤ min{t2,0i

+
, ti} ≤ · · · ≤ min{tj,0i , ti} ≤ min{tj,0i

+
, ti}

≤ min{tj+1,0
i , ti} ≤ min{tj+1,0

i

+
, ti} ≤ · · · ≤ min{tl,0i , ti} ≤ min{tl,0i

+
, ti} ≤ ti.

(8.1)
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The last chain of inequalities suggests the following Lemma.

Lemma 8.1. Let F ′ be an n-dimensional pseudo spectral resolution on M = Γ(Z
−→
× G, (k, 0)) with the

ordering property. Let t1 ≤ · · · ≤ tl be all the characteristic points of F ′ and let tj = (t0,j1 , . . . , t0,jn ),
j = 1, . . . , l. Assume l > 1. We define the following functions from Rn into M

F ′
i,1(t1, . . . , tn) = ∆i(−∞,min{t1,0i , ti})F

′(t1, . . . , tn),

F ′
i,2j(t1, . . . , tn) = ∆i(min{tj,0i , ti},min{tj,0i

+
, ti})F

′(t1, . . . , tn), j = 1, . . . , l,

F ′
i,2j+1(t1, . . . , tn) = ∆i(min{tj,0i

+
, ti},min{tj+1,0

i , ti})F
′(t1, . . . , tn), j = 1, . . . , l − 1,

F ′
i,2l+1(t1, . . . , tn) = ∆i(min{tl,0i

+
, ti}, ti)F

′(t1, . . . , tn)

for all (t1, . . . , tn) ∈ Rn and i = 1, . . . , n. Then every F ′
i,j is an n-dimensional pseudo spectral resolution

on M . In addition, each of F ′
i,2j has the same characteristic points as F ′, on the other side, all other

functions F ′
i,j have no characteristic point.

Proof. The volume condition: Let si ≤ s′i be real numbers for i = 1, . . . , n.

(1) Then ∆i(si, s
′
i)F

′
i,1 = ∆i(si, s

′
i)∆i(−∞,min{t1,0i , ti})F ′ = ∆i(min{t1,0i , si},min{t1,0i , s′i})F

′, so
that

∆1(s1, s
′
1) · · ·∆n(sn, s

′
n)F

′
i,1 = ∆1(s1, s

′) · · ·∆i−1(si−1, s
′
i−1)∆i(min{t1,0i , si},min{t1,0i , s′i})

∆i+1(si+1, s
′
i+1) · · ·∆n(sn, s

′
n)F

′ ≥ 0.

(2) We have

∆i(si, s
′
i)F

′
i,2j = ∆i(min{tj,0i , ti},min{tj,0i

+
, ti})F

′ = ∆i(max{tj,0i , ti},max{tj,0i

+
, ti})F

′,

which yields

∆1(s1, s
′
1) · · ·∆n(sn, s

′
n)F

′
i,2j = ∆1(s1, s

′
1) · · ·∆i−1(si−1, s

′
i−1)∆i(max{tj,0i , ti},max{tj,0i

+
, ti})

∆i+1(si+1, s
′
i+1) · · ·∆n(sn, s

′
n)F

′ ≥ 0.

(3) There are six cases: (i) si ≤ tj,0i ≤ tj+1,0
i < s′i. Then ∆i(si, s

′
i)F

′
i,j+1 = ∆i(t

j,0
i

+
, tj+1,0

i )F . (ii)

tj,0i < si < s′i < tj+1,0
i . Then ∆i(si, s

′
i)F

′
i,j+1 = ∆i(si, s

′
i)F . (iii) tj,0i ≤ tj+1,0

i < si < s′i. Then

∆i(si, s
′
i)F

′
i,j+1 = 0. (iv) tj,0i < si ≤ tj+1,0

i < s′i. Then ∆i(si, s
′
i)F

′
i,2j+1 = ∆i(si, t

j+1,0
i )F . (v) si ≤

tj,0i < s′i < tj+1,0
i . Then ∆i(si, s

′
i)F

′
i,j+1 = ∆i(t

j,0
i

+
, s′i)F , and (vi) si < s′i ≤ tj,0i ≤ tj+1,0

i . Then

∆i(si, s
′
i)F

′
i,j+1 = 0. In either case, ∆1(s1, s

′
1) · · ·∆n(sn, s

′
n)F

′
i,j+1 ≥ 0.

(4) There are two cases: (i) tl,0i ∈ [si, s
′
i) which implies

∆i(si, s
′
i)F

′
i,l+1 = ∆i(si, s

′
i)∆i(min{tl,0i , ti},min{tl,0i

+
, ti})F

′ = ∆i(t
l,0
i , tl,0i

+
)F ′.

(ii) tl,0i /∈ [si, s
′
i) which implies

∆i(si, s
′
i)F

′
i,2l+1 = ∆i(si, s

′
i)∆i(min{tl,0i , ti},min{tl,0i

+
, ti})F

′ = 0.

In either case, we have ∆1(s1, s
′
1) · · ·∆n(sn, s

′
n)F

′
i,2l+1 ≥ 0.

Altogether (1)–(4) entail that every above defined function satisfies the volume condition.
Applying Lemma 5.3, we see that the above defined functions satisfy condition (ii), (iii), (iv)’ of

Definition 5.1, so that they are n-dimensional pseudo spectral resolutions.
Moreover, every F ′

i,1(t1, . . . , tn) ∈ M0, F
′
i,2j+1(t1, . . . , tn) ∈ M0, and F ′

i,2l+1(t1, . . . , tn) ∈ M0 for each

i = 1, . . . , n and all (t1, . . . , tn) ∈ Rn.
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Suppose that tj = (t0,j , . . . , t0,n) is a characteristic point of F ′ for a fixed j = 1, . . . , k. Take
(t1, . . . , tk) ∈ Tkj

= {(s1, . . . , sn) ∈ Rn : F ′(s1, . . . , sn) ∈ Mkj
}. Then (t1, . . . , tn) ≫ (tj,0n , . . . , tj,0n )

which gives

F ′
i,2j(t1, . . . , tn) = F ′(t1, . . . , t

j,0
i

+
, . . . , tn)− F ′(t1, . . . , t

j,0
i , . . . , tn) ∈ Mkj−kj−1

,

and kj − kj−1 > 0, moreover, Fi,2j(t
j,0
1 , . . . , tj,0n ) = 0 and Fi,2j(t

j,0
1

+
, . . . , tj,0n

+
) = F (tj,01

+
, . . . , tj,0n

+
) −

F (tj,01

+
, . . . , tj,0i , . . . , tj,0n

+
) ∈ Mkj−kj−1

, claiming tj is a characteristic point of F ′
i,2j . �

Theorem 8.2. Let M = Γ(Z
−→
× G, (1, k)) be a k-perfect MV-algebra, where G is a Dedekind σ-complete

ℓ-group and let F be an n-dimensional spectral resolution on M with the ordering property. Then there
is a unique n-dimensional observable x on M which is an extension of F .

Proof. First of all, for each i = 1, . . . , n, we set

∆1
i = ∆i(−∞,min{t1,0i , ti}),

∆2j
i = ∆i(min{tj,0i , ti},min{tj,0i

+
, ti}), j = 1, . . . , l,

∆2j+1
i = ∆i(min{tj,0i

+
, ti},min{tj+1,0

i , ti}), j = 1, . . . , l − 1,

∆2l+1
i = ∆i(min{tl,0i

+
, ti}, ti).

For any (j1, . . . , jn) ∈ {1, . . . , 2l+ 1}n, we define

Fj1,...,jn = ∆j1
1 · · ·∆jn

n F.

Thanks to Lemma 8.1, every Fj1,...,jn is an n-dimensional pseudo spectral resolution such that it has
no characteristic point whenever (j1, . . . , jn) 6= (2k1, . . . , 2kn), where ki = 1, . . . , l for i = 1, . . . , n. In
such a case, applying [DvLa3, Thm 5.1], on the interval [0, Fj1,...,jn(∞, . . . ,∞)], which is a σ-complete
MV-algebra, there is an n-dimensional observable xj1,...,jn which is an extension of Fj1,...,jn .

On the other hand, due to Lemma 8.1, we have that F2k1,...,2kn
has the same characteristic points as

F and it is concentrated in the point (t0,k1

1 , . . . , t0,kn). Therefore, it is trivial to extend F2k1,...,2kn
to an

n-dimensional observable x2k1,...,2kn
. If we define a mapping x : B(Rn) → M by

x(A) =
∑

{xj1,...,jn(A) : (j1, . . . , jn) ∈ {1, . . . , 2l+ 1}n}, A ∈ B(Rn),

then it is an n-dimensional observable on M . If we express F in the form

F (t1, . . . , tn) = ∆1(−∞, t1) · · ·∆n(−∞, tn)F,

and using the chain of inequalities (8.1) and additivity and multiplication of differences, we get

F (t1, . . . , tn) =
∑

(j1,...,jn)

Fj1,...,jn(t1, . . . , tn), (t1, . . . , tn) ∈ Rn,

showing that x is an extension of F . The Sierpiński Theorem, [Kal, Thm 1.1] guarantees the uniqueness
of x. �

As in Theorem 7.5, we can establish the following Theorem using ideas from Theorem 8.2.

Theorem 8.3. If E = Γea(Z
−→
× G, (k, 0)) is a k-perfect effect algebra, where G is a directed monotone

σ-complete po-group with interpolation, then every n-dimensional spectral resolution with the ordering
property can be extended to a unique n-dimensional observable on E.

Now, we present a result generalizing Theorem 8.2 and Theorem 8.3 where the increasing property is
not more assumed. However, the proof depends in the ideas from Theorem 8.2.
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Theorem 8.4. Let F be an n-dimensional spectral resolution on E = Γea(H
−→
× G, (u, 0)), where G is a

directed Dedekind monotone σ-complete po-group with interpolation and (H,u) is a unital po-group with
interpolation. Moreover, suppose F has only finitely many characteristic points. Then F can be extended
to an n-dimensional observable x on E such that F = Fx.

Proof. The proof is rather a direct generalization of the ideas of the second proof of Theorem 7.4 and
Theorem 8.2. Let tj = (tj,01 , . . . , tj,0n ), j = 1, . . . , k, be all the characteristic points of F . For each

i = 1, . . . , n, let mi = |{t1,0i , . . . , tk,0i }|, that is mi is the number of mutually different i-th coordinates of

the characteristic points. We rewrite and order all the elements of the set {t1,0i , . . . , tk,0i } as follows

t0i,1 < · · · < t0i,mi
. (8.2)

Then

F (t1, . . . , tn) =

n∏

i=1

[
∆i(−∞,min{ti, t

0
i,1}) + ∆i(min{ti, t

0
i,1},min{ti, t

0+
i,1}) + · · ·

+∆i(min{ti, t
0+
i,1},min{ti, t

0
i,2}) + ∆i(min{ti, t

0
i,2},min{ti, t

0+
i,2})+

· · ·+∆i(min{ti, t
0
i,mi

},min{ti, t
0+
i,m1

}) + ∆i(min{ti, t
0+
i,mi

}, ti)

]
F.

According to Lemma 8.1, we can establish the following claim:

Claim. Let F ′ be an n-dimensional pseudo spectral resolution on E. Let t1, . . . , tk be the system
of characteristic points of F ′. Use mi defined at the beginning of the proof and the orderings (8.2) for
i = 1, . . . , n.

We define the following functions from Rn into E

F ′
i,1(t1, . . . , tn) = ∆i(−∞,min{ti, t

0
i,1})F

′(t1, . . . , tn),

F ′
i,2j(t1, . . . , tn) = ∆i(min{ti, t

0
i,j},min{ti, t

0+
i,j })F

′(t1, . . . , tn), j = 1, . . . ,mi,

F ′
i,2j+1(t1, . . . , tn) = ∆i(min{ti, t

0+
i,j },min{ti, t

0
i,j+1})F

′(t1, . . . , tn), j = 1, . . . ,mi − 1,

F ′
i,2mi+1(t1, . . . , tn) = ∆i(min{ti, t

0+
i,mi

}, ti)F
′(t1, . . . , tn)

for all (t1, . . . , tn) ∈ Rn and i = 1, . . . , n. Then every F ′
i,j is an n-dimensional pseudo spectral resolution

on E. In addition, each of F ′
i,2j has the same characteristic points as F ′ (F ′

i,2jshares with F ′ only those

characteristic points, which lie on the hyperplane xi = t0i,j), on the other side, all other functions F ′
i,j

have no characteristic point.

Now, using the distributivity of ∆i’s operators, we get F as a sum of
∏

i(2mi + 1) n-dimensional
pseudo spectral resolutions that are generated by the claim. Similarly as in the proof of Theorem 8.2,
we can conclude that every summand either has no characteristic point, so due to [DvLa3, Thm 5.1] it
can be extended to an n-dimensional observable on an appropriate interval in E0, or it is concentrated
in a unique characteristic point. In the second case it can be trivially extended to some n-dimensional
observable.

As we can extend all the summands to observables, we can extend F to an observable as well. �

We say that an effect algebra E possesses the Observable Existence Property (OEP, for short) if every
n-dimensional spectral resolution con E can be extended to an observable and we denote by OEP(EA)
the class of effect algebras with (OEP).

The class OEP(EA) contains these effect algebras (MV-algebras):

(i) σ-complete MV-algebras, [DvKu, Thm 3.2] for n = 1.
(ii) σ-complete lattice effect algebras, [DvKu, Thm 3.5] for n = 1.
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(iii) Boolean σ-algebras, [DvKu, Thm 3.6] for n = 1.
(iv) σ-orthocomplete orthomodular posets, [DvKu, Thm 3.8] for n = 1.
(v) Monotone σ-complete effect algebras with (RDP), [DvKu, Thm 3.9] for n = 1.
(vi) E(H), [DvKu, Thm 3.10] for n = 1.
(vii) Effect-tribes, [DvKu, Thm 3.11] for n = 1.
(viii) Monotone σ-complete effect algebras with RIP and DMP, [Dvu2, Thm 4.3] for n = 1.
(ix) Every representable monotone σ-complete effect algebra, [Dvu2, Thm 3.3] for n = 1.
(x) Every perfect MV-algebra, [DDL, Thm 4.8] for n = 1.
(xi) Every n-perfect MV-algebra, [DvLa, Thm 3.8], for n = 1.
(xii) Every lexicographic effect algebra, [DvLa1, Thm 3.8] for n = 1.
(xiii) Every σ-complete MV-algebra and every Dedekind σ-complete effect algebra, [DvLa3, Thm 5.1,

Thm 5.2] for general n ≥ 1.
(xiv) Every perfect MV-algebra and every perfect effect algebra, Theorems 7.4–7.5 for n ≥ 1.
(xv) Every k-perfect MV-algebra and every k-perfect effect algebra, Theorem 8.4.

9. Applications

The aim of the section is to apply the previous results to show the existence of an n-dimensional meet
joint observable of n one-dimensional observables and the existence of a sum of n-dimensional observables
on perfect MV-algebras.

9.1. n-dimensional meet joint observables. We show that given n one-dimensional observables
x1, . . . , xn on an appropriate lexicographic MV-algebra M , there is an n-dimensional observable x on
M such that

x((−∞, s1)× · · · × (−∞, sn)) =

n∧

i=1

xi((−∞, si)), s1, . . . , sn ∈ R. (9.1)

First we remind that the following forms of distributive laws hold also in lexicographic MV-algebras.

Lemma 9.1. Let {xi : i ∈ I} be a system of elements of an MV-algebra M .
(1) Let

∨
i∈I xi exist in M , and let x be any element of M . Then

∨
i∈I(x ∧ xi) exists in M and

∨

i∈I

(x ∧ xi) = x ∧
∨

i∈I

xi.

(2) If
∧

i∈I xi exists in M , then for each x ∈ M , the element
∧

i∈I(x ∨ xi) exists in M and
∧

i∈I

(x ∨ xi) = x ∨
∧

i∈I

xi.

Theorem 9.2. Let x1, . . . , xn be one-dimensional observables on a Rad-Dedekind σ-complete perfect
MV-algebra. Then there is a unique n-dimensional observable x on M such that (9.1) holds.

Proof. Let Fi(s) = xi((−∞, s)), s ∈ R, be a one-dimensional spectral resolution corresponding to the
observable xi for i = 1, . . . , n. We are claiming that F is an n-dimensional spectral resolution on M .

Clearly, F , defined by F (s1, . . . , sn) =
∧n

i=1 F (si), s1, . . . , sn ∈ R, is monotone and it satisfies (3.4)–
(3.6). We show that it satisfies also the volume condition. Due to [DiLe, Thm 5.1], it is sufficient to
prove the volume condition for linearly ordered perfect MV-algebra. The following claim was established
in [DvLa3, Thm 6.2]:

Claim. Let F1, . . . , Fn, n ≥ 2, be functions from R into a linearly ordered MV-algebra M such that each
Fi satisfies the volume condition. Then F (s1, . . . , sn) =

∧n
i=1 Fi(si), s1, . . . , sn ∈ R, satisfies the volume
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condition. If, given A = [a1, b1) × · · · × [an, bn), we can assume that F1(a1) ≤ F2(a2) ≤ · · · ≤ Fn(an),
then

∆1(a1, b1) · · ·∆n(an, bn)F (s1, . . . , sn) =

n−1∧

i=1

(Fi(bi) ∧ Fn(bn))−
n−1∧

i=1

(Fi(bi) ∧ Fn(an)). (9.2)

Therefore, F satisfies the volume condition.
Now, we show that F satisfies (v) of Definition 5.1. For every i = 1, . . . , n, let T i

1 = {s ∈ R : Fi(s) ∈
M1}, and let ai1 =

∧
{Fi(s) : s ∈ T i

1}. Put T1 = {(s1, . . . , sn) ∈ Rn : F (s1, . . . , sn) ∈ M1}. Then
every ai1 ∈ M1. Since F (s1, . . . , sn) ∈ M1 iff Fi(si) ∈ M1 for each i = 1, . . . , n, then the element
a =

∧n
i=1 a

i
1 ∈ M1 and it is a lower bound from M1 for {F (s1, . . . , sn) : F (s1, . . . , sn) ∈ M1}. In view of

the countability and density of rational numbers and applying Lemma 2.1(2), we see that the element∧
{F (s1, . . . , sn) : F (s1, . . . , sn) ∈ M1} exists in M and it belongs to M1.
Therefore, F is an n-dimensional spectral resolution. Due to Theorem 7.4, there is a unique n-

dimensional observable x on M such that (9.1) holds which finishes the proof. �

The observable x from Theorem 9.2 is said to be an n-dimensional meet joint observable of x1, . . . , xn.
We note that using the Sierpiński Theorem, we can show

x(π−1
i (A)) = xi(A), A ∈ B(R), i = 1, . . . , n, (9.3)

where πi : Rn → R is the i-th projection.
In addition, from (9.3), we can prove

x(A1 × · · · ×An) ≤
n∧

i=1

xi(Ai), A1, . . . , An ∈ B(R), (9.4)

and, in general, it can happen that in (9.4) we have strict inequality. Indeed, let x and y be one-

dimensional observables on Γ(Z
−→
× R, (1, 0)) such that x({2}) = (0, 3), x({3}) = (1,−3), y({1}) = (0, 4)

and y({5}) = (1,−4). For the two-dimensional meet joint observable z determined by one-dimensional
spectral resolutions Fx and Fy, we can show that that in (9.4) can be proper inequalities. Otherwise,
we have (1, 0) = (x({2}) ∧ y({1})) + (x({2}) ∧ y({5})) + (x({3}) ∧ y({1})) + (x({3}) ∧ y({5})) = (0, 3) ∧
(0, 4) + (0, 3) ∧ (1,−4) + (1,−3) ∧ (0, 4) + (1,−3) ∧ (1,−4) = (0, 3) + (0, 3) + (0, 4) + (1,−4) = (1, 6), a
contradiction.

9.2. Sum of n-dimensional observables. Let (Ω,S) be a measurable space and let f, g : Ω → R be
S-measurable functions. It is well-known that f + g is also S-measurable. The proof of this fact is based
on the simple property

{ω ∈ Ω : f(ω) + g(ω) < t} =
⋃

r∈Q

({ω ∈ Ω : f(ω) < r} ∩ {ω ∈ Ω : g(ω) < t− r}) (9.5)

which holds for each t ∈ R, where Q is the set of rational numbers, see e.g. [Hal, Thm 19.A]. This equality
was used in [DvLa, Thm 4.5] to define the sum of two one-dimensional observables on a k-perfect MV-

algebra M = Γ(Z
−→
× G, (k, 0)), where G is a Dedekind σ-complete ℓ-group. More precisely, if x and y

are one-dimensional observables on M with spectral resolutions Fx(t) = x((−∞, t)), Fy(t) = y((−∞, t)),
t ∈ R, we define

Fx+y(t) :=
∨

r∈Q

(Fx(r) ∧ Fy(t− r)), t ∈ R.

Then Fx+y is a spectral resolution of an observable z = x + y, called the sum of x and y. Moreover,
x+ y = y + x.
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Similarly, if T1, T2 : Ω → Rn are two n-dimensional measurable vectors, then T1(ω) = (f1(ω), . . . , fn(ω))
and T2(ω) = (g1(ω), . . . , gn(ω)), ω ∈ Ω, for unique S-measurable functions f1, . . . , fn, g1, . . . , gn on Ω.
The sum T = T1 + T2 is S-measurable thanks to a generalization of (9.5)

{ω : T1(ω) + T2(ω) ∈ (−∞, t1)× · · · × (−∞, tn)} =
n⋂

i=1

⋃

ri∈Q

(
{ω : fi(ω) < ri} ∩ {ω : gi(ω) < ti − ri}

)

=

n⋂

i=1

{ω : fi(ω) + gi(ω) < ti},

which holds for all t1, . . . , tn ∈ R. Inspired by this we have the following result.

Theorem 9.3. Let z1, z2 be n-dimensional observables on a perfect MV-algebra M = Γ(Z
−→
× G, (1, 0)),

where G is a Dedekind σ-complete ℓ-group. Let πi : Rn → R be the i-th projection, i = 1, . . . , n. Define
one-dimensional observables xi(A) = z1(π

−1
i (A)) and yi(A) = z2(π

−1
i (A)) for A ∈ B(R) and i = 1, . . . , n.

Then there is an n-dimensional observable z = z1 + z2 such that

Fz1+z2(t1, . . . , tn) :=
n∧

i=1

Fxi+yi
(ti), t1, . . . , tn ∈ R,

is an n-dimensional spectral resolution on M which corresponds to z.
If O(M)n is the system of n-dimensional observables on M , then O(M)n is a commutative semigroup

with respect to the binary operation + on O(M)n with the neutral element o : B(Rn) → M which is
defined by o(A) = 1 whenever the null vector (0, . . . , 0) belongs to A, otherwise o(A) = 0.

Proof. Due to [DvLa, Thm 4.5], every Fxi+yi
is a one-dimensional spectral resolution on M which

is the sum of one-dimensional observables xi and yi Applying Theorem 9.2, we see that Fz1+z2 is
an n-dimensional spectral resolution corresponding to an n-dimensional meet joint observable of x1 +
y1, . . . , xn + yn.

Since Fxi+yi
= Fyi+xi

, we see that Fz1+z2 = Fz2+z1 and the operation + is commutative.
We show that + is associative. Let z1, z2, z3 ∈ O(M)n. First, we establish a claim:

Claim. Let zj,i(A) = zj(π
−1
i (A)), (z1 + z2)i(A) = (z1 + z2)(π

−1
i (A)), A ∈ B(R), j = 1, 2, i = 1, . . . , n,

then

(z1 + z2)i = z1,i + z2,i, i = 1, . . . , n.

Indeed, let i = 1, . . . , n, be fixed and ti ∈ R. We have

F(z1+z2)i(ti) = (z1 + z2)i((−∞, ti)) = (z1 + z2)(R× · · · × (−∞, ti)× · · · × R)

= Fz1+z2(∞, . . . , ti, . . . ,∞) = Fz1,i+z2,i(ti),

which proves the claim.
The associativity of +: Let t1, . . . , tn ∈ R. Using the claim and associativity of + for one-dimensional

observables, we have

F(z1+z2)+z3(t1, . . . , tn) =

n∧

i=1

F(z1+z2)i+z3,i(ti) =

n∧

i=1

F(z1,i+z2,i)+z3,i(ti)

=

n∧

i=1

Fz1,i+(z2,i+z3,i)(ti) =

n∧

i=1

Fz1,i+(z2+z3)i(ti)

= Fz1+(z2+z3)(t1, . . . , tn).
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Whence, (z1 + z2) + z3 = z1 + (z2 + z3).
The null observable o is evidently a neutral element of the semigroup O(M)n. �

10. Conclusion

Any measurement of n observables in quantum structures is modeled by an n-dimensional observable
which is a kind of a σ-homomorphism from the Borel σ-algebra B(Rn) into a quantum structure which
is a monotone σ-complete effect algebra or a σ-complete MV-algebra. Every observable x restricted
to n-dimensional infinite intervals of the form (−∞, t1) × · · · × (−∞, tn), t1, . . . , tn ∈ R, defines an n-
dimensional spectral resolution which is characterized as a mapping from Rn into the quantum structure
that is monotone, with non-negative increments, and is going to 0 if one variable goes to −∞ and going
to 1 if all variables go to +∞.

In our case we are concentrated to perfect and k-perfect MV-algebras and k-perfect effect algebras,
and generally to lexicographic quantum structures. Our main ask was to show when we have a one-to-one
relationship between n-dimensional observables and n-dimensional spectral resolutions. In such a case,
it was necessary to strengthen the definition of an n-dimensional spectral resolution. This model entails
a more sophisticated analysis of the problem than in the case of σ-complete MV-algebras or monotone
σ-complete effect algebras with (RDP), when k > 1 because in such a case there are appearing more
characteristic points than in the case of n = 1 or in the case n > 1 and k > 1.

Therefore, Section 4 is devoted to analysis of characteristic points namely for a two-dimensional case,
when it is shown that we have only finitely many characteristic points, see Theorem 4.4. In Theorem 4.6 it
was shown that for a general lexicographic MV-algebra a two-dimensional spectral resolution extendable
to a two-dimensional observable has to have finitely many characteristic points. On the other hand,
every two-dimensional spectral resolution satisfying (3.3)–(3.7) has at most countably many characteristic
points, see Theorem 4.8. This is the main content of Part I.

The main body of the paper is in present Part II. We started with interesting Lemma 5.2 which
shows that elements of the form F (∞, . . . ,∞, tj+1, . . . , tn) are defined in the quantum structure for all
tj+1, . . . , tn ∈ R. In Theorems 5.5–5.6, we established that in the case of perfect MV-algebras and
perfect effect algebras, there is a one-to-one correspondence between two-dimensional observables and
two-dimensional spectral resolutions. The generalization for n ≥ 1 is given in Theorems 7.4–8.4. For
k > 1 analogous results have been established for observables with the increasing property, see Theorems
8.2–8.3. Finally, we have applied our results to show that there is an n-dimensional meet joint observable
of n one-dimensional observables on a perfect MV-algebra, see Theorem 9.2, and we have showed how to
define a sum of two n-dimensional observables on perfect MV-algebras, Theorem 9.3.

The paper is illustrated by some interesting examples.
We note that still there is open a complete characterization of characteristic points for n-dimensional

spectral resolutions in k-perfect MV-algebras.
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[Dvu3] A. Dvurečenskij, Perfect effect algebras and spectral resolutions of observables, Found. Phys. 49 (2019), 607–628.
DOI: 10.1007/s10701-019-00238-2
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