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Abstract

George and Veeramani characterized complete fuzzy metric spaces (X,M, ∗)
by means of nested sequences {An} of closed sets of X which have fuzzy
diameter zero. According to the concept of p-convergence due to D. Mihet,
an appropriate concept of p-Cauchy sequence was given. In this paper we
introduce for {An} a concept of p-fuzzy diameter zero, which is according
to the concept of p-convergence. Then, we characterize by means of certain
nested sequences {An}, which have p-fuzzy diameter zero, those fuzzy metric
spaces in which p-Cauchy sequences are convergent (p-convergent), called p-
complete spaces (w-p-complete spaces). As a consequence of our results we
obtain the well-known characterization of a complete metric space (X, d) by
means of nested sequences of closed sets of (X, d).
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1. Introduction

Here we deal with the concept of fuzzy metric space (X,M, ∗) (defined
using a continuous t-norm ∗), due to George and Veeramani [1]. If M is
a fuzzy metric on X, then a topology τM , deduced from M , is defined on
X. In [2, 9] it was proved that τM is metrizable. Fuzzy metrics have been
successfully used in Engineering and recently, in particular, in perceptual
color differences and color image similarity [4, 13] and inconsistency detection
in data sets [14, 15].

In a natural way, many topics studied for metrics have been extended to
fuzzy metrics [8, 12, 19, 17, 21]. In particular, an area of high activity is
fuzzy fixed point theory [10, 6, 16, 20]. In this framework, as in the classical
case, (fuzzy) completeness plays a fundamental role. Now, in our context,
several (well-motivated) concepts of Cauchy sequence have been appeared in
[7]. Consequently, several concepts of completeness (X is complete, in a wide
sense, if Cauchy sequences are convergent) have appeared. The first concept
of Cauchy sequence, which we deal with, in our context, was introduced in
[3] although it comes from P -metric spaces [18]. So, the interest for the
completeness of X, is strongly related to fixed point theory, and in [8] a
characterization of a complete fuzzy metric space X was stated by means
of families of closed sets which have fuzzy diameter zero (Definition 3.1).
In addition, while establishing a fuzzy fixed point theorem, D. Mihet [11]
introduced the following concept weaker than convergence: A sequence {xn}
is p-convergent to x, for t0 > 0, if lim

n
M(x, xn, t0) = 1. Then, in a natural

way, an appropriate concept of p-Cauchy sequence was defined in [11, 7].
({xn} is p-Cauchy, for t0 > 0, if lim

m,n
M(xm, xn, t0) = 1).

The aim of this paper is to obtain a characterization of those fuzzy metric
spaces where every p-Cauchy sequence is convergent (p-complete spaces) or p-
convergent (w-p-complete spaces). This characterization will be obtained by
means of certain nested sequences of sets of X, in a similar way than complete
metric spaces. For it, we will introduce a concept of p-fuzzy diameter zero
for a family of sets of X (Definition 3.2), mimicking the corresponding one in
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[3], and according to the concept of p-convergence. In the sequel, we briefly
summarize the contents of the paper.

For a subset A of X, the function φ(t) = inf{M(x, y, t) : x, y ∈ A} for
t > 0, is the fuzzy diameter of A. A nested sequence {An} of sets of X
has p-fuzzy diameter zero if and only if for some t0 > 0, given r ∈]0, 1[
there exists nr ∈ N such that M(x, y, t0) > 1 − r for all x, y ∈ An, n ≥ nr
(Proposition 3.3) or equivalently lim

n
φAn(t0) = 1 (Proposition 3.7). A point

x is a p-accumulation point of a set A of X (Definition 4.1), for t0 > 0, if and
only if there exists a sequence {an} in A−{x} such that {an} is p-convergent

to x, for t0 (Proposition 4.2). The p-closure of A for t0, denoted
∼t0
A , is the

set A jointly with their p-accumulation points of A, for t0. In a principal

space X (every p-convergent sequence in X is convergent), obviously
∼t
A= A

(closure in τM of A), for all t > 0. Proposition 5.4 states an interesting result
(not used in the paper): Every p-Cauchy sequence with a p-cluster point
(Definition 4.5) is p-convergent. The relationship among completeness (in
the sense of George and Veeramani) and (w-)p-completeness, above referred
is summarized in the following diagram of implications

w-p-complete
↗

p-complete
↘

complete

It is almost obvious that X is p-complete if and only if X is principal and
w-p-complete. Then, our main result is Theorem 5.8: X is w-p-complete if
and only if for every nested sequence {An} which has p-fuzzy diameter zero

there exists t > 0 such that
⋂ ∼t
An= {x}.

The p-concepts introduced in the paper, become the ordinary concepts
(without the prefix p) in the case of the standard fuzzy metric Md deduced
from a metric d on X (Propositions 6.2 and 6.3). Then we are able to
establish, as a corollary of Theorem 5.8, the well-known characterization
of a complete metric space (X, d) by means of nested sequences of closed
sets of (X, d) (Corollary 6.4). Throughout this paper, appropriate examples
illustrate the theory.

The structure of the paper is as follows. After the preliminary section,
in Section 3 we study the concept of p-fuzzy diameter zero for a family of
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sets of X. In Section 4 we study the p-accumulation points of a set A of X.
In Section 5 we characterize the (w-)p-completeness of X and Section 6 is
devoted to the particular case of the standard fuzzy metric space (X,Md, ·).

2. Preliminaries

We begin this section recalling the concept of fuzzy metric space intro-
duced by George and Veeramani in [1].

Definition 2.1. A fuzzy metric space is an ordered triple (X,M, ∗) such that
X is a (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on
X×X×]0,∞[ satisfying the following conditions, for all x, y, z ∈ X, s, t > 0:

(GV1) M(x, y, t) > 0

(GV2) M(x, y, t) = 1 if and only if x = y

(GV3) M(x, y, t) = M(y, x, t)

(GV4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s)

(GV5) The assignment M(x, y, ) :]0,∞[→]0, 1] is a continuous function.

If (X,M, ∗) is a fuzzy metric space we say that (M, ∗), or simply M , is a
fuzzy metric on X. Also, we say that (X,M) or, simply, X is a fuzzy metric
space, if no confusion arises.

A celebrated example of fuzzy metric space is the so-called standard fuzzy
metric, which is constructed from a classical metric. It is defined as follows.

Let (X, d) be a metric space. Denote by a · b the usual product for all
a, b ∈ [0, 1], and let Md be the fuzzy set defined on X ×X × R+ by

Md(x, y, t) =
t

t+ d(x, y)

Then (Md, ·) is a fuzzy metric on X called standard fuzzy metric induced by
d [1].

George and Veeramani proved in [1] that every fuzzy metric M on X
generates a topology τM on X which has as a base the family of open sets
of the form {BM(x, ε, t) : x ∈ X, ε ∈]0, 1[, t > 0}, where BM(x, ε, t) = {y ∈
X : M(x, y, t) > 1 − ε} for all x ∈ X, ε ∈]0, 1[ and t > 0. In the case of
the standard fuzzy metric Md it is well known that the topology τ(d) on
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X, deduced from d, satisfies τ(d) = τMd
. From now on, we will suppose X

endowed with the topology τM .
Convergent sequences in X were characterized in [1] by the following

result.

Proposition 2.2. A sequence {xn} in a fuzzy metric space (X,M, ∗) con-
verges to x0 if and only if lim

n
M(x0, xn, t) = 1, for all t > 0.

On account of the previous result and based on the notion of Cauchy
sequence given in the context of probabilistic metric spaces (see [18]), George
and Veeramani introduced, in a natural way, the next definition in [1].

Definition 2.3. A sequence {xn} in a fuzzy metric space (X,M, ∗) is called
Cauchy if for each ε ∈]0, 1[ and each t > 0 there exists n0 ∈ N such that
M(xn, xm, t) > 1 − ε for all n,m ≥ n0 or equivalently lim

m,n
M(xn, xm, t) = 1

for all t > 0.
(X,M, ∗), or simply M , is called complete if every Cauchy sequence in X

is convergent (with respect to τM).

Motivated by the study of fixed point theory in fuzzy metric spaces, D.
Mihet introduced in [11] the following notion weaker than convergence.

Definition 2.4. A sequence {xn} in a fuzzy metric space (X,M, ∗) is called
p-convergent to x0, for t0 > 0, if lim

n
M(xn, x0, t0) = 1 or, equivalently, given

ε ∈]0, 1[ there exists nε such that M(x0, xn, t0) > 1− ε for all n ≥ nε.
We will say that {xn} is p-convergent to x0 without mention of t0 if

confusion is not possible. (This simplification will be used in other concepts
throughout the paper).

In addition, it was observed in [11] the following two properties of p-
convergent sequences:

(a) Subsequences of p-convergent sequences are p-convergent.

(b) If {xn} is p-convergent to x0 and to y0 then x0 = y0.

Obviously, convergent sequences are p-convergent. Nevertheless, there
exist p-convergent sequences which are not convergent as it was pointed out
in [11] (see also [5]). Indeed, a sequence {xn} is convergent if and only if it
is p-convergent, for all t0 > 0.
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With the aim of characterizing those fuzzy metric spaces in which p-
convergent sequences are convergent, V. Gregori et al. gave [5] the following
definition.

Definition 2.5. A fuzzy metric space (X,M, ∗) is said to be principal (or
simply, M is principal) if the family {B(x, r, t) : r ∈]0, 1[} is a local base at
x ∈ X, for each x ∈ X and each t > 0.

In particular, the standard fuzzy metric space (X,Md, ·) is principal. In
fact, the authors in [5] observed that many fuzzy metric spaces are principal
and also some examples of non-principal fuzzy metric spaces were given.
Moreover, they obtained the following characterization.

Proposition 2.6. A fuzzy metric space (X,M, ∗) is principal if and only if
every p-convergent sequence in X is convergent (with respect to τM).

The final part of this section is devoted to the notion of diameter of a set
in the context of fuzzy metrics.

Recall that in a metric space (X, d) the diameter of a (non-empty) set A
of X, denoted diam(A), is defined as diam(A) = sup{d(x, y) : x, y ∈ A}.

Recently, Gregori et al. provided in [8] the following adaptation to the
fuzzy context of the preceding notion.

Definition 2.7. Let (X,M, ∗) be a fuzzy metric space. The fuzzy diameter
of a (non-empty) set A of X, with respect to t, is the function φA :]0,+∞[→
[0, 1] given by φA(t) = inf{M(x, y, t) : x, y ∈ A}, for each t > 0.

Furthermore, the authors in [8] observed the following immediate prop-
erties on the function φA.

Proposition 2.8. The function φA is well-defined and, in addition, it satis-
fies the following:

(i) If s < t then φA(s) ≤ φA(t)

(ii) If A ⊂ B then φA(t) ≥ φB(t)

(iii) φA(t) = 1 for some t if and only if A is a singleton set.
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3. p-fuzzy diameter

We start this section recalling a definition introduced by George and
Veeramani in [3].

Definition 3.1. Let (X,M, ∗) be a fuzzy metric space. A collection of non-
empty sets {Ai}i∈I in X is said to have fuzzy diameter zero if for each r ∈]0, 1[
and t > 0 we can find ir,t ∈ I (depending on r and t) such that M(x, y, t) >
1− r for all x, y ∈ Ai.

According to the previous concept we introduce the following weaker def-
inition.

Definition 3.2. Let (X,M, ∗) be a fuzzy metric space. A collection of non-
empty sets {Ai}i∈I of X has p-fuzzy diameter zero if there exists t0 > 0
such that for each r ∈]0, 1[ we can find ir ∈ I (depending on r) such that
M(x, y, t0) > 1 − r for each x, y ∈ Ai. We also say that {Ai} has p-fuzzy
diameter zero for t0.

In the following, by a nested sequence of sets {An} we mean a sequence
of non-empty sets {An} of X satisfying An+1 ⊂ An for all n ∈ N. Then,
{An} has fuzzy diameter zero if and only if given r ∈]0, 1[ and t > 0, there
exists nr,t ∈ N such that M(x, y, t) > 1− r for all x, y ∈ An with n ≥ nr,t, or
equivalently, lim

n
φAn(t) = 1 for all t > 0 (see [8], Proposition 2).

We will omit the proofs of the following propositions because they are
immediate or can be obtained mimicking the coresponding ones in [8].

Proposition 3.3. Let {An} be a nested sequence of sets of a fuzzy metric
space X. Then {An} has p-fuzzy diameter zero if and only if there exists
t0 > 0 such that for each r ∈]0, 1[ there exists nr ∈ N such that M(x, y, t0) >
1− r for all x, y ∈ An, n ≥ nr.

Remark 3.4. If {An} has p-fuzzy diameter zero for t0 > 0 then, obviously,
it has p-fuzzy diameter zero for each t ≥ t0.

Proposition 3.5. Let {An} be a nested sequence of sets of a fuzzy metric
space X which has p-fuzzy diameter zero, with non-empty intersection. Then,⋂
An = {x}, for some x ∈ X.

Proposition 3.6. Let {An} be a (nested) eventually constant sequence of
sets of a fuzzy metric space X, i.e., there exists n0 ∈ N such that An = A
for all n ≥ n0. Then {An} has p-fuzzy diameter zero if and only if A is a
singleton set.

7



Roughly speaking, a nested sequence of sets {An} has p-fuzzy diameter
zero if the sequence contains small sets whose fuzzy diameter, for some t0 > 0,
tends to 1. We formalize this in the following proposition.

Proposition 3.7. Let {An} be a nested sequence of sets of a fuzzy metric
space X. Then the following conditions are equivalent:

(i) {An} has p-fuzzy diameter zero for some t0 > 0.

(ii) lim
n
φAn(t0) = 1 for some t0 > 0.

It is easy to conclude that every family of sets of X which has fuzzy
diameter zero has p-fuzzy diameter zero. The converse is false as we show in
the following example introduced by Mihet in [11].

Example 3.8. Let {xn} be a strictly increasing sequence of positive real
numbers that converges to 1, in the usual topology of R. Consider the fuzzy
metric space (X,M,∧) where X = {x1, x2, . . . , } ∪ {1}, ∧ is the minimum
t-norm and M is defined as follows:

M(x, x, t) = 1 for all x ∈ X, t > 0;

M(xn, xm, t) = M(xm, xn, t) = xn ∧ xm for all t > 0, if n 6= m;

M(xn, 1, t) = M(1, xn, t) = xn ∧ t for all t > 0.

Let An = {xn, xn+1, . . . } ∪ {1} for each n ∈ N. Clearly, {An} is a nested
sequence, and it is easy to verify that lim

n
φAn(1) = 1 and lim

n
φAn(1

2
) =

1
2
. Then, by Proposition 3.7, {An} has p-fuzzy diameter zero, and from

Proposition 2 in [8], it has not fuzzy diameter zero.

4. p-accumulation

We start this section with a natural definition.

Definition 4.1. Let A be a non-empty set of a fuzzy metric space X. A point
x ∈ X is called a p-accumulation point (briefly, p-acc point) of A if there
exists t0 > 0 such that for each r ∈]0, 1[ we have that (B(x, r, t0)−{x})∩A 6=
∅. In such a case, if necessary, we will say that x is a p-acc point for t0.
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Proposition 4.2. Let (X,M, ∗) be a fuzzy metric space and let A ⊆ X. A
point x ∈ X is a p-acc point of A, for t0, if and only if there exists a sequence
{an} in A− {x} such that lim

n
M(x, an, t0) = 1, i.e., {an} is p-convergent to

x for t0.

Proof. Suppose x is a p-acc point of A. For n = 2, 3, . . . we have that
(B(x, 1

n
, t0)−{x})∩A 6= ∅. Then, we can construct a sequence {an}, taking

an ∈ A with an 6= x, such that M(x, an, t0) > 1 − 1
n

for each n ≥ 2. Then,
lim
n
M(x, an, t0) = 1.

Conversely, suppose that {an} is a sequence inA−{x} such that lim
n
M(x, an, t0) =

1. Then, for ε ∈]0, 1[ we can find nε such that M(x, an, t0) > 1 − ε for all
n ≥ nε, i.e., an ∈ B(x, ε, t0) with an 6= x. Then (B(x, ε, t0)− {x}) ∩ A 6= ∅.

Definition 4.3. The p-closure of a set A of X for t0 > 0, denoted by
∼t0
A ,

is the set A ∪ {x ∈ X : x is a p-acc point of A for t0}. The p-closure of A,

denoted by Ã, will be Ã =
⋃
t>0

∼t
A.

Under this notation, the following proposition is immediate.

Proposition 4.4. Let (X,M, ∗) be a fuzzy metric space and let A ⊆ X.
Then,

(i) x ∈
∼t0
A if and only if for each ε ∈]0, 1[ we have that B(x, ε, t0)∩A 6= ∅.

(ii) x ∈
∼t0
A if and only if there exists a sequence {an} in A such that

lim
n
M(x, an, t0) = 1, i.e., {an} is p-convergent to x, for t0.

(iii) A ⊂
∼t
A, for all t > 0, where A denotes the closure of A in τM .

(iv) If t1 ≥ t0, then
∼t1
A⊃

∼t0
A .

(v) If X is principal then
∼t
A= A, for all t > 0, and then Ã = A.

Definition 4.5. Let {xn} be a sequence in a fuzzy metric space X. A point
x of X is called a p-cluster point of {xn} for t0 > 0 if {xn} is frequently in
B(x, r, t0) for each r ∈]0, 1[, i.e., for each r ∈]0, 1[ we have that given n ∈ N
we can find m ≥ n such that xm ∈ B(x, r, t0).
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Remark 4.6. If x is a p-cluster point of {xn} for t0, then, obviously, x is a
p-cluster point of {xn} for each t ≥ t0. Also, if {xn} is eventually constant,
i.e., there exists n0 ∈ N such that xn = x for all n ≥ n0, then x is the unique
cluster point of {xn} (and so a p-cluster point for each t > 0).

Proposition 4.7. Let {xn} be a sequence in a fuzzy metric space X. A
point x ∈ X is a p-cluster point of {xn} for t0 if and only if there exists a
subsequence {xnk

} of {xn} which is p-convergent to x for t0.

Proof. Let x ∈ X be a p-cluster point of {xn} for t0. Since {xn} is frequently
in B(x, r, t0) for each r ∈]0, 1[, then for m = 2 we can take xn2 ∈ B(x, 1

2
, t0).

By induction on m, we can construct the subsequence {xnm} of {xn} where
nm > nm−1 and xnm ∈ B(x, 1

m
, t0). Then M(x, xnm , t0) > 1 − 1

m
for each

m ≥ 2 and thus lim
n
M(x, xnm , t0) = 1.

Conversely, suppose x is not a p-cluster point of {xn} for t0 > 0. Then, we
can find r0 ∈]0, 1[ such that {xn} is not frequently in B(x, r0, t0). Therefore
{xn} is eventually in X − B(x, r0, t0). Thus, every subsequence of {xn} is
eventually in X−B(x, r0, t0), and so it cannot be p-convergent to x for t0.

Next we show a characterization of p-cluster points by means of p-closure.

Theorem 4.8. Let {xn} be a sequence in a fuzzy metric space X. Then⋂ ∼t0
An is the set of p-cluster points of {xn} for t0, where An = {xm : m ≥ n}

for every n ∈ N.

Proof. Suppose x is a p-cluster point of {xn} for t0. Then {xn} is frequently
in B(x, ε, t0) for all ε ∈]0, 1[ and thus, for each r ∈]0, 1[ we have that An ∩

B(x, r, t0) 6= ∅ for all n ∈ N. Then, x ∈
∼t0
An for all n ∈ N i.e., x ∈

⋂ ∼t0
An.

Conversely, if x is not a p-cluster point of {xn} for t0, then there exists
r0 ∈]0, 1[ such that {xn} is not frequently in B(x, r0, t0), i.e., for some n0 ∈ N
we have that xn /∈ B(x, r0, t0) for all n ≥ n0. Then B(x, r0, t0) ∩ An = ∅ for

n ≥ n0, and therefore x is not in
∼t0
An.

Example 4.9. Consider the fuzzy metric space (X,M,∧) of Example 3.8.

(a) Let {yn} be a non-eventually constant sequence in X. We claim that
{yn} is p-convergent if and only if {yn} is convergent to 1, in the usual
topology of R. Further, in that case {yn} is p-convergent to 1, only for
t ≥ 1.
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Indeed, suppose that {yn} is p-convergent to x < 1. Then M(x, yn, t) ≤
max{x, t} < 1 whenever yn 6= x and t < 1, and M(x, yn, t) ≤ x when-
ever yn 6= x and t ≥ 1. Hence {yn} is not p-convergent to x, for any
t > 0.

Now, suppose {yn} is p-convergent to 1 for some t > 0. We claim that
t ≥ 1. Indeed, in other case if t < 1, M(1, yn, t) ≤ t < 1 whenever
yn 6= 1 and hence {yn} is not p-convergent for t < 1.

Finally, {yn} is p-convergent to 1 for t ≥ 1 if and only if lim
n
M(1, yn, t) =

lim
n
yn = 1, i.e., if and only if {yn} is a convergent sequence to 1, in the

usual topology of R.

(b) Let A ⊂ X. If x is a p-acc point of A then necessarily x = 1.

Indeed, by Proposition 4.2 we can find a sequence {yn} in A − {x}
which is p-convergent to x. Now, {yn} is not eventually constant, since
in that case {yn} converges in A−{x}. So, by (a), {yn} is p-convergent
to 1 for t ≥ 1, and further {yn} is convergent to 1, in the usual topology
of R.

(c) Let A be a nonempty subset of X, and suppose 1 /∈ A. Since there are
not non-eventually p-convergent sequences for t < 1, then by (a), we

have that
∼t
A= A for each 0 < t < 1, and

∼t
A= A ∪ {1} if and only if A

contains a sequence {yn} that converges to 1, in the usual topology of
R, and t ≥ 1.

We continue approaching the following question: given a nested sequence
of sets {An} of a fuzzy metric space X with p-fuzzy diameter zero, can we

find t > 0 such that {
∼t
An} has p-fuzzy diameter zero? In the next result we

answer affirmatively to such a question. First, we prove the following useful
lemma.

Lemma 4.10. Let A be a subset of the fuzzy metric space (X,M, ∗). Then
φ∼t
A

(3t) ≥ φA(t) for all t > 0.

Proof. Fix t0 > 0. Let x, y ∈
∼t0
A . By (ii) of Proposition 4.4 we can find two

sequences {xn} and {yn} in A, which are p-convergent for t0, to x and y,
respectively. Then
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M(x, y, 3t0) ≥M(x, xn, t0) ∗M(xn, yn, t0) ∗M(yn, y, t0) ≥
≥M(x, xn, t0) ∗ φA(t0) ∗M(yn, y, t0)

and when n tends to ∞ we have that M(x, y, 3t0) ≥ φA(t0) and hence
φ∼t0
A

(3t0) ≥ φA(t0).

The announced answer to the aforesaid question is provided below.

Proposition 4.11. Let {An} be a nested sequence of sets of a fuzzy metric

space X. If {An} has p-fuzzy diameter zero for some t0 > 0, then {
∼t0
An} has

p-fuzzy diameter zero, for some t1 ≥ t0.

Proof. Suppose {An} has p-fuzzy diameter zero for t0 > 0. By the previous
lemma we have that lim

n
φ∼t0
An

(3t0) ≥ lim
n
φAn(t0) = 1 and hence, by Proposi-

tion 3.7, {
∼t0
An} has p-fuzzy diameter zero for t1 = 3t0 ≥ t0.

The converse of the preceding proposition is not true, in general. Indeed,
if for each n ∈ N we consider An = {xm : m ≥ n} in the fuzzy metric space

of Example 3.8, then by (c) in Example 4.9 we know that
∼t0
An= An for each

n ∈ N, when we consider 0 < t0 < 1. Moreover,
∼t0
An has p-fuzzy diameter

zero for t1 = 1 ≥ t0 because of limn φ∼t0
An

(1) = limn φAn(1) = 1. Nevertheless,

{An} has not p-fuzzy diameter zero for t0 since limn φAn(t0) = t0. However,
we can prove the following version related to the reciprocal of Proposition
4.11.

Proposition 4.12. Let {An} be a nested sequence of sets of the fuzzy metric

space X. If there exists t0 > 0 such that {
∼t0
An} has p-fuzzy diameter zero for

some t1 > 0, then {An} has p-fuzzy diameter zero for t1.

Proof. Suppose there exist t0 > 0 such that {
∼t0
An} has p-fuzzy diameter

zero for some t1 > 0. Since An ⊂
∼t
An (for all t > 0) then lim

n
φAn(t1) ≥

lim
n
φ∼t0
An

(t1) = 1, and hence {An} has p-fuzzy diameter zero for t1.
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On account of Propositions 4.11 and 4.12 we obtain the following two
corollaries.

Corollary 4.13. Let {An} be a nested sequence of sets of a fuzzy metric
space X. The following conditions are equivalent:

(i) {An} has p-fuzzy diameter zero.

(ii) There exists t0 > 0 such that {
∼t0
An} has p-fuzzy diameter zero.

Corollary 4.14. Let {An} be a nested sequence of sets of the fuzzy metric

space X. If there exists t0 > 0 such that {
∼t0
An} has p-fuzzy diameter zero,

then we can find t1 > 0 such that for each t > t1 we have that {
∼t
An} has

p-fuzzy diameter zero.

5. p-completeness

This section is devoted to characterize w-p-completeness by means of
nested sequences. With this aim, we start recalling the following notion
weaker than Cauchy sequence introduced by Gregori et al. in [5].

Definition 5.1. A sequence {xn} in a fuzzy metric space (X,M, ∗) is called
p-Cauchy for t0 > 0 if given ε ∈]0, 1[ we can find nε ∈ N such thatM(xm, xn, t0) >
1− ε for all m,n ≥ nε, or equivalently lim

m,n
M(xm, xn, t0) = 1.

Obviously, {xn} is Cauchy if and only if it is p-Cauchy for all t > 0.
Under this notation we have the following proposition.

Proposition 5.2. Every p-convergent sequence is p-Cauchy.

Proof. Suppose {xn} is a p-convergent sequence to x for t0. Let ε ∈]0, 1[. We
can choose δ ∈]0, 1[ such that (1−δ)∗(1−δ) > 1−ε. Then, there exists nε ∈ N
such that M(xn, xm, 2t0) ≥ M(xn, x, t0) ∗M(x, xm, t0) > (1 − δ) ∗ (1 − δ) >
1− ε, for all m,n ≥ nε, and hence {xn} is p-Cauchy for 2t0.

Observe that in the previous demonstration that it is actually showed
that a p-convergent sequence for t0 > 0 is p-Cauchy for 2t0. So, it arises the
following open question.
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Question 5.3. Is every p-convergent sequence for t0 > 0 a p-Cauchy se-
quence for t0?

Obviously, the converse of Proposition 5.2 is not true, in general. Indeed,
if we consider the fuzzy metric space (X,M,∧) of Example 3.8 and take
Y = X − {1}. Then, {xn} is a p-Cauchy sequence in Y which is not p-
convergence. Nevertheless, such a reciprocal becomes true when a p-Cauchy
sequence in addition has a cluster point, as shows the following result.

Proposition 5.4. Every p-Cauchy sequence with a p-cluster point is p-
convergent.

Proof. Let {xn} be a p-Cauchy sequence for t1 > 0 and suppose that x is a
p-cluster point of {xn} for t2 > 0.

Let ε ∈]0, 1[ and consider δ ∈]0, 1[ such that (1 − δ) ∗ (1 − δ) > 1 −
ε. Then, for such a δ ∈]0, 1[ we can find nδ ∈ N such that it satisfies
(simultaneously) M(xm, xn, t1) > 1−δ and M(x, xn, t2) > 1−δ for all n ≥ nδ.
Then M(x, xn, t1+t2) ≥M(x, xnε , t2)∗M(xnε , xn, t1) ≥ (1−δ)∗(1−δ) > 1−ε
for all n ≥ nδ and so lim

n
M(x, xn, t1+t2) = 1, and hence {xn} is p-convergent

to x (for t1 + t2 > 0).

An immediate corollary of the previous result is the following one.

Corollary 5.5. If {xn} is a p-Cauchy sequence in a fuzzy metric space X,
then it can have at most one p-cluster point.

Definition 5.6. A fuzzy metric space (X,M, ∗) is called w-p-complete (re-
spectively p-complete) if every p-Cauchy sequence is p-convergent (respec-
tively, convergent). (Compare with definition of p-complete in [5]). It is also
said that M or X is complete.

The relationship among completeness, p-completeness and w-p-completeness
is shown in the following diagram of implications.

w-p-complete
↗

p-complete
↘

complete
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In Example 19 of [5], there is a complete principal fuzzy metric space
which is not w-p-complete.

If X is principal then, obviously, every w-p-complete space is p-complete.
(Indeed, assume X is a principal w-p-complete fuzzy metric space. Let {xn}
be a p-Cauchy sequence in X. Then {xn} is p-convergent and, by Proposition
2.6, {xn} is convergent.)

From the above definitions, we obtain the following corollary.

Corollary 5.7. X is p-complete if and only if Xis principal and w-p-complete.

Proof. Suppose X is p-complete, then, obviously, X is w-p-complete. Now,
let {xn} be a p-convergent sequence in X. Then, by Proposition 5.2, {xn}
is p-Cauchy and so {xn} is convergent. Hence, by Proposition 2.6, X is
principal. The converse has just be seen in the last paragraph.

Next, we characterize w-p-complete fuzzy metric spaces by means of a
nested sequence of sets of X.

Theorem 5.8. Let (X,M, ∗) be a fuzzy metric space. Then X is w-p-
complete if and only if for every nested sequence {An} which has p-fuzzy

diameter zero there exists t > 0 such that
⋂ ∼ t

An= {x}, for some x ∈ X.

Proof. Suppose X is w-p-complete. Let {An} be a nested sequence which
has p-fuzzy diameter zero for t0 > 0. We construct a sequence {an} taking
an ∈ An for each n ∈ N. Since {An} has p-fuzzy diameter zero, given
r ∈]0, 1[ there exists nr ∈ N such that M(x, y, t0) > 1 − r for all x, y ∈ An
with n ≥ nr. In particular, M(am, an, t0) > 1− r for all m,n ≥ nr, i.e., {an}
is p-Cauchy, and therefore, by hypothesis {an} is p-convergent to (some)
x ∈ X, for (some) t ≥ t0. In addition, {An} has also p-fuzzy diameter zero
for that t > 0 attending to Remark 3.4.

Now, am ∈ An for all m ≥ n and then, by (ii) of Proposition 4.4 x ∈
∼ t

An

for all n ∈ N. Now, by Proposition 4.11, {
∼ t

An} has p-fuzzy diameter zero for

some t1 ≥ t. Therefore, by Proposition 3.5,
⋂ ∼ t

An= {x}.
Conversely, let {xn} be a p-Cauchy sequence in X for t0 > 0. Define

An = {xn, xn+1, . . . } for all n ∈ N. For a given r ∈]0, 1[ we can find nr ∈ N
such that M(xm, xn, t0) > 1 − r for all m,n ≥ nr. Then {An} is a nested
sequence that has p-fuzzy diameter zero for t0 > 0. By hypothesis, there

exists t > 0 such that
⋂ ∼ t

An= {x}. Now, by Corollary 4.14, there exists
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t1 > max{t0, t} such that {
∼ t1
An } has p-fuzzy diameter zero. Moreover, by (iv)

of Proposition 4.4, x ∈
∼ t1
An for all n ∈ N, and by Proposition 3.5,

⋂ ∼ t1
An= {x}.

Then, for ε ∈]0, 1[ we can find nε ∈ N such that M(y, z, t1) > 1 − ε for all

y, z ∈
∼ t1
An and n ≥ nε. In particular, M(x, xn, t1) > 1− ε for all n ≥ nε, i.e.,

{xn} is p-convergent to x (for t1), and hence X is w-p-complete.

Example 5.9. Consider the fuzzy metric space (X,M, ∗) of Example 3.8
and 4.9, which is not principal (see Example 8 in [5]). We will prove that X
satisfies Theorem 5.8 and thus X is w-p-complete.

Let {An} be a nested sequence of sets of X which has p-fuzzy diameter
zero. If {An} is eventually constant, i.e., there exists n0 ∈ N such that
An = A for n ≥ n0, then by Proposition 3.5, A = {x} for some x ∈ X, and

by (ii) of Proposition 4.4, for each n ≥ n0,
∼ t

An= {x} for all t > 0. Suppose
now that {An} is not eventually constant, and without loss of generality, that
it has p-fuzzy diameter zero for some t1 ≥ 1.

For each n ∈ N take yn ∈ An and consider the sequence {yn}. Take
ε ∈]0, 1[. There exists nε ∈ N such that, for each n ≥ nε we have that
M(x, y, t0) = min{x, y} > 1 − ε for all x, y ∈ An with x 6= y. Obviously,
1 − ε < yn ≤ 1 for all n ≥ nε and then {yn} converges to 1, in the usual
topology of R. Then by (a) of Example 4.9, {yn} is p-convergent to 1 for
t0 = 1. Now, ym ∈ An for all m ≥ n and then 1 is a p-acc point of An

for t0 = 1, n ∈ N. So 1 ∈
⋂ ∼ t0

An . Now, by Proposition 4.11 we have that

{
∼ t1
An } has p-fuzzy diameter zero and 1 ∈

⋂ ∼ t1
An , and by Proposition 3.5,⋂ ∼ t1

An= {1}.
Finally, by Corollary 5.7, X is not p-complete since it is not principal.

6. Only for the standard fuzzy metric

Let (X, d) be a metric space and Md the standard fuzzy metric deduced
from d. If {xn} is a sequence in X, it is well known [3] that {xn} is d-Cauchy
if and only if it is Md-Cauchy, and also {xn} is d-convergent if and only if it
is Md-convergent, since τ(d) = τMd

. Further, (X, d) is complete if and only
if (X,Md) is complete.

Proposition 6.1. Let A be a non-empty subset of (X,Md). Then φA(t) =
t

t+ diam(A)
for t > 0.
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Proof. Let t > 0. Then

φA(t) = inf{Md(x, y, t) : x, y ∈ A} = inf

{
t

t+ d(x, y)
: x, y ∈ A

}
=

=
t

t+ sup{d(x, y) : x, y ∈ A}
=

t

t+ diam(A)
.

Proposition 6.2. Let {An} be a nested sequence of sets of X. The following
conditions are equivalent:

(i) {An} has p-fuzzy diameter zero in (X,Md).

(ii) lim
n

diam(An) = 0.

(iii) {An} has fuzzy diameter zero in (X,Md).

Proof. By the last proposition, lim
n
φAn(t0) = 1 for some t0 > 0 is equivalent

to lim
n

diam(An) = 0 and it is equivalent to lim
n
φAn(t) = 1 for all t > 0.

In a similar way, the following proposition can be obtained.

Proposition 6.3. Let {xn} be a sequence in the standard fuzzy metric space
(X,Md). Then

(i) {xn} is p-Cauchy if and only if {xn} is Cauchy.

(ii) {xn} is p-convergent if and only if {xn} is convergent.

Further,

(iii) (X,Md) is w-p-complete if and only if (X,Md) is p-complete if and only
if (X,Md) is complete.

Now, as a corollary of our Theorem 5.8 we obtain the well-known charac-
terization of the completeness of a metric space by means of a nested sequence
of closed sets.

Corollary 6.4. Let (X, d) be a metric space. They are equivalent:

(i) (X, d) is complete.
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(ii) Every nested sequence of closed sets {Fn} with lim
n

diam(Fn) = 0 has a

singleton intersection.

Proof. Suppose (X, d) is complete. Then (X,Md) is complete and conse-
quently it is w-p-complete. Let {Fn} be a sequence of closed sets with
lim
n

diam(Fn) = 0. Then, by Proposition 6.2, {Fn} has p-fuzzy diameter

zero in (X,Md), and hence, by Theorem 5.8, there exists t0 > 0 such that⋂ ∼ t0
Fn = {x}. Now,

∼ t

Fn= Fn (= Fn) for all t > 0 since Md is principal and
then

⋂
Fn = {x}.

Conversely, let {An} be a nested sequence of sets of X which has p-
fuzzy diameter zero in (X,Md). Then, by Proposition 6.2, {An} has fuzzy
diameter zero, and following the arguments in the proof of by Lemma 1 of
[8], we conclude that {An} has fuzzy diameter zero in (X,Md). Now, by
Proposition 6.2, lim

n
diam(An) = 0. Then, by hypothesis,

⋂
An = {x} and

by (v) of Proposition 4.4,
⋂ ∼ t

An= {x}, for all t > 0, since Md is principal.
Hence, by Theorem 5.8 we have that (X,Md) is w-p-complete, and by (iii) of
Proposition 6.3 (X,Md) is complete. Consequently (X, d) is complete.

7. Conclusions

In this paper we have characterized p-complete fuzzy metric spaces (Defi-
nition 5.6), in the sense of George and Veeramani, by means of certain nested
sequences which have p-fuzzy diameter zero (Theorem 5.8), in a similar way
to the classical case.

In [7] other (well-motivated) concepts of Cauchy sequences, can be found,
and then it is a natural perspective for a further investigation, to find a similar
characterization for other complete fuzzy metric spaces (defined in a natural
sense), particularly with those related to fixed point theory.
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[5] V. Gregori, A. López-Crevillén, S. Morillas, A. Sapena, On convergence in
fuzzy metric spaces, Topology and its Applications 156 (2009), 3002-3006.
https://doi.org/10.1016/j.topol.2008.12.043
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