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1 Introduction

The many-to-one matching model is a commonly-used model of how workers
are assigned to firms, or how students are assigned to schools. The model
assumes that students do not care who the other students matched to the
same school are. This assumption seems problematic for two reasons. First,
it is crucial to obtaining the results in the literature: it is widely recognized
that the results break down without it. Second, while crucial, the assumption
is unlikely to hold in some important applications. Indeed, in many labor
markets (such as the academic market) the set of colleagues is an important
consideration in choosing whom to work for. In school choice, it seems that
students, and their parents, care primordially about colleagues.

In this paper, we study the matching model when students do care about who
else goes to the same school. Our approach is not (mainly) to obtain a general
structure on preferences that will guarantee existence of some solution to the
model. Instead, we propose an algorithm that will find the solutions if they
exist.

Our approach is motivated by a certain pessimism. It seems that general
conditions for nonemptiness of the core are difficult to obtain, and that the
few that are known are very strong. We choose then to be agnostic about
the emptiness of the core; we present an algorithm that works without any
structure on preferences and that finds the core when it exists.

A second motivation is that, in practical problems, where one needs to devise
a centralized matching procedure, it is often difficult to verify that agents’
preferences satisfy this or that property. We believe our algorithm will then
be useful, as it is guaranteed to work for any preferences.

Our main results hold without any structure on agents’ preferences, but we
study the behavior of our algorithm under some restrictions on preferences that
will ensure a nonempty core. Under these restrictions the algorithm is efficient.
The algorithm also identifies certain partial solutions which may be useful
when the core is empty. In a partial solution that we call “simple matchings,”
the agents who are matched are matched in a stable way, and blocks can only
involve agents who are single. Simple matchings were introduced by Marilda
Sotomayor in a sequence of recent papers (Sotomayor, 2005a,b,c).

In the rest of the Introduction, we relate this paper to the existing literature.

Nearly all publications on the many-to-one model rule out that a student may
care about who her colleagues are. This is true of the seminal papers (e.g. Gale
and Shapley (1962), Kelso and Crawford (1982), Roth (1982), Blair (1988))
as well as of the exposition of the theory in Roth and Sotomayor (1990).
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The only exceptions are the papers by Dutta and Massó (1997) and Revilla
(2004); they present some strong conditions under which the core will be
nonempty. Dutta and Massó essentially study lexicographic preferences: the
students either first care about the college, then about their colleagues, in
which case the core is nonempty; or they care first about their colleagues and
then about the college, in which case they need additional assumptions for the
core to be nonempty. Revilla generalizes Dutta and Massó’s results for couples
(see below) to more general preferences over colleagues. He proves that the
core is nonempty under certain hypotheses that include a weakened version of
lexicographic preferences.

Our paper is also related to the literature on matching with couples (Roth
(1984), (Roth and Sotomayor, 1990, page 140), Klaus and Klijn (2005)), and
Dutta and Massó (1997). This literature is mainly motivated by the role of
married couples in medical-interns matching. In Roth (1984) and Klaus and
Klijn (2005), each member in a couple cares about the school choice of his/her
partner. But the model is different from ours because couples make a joint
decision, and care about the school choice of a partner, even among colleges
that they do not both attend. Dutta and Massó’s (1997) model of couples is
in the spirit of our model of preferences regarding colleagues. In Section 9 we
present an extension of our model to the model with couples in Dutta and
Massó; our algorithm can thus be used to find all the core matchings in that
model.

For our model of matching with couples, we give a solution to Open Problem
4 in Roth and Sotomayor (1990): when does the pairwise stable set coincide
with the core.

Ours is essentially a model of hedonic coalition formation (see e.g. Greenberg
(1994), Banerjee et al. (2001) or Bogomolnaia and Jackson (2002)). We are able
to adapt some preference restrictions from the coalition-formation literature
and use them in our approach. We also note that the method presented here
should be easily applicable to the study of stability in more general coalition-
formation models.

Finally, we should mention the literature on finding all core matchings- see
Gusfield and Irving (1989) for an exposition. The recent paper by Mart́ınez
et al. (2004) presents an algorithm for the many-to-many case. These papers
assume an absence of preferences over colleagues.

We present our model in Section 2 and give a statement of the problem and
outline of our solution. We translate finding the core into a fixed-point prob-
lem in Sections 3 and 4. In Section 5 we present the algorithm and discuss
partial solutions in Section 7. In Section 8 we restrict preferences to obtain
the existence of core matchings. In Section 9 we develop a model with couples.
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2 Statement of the Problem

We state the problem by first specifying a model of matchings with prefer-
ences over colleagues and defining the notion of the core. We then outline
the difficulties created by preferences over colleagues, and sketch our main
contributions.

2.1 The Model

There are two disjoint sets of agents, the set of n colleges, C, and the set of
m students, S. Each college c has a strict, transitive, and complete preference
P (c) over 2S. Each student s has a strict, transitive, and complete preference
P (s) over C × Ss ∪ {(∅, ∅)}; where Ss is the set of subsets of S which contain
s. A preference profile is a collection of preference relations for all colleges and
students- that is, an (n + m)-tuple P = (P (c1), ..., P (cn), P (s1), ..., P (sm)). A
college admissions problem is a 3-tuple 〈C, S, P 〉.

A matching µ is a mapping defined on the set C ∪ S which satisfies for all
c ∈ C and s ∈ S:

(1) µ(s) ∈ C × Ss ∪ {(∅, ∅)}.
(2) µ(c) ∈ 2S.
(3) If s ∈ µ(c) then µ(s) = (c, µ(c)).
(4) If µ(s) = (c, S ′) for some college c then µ(c) = S ′.

Here, µ(s) = (∅, ∅) means that s is not matched to any college. Similarly, if
µ(c) = ∅ then there are no students matched to college c.

Notation. Given a preference relation of a college c, P (c), and a group of
students S ′, let Ch(S ′, P (c)) denote the choice set of S ′ according to P (c);
that is, for every A ⊆ S ′ we have Ch(S ′, P (c))R(c)A. Since P (c) is strict,
Ch(S ′, P (c)) is well-defined.

A matching µ is individually rational if µ(s)R(s)(∅, ∅) for all students s and
µ(c) = Ch(µ(c), P (c)) for all colleges c.

A triple 〈C ′, S ′, µ′〉, where C ′ ⊆ C, S ′ ⊆ S and µ′ is a matching, is a block of
µ if the following hold:

(1) C ′ ∪ S ′ 6= ∅; at least one agent is involved.
(2) For all c ∈ C ′ and s ∈ S ′, µ′(c) ∈ 2S′

and µ′(s) ∈ C ′ × S ′

s ∪ {(∅, ∅)}; the
agents in C ′ ∪ S ′ can implement µ′ without outside help.

4



(3) For all f ∈ C ′∪S ′, µ′(f)R(f)µ(f); all agents in C ′∪S ′ are weakly better
of.

(4) There exists f ∈ C ′ ∪ S ′ such that µ′(f)P (f)µ(f); at least one agent is
strictly better off.

The core is the set of matchings for which there is no block, denoted by CW (P ).

Note that this definition of the core is usually called the weak core (Roth and
Sotomayor, 1990). In the appendix we discuss the relation of the core to other
solution concepts, such as the pairwise-stable set.

2.2 Problem created by preferences over colleagues.

It is well-known among specialists in matching that preferences over colleagues
creates problems for core existence. We illustrate the problems by an exam-
ple. The example has an empty core, and nothing obviously pathological—for
instance, colleges’ preferences satisfy “substitutability,” the structure on pref-
erences that is known to guarantee a non-empty core in standard many-to-one
matching problems (Kelso and Crawford (1982) first proved this in a matching
model with wages). See Section 3.3 for a more substantive explanation of the
source of problems.

Example 2.1 Consider two colleges c1, c2 and three students s1, s2, s3 with
the following preferences:

P (c1) : {s1, s2}, {s1, s3}, {s1}, {s2}, {s3}

P (c2) : {s2, s3}, {s3}, {s2}

P (s1) : (c1, {s1, s2}), (c1, {s1, s3}), (c1, {s1})

P (s2) : (c2, {s2, s3}), (c1, {s1, s2}), (c1, {s2}), (c2, {s2})

P (s3) : (c1, {s1, s3}), (c2, {s2, s3}), (c2, {s3}).

This notation means that c1 prefers {s1, s2} to {s1, s3}, {s1, s3} to {s1}, and
so on. The potential groups of students not listed are worse for c1 than being
single.

It is easy to check that, in an individually-rational matching, every student is
matched to a college. There are three such matchings:

µ1:
c1 c2

s1s2 s3

µ2:
c1 c2

s1s3 s2

µ3:
c1 c2

s1 s2s3
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Now, µ1 is blocked by 〈{c2} , {s2, s3} , µ3〉, µ2 is blocked by 〈{c1} , {s1, s2} , µ1〉,
and µ3 is blocked by 〈{c1} , {s1, s3} , µ2〉.

2.3 Outline of our solution.

We show that the core matchings coincide with the fixed points of a certain
function T . Motivated by the discussion above, we do not then impose a
structure on preferences that will let us prove the existence of fixed points.
Instead, we present an algorithm that finds fixed points of T 2, the composition
of T with itself. The fixed points of T , and thus the core matchings, are also
fixed points of T 2. Our algorithm may not find all the fixed points of T 2, but
it will find all the fixed points of T—or report that the core is empty if that
is the case. Hence we have an algorithm that finds all the matchings in the
core, when it is nonempty.

When the core is empty, our algorithm identifies matchings where a subset
of the agents are matched in a stable way—their assignments will not be
blocked. Other agents are left single in these matchings, and they may block
their assignments.

We present some structure on preferences that will guarantee that the core is
nonempty, and that our algorithm will find the core quickly.

3 The Core as a set of fixed points

We present a construction that allows us to characterize the core as the fixed
points of a certain function. This type of construction has been used in the
matching literature before, see Adachi (2000), Echenique and Oviedo (2004),
Fleiner (2003), Echenique and Oviedo (2006), Hatfield and Milgrom (2005),
and Ostrovsky (2005).

A prematching is a mapping ν, defined on the set C ∪ S, which satisfies, for
all c ∈ C and s ∈ S,

(1) ν(s) ∈ C × Ss ∪ {(∅, ∅)}.
(2) ν(c) ∈ 2S.

Let Φ denote the set of prematchings ν.

Remark 1 A prematching ν is a matching if and only if the following hold:
(a) If s ∈ ν(c) then ν(s) = (c, ν(c)). (b) If ν(s) = (c, S ′) then ν(c) = S ′. Note
that (a) and (b) correspond to (3) and (4) in the definition of matching.
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We now proceed to define a function T : Φ → Φ. Let ν be a prematching. We
need the following constructions:

U(c, ν) = {S ′ ⊆ S : ∀s ∈ S ′, (c, S ′)R(s)ν(s)}

V (s, ν) = {(c, S ′) ∈ C × Ss : ∀s′ ∈ S ′\{s}, (c, S ′)R(s′)ν(s′)

and S ′R(c)ν(c)} ∪ {(∅, ∅)}

That is, U(c, ν) is the collection of sets of students S ′ so that (c, S ′) is better
than their matches in ν, for each one of them. V (s, ν) is the set of (c, S ′) so
that, for each student in S ′\{s}, and for the college c, the matching in which
c is matched to S ′ is better than their matches in ν.

Now, define T : Φ → Φ by (Tν)(f) = maxP (f)U(f, ν) if f ∈ C and (Tν)(f) =
maxP (f)V (f, ν) if f ∈ S. The function T takes each college to its optimal set
of students, out of those who are willing to attend that college as a group, and
each student to its optimal college-group of students pair, out of those willing
to accept him/her.

Let E(T ) = {ν ∈ Φ : ν = Tν}.

The main result of this section is

Theorem 3.1 E(T ) = CW (P ).

The proof of Theorem 3.1 is in Section 3.2.

3.1 An intermediate notion of stability.

We first introduce a notion of stability that is instrumental in obtaining our
results. A pair (B, c) ∈ 2S × C blocks* a matching µ if B ∩ µ(c) = ∅ and
there exists A ⊆ µ(c) so that for every s′ ∈ A ∪ B, (c, A ∪ B)P (s′)µ(s′) and
A ∪ BP (c)µ(c). A matching is stable* if it is individually rational and there
does not exist a student-group-college pair that blocks* µ. Denote the set of
stable* matchings by S∗(P ).

Lemma 3.2 S∗(P ) = CW (P ).

The proof of Lemma 3.2 is in the appendix.

We isolate part of the proof of Theorem 3.1 as Lemma 3.3, as it will be useful
in other results.

Lemma 3.3 Let µ be a matching and ν = Tµ.
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(1) If ν(c) 6= µ(c) then (c, ν(c)) blocks* µ. If ν(s) 6= µ(s) then ν(s) blocks* µ.
(2) If ν(c) = µ(c) then there is no block* (c,D) of µ, for any D ⊆ S. If

ν(s) = µ(s) then there is no block* (c′, D) of µ, for any c′ ∈ C and
D ⊆ S with D 3 s.

Proof We first prove (1). Let ν(c) 6= µ(c). That µ is a matching implies
µ(c) ∈ U(c, µ); so ν(c)P (c)µ(c). That ν(c) ∈ U(c, µ) implies for every s ∈ ν(c),
(c, ν(c))R(s)µ(s). But µ is a matching, so ν(c) 6= µ(c) implies that for all
s ∈ ν(c), (c, ν(c)) 6= µ(s). Hence, for all s ∈ ν(c), (c, ν(c))P (s)µ(s)).

The proof that, if ν(s) 6= µ(s), then ν(s) blocks* µ, is analogous.

We now prove (2). Let c ∈ C with ν(c) = µ(c). Let D ⊆ S be such that
for every s ∈ D, (c,D)R(s)µ(s), then D ∈ U(c, µ). But µ(c) = ν(c) im-
plies that µ(c)R(c)D. So (c,D) is not a block* of µ. Now let s ∈ S with
ν(s) = µ(s). If (c′, D), with s ∈ D is such that DR(c′)µ(c′) and for all
s′ ∈ D\ {s}, (c,D)R(s′)µ(s′), then (c′, D) ∈ V (s, µ). But µ(s) = ν(s) then
gives µ(s)R(s)(c′, D), so (c′, D) is not a block* of µ. 2

3.2 Proof of Theorem 3.1.

By Lemma 3.2, it is enough to prove that S∗(P ) = E(T ).

We need to show that for every ν ∈ E(T ), ν is a matching and that it is stable*
and also if µ is a stable* matching then µ is a fixed point of T .

Now suppose that ν ∈ E(T ). We first show that it is a matching.

Since we already know that ν is a prematching we only need to show the
following: (a) If s ∈ ν(c) then ν(s) = (c, ν(c)). (b) If ν(s) = (c, S ′) then
ν(c) = S ′ by Remark 1.

(a) s ∈ ν(c) = (Tν)(c) = maxP (c){U(c, ν)}. Therefore, (c, ν(c))R(ŝ)ν(ŝ) for
all ŝ ∈ ν(c) and in particular

(c, ν(c))R(s)ν(s). (1)

Thus, we have (c, ν(c)) ∈ V (s, ν). But now ν(s) = (Tν)(s) = maxP (s){V (s, ν)}.
Therefore,

ν(s)R(s)(c, ν(c)). (2)

Since P (s) is strict (1) and (2) imply that ν(s) = (c, ν(c)).

(b) ν(s) = (c, S ′). Now, ν(s) = (Tν)(s) = maxP (s){V (s, ν)}. Thus, ν(s) ∈
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V (s, ν). Therefore, we have

S ′R(c)ν(c) (3)

and also that for all s′ ∈ S ′ − {s}, (c, S ′)R(s′)ν(s′). This, along with ν(s) =
(c, S ′) implies that S ′ ∈ U(c, ν). But ν(c) = (Tν)(c) = maxP (c){U(c, ν)}. So
we get

ν(c)R(c)S ′ (4)

Since P (c) is strict (3) and (4) imply that ν(c) = S ′.

Next, we show that ν is a stable* matching. Assume that (B, c) blocks* ν.
Then, there exists A ∈ ν(c) such that (c, A∪B)P (s)ν(s) for all s ∈ A∪B and
A∪BP (c)ν(c). This implies that A∪B ∈ U(c, ν). Therefore, ν(c) = (Tν)(c) =
maxP (c){U(c, ν)} gives us that ν(c)R(c)A ∪B. This is a contradiction to A ∪
BP (c)ν(c).

To finish the proof, we need to show that for every µ ∈ S∗(P ) we have µ = Tµ.
This is a direct consequence of Lemma 3.3. Let ν = Tµ. Since µ is stable*,
there are no blocking coalitions, which implies that ν(c) = µ(c) for every
college c and ν(s) = µ(s) for every student s. Thus, µ = ν = Tµ. 2

3.3 Discussion

The matching literature that uses constructions like the T function usually
proceeds by ordering prematchings and then showing that T is monotone
increasing. By application of Tarski’s fixed-point theorem (Theorem 4.4), then,
one proves that E(T ), and thus the core, is nonempty. It may be interesting
to see where that approach would fail if applied to our model.

The order on prematchings always involves saying that a prematching ν ′ is
larger than another prematching ν if all agents on one side of the market prefer
ν ′ to ν, while the other side of the market prefers ν (see Echenique and Oviedo
(2006) for a discussion of the two main orders used). Now, if one compares
Tν with Tν ′ one should get that Tν ′ is larger than Tν. In the present model,
that is a problem because students are choosing their best match out of sets
(V (s, ν) and V (s, ν ′)) that include agents from both sides of the market. So the
set out of which students choose does not depend in a systematic way on the
prematching involved. Without preferences over colleagues, since colleges are
better off in ν ′, the set from which students choose shrinks, and thus students
prefer Tν to Tν ′.

9



4 The fixed points of T 2.

We have seen that the core can be empty; thus T may not have any fixed
points. However, we can prove that T 2, i.e. the composition of T with itself,
must have fixed points. These may not be matchings, let alone core matchings.
But if the core is nonempty, the core matchings must be fixed points of T 2

(and the fixed points of T 2 that are matchings must be a “partial” solution,
see Section 7).

The importance of T 2 becomes clear in Section 5, where we present an algo-
rithm for finding fixed points of T 2; an algorithm that will find all the fixed
points of T .

Consider the following partial order on prematchings.

Definition 4.1 Let ν, ν ′ ∈ Φ; ν � ν ′ if and only if ν(f)R(f)ν ′(f) for all
agents f ∈ C ∪ S and ν(f)P (f)ν ′(f) for some agent f .

Since the preferences are strict, the weak partial order � associated with �
can be defined as follows: ν � ν ′ if and only if ν = ν ′ or ν � ν ′.

We now define what it means for T to be monotone with respect to �. Note
that the same definition can be used for any partial order on prematchings
instead of �.

Definition 4.2 T is monotone increasing with respect to � if ν � ν ′ implies
Tν � Tν ′; T is monotone decreasing if ν � ν ′ implies Tν ′ � Tν.

Lemma 4.3 T is monotone decreasing with respect to �.

Proof Let ν � ν ′. We are going to show that Tν ′ � Tν, that is Tν ′(f) �
Tν(f) for all agents f . We split this into two cases according to whether f is
a student or a college:

Let f ∈ C. Let S ′ ∈ U(f, ν). Then, for all s ∈ S ′, (f, S ′)R(s)ν(s). Since
ν � ν ′, we have ν(s)R(s)ν ′(s). Now, by transitivity we get (f, S ′)R(s)ν ′(s) for
all s ∈ S ′, which implies that S ′ ∈ U(f, ν ′). Thus, U(f, ν ′) ⊇ U(f, ν), which
in turn implies

Tν ′(f) = maxP (f)U(f, ν ′)R(f)maxP (f)U(f, ν) = Tν(f).

Hence, Tν ′(f)R(f)Tν(f). The proof of Tν ′(f)R(f)Tν(f) when f ∈ S is anal-
ogous. 2
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Let Φ′ be the set of individually-rational prematchings. That is,

Φ′ = {ν ∈ Φ : ∀s ∈ S, ν(s)R(s)(∅, ∅) and ∀c ∈ C, ν(c)R(c)∅} .

When endowed with the partial order �, Φ′ is a lattice because it is a product
set endowed with a product order (Echenique and Oviedo, 2004).

Tarski’s fixed-point theorem is crucial to our results. We include a statement
to keep our paper self-contained. See, for example, Topkis (1998) for a proof.

Theorem 4.4 (Tarski’s Fixed-point Theorem) Let X, endowed with a
partial order ≥, be a lattice. If f : X → X is monotone increasing, then the
set of fixed points of f , endowed with ≥, is a non-empty lattice.

Note that for all ν ∈ Φ, Tν ∈ Φ′, so we can regard T as mapping Φ′ into Φ′.

Let E(T 2) = {ν ∈ Φ : ν = T 2ν}.

Theorem 4.5 E(T 2) is a non-empty lattice.

Proof Consider the partial order �. We have shown in Lemma 4.3 that T is
monotone decreasing with respect to this partial order. Thus, if ν � ν ′ then
Tν ′ � Tν. Now, apply the same lemma to Tν ′ and Tν to get T 2ν � T 2ν ′.
We have that T 2 on Φ′ is monotone increasing, and also that (Φ′,�) is a
lattice. Tarski’s fixed point theorem (Theorem 4.4) implies that (E(T 2),�) is
a non-empty lattice. 2

Proposition 4.6 No two fixed points of T are ordered by �.

Proof Assume the contrary: There exist µ, µ′ ∈ E(T ), such that µ � µ′ and
µ 6= µ′. Now, by applying Lemma 4.3 to this inequality we get Tµ′ � Tµ;
that is, µ′ � µ. Since � is a partial order, we must have µ = µ′, which is a
contradiction. 2

Proposition 4.7 There exist two prematchings ν, ν ∈ E(T 2) such that for all
ν ∈ E(T ) ν � ν � ν. Moreover, if one of these two prematchings is also a
fixed point of T , then T has a unique fixed point.

Proof The existence of ν and ν follows from Theorem 4.5, as a finite lattice
must have a smallest and a largest element.

Now assume that ν is also a fixed point of T . If there was another fixed point
of T , it would also be a fixed point of T 2. But by the first part we know that
ν is better than this fixed point, which contradicts Proposition 4.6. The case
where ν is a fixed point of T is similar. 2
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Proposition 4.8 The iterations of T 2 starting at the largest prematching in
Φ′ will reach ν in a finite number of steps. Similarly, if we start from the
smallest prematching in Φ′, we will reach ν.

Proof Let ν0 be the largest prematching in Φ′. Define νn = T 2νn−1 induc-
tively for n ≥ 1.

First we prove by induction that νn � ν. Base assumption holds since ν0 is the
largest prematching. Now, suppose νn−1 � ν. As we have shown in the proof of
theorem 4.5, T 2 preserves the order in �. Therefore, νn = T 2νn−1 � T 2ν = ν
which completes the induction.

Second, for some finite n, νn−1 = νn. Assume this does not hold for any n.
Then, {νn} is an infinite sequence of distinct prematchings in Φ′. Since there
exists a finite number of agents, number of prematchings is also finite. This
gives a contradiction.

We’ve shown that νn−1 = νn holds for some n, that means νn is a fixed point
of T 2. Now, by the first part of the proof νn � ν. Since ν is the largest fixed
point of T 2, we get that νn = ν.

The proof of the second statement in the proposition is exactly the same. 2

5 An Algorithm

We describe an algorithm and prove that it finds all the core matchings.

5.1 Description.

Let {1, 2, . . . , n + m} be an enumeration of the elements of C ∪ S. Given a
college-admissions problem 〈C, S, P 〉, let 〈F1, F2, . . . , Fm+n〉 denote the prob-
lem with the same sets of agents, in which each agent’s preference list is re-
stricted to those with Ff being the top choice for agent f . So, in 〈F1, F2, . . . , Fm+n〉,
agent f finds unacceptable the partners that were originally better than Ff .

For every agent f ∈ C ∪ S and for every prematching ν, let i(f, ν) denote the
best choice of f that is worse than ν(f).

Algorithm 5.1 Find the smallest ν and largest ν fixed points by applying
T 2 repeatedly to the largest and smallest prematchings in Φ′, as suggested in
Proposition 4.8, until it finds a fixed point. If Tν = ν then let Ê = {ν} and
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E(T ) : E(T 2) :

ν

ν

Fig. 1. An illustration of the algorithm

the algorithm is finished. Otherwise proceed as follows: let Ê = ∅. The possible
states of the algorithm are the sets of individually-rational prematchings, and
the initial state is Q = {ν}. While Q 6= ∅ do the following subroutine.

SUBROUTINE: Set Q’ = ∅. For all ν ∈ Q and for all f such that i(f, ν)R(f)ν(f)
do steps 1-2 to get a new state Q’. Then set Q = Q’.

STEP 1. Find the largest fixed point of T 2 for the problem
〈ν(1), . . . , ν(f − 1), i(f, ν), ν(f + 1) . . . , ν(m + n)〉, call it νf .

STEP 2. If νf = Tνf then add νf to Ê; otherwise if νf � ν then add νf to
Q’.

The algorithm is easy to explain using a picture; see Figure 1. The set of
prematchings is a product set, and � is a product order. We can represent
it as the grid on Figure 1. Note how the core matchings, the matchings in
E(T ), are unordered, and the matchings in E(T 2) form a lattice (the smallest
element is hidden by the shaded area).

First iterate T 2 from the largest prematching—represented by the upper right
corner. By monotonicity of T 2 one obtains a monotone decreasing sequence,
which has to stop at a fixed point ν. Again by monotonicity of T 2, ν must
be the largest fixed point of T 2. Now the algorithm iterates T 2 in a restricted
problem, the problem obtained by setting i(f, v) as the best partner for one
agent, and ν(f) for everyone else. This restriction is represented by thick lines
in Figure 1, to the left and down of ν. By iterating T 2 we find the largest fixed
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point in the restricted problem.

The procedure of restricting and finding is repeated. Note that when a core
matching is found, we know by Proposition 4.6 that there cannot be any more
core matchings down and to the left. This is illustrated by a shaded area in
Figure 1.

Each restriction changes how T operates, not just the domain of T . The succes-
sive restrictions can make us lose fixed points of T 2, but, it turns out, not of T
(Proposition 5.2). For example, often ν = Tν so that once ν is eliminated, ν is
no longer a fixed point of T 2. The algorithm is based on Echenique’s (2003) al-
gorithm for non-cooperative games. Echenique’s algorithm searches and finds
all the fixed points of a monotone function. On the other hand, our algorithm
searches for the fixed points of T 2 but will in general miss some; it is only
guaranteed to find all the fixed points of T .

5.2 Results.

The algorithm proceeds by restricting agents’ preferences. Our first result is
that one does not lose fixed points with these restrictions.

Proposition 5.2 If µ ∈ E(T ) and FfR(f)µ(f) for all f ∈ C ∪ S, then µ is
also a fixed point of T for the problem 〈F1, F2, . . . , Fm+n〉.

Proof Let T̃ , Ũ and Ṽ be the corresponding T , U , and V for the restricted
problem 〈F1, F2, . . . , Fm+n〉. Now, it is clear that U(c, µ) ⊇ Ũ(c, µ) for all c ∈ C
and similarly V (s, µ) ⊇ Ṽ (s, µ) for all s ∈ S. Therefore, (Tµ)(c)R(c)(T̃ µ)(c)
for all c ∈ C and (Tµ)(s)R(s)(T̃ µ)(s) for all s ∈ S.

Since µ is a fixed point of T we have (Tµ)(c) = µ(c) and (Tµ)(s) = µ(s).

Now, that µ is a matching and that FfR(f)µ(f) for all f ∈ C∪S imply µ(c) ∈
Ũ(c, µ) and µ(s) ∈ Ũ(s, µ). Therefore, (T̃ µ)(c)R(c)µ(c) and (T̃ µ)(s)R(s)µ(s).

To complete the proof we need to put together the inequalities we got: µ(c) =
(Tµ)(c)R(c)(T̃ µ)(c)R(c)µ(c) and similarly µ(s) = (Tµ)(s)R(s) (T̃ µ)(s)R(s)µ(s).
Since R(c) and R(s) are linear orders we get that (T̃ µ)(s) = µ(s) and (T̃ µ)(c) =
µ(c). 2

Theorem 5.3 Ê = E(T ), that is, the set Ê produced by the algorithm above
coincides with the fixed points of T which are the core matchings.

14



Proof We first show that the algorithm stops after a finite number of steps
when Q = ∅. Then we establish Ê ⊆ E(T ) and Ê ⊇ E(T ) to complete the
proof.

Since Φ′ is a product set, we can identify Φ′ with a grid. Let the distance
between each consecutive point in the grid be one unit, and use the resulting
Euclidean distance between prematchings. Let d(Q) be the maximum of dis-
tances between each prematching in Q and ν (if Q is empty let d(Q) = 0). Let
Q and Q’ be successive states in the algorithm. It is clear from the definition
that d(Q) > d(Q’). Note that since Φ′ is a finite set d takes only a finite
number of values. This shows that, after a finite number of steps, we must get
Q = ∅ which means that the algorithm stops after a finite number of steps.

Now, let us show Ê ⊆ E(T ). Let µ ∈ Ê . This means that µ = Tµ by Step 2.
Therefore, µ ∈ E(T ) which proves Ê ⊆ E(T ).

To complete the proof we have to show that Ê ⊇ E(T ). Let µ ∈ E(T ). We prove
by induction that at every stage Q of the algorithm, either µ ∈ Ê or there
exists ν ∈ Q such that ν � µ. The beginning state is Q = {ν} and Ê = ∅. By
the first statement in Proposition 4.7 we get ν � µ thus the initial condition
is satisfied. Now, let Q be an intermediate state, from applying the subroutine
on a previous state Q0. Let Ê and Ê0 be the associated sets of fixed points. If
µ ∈ Ê0 then µ ∈ Ê since Ê ⊇ Ê0. If not then, by the inductive hypothesis, there
exists ν ∈ Q0 so that ν � µ. Now, if ν = µ then µ should have already been
in Ê0 since at the previous stage in Step 2 it checks for this. Therefore ν � µ.
Which implies, by Proposition 5.2, that there exists f so that µ is a fixed point
of the restricted problem 〈ν(1), . . . , ν(f − 1), i(f, ν), ν(f + 1) . . . , ν(m + n)〉.
Now, let ν ′ be the greatest fixed point of T 2 for the restricted problem. By
Proposition 4.6, either ν ′ = µ or ν ′ is not a fixed point of T . If ν ′ = µ then
µ ∈ Ê , otherwise ν ′ ∈ Q and ν ′ � µ completing the induction. Now, we have
shown in the previous paragraph that the algorithm ends when Q = ∅. Hence,
the inductive hypothesis implies that µ ∈ Ê . 2

5.3 Algorithm performance.

We now discuss the performance of the algorithm. In Section 8.1 we prove,
under a certain structure on agents’ preferences, a bound on the number of
steps the algorithm takes to find the core.

Without assumptions on preferences one cannot guarantee that the algorithm
does not visit all possible matchings, and thus performs very slowly. But such
“worst case” performance seems of little use in evaluating the algorithm. Ide-
ally, we could calculate the average performance of the algorithm in some
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class of relevant problems. Unfortunately we do not have such results. Indeed
average-time results are difficult to find in computer science; for example there
are no results on average time for the Gale-Shapley algorithm in many-to-one
matchings, or for the numerous algorithms for finding Nash equilibria (see the
surveys by McKelvey and McLennan (1996) and von Stengel (2002)). There
are also very few results on worst-case performance for these algorithms. 2

Beyond our result in Section 8.1, we think the algorithm is likely to be fast in
most applications. The reason can be inferred from Figure 1. Each iteration of
the algorithm from the upper-right corner reduces the size of subsequent prob-
lems in which T must iterate. So if T -iterations take large steps in the picture,
the algorithm will be fast because the steps eliminate cases the algorithm
would have to consider. In a different context, Echenique (2003) simulates
non-cooperative games where a similar idea is used to find all Nash equilibria.
The effect of “large steps” is also present in his application to non-cooperative
games, and it makes the algorithm run very fast in his simulations. For ex-
ample it finds all equilibria of games where each player has 60,000 strategies,
and there are 500 equilibria, in less than a second.

The only alternative to our algorithm is to perform an exhaustive search of
all possible matchings, and test whether each of them is in the core. We shall
argue that this alternative is, in practice, not feasible because the number
of matchings one needs to test quickly becomes too large. We calculate the
number of matchings in a problem with n colleges and m students: Pick k of
the n colleges to be non-single; this can be done in

(

n

k

)

ways. Partition the
k colleges into k nonempty sets. Each partition then generates k! different
matchings, as there are k! ways of assigning the elements of the partition to
the k colleges. The number of partitions of m elements in k sets is expressed
by the Stirling number of the second kind (see e.g. Comtet (1974)). Thus there
are

n
∑

k=1

(

n

k

)

Sm
k k!

different matchings. For example, one can assign 1200 students to 9 colleges
in 1.233 × 101145 different ways.

2 Some results on the worst-case performance of the Gale-Shapley algorithm are
in Segal (2003). His results, as well as the remarks above, are relative to input
size, which tends to be very large (Echenique, 2006). In actual implementations,
one would have to avoid this problem, for example by bounding the number of
acceptable partners. In actual implementations of the Gale-Shapley algorithm, this
is accomplished by setting a maximum length on submitted rank-order lists (e.g. the
National Resident Matching Program or the matching of elementary-school children
to schools in the New York public school system).
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6 Examples

We now illustrate how the algorithm operates on two examples. The first
example has two core matchings and the second has no core matchings. We
note that an actual implementation of the algorithm would operate differently
from the examples, optimizing in several points. For example, if the algorithm
reaches a ν for which Tν has already been calculated, it would stop iterating.
And it would avoid computing the sets V (s, ν) and U(c, ν), as it is enough
to run down an agents’ preference ordering, picking the best available partner
at ν.

Example 6.1 Let S = {s1, s2} and C = {c1, c2}. Suppose that agents’ pref-
erences are:

P (c1) : S

P (c2) : S

P (s1) : (c1, S), (c2, S)

P (s2) : (c2, S), (c1, S).

First we need to calculate ν and ν. Since T maps the smallest prematching to
the largest prematching, we can calculate both ν and ν in one iteration starting
from the smallest prematching.

s1 s2 c1 c2

ν0 (∅, ∅) (∅, ∅) ∅ ∅

V (s, ν0)/U(c, ν0) (c1, S), (c2, S) (c1, S), (c2, S) S S

ν1 = Tν0 (c1, S) (c2, S) S S

V (s, ν1)/U(c, ν1) (c2, S) (c1, S) ∅ ∅

ν2 = Tν1 (c2, S) (c1, S) ∅ ∅

V (s, ν2)/U(c, ν2) (c1, S), (c2, S) (c1, S), (c2, S) S S

ν3 = Tν2 (c1, S) (c2, S) S S

V (s, ν3)/U(c, ν3) (c2, S) (c1, S) ∅ ∅

ν4 = T 2ν2 (c2, S) (c1, S) ∅ ∅

Hence, ν = v3 and ν = v4. As we can see, ν is not a fixed point of T . Therefore,
Ê = ∅ and Q = {ν}.

Secondly, we have to run the subroutine for each agent and for each prematch-
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ing in Q. We have to find the largest fixed points of problems 〈(c2, S), (c2, S), S, S〉,
〈(c1, S), (c1, S), S, S〉, 〈(c1, S), (c2, S), ∅, S〉 and 〈(c1, S), (c2, S), S, ∅〉.

The iteration for problem 〈(c2, S), (c2, S), S, S〉:

s1 s2 c1 c2

ν0 (c2, S) (c2, S) S S

V (s, ν0)/U(c, ν0) (c2, S) (c2, S) ∅ S

ν1 = Tν0 (c2, S) (c2, S) ∅ S

V (s, ν1)/U(c, ν1) (c2, S) (c2, S) ∅ S

ν2 = Tν1 (c2, S) (c2, S) ∅ S

Here, ν2 is the largest fixed point of the subproblem and also a fixed point of T .
Let ν2 = E1, then by the second step of the subroutine Ê = {E1} and Q’ = ∅.

The iteration for problem 〈(c1, S), (c1, S), S, S〉:

s1 s2 c1 c2

ν0 (c1, S) (c1, S) S S

V (s, ν0)/U(c, ν0) (c1, S) (c1, S) S ∅

ν1 = Tν0 (c1, S) (c1, S) S ∅

V (s, ν1)/U(c, ν1) (c1, S) (c1, S) S ∅

ν2 = Tν1 (c1, S) (c1, S) S ∅

As before, ν2 is the largest fixed point of the subproblem and also a fixed point
of T . Let ν2 = E2, then by the second step of the subroutine Ê = {E1, E2} and
Q’ = ∅.

The iteration for problem 〈(c1, S), (c2, S), ∅, S〉:

s1 s2 c1 c2

ν0 (c1, S) (c2, S) ∅ S

V (s, ν0)/U(c, ν0) (c2, S) (c2, S) ∅ S

ν1 = Tν0 (c2, S) (c2, S) ∅ S

V (s, ν1)/U(c, ν1) (c2, S) (c2, S) ∅ S

ν2 = Tν1 (c2, S) (c2, S) ∅ S

Here ν2 = E1 is the largest fixed point of the subproblem which is also a fixed
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point of T . Thus, Ê = {E1, E2} and Q’ = ∅.

The iteration for problem 〈(c1, S), (c2, S), S, (∅, ∅)〉:

s1 s2 c1 c2

ν0 (c1, S) (c2, S) S ∅

V (s, ν0)/U(c, ν0) (c1, S) (c1, S) S ∅

ν1 = Tν0 (c1, S) (c1, S) S ∅

V (s, ν1)/U(c, ν1) (c1, S) (c1, S) S ∅

ν2 = Tν1 (c1, S) (c1, S) S ∅

In this case ν2 = E2 is the largest fixed point of the subproblem which is also a
fixed point of T . Thus, Ê = {E1, E2} and Q’ = ∅.

Thus our new state is Q = Q’ = ∅. The algorithm stops here and gives us
Ê = {E1, E2} as the core.

Example 6.2 Let S = {s1, s2, s3} and C = {c1, c2}. Suppose that agents’
preferences are:

P (c1) : {s1, s2}, {s2, s3}

P (c2) : {s1, s3}

P (s1) : (c2, {s1, s3}), (c1, {s1, s2})

P (s2) : (c1, {s1, s2}), (c1, {s2, s3})

P (s3) : (c1, {s2, s3}), (c2, {s1, s3}).

In this example, we will not write down the sets V (s, ν) and U(c, ν) when we
are iterating T , as we only care about the best option for each set and we hope
that it is clear how they are calculated from the previous example (indeed a
computer implementation of the algorithm would not compute the U and V
sets).
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We start by calculating the largest and smallest fixed points.

s1 s2 s3 c1 c2

ν0 (∅, ∅) (∅, ∅) (∅, ∅) ∅ ∅

ν1 = Tν0 (c2, {s1, s3}) (c1, {s1, s2}) (c1, {s2, s3}) {s1, s2} {s1, s3}

ν2 = Tν1 (c1, {s1, s2}) (∅, ∅) (c2, {s1, s3}) ∅ ∅

ν3 = Tν2 (c2, {s1, s3}) (c1, {s1, s2}) (c1, {s2, s3}) {s1, s2} {s1, s3}

ν4 = T 2ν2 (c1, {s1, s2}) (∅, ∅) (c2, {s1, s3}) ∅ ∅

Hence, ν = ν3 and ν = ν4. As we can see, ν is not a fixed point of T . Therefore,
Ê = ∅ and Q = {ν}.

Now, we have to run the subroutine for each agent and for each prematching
in Q. We have to find the largest fixed points of problems

〈(c1, {s1, s2}), (c1, {s1, s2}), (c1, {s2, s3}), {s1, s2}, {s1, s3}〉,
〈(c2, {s1, s3}), (c1, {s2, s3}), (c1, {s2, s3}), {s1, s2}, {s1, s3}〉,
〈(c2, {s1, s3}), (c1, {s1, s2}), (c2, {s1, s3}), {s1, s2}, {s1, s3}〉,
〈(c2, {s1, s3}), (c1, {s1, s2}), (c1, {s2, s3}), {s2, s3}, {s1, s3}〉,
〈(c2, {s1, s3}), (c1, {s1, s2}), (c1, {s2, s3}), {s1, s2}, {∅, ∅}〉.

The iteration for problem 〈(c1, {s1, s2}), (c1, {s1, s2}), (c1, {s2, s3}), {s1, s2}, {s1, s3}〉:

s1 s2 s3 c1 c2

ν0 (c1, {s1, s2}) (c1, {s1, s2}) (c1, {s2, s3}) {s1, s2} {s1, s3}

ν1 = Tν0 (c1, {s1, s2}) (c1, {s1, s2}) (∅, ∅) {s1, s2} ∅

ν2 = Tν1 (c1, {s1, s2}) (c1, {s1, s2}) (∅, ∅) {s1, s2} ∅

v2 is neither a fixed point of T nor bigger than ν, so Q’ = ∅ and Ê remains
unchanged.
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The iteration for problem 〈(c2, {s1, s3}), (c1, {s2, s3}), (c1, {s2, s3}), {s1, s2}, {s1, s3}〉:

s1 s2 s3 c1 c2

ν0 (c2, {s1, s3}) (c1, {s2, s3}) (c1, {s2, s3}) {s1, s2} {s1, s3}

ν1 = Tν0 (∅, ∅) (∅, ∅) (c2, {s1, s3}) {s2, s3} ∅

ν2 = Tν1 (c2, {s1, s3}) (c1, {s2, s3}) (c1, {s2, s3}) {s2, s3} {s1, s3}

ν3 = Tν2 (∅, ∅) (c1, {s2, s3}) (c1, {s2, s3}) {s2, s3} ∅

ν4 = Tν3 (∅, ∅) (c1, {s2, s3}) (c1, {s2, s3}) {s2, s3} ∅

v4 is neither a fixed point of T nor bigger than ν, so Q’ = Ê = ∅.

The iteration for problem 〈(c2, {s1, s3}), (c1, {s1, s2}), (c2, {s1, s3}), {s1, s2}, {s1, s3}〉:

s1 s2 s3 c1 c2

ν0 (c2, {s1, s3}) (c1, {s1, s2}) (c2, {s1, s3}) {s1, s2} {s1, s3}

ν1 = Tν0 (c2, {s1, s3}) (∅, ∅) (c2, {s1, s3}) ∅ {s1, s3}

ν2 = Tν1 (c2, {s1, s3}) (∅, ∅) (c2, {s1, s3}) ∅ {s1, s3}

Let q1 = v2. q1 is not a fixed point of T but it’s bigger than ν. Thus, Q’ = {q1}
and Ê = ∅.

The iteration for problem 〈(c2, {s1, s3}), (c1, {s1, s2}), (c1, {s2, s3}), {s2, s3}, {s1, s3}〉:

s1 s2 s3 c1 c2

ν0 (c2, {s1, s3}) (c1, {s1, s2}) (c1, {s2, s3}) {s2, s3} {s1, s3}

ν1 = Tν0 (∅, ∅) (c1, {s2, s3}) (c2, {s1, s3}) ∅ ∅

ν2 = Tν1 (c2, {s1, s3}) (c1, {s2, s3}) (c1, {s2, s3}) {s2, s3} {s1, s3}

ν3 = Tν2 (∅, ∅) (c1, {s2, s3}) (c1, {s2, s3}) {s2, s3} ∅

ν4 = Tν3 (∅, ∅) (c1, {s2, s3}) (c1, {s2, s3}) {s2, s3} ∅

ν4 is neither a fixed point of T nor bigger then ν. Therefore, Q’ and Ê remain
unchanged.
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The iteration for problem 〈(c2, {s1, s3}), (c1, {s1, s2}), (c1, {s2, s3}), {s1, s2}, {∅, ∅}〉:

s1 s2 s3 c1 c2

ν0 (c2, {s1, s3}) (c1, {s1, s2}) (c1, {s2, s3}) {s1, s2} ∅

ν1 = Tν0 (c1, {s1, s2}) (∅, ∅) (∅, ∅) ∅ ∅

ν2 = Tν1 (c1, {s1, s2}) (c1, {s1, s2}) (c1, {s2, s3}) {s1, s2} ∅

ν3 = Tν2 (c1, {s1, s2}) (c1, {s1, s2}) (∅, ∅) {s1, s2} ∅

ν4 = Tν3 (c1, {s1, s2}) (c1, {s1, s2}) (∅, ∅) {s1, s2} ∅

ν4 is neither a fixed point of T nor bigger than ν. Therefore, the first loop of
the algorithm terminates at Q’ = {q1} and Ê = ∅.

For the second loop of the algorithm, we need to consider only two subproblems:

〈(c1, {s1, s2}), (∅, ∅), (c2, {s1, s3}), ∅, {s1, s3}〉 and
〈(c2, {s1, s3}), (∅, ∅), (c2, {s1, s3}), ∅, ∅〉.

For both problems the largest fixed point is the prematching in which each agent
is single. This prematching is not a fixed point of T nor bigger than ν. Thus,
after this loop Q’ = Ê = ∅ and the algorithm terminates. Therefore, the core
is empty.

7 Partial solutions

What will the algorithm deliver when the core is empty? It turns out that the
algorithm can solve the problem partially. It can identify a subset of agents
that are matched in a way that will not be blocked, while the rest of the
agents block their assignments. Following Sotomayor (2005a,b,c), we call the
resulting matchings simple matchings.

Definition 7.1 A matching µ is a simple matching if, for any block* (c,D)
of µ, µ(c) = ∅ and µ(s) = (∅, ∅) for all s ∈ D.

Theorem 7.2 Let µ be a matching. If µ ∈ E(T 2), then µ is a simple matching.

It is worth emphasizing that the algorithm does not confuse simple matchings
with matchings in the core. It identifies the fixed points of T , and reports
those as the core. But it also finds fixed points of T 2 that are not fixed points
of T , and when those are in addition matchings, by Theorem 7.2, they must
simple matchings.
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Proof Let ν = Tµ. We shall first prove that µ(c) 6= ∅ implies that µ(c) =
ν(c), and that µ(s) 6= (∅, ∅) implies that µ(s) = ν(s).

Let c ∈ C be such that µ(c) 6= ∅. Since µ = T 2µ, we know that µ(c) ∈ U(c, ν)
so (c, µ(c))R(s)ν(s) for all s ∈ µ(c). But that µ is a matching means that
(c, µ(c)) = µ(s); so we have shown that µ(s)R(s)ν(s).

On the other hand, that µ is a matching implies that µ(s) ∈ V (s, µ). This
follows from the definition of V (s, µ), and that µ(s) = (c, µ(c)) for all s ∈ µ(c).
Now, ν(s) = (Tµ)(s) and µ(s) ∈ V (s, µ) gives ν(s)R(s)µ(s). But we proved
that µ(s)R(s)ν(s), so µ(s) = ν(s) follows because P (s) is strict.

Similarly, µ = T 2µ implies that µ(s) ∈ V (s, ν) for any s ∈ µ(c). By the
definition of V (s, µ), then, µ(c)R(c)ν(c). But that µ is a matching implies that
µ(c) ∈ U(c, µ); so ν(c) = (Tµ)(c) implies ν(c)R(c)µ(c). Hence ν(c) = µ(c).

Let (c,D) be a block* of µ. Item (2) of Lemma 3.3 implies that µ(c) 6= ν(c)
and that for every s ∈ D µ(s) 6= ν(s). 2

Corollary 7.3 Let µ be a matching in which no agent is single. Then µ is a
core matching if and only if µ ∈ E(T 2).

Let ν be a prematching. Denote by Cν ⊆ C the set of colleges c such that
(c, ν(c)) = ν(s) for all s ∈ ν(c). Let Sν = ∪c∈Cν

ν(c). Thus the restriction of ν
to Cν ∪ Sν is a matching.

Proposition 7.4 Let ν ∈ E(T 2). Then the restriction of ν to Cν ∪ Sν is a
core matching of 〈Cν , Sν , P |Cν∪Sν

〉.

Proposition 7.5 Let µ be a simple matching, and let C ′ and S ′ denote the
agents who are single in µ. If µ′ is a simple matching for 〈C ′, S ′, P |C′∪S′〉, then
the matching (µ, µ′), which matches C ′ and S ′ according to µ′, and C\C ′ and
S\S ′ according to µ, is a simple matching for 〈C, S, P 〉.

Proof Denote the matching (µ, µ′) by µ̂. Suppose, by way of contradiction,
that there is a block* (c∗, S∗) of µ̂ such that the agents in (c∗, S∗) are not
single under µ̂.

First, suppose that c∗ ∈ C\C ′. Then S∗ * S\S ′, so there is s ∈ S ′ ∩ S∗. Thus
S∗P (c)µ(c), as µ̂(c) = µ(c) and P (c) is strict. If we prove that S∗ ∈ U(c, µ)
we have reached a contradiction, since µ(c) = (Tµ)(c) (see proof of Theo-
rem 7.2). Now, if s ∈ S ′ ∩ S∗, µ(s) = (∅, ∅). Since (c∗, S∗)R(s)µ̂(s)R(s)(∅, ∅),
we have (c∗, S∗)R(s)µ(s). On the other hand, if s ∈ S∗\S ′, then µ̂(s) = µ(s)
so (c∗, S∗)R(s)µ(s), as (c∗, S∗) is a block of µ̂.
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Second, suppose that c∗ ∈ C ′. Then S∗ * S ′, as (c∗, S∗) cannot be a block of
µ′. Let s ∈ S ′ ∩ S∗; then (c∗, S∗) ∈ V (s, µ). Now we have a contradiction, as
before, between µ′(s) = (Tµ′)(s) and (c∗, S∗) being a block. 2

Proposition 7.5 suggests a recursive procedure for finding a core matching: run
T 2 to find a simple matching; put the non-single agents aside; run T 2 in the
reduced market 〈C ′, S ′, P |C′∪S′〉. This procedure will, in some cases, be very
fast.

8 Restrictions on preferences

8.1 The top coalition property

Banerjee et al. (2001) study coalition-formation games, of which our model is
a special case. They introduce the so-called top-coalition property, and prove
that it is sufficient for the core to be nonempty and unique. We prove that
the top-coalition property is also sufficient to bound the number of iterations
of the algorithm (Theorem 8.2).

We take the following notational liberty: Let F be the set of subsets of C ∪ S
with at most one element from C. Let F = {c}∪Ŝ ∈ F and F ′ = {c′}∪S ′ ∈ F .
If c = c′ we say that FP (c)F ′ if ŜP (c)S ′. If s ∈ Ŝ ∩S ′ we say that FP (s)F ′ if
(c, Ŝ)P (s)(c′, S ′). If F ⊆ S, substitute (∅, ∅) for (c, S) in the statement above.
For all F ∈ F with f /∈ F , say that {f}P (f)F .

Definition 8.1 A college-admissions problem satisfies the weak top-coalition
property if there exists a partition (F1, F2, . . . , Fk) of all the agents, where
Fi ∈ F for all i, with the following property: For all f ∈ F1, F1 is the top
choice in F for P (f), and for all f ∈ Fi, Fi is the top choice for P (f) over
the sets F ∈ F with

F ⊆ (C ∪ S) \ ∪i−1
j=1 Fj, i = 2, . . . , k.

Theorem 8.2 If a college-admissions problem satisfies the weak top-coalition
property, then it has a unique core matching µ. Moreover, µ is the largest fixed
point of T 2, and if k is the cardinality of the partition in Definition 8.1, then
the algorithm finds µ in at most k steps.

The first statement in Theorem 8.2 follows from Banerjee et al. (2001). We
provide an independent proof to illustrate how our fixed-point method can be
used and because we need it to prove the second part of the theorem.
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Proof Let (F1, F2, . . . , Fk) be a partition of C ∪ S which satisfies the weak
top-coalition property. Let µ be the matching which matches every agent in
one partition to the agents in that partition. We first prove that µ is a stable*
matching.

First note that µ is individually rational since for any agent f , µ(f)R(f)∅ if
f ∈ C or µ(f)R(f)(∅, ∅) if f ∈ S since {f} is also an admissible coalition.
Now, µ is stable* since no agents in F1 want to block* since F1 is their best
choice, no agent in F2 wants to block* without the agents in F1 since F2 is their
best choice among (C∪S)\F1,. . . , no agent in Fk wants to block* without the
agents in F1 ∪ F2... ∪ Fk−1.

Uniqueness of µ follows from Proposition 4.7 and by the next part of this
theorem that µ is the largest fixed point of T 2.

Now, let ν0 be the largest prematching in Φ′. Define νk = Tνk−1 inductively.
Now, ν0 matches each agent in F1 to F1 since F1 is their best choice. ν1 might
not match each agent in F2 to F2 since F2 might not be their best overall
choice but it still keeps agents in F1 matched to F1. However, ν2 does match
each agent in f ∈ F2 to F2 since each agent appearing in ν1(f) is also an
element of C ∪ S − F1 and F2 = Ch(C ∪ S − F1, P (f)). It is easy to see with
an inductive argument that ν2(i−1) matches each agent in F1 ∪ F2 . . . ∪ Fi to
its corresponding coalition for i = 1, 2, . . . , k. Thus ν2(k−1) = µ. Since µ is a
stable* matching ν2k−1 = Tµ = µ = ν2(k−1). Thus, we’ll be able to get µ in at
most in 2k − 1 iterations using T or equivalently in at most k iterations using
T 2. 2

Example 8.3 shows that the weak top-coalition property is not necessary for
the result in Theorem 8.2.

Example 8.3 Let S = {s1, s2} and C = {c1, c2}. Suppose that agents’ pref-
erences are:

P (c1) : S, {s1}

P (c2) : S, {s2}

P (s1) : (c1, S), (c2, S), (c1, {s1})

P (s2) : (c2, S), (c2, {s2}).
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The following array shows the iterations of the algorithm.

s1 s2 c1 c2

ν0 (∅, ∅) (∅, ∅) ∅ ∅

V (s, ν0)/U(c, ν0) (c2, S), (c1, {s1}) (c2, S), (c2, {s2}) {s1} S, {s2}

ν1 = Tν0 (c2, S) (c2, S) {s1} S

V (s, ν1)/U(c, ν1) (c2, S) (c2, S) ∅ S

T 2ν0 (c2, S) (c2, S) ∅ S

By Proposition 4.7, T 2ν0 is the unique core matching. The preferences in this
example do not satisfy the weak top-coalition property.

8.2 Respecting preferences

We introduce a second restriction on preferences. The assumption is that the
“projection” of any agent’s preferences to either the set of colleges, or the sets
of students, be the same. Agents can thus only differ in how they trade off
different colleges and students. Under this restriction, the problem turns out
to have the weak top-coalition property.

Definition 8.4 A preference profile P is called respecting if there exist a pref-
erence relation PS over 2S and a preference relation PC over C ∪ ∅ with the
following properties:

(1) For all s ∈ S, (c, Ŝ)P (s)(c, S ′) if and only if ŜPSS ′.
(2) For all s ∈ S, (c, Ŝ)P (s)(c′, Ŝ) if and only if cPCc′.
(3) For all c ∈ C, ŜP (c)S ′ if and only if ŜPSS ′.
(4) For all s ∈ S, if ∅PCc then (∅, ∅)P (s)(c, Ŝ) for all Ŝ ⊆ S.

Proposition 8.5 If P is respecting then it satisfies the weak top-coalition
property.

Proof Let F1 be the union of the top college in PC with the top group of
students in PS. Clearly, every agent in F1 prefers F1 to any other coalition.
Now, let F2 be the union of the top college in PC among the remaining colleges
with the top group of students in PS among the remaining group of students.
Continue similarly until we exhaust all the colleges c such that cPC∅ or all the
admissible groups of students S ′ such that S ′PS∅. Then let each remaining
agent be a coalition on its own. Assume that we have formed k coalitions. It
is clear that (F1, F2, ..., Fk) satisfies Definition 8.1. 2
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In view of Proposition 8.5, respecting preferences is sufficient for a unique core
matching, and for the algorithm to find this core matching in relatively few
iterations.

8.3 Monotonicity of T .

Now order Φ by ν ′�ν if, for all c and s, ν ′(c)R(c)ν(c) and ν(s)R(s)ν ′(s). This
is the order normally used in two-sided matching problems (see e.g. Adachi
(2000); Fleiner (2003); Echenique and Oviedo (2004)).

The restriction on preferences we shall consider now is that preferences are
such that T is monotone increasing, when Φ is ordered by ν ′ � ν.

Proposition 8.6 If T is monotone increasing with respect to �, then E(T )
is a non-empty lattice. In particular, E(T ) has a smallest (in �) element µ,
and a largest element µ. These satisfy, for all c and s,

µ(c)R(c)ν(c)R(c)ν(c)R(c)µ(c)

µ(s)R(s)ν(s)R(s)ν(s)R(s)µ(s),

where ν and ν were defined in Proposition 4.7.

Proof That E(T ) is a non-empty lattice follows from Tarski’s fixed-point
theorem (Theorem 4.4).

There are smallest and largest prematchings, ν ′

0 and ν ′

1, in the order �. So
ν ′

1 �ν �ν ′

0 and ν ′

1 �ν �ν ′

0. The monotonicity of T implies that T 2 is monotone
increasing in the order �. Then, for any iteration k of T 2, we have

T 2k(ν ′

1) � ν � T 2k(ν ′

0)

and

T 2k(ν ′

1) � ν � T 2k(ν ′

0).

The result follows (similarly to the proof of Proposition 4.8) because there is
an iteration k such that T 2k(ν ′

1) = µ and T 2k(ν ′

0) = µ. 2

As a consequence of Proposition 8.6, if T is monotone increasing, and there
is a unique core matching µ, we have µ = µ = µ. So ν = ν = µ, and our
algorithm finds the unique core matching in fewer steps than the algorithm of
iterating T (called the T -algorithm in Echenique and Oviedo (2006))

27



8.4 Preference cycles.

We show that a type of preference cycle must be present every time a fixed
point of T 2 is not a core matching. So absence of cycles is a useful restriction
on preferences. There is nothing pathological about preference cycles, though.

Definition 8.7 A matching problem 〈C, S, P 〉 exhibits a preference cycle if
there is a sequence ((c1, S1), (c2, S2), . . . (cK , SK)) such that (c1, S1) = (cK , SK)
and, for all k = 1, . . . K − 1, either ck = ck+1 and Sk+1P (ck)Sk or there is
s ∈ Sk ∩ Sk+1 such that (ck+1, Sk+1)P (s)(ck, Sk).

Theorem 8.8 Let µ be a matching. If µ = T 2µ but µ 6= Tµ, then 〈C, S, P 〉 ex-
hibits a preference cycle ((c1, S1), (c2, S2), . . . (cK , SK)). Moreover, each (ck, Sk)
blocks* µ, µ(ck) = ∅ for all k and µ(s) = (∅, ∅) for all s ∈ ∪kSk.

Proof Let ν = Tµ.

Step 1 Let µ(c) 6= ν(c). We shall prove that there is s ∈ ν(c) such that
ν(s)P (s)(c, ν(c)), and that ν(s) blocks* µ. First, note that µ(c) ∈ U(c, µ), as
µ is a matching; this and ν = Tµ implies that ν(c)P (c)µ(c). Now, µ(c) =
(Tν)(c), since µ = T 2µ. Then ν(c)P (c)µ(c) implies ν(c) /∈ U(c, ν). By defini-
tion of U(c, ν) there must be s ∈ ν(c) such that ν(s)P (s)(c, ν(c)).

Further, ν(c) ∈ U(c, µ) implies that (c, ν(c))R(s)µ(s). So

ν(s)P (s)(c, ν(c))R(s)µ(s).

Hence ν(s) 6= µ(s). By Lemma 3.3, ν(s) blocks* µ.

Step 2 Let µ(s) 6= ν(s). We shall prove that there is a block* (c′, S ′) of
µ such that either (a) c′ = ν(s) and S ′P (s)ν(s) or (b) there is s̃ ∈ ν(s)
such that ν(s̃)P (s̃)ν(s). First, that ν(s) /∈ V (s, ν) follows analogously to
(µ(c) 6= ν(c) ⇒ ν(c) /∈ U(c, ν)) above. The definition of V (s, ν) implies that
either ν(ν(s))P (ν(s))ν(s) or there is s̃ ∈ ν(s) such that ν(s̃)P (s̃)ν(s). Setting
(c′, S ′) = (ν(s), ν(ν(s))) in the first case, and (c′, S ′) = ν(s̃) in the second,
proves the claim. That (c′, S ′) is a block* follows applying Lemma 3.3 as in
Step 1.

Step 3 We shall construct a cycle. If there is c with µ(c) 6= ν(c), let (c1, S1) =
(c, ν(c)). If there is s with µ(s) 6= ν(s), let (c1, S1) = ν(s). Let ((c1, S1), (c2, S2), . . . (ck, Sk))
be a sequence that would be a preference cycle if (c1, S1) = (ck, Sk), and such
that either (a) (ck, Sk) = (ck, ν(ck)) or (b) (ck, Sk) = ν(s) for some s ∈ Sk.

In case (a), by Step 1, there is s ∈ ν(ck) such that ν(s)P (s)(ck, ν(ck)). Let
(ck+1, Sk+1) = ν(s). Then (ck+1, Sk+1) 6= µ(s), and (ck+1, Sk+1) blocks* µ.
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In case (b), by Step 2, either ν(ck)P (ck)Sk and ν(ck) blocks* µ, or there is
s̃ ∈ Sk such that ν(s̃)P (s̃)(ck, Sk), and ν(s̃) 6= µ(s̃) is a block* of µ. Let
(ck+1, Sk+1) = ν(ck), or (ck+1, Sk+1) = ν(s̃), respectively.

For each element (ck, Sk) in the range of the resulting sequence, (ck, Sk) is in
the image of ν. There are finitely many elements in the image of ν, so there
is some K such that (c1, S1) = (cK , SK).

2

Corollary 8.9 Let µ be a matching and µ ∈ E(T 2). If preferences do not
exhibit a preference cycle, then µ is a stable* matching.

Proof If µ = Tµ then µ is stable* matching by Theorem 3.1. Otherwise,
µ 6= Tµ which implies that 〈C, S, P 〉 exhibits a preference cycle which is a
contradiction. 2

9 Extension: A model with Couples.

We present an extension of our model to a model with couples. The couples
introduce a specific form of preferences over colleagues, but it does not reduce
to the one we have discussed so far. We present a fixed-point construction,
similar to the one above. One can thus use our algorithm to find the core
matchings in the model with couples, if there are any. As a by-product, we
obtain a result that may be of independent interest: we extend the classical
result in the theory of many-to-one matchings, that under Kelso-Crawford
substitutable preferences the core coincides with a less restrictive pair-wise
stable solution. 3

We now assume that there is a subset of students that form couples. So, for
each student s in the subset that forms couples, there is one and only one
student s′ so that s forms a couple with s and s′ forms a couple with s.

Split the set of students into two (disjoint) sets, Q and L such that if s forms
a couple with s′ they cannot both be in Q or both in L. Thus Q and L form a
partition of S that splits all couples. Suppose now that we add a copy of the
“singlehood” symbol ∅ to Q and L; in a convenient abuse of notation we shall
refer to the different copies by the same label, ∅. In the sequel, s still denotes
a generic element of S = Q ∪ L, while q and l denote elements of Q and L,
respectively.

3 This is a solution to Open Problem 4 in Roth and Sotomayor (1990)
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We extend the preferences P (c) to preferences over 2Q×L by: AP (c)B, for
A,B ⊆ Q × L if and only if

{l : ∃q s.t. (l, q) ∈ A} ∪ {q : ∃l s.t. (l, q) ∈ A}P (c) {l : ∃q

s.t. (l, q) ∈ B} ∪ {q : ∃l s.t. (l, q) ∈ B} .

Note that we abuse notation, using P (c) for the extension of c’s original pref-
erences.

Students l ∈ L have preferences P (l) over C × Q, and q ∈ Q has preferences
P (q) over C × L.

A prematching is a function µ on S ∪ C such that

(1) µ(l) ∈ C × Q, if l ∈ L and l 6= ∅;
(2) µ(q) ∈ C × L, if q ∈ Q and q 6= ∅;
(3) µ(c) ⊆ L × Q, if c ∈ C.

Let V be the set of all prematchings.

A matching is a prematching such that, for all (c, l, q) ∈ C × L × Q,

µ(c) 3 (l, q)⇒ (l 6= ∅ ⇒ µ(l) = (c, q)) ∧ (q 6= ∅ ⇒ µ(q) = (c, l))

µ(l) = (c, q)⇒ (µ(c) 3 (l, q)) ∧ (q 6= ∅ ⇒ µ(q) = (c, l))

µ(q) = (c, l)⇒ (µ(c) 3 (l, q)) ∧ (l 6= ∅ ⇒ µ(l) = (c, q))

9.1 Stability.

A matching µ is individually rational if, for all c, l, q, µ(c) = Ch(µ(c), P (c)),
µ(l)P (l)(∅, ∅) and µ(q)P (q)(∅, ∅).

Let µ be a matching. A pair (c, (l, q)) is a couples-block of µ if there is some
A ⊆ µ(c) such that

(1) A ∪ {(l, q)}P (c)µ(c)
(2) l 6= ∅ ⇒ (c, q)P (l)µ(l)
(3) p 6= ∅ ⇒ (c, l)P (q)µ(q)

Note that definition of a couples-block includes the possibility that (q, ∅) ∈
µ(c) and that (c, (l, q)) blocks µ.

A matching is couples-stable if it is individually rational and has no couples
blocks. Denote the set of all couples-stable matchings by Sc(P ).
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A pair (D, c) where D ⊆ Q × L and c ∈ C is a block* of a matching µ if
DR(c)µ(c), for all (l, q) ∈ D (c, q)R(l)µ(l) and (c, l)R(q)µ(q), and if one of
the stated relations holds with P in place of R.

We state here without proof that the core—denoted CW (P )—is the set of
matchings for which there is no block*. The proof is very similar to the proof
of Lemma 3.2.

9.2 Fixed-point construction.

To ease notation, when l = ∅ say that (c, q)P (l)(c′, q′) holds by definition.
Similarly for q = ∅.

V (l, ν) = {(c, q) : (l, q) ∈ Ch(ν(c) ∪ {(l, q)} , P (c))

and (c, l)R(q)ν(q)} ∪ {(∅, ∅)}

W (q, ν) = {(c, l) : (l, q) ∈ Ch(ν(c) ∪ {(l, q)} , P (c))

and (c, q)R(l)ν(l)} ∪ {(∅, ∅)}

U(c, ν) = {(l, q) : (c, q)R(l)ν(l)(c, l)R(q)ν(q)} ∪ {(∅, ∅)}

Now let T : V → V be defined by letting Tν(c) = Ch(U(c, ν), P (c)), and
Tν(s) be the maximal element in V (s, ν) if s ∈ L and in W (q, ν) if q ∈ Q.

Denote the set of fixed points of T by E(T ).

9.3 Results.

Lemma 9.1 If µ ∈ E(T ) then µ is individually rational.

Lemma 9.1 follows immediately from the definition of the map T .

Proposition 9.2 E(T ) ⊆ CW (P ) ⊆ Sc((P )

Proof That CW (P ) ⊆ Sc(P ) is immediate. Let µ ∈ E(T ) and suppose,
by way of contradiction, that µ /∈ CW (P ). Let (D, c) be a block* of µ. By
definition of a block*, D ⊆ U(c, µ). So µ = Tµ implies that µ(c)R(c)D. But
DR(c)µ(c), since (D, c) is a block*.

Now, DR(c)µ(c) and µ(c)R(c)D implies that, for all (l, q) ∈ D, µ(l)R(l)(c, q)
and µ(q)R(q)(c, l). This is a contradiction with (D, c) being a block*. 2
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Let c ∈ C. Say that P (c) is substitutable if, for any A,B ⊆ Q × L, if (q, l) ∈
A ⊆ B, and (q, l) ∈ Ch(B,P (c)) then (q, l) ∈ Ch(A,P (c)). Say that a profile
(P (c))c∈C is substitutable if each individual P (c) is substitutable.

Proposition 9.3 If (P (c))c∈C is substitutable, then Sc(P ) = E(T ).

Proposition 9.3 translates into

Corollary 9.4 If (P (c))c∈C is substitutable, then Sc(P ) = CW (P ).

Proof [Proof of Proposition 9.3] We need to prove that Sc(P ) ⊆ E(T ). Let
µ 6= Tµ. We shall prove that µ /∈ Sc(P ).

First, suppose there is c such that Tµ(c) 6= µ(c). Let D = Ch(U(c, µ), P (c)) 6=
µ(c). Since µ(c) ⊆ U(c, µ), because µ is a matching, DP (c)µ(c). Since µ is
individually rational, µ(c) = Ch(µ(c), P (c)). So we have that D * µ(c), and
hence that there is (l, q) ∈ D\µ(c). We shall prove that (c, (l, q)) is a couples
block of µ. Now,

(l, q) ∈ Ch(U(c, µ), P (c)) = Ch(U(c, µ) ∪ {(l, q)} , P (c)),

and substitutability of P (c) implies that (l, q) ∈ Ch(µ(c) ∪ {(l, q)} , P (c)), as
µ(c) ⊆ U(c, µ). Let A = Ch(µ(c) ∪ {(l, q)} , P (c)) ∩ µ(c). By definition of A,
it satisfies (1) in the definition of a couples block.

We now verify (2) and (3) in the definition of a couples block. If l 6= ∅ then
µ(l) = (c′, q′) with c 6= c′, as µ is a matching and (l, q) /∈ µ(c). But (l, q) ∈
D ⊆ U(c, µ) so (c, q)R(l)µ(l) = (c′, q′). Preferences are strict, so c 6= c′ implies
(c, q)P (l)µ(l). By the same argument (3) follows.

Second, suppose that there is l such that Tµ(l) 6= µ(l). Let (c, q) = Tµ(l). We
shall prove that (c, (l, q)) is a couples block of µ. That µ is a matching implies
µ(l) ∈ V (l, µ). So the definition of T gives (c, q)P (l)µ(l), requirement (2) in
the definition of a couples block.

That (c, q) ∈ V (l, µ) implies that

(l, q) ∈ Ch(µ(c) ∪ {(l, q)} , P (c)) (5)

(c, l)R(q)µ(q) (6)

Since µ is a matching, (c, q) 6= µ(l) implies (l, q) /∈ µ(c), so Statement (5) im-
plies Ch(µ(c)∪{(l, q)} , P (c))P (c)µ(c). Let A = Ch(µ(c)∪{(l, q)} , P (c))\ {(l, q)};
A satisfies (1) in the definition of a couples block.

Finally, Statement (6) and that (c, q) 6= µ(l) implies (3) in the definition of a
couples block. 2
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A Appendix: Proof of Lemma 3.2 and Weaker notions of stability.

We prove Lemma 3.2 in the text and discuss briefly pairwise stability and
S∗(P ).

Proof [Proof of Lemma 3.2] First we shall show CW (P ) ⊆ S∗(P ) and then
S∗(P ) ⊆ CW (P ) to complete the proof.

Let µ ∈ CW (P ). Since for no µ̂, 〈{c}, ∅, µ̂〉 or 〈∅, {s}, µ̂〉 blocks µ, µ is individ-
ually rational. Moreover, since for no S ′ ⊆ S and µ̂, 〈{c}, S ′, µ̂〉 blocks µ, µ is
a stable* matching.

Now we show that S∗(P ) ⊆ CW (P ) by contradiction. Assume that there
exists a matching µ such that µ ∈ S∗(P ) and µ /∈ CW (P ). Hence, there exists
a coalition S ′∪C ′ and µ̂ that satisfy the definition of a block. Therefore, there
exists f ∈ S ′ ∪ C ′ so that µ̂(f)P (f)µ(f). We split this into two cases:

Case 1. f ∈ C. Then, for all s ∈ µ̂(f), µ̂(s)R(s)µ(s) by construction of µ̂.
Since µ̂(f)P (f)µ(f), µ̂(f) 6= µ(f) which implies that µ̂(s) 6= µ(s) for all s ∈
µ̂(f). Since preferences are strict, we get that for all s ∈ µ̂(f), µ̂(s)P (s)µ(s).
Therefore, if we let B = µ̂(f) − µ(f) then (B, f) blocks* µ with A = µ̂(f) ∩
µ(f), a contradiction to stability* of µ.

Case 2. f ∈ S. Since µ is a stable* matching, it is individually rational. Thus,
µ(f)R(f)(∅, ∅) which implies together with strictness of P (f) and µ̂(f)P (f)µ(f)
that µ̂(f)P (f)(∅, ∅). Hence, µ̂(f) = (c, µ̂(c)) for some college c. Moreover,
{c} ∪ µ̂(c) ∈ C ′ ∪ S ′ and µ̂ is at least as good as µ for all agents in C ′ ∪ S ′.
Since µ̂(f)P (f)µ(f), µ̂(f) 6= µ(f). Therefore, µ̂(s) 6= µ(s) for all students
s ∈ µ̂(c) and also µ̂(c) 6= µ(c). Now, let B = µ̂(c)−µ(c). Hence, the matching
µ̂ is better for all students in µ̂(c) and also for college c. We get that (B, c)
blocks* µ with A = µ̂(c) ∩ µ(c). A contradiction to stability* of µ. 2

Pairwise stability has been studied widely in many-to-one matchings with-
out preferences over colleagues. The following is the adaptation of pairwise
stability to our model:

A pair (s, c) ∈ S × C is a pairwise-block of a matching µ if s /∈ µ(c), but
s ∈ Ch({s} ∪ µ(c), P (c)) and ∀s′ ∈ Ch({s} ∪ µ(c), P (c)),

(c, Ch({s} ∪ µ(c), P (c)))P (s′)µ(s′).

A matching µ is stable if it is individually rational and there does not exist a
pairwise block of µ.
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Notation. Given a preference profile P , we denote the set of stable matchings
by S(P ).

The following simple proposition and example show that the core is smaller
than the set of pairwise stable matchings, and may be strictly smaller. In
many-to-one models without preferences over colleagues, the two solutions
coincide if colleges’ preferences are substitutable (Roth and Sotomayor, 1990).

Proposition A.1 S∗(P ) ⊆ S(P )

Proof Let µ ∈ S∗(P ). Assume that µ /∈ S(P ). Since µ is individually ratio-
nal there must be a blocking pair (s, c). Hence, ∃s ∈ S such that s /∈ µ(c),
but s ∈ Ch({s} ∪ µ(c), P (c)) and ∀s′ ∈ Ch({s} ∪ µ(c), P (c)), (c, Ch({s} ∪
µ(c), P (c)))P (s′)µ(s′). Therefore, ({s}, c) blocks* µ with A = Ch({s}∪µ(c), P (c))−
{s}. Contradiction to stability*. 2

In general, S∗(P ) can be different from S(P ); we make this point through an
example.

Example A.2 Consider three colleges C = {c1, c2, c3} and three students S =
{s1, s2, s3} with the following preferences:

P (c1) : {s2, s3}, {s2, s1}, {s1, s3}, {s1}, {s2}, {s3}

P (c2) : {s2}

P (c3) : {s3}

P (s1) : (c1, s1), (c1, {s1, s3}), (c1, {s2, s1})

P (s2) : (c1, {s2, s3}), (c2, {s2}), (c1, {s2}), (c1, {s1, s2})

P (s3) : (c1, {s2, s3}), (c3, {s3}).

There is only one stable* matching µ1 which is µ1(c1) = {s2, s3} and µ1(c2) = ∅
but there is another matching µ2 which is stable and given by µ2(c1) = {s1},
µ2(c2) = {s2} and µ2(c3) = {s3}.
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