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Christopher P. Chambers

Abstract

We study axioms which define “representative democracy” in an environment in which
agents vote over a finite set of alternatives. We focus on a property that states that
whether votes are aggregated directly or indirectly makes no difference. We call this
property representative consistency. Representative consistency formalizes the idea that
a voting rule should be immune to gerrymandering. We characterize the class of rules
satisfying unanimity, anonymity, and representative consistency. We call these rules
“partial priority rules.” A partial priority rule can be interpreted as a rule in which each
agent can “veto” certain alternatives. We investigate the implications of imposing other
axioms to the list specified above. We also study the partial priority rules in the context
of specific economic models.
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Consistent representative democracy *

Christopher P. Chambers

1 Introduction

Our objective is to discuss an interpretation of “representative democracy” in a voting
model. In so doing, we provide a meaningful axiomatic definition of the meaning of
representative.

In binary social choice, the only voting rule which is anonymous, neutral, and pos-
itively responsive is majority rule (May’s Theorem, [14]). May’s theorem provides a
normative foundation for majority rule. However, most democracies use some form of
representative democracy. Voters are grouped into districts, and each district elects its
own representative according to majority rule. These representatives then vote, and
majority rule is applied to the votes of the representatives. Such a system is referred to
as a “single-member district” system. Typically, single-member district representation
results in a different outcome than if majority rule were applied directly to the votes of
the voters. The alternative selected depends non-trivially on how voters are grouped
into districts, and is thus subject to manipulation by those who design the districts.
In common language, we say that “gerrymandering” is possible. Gerrymandering is a
common practice in single-member district systems.

A natural question is whether or not there exist voting rules which can never be ger-
rymandered. Our primary contribution here is twofold. Firstly, we introduce a condition
which formalizes the notion that a voting rule should be immune to gerrymandering. To
our knowledge, ours is the first work that investigates such an idea and proposes such
a notion. Secondly, we investigate the implications of this notion in conjunction with
other properties, and characterize all “democratic” voting rules that satisfy it.

Here, we imagine that society’s collective goal is to select one element out of a finite
set of social alternatives. We suppose that each agent in society submits a vote for one
of the alternatives. A social alternative must be selected based only on the observed
votes, not taking into account strategic behavior on the part of voters. We study “rules,”

*I would like to thank John Duggan, Larry Epstein, Biung-Ghi Ju, Roger Lagunoff, Leonardo Mar-
tinez, Josef Perktold, Francesco Squintani, William Thomson, and Chun-Hsien Yeh for useful conversa-
tions. All errors are my own.



which associate a social alternative with every possible group of voters and list of votes
that they may submit. Since a rule can be applied to any group of voters, it can be
applied to districts, or it can be applied to society as a whole.

When we say a voting rule is democratic, we mean that it i) selects any alternative
which receives a unanimity of votes and ii) treats all agents identically. These require-
ments are captured by the properties unanimity and anonymity, respectively. Unlike
May, we make no monotonicity or neutrality assumptions on rules.

We specify notions of “direct democracy” and “indirect democracy.” These two no-
tions are discussed with respect to a given rule. In a direct democracy, each member of
society votes for an alternative, and an alternative is selected by aggregating these votes
according to the rule. In an indirect democracy, agents are partitioned into districts,
and each agent votes for an alternative. The rule is then applied within each district,
resulting in a “representative vote” for each district. The winning alternative in each
district takes all of the votes for that district. Thus, each agent in society is treated
as having voted for his district’s representative vote. The rule is then applied to the
representative votes, leading to a social alternative. We say a rule is a “representative
democracy” if direct democracy and indirect democracy lead to the same chosen alterna-
tive, independently of the partitioning of agents. The equivalence of direct and indirect
vote aggregation is logically independent from the notion of “democracy,” so we give it
an independent name: representative consistency.

To understand the notion, consider the simple example of a nine-agent society that
uses majority rule. The voters in society need to decide whether or not to pass a
bill into law.  Voters vote for either Y (pass the bill) or N (do not pass the bill).
Imagine that the nine tallied votes are {Y,Y, N, N, N, N, N,Y,Y }-four votes to pass
and five votes not to pass. By applying majority rule directly to this vote profile, the
bill does not pass into law. But suppose that we consider the following partition of
voters: {{YY, N} {N,N,N},{N,Y,Y}}. Here, the voters have been put into three
districts. In each of the first and last district, there are two votes for Y and one for
N. 1In either of these districts, Y is selected according to majority rule. Obviously,
in the remaining district, where there are three votes for N, N is selected according to
majority rule. Y therefore takes the first and last district, and N takes the remaining
district. The revised vote profile obtained is {Y,Y,Y, N, N, N.Y Y Y}. But for this
revised vote profile, there are six votes for Y and only three for N. Thus, under the
revised vote profile, the bill passes into law. This example illustrates that majority rule
is not representative consistent.!

The notion of indirect vote aggregation in social choice is familiar from the works
of Murakami [16, 17], Fishburn [11, 12], and Fine [10], although these papers are not
concerned with the consistency of indirect vote aggregation and direct vote aggregation.
In his famous paper on strategy-proof voting schemes, Moulin [15] also briefly discusses

!Here, we have not discussed what happens when there is a tie. But clearly, this example shows that
majority rule is not representative consistent, no matter how ties are resolved.



indirect voting procedures.

Representative consistency is a strong condition of “gerrymandering-proofness.”? It is
reasonable to suspect that under a single-member district system, almost any voting rule
is susceptible to gerrymandering. Our primary result confirms this intuition. However,
the conditions unanimity, anonymity, and representative consistency are compatible, and
characterize a class of rules that we believe has not been studied before. These rules
are easiest to understand when there are only two alternatives. In this case, one of the
alternatives is “special,” and the rule chooses the special alternative unless all agents
vote for the other alternative. Thus, each agent has a “veto” and can force society to
choose the special alternative by voting for it.

These rules can be described in a different way. Think of the two alternatives as being
ordered, where the special alternative comes first in the order. Among the alternatives
receiving votes, the rule selects the one that comes first in the order. We show that for
any finite number of alternatives, each rule satisfying our conditions is identified with
a partial order over the set of alternatives. If two alternatives are ranked according to
this partial order, then we say that the two alternatives are prioritized. Of these two
alternatives, the alternative which comes first according to the partial order has a higher
priority. The rule selects the lowest priority alternative which has a priority (weakly)
higher than all of the alternatives which receive votes. This alternative need not have
been voted for by any of the agents. We call such a rule a “partial priority rule.”

Partial priority rules possess the feature that the number of agents who vote for a
particular alternative is irrelevant in forming a social decision. This renders them un-
appealing for many group decision situations.®> Thus, in eliciting the general structure
of rules that are immune to gerrymandering in single-member districts, we have demon-
strated a fundamental impossibility: Unless all agents are given veto power over the
same alternatives, a voting rule is susceptible to gerrymandering. Roughly, this impossi-
bility highlights a tradeoff between the amount of “power” possessed by each voter, and
the amount of “power” possessed by those in charge of formulating districts.

Partial priority rules are used in real-life environments. A jury must decide between
the guilt or the innocence of a suspect. A suspect is innocent unless the jurors unani-
mously agree on her guilt. The partial order corresponding to this rule ranks “guilty”
after “innocent.” Suppose jurors can elect to abstain, by voting for an alternative called
“hung jury.” Here, if all agents agree on guilty, the suspect is guilty. If all agents agree
on innocent, the suspect is innocent. If there is not unanimous agreement, or if some

2Thus, we can think of other notions of a rule being immune to gerrymandering. Specifically, by
ignoring strategic effects on the part of voters, we are ruling out the possibility that agents may behave
differently when placed in different districts. Such behavior may have the effect of “cancelling out”
attempts at gerrymandering. A weaker notion of representative consistency may be desired in this case;
such a notion will depend on the assumed equilibrium concept for voter behavior.

3They are unappealing for many reasons. For example, Duggan and Martinelli [8] show that una-
nimity rules (partial priority rules in binary environments) perform poorly in terms of aggregating
information.



voter chooses to abstain (by voting “hung jury”), we say that there is a “hung jury.”
With this rule, both “guilty” and “innocent” are ranked after “hung jury,” but “guilty”
and “innocent” are incomparable.

Although we view our main result as an impossibility, the class of partial priority
rules is nonempty. This allows us to imposes additional properties on rules. One
feature of the partial priority rules is that the alternative selected by society need not
have received any votes. In the preceding example, if some voters vote guilty, and others
vote innocent, then the outcome is “hung jury,” even if no agent had voted for a “hung
gury.” However, for many social decisions, it is unnatural to choose an alternative for
which nobody votes. In an election between candidates, a candidate who receives no
votes should not be elected. We introduce a condition, called positive vote-share, that
requires that an alternative must receive at least one vote to be selected. When coupled
with our other axioms, this condition implies that the partial order corresponding to a
partial priority rule is a linear order.

We assume no structure on the set of alternatives except that it is finite. In specific
examples, however, restrictions on the set of alternatives are warranted. To this end, we
study the partial priority rules in a spatial model. Here, the alternatives are exogenously
ordered according to some linear order.

We postulate conditions relating to this exogenous order. Betweenness is the require-
ment that the selected alternative lie between the minimal and maximal votes according
to the linear order. If it is implicitly understood that agents have single-peaked prefer-
ences over the alternatives and votes are the agents’ peaks, betweenness is equivalent to
Pareto efficiency. Vote monotonicity states that if the votes of all agents move in a certain
direction, then so should the selected alternative. Vote monotonicity can be understood
as a simple positive responsiveness condition. Lastly, we study strategy-proofness, assum-
ing that agents have preferences over the alternatives that are single-peaked. Strategy-
proofness states that when all agents are required to vote for an alternative, it is a
dominant strategy for each agent to vote for her peak. When coupled with our other
axioms, these axioms lead to three progressively more restrictive classes of rules, which
we characterize.

Section 2 discusses the model and the main axioms. Section 3 proves our main
theorem and several simple corollaries. Section 4 discusses our theorem in a spatial
model. Section 5 concludes.

2 The model

2.1 Preliminaries

Let N, the set of natural numbers, index a set of “potential agents.” Let N be the set
of finite subsets of N. Let X be a finite set. Elements of X are “alternatives,” to be
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interpreted as policies, candidates, etc. Each agent submits a “vote,” or an element of
X. A rule is a function f : (Jycn X N — X. Thus, a rule specifies a “representative”
alternative for any population of agents and any list of votes these agents may submit.

2.2 Democracy

The first property we discuss in this section states that a rule should respect the “will of
the people” when this “will” is unambiguous. It is an extremely weak axiom.

For all N € A and all z € X, let " be a vector in X such that for all i € N,
N =x. Forall N € N, all y € XV, and all M C N, let yys be the restriction of y to

i =

XM,
Unanimity: Forall N e N and all z € X, f (2V) = x.

The next axiom states that a rule should be ignorant of the names of agents. This
is a mild principle of equality, capturing the “one-man, one-vote” principle.

Anonymity: For all N, N’ € N such that |[N| = |N’|, all bijections o : N — N’ and all
€ XN and 2’ € X' such that for alli € N, x; = x;(i), f(x)=f(2).

2.3 Representative consistency

Informally, representative consistency states that for any population of agents and any
collection of votes, it is without loss of generality to partition the set of agents into
districts, find the choice for each district, and then treat each district as if each agent in
the district had voted for the outcome selected for the district.

Representative consistency: For all N € NV, all partitions { Ny, ..., Ng } of N, and all
e XN, f (@)= f (flow)™ oo f (on) ™).

Following our notation, the vector ( Fan)™, o f (an )N ) denotes the vector y €
XN where for all i € Ny, y; = f (zn,). Under the unanimity principle, representative
consistency is equivalent to the stronger statement that for all N € N, all M C N, and
allz € XN f(x)=f < flea)™ x N\ M). This latter version of representative consistency

is more useful in the proofs of theorems.

Representative consistency formalizes the idea that the selected alternative should
be independent of how the voters are partitioned into districts. ~While technically a
very strong condition, it is a natural formalization of the notion of “gerrymandering-
proofness.”



Before proceeding to the main results, we discuss an alternative notion of indirect
democracy that may appear to conform more naturally to real-world institutions. In
common practice, each district is treated equally, regardless of its size (there is usually
some attempt to equalize the populations of districts). This suggests that instead of
replacing each agent’s vote by the alternative selected for her district, we consider each
district as an independent voter, and apply the rule to the vote of the districts. This
is essentially the idea employed in the previously discussed works by Murakami [16, 17],
Fishburn [11, 12], and Fine [10]. In order to formalize this idea, a rule must be able
to take as an argument a vote by a district, where a district is treated as an agent.
To accommodate this idea, we suppose that rules g are defined on XV, so that a vote
profile only takes into consideration the number of voters voting for each alternative
(thus anonymity is presupposed). A notion of representative consistency conforming to
the above idea would state that for all z € X", g (z) = g (9 (z!) + g (%) + ... + g (%)),

where Zszl 2/ = x. In this definition, each j = 1,...K corresponds to a district. The

value g (27) is the outcome of the vote in this district. The vector g (') + g (2%) + ... +
g (:CK ) is thus the collection of representative votes.

This notion is extremely strong. There is little normative justification for treating
groups of different sizes equivalently. The notion suggests that a rule is independent
not only of how voters are partitioned into districts, but also independent of how much
weight each voter is given. Under the implicit hypothesis of anonymity, together with
unanimity this notion is easily seen to imply ours.

As mentioned in the introduction, one of our main conclusions is that our axioms
actually imply this stronger notion. This is far from obvious; in fact it is not true in
a model with an infinite set of alternatives. As a response to the potential criticism
that our axiom is not useful because it does not conform to real-world procedures, we
offer a weaker version of our notion of representative consistency that better captures
the actual procedure. Specifically, in the real-world, while districts are treated equally
independently of size, there is usually an attempt to preserve equality of populations
across districts.

If districts are required to be equipopulous, then under our notion of representative
consistency, there is no loss of generality in treating all districts as if they were single
voters (this will become clear in the next section). Under the unanimity and anonymity
properties, our notion of representative consistency and the stronger notion discussed
above are equivalent when restricting to partitions which equalize the populations of
districts. Returning to our model, we suggest an axiom that requires representative
consistency to hold only if the partition of agents equalizes the number of agents in each
district.

Weak representative consistency: For all N € N, all partitions {Ny, ..., N,,} of N
such that for all 4, j, | Ni| = |N;|, andallz € XV, f (z) = f <f ()™, f (me)N’").



We show in an appendix that under unanimity and anonymity, weak representative
consistency implies representative consistency. Thus, this axiom which better fits real-
world procedures attains the same results.

3 Results

3.1 Preliminaries

Any anonymous rule can be specified without reference to the specific names of agents.
In the proofs of results in which anonymity plays a role, we often exploit this fact without
mention, disregarding the variable N.

The following axiom can be interpreted as meaning that only the proportions of votes
received for each alternative are used in determining the social alternative.

Let m be an integer, let N € N, and let z € XV. Let N’ € N be such that
IN’| = m|N|. A vector 2 € X"'is an m-replica of x if there exists a partition of
N’ into m sets of size |N|, say {Ny, ..., N, } such that for all V;, there exists a bijection
oi: N — N so that for all j € N, 2; = 2),;. Forall N € N, z € XN, m eN, z™
denotes an m-replica of x.*

Replication invariance: Let m be an integer. Let N € N and let x € XV. Let a2’ be
an m-replica of . Then f (2') = f ().

The following trivial observation is useful:

Lemma 1: If a rule satisfies unanimity, anonymity, and representative consistency, then
it satisfies replication invariance.

Proof: Let N € N andlet x € X. Let 2’ be an m-replica of z. Then by definition

of!, f(x')=f | z,....,x |. By representative consistency, f (') = f | f(x),..., f ()
N—— e —

m m|N|

By unanimity, f | f(z),....f(x) | = f(z). Thus f(2') = f (x).H
——_—
m|N|
Our main result is a characterization of the class of rules satisfying unanimity, anonymity,

and representative consistency. The following example illustrates this class in the two-
alternative case. The description of the general class follows.

4There are many m-replicas of any given vector.



Example 1: Let X = {y,z}. Then there are only two rules satisfying unanimity,
anonymity, and representative consistency. One such rule selects f (z) = y unless
all agents vote for z. The other such rule always selects z, unless all agents vote
for y.

We now generalize Example 1 to the case of an arbitrary (finite) number of alterna-
tives. A partial order is a binary relation which is i) reflexive, 7) transitive, and i)
anti-symmetric. A partial order need not be complete.” For a partial order <, < denotes
the asymmetric part.5 A pair (Y, <) is a partially ordered set if Y is a set and < is
a partial order on Y. For all z,y € Y, where (Y, <) is a partially ordered set, zt Ay € Y
is the meet of x and y if it is the unique greatest lower bound for z and y according
to =. Generally, two elements x,y € Y need not possess a meet. A meet-semilattice

is a partially ordered set such that any pair of elements possesses a meet. For more on
these definitions, see Birkhoff [4].

Figure 1 displays a typical meet-semilattice. Each meet-semilattice can be pictured
as a directed graph with a unique root. Here, a is the root of the graph. An alternative
precedes another alternative in terms of the partial order if one can construct a path
emanating from the first alternative up the graph to the other alternative. Thus, in
Figure 1, a < ¢ as there exists a path going up the graph starting at a and ending at
c. Moreover, a < e. However, the alternatives b and ¢ are unrelated according to =,
as there exists no directed path between them. The meet of two alternatives is easily
found as the highest common predecessor of the two alternatives. Thus, b A e = a in the
example, whereas c A e = c.

A rule f is a partial priority rule if there exists a partial order < over X so that
(X, <) is a meet-semilattice, and for all N € N and all z € XV, f(z) = A\,cy zi-"°

Thus, with any partial priority rule, the proportion of votes received for each alter-
native does not matter. To select an alternative, one only needs to determine which
alternatives receive a positive number of votes.

>Reflexive: For all z € X, x = x.

Transitive: For all z,y,z € X, if x = y and y = 2. then z > 2.

Anti-symmetric: For all z,y € X, if x = y and y = z, then z = y.

Complete: For all z,y € X, either z > y or y = x.

6That is, = y if and only if x = y is true and y = = is false.

"The notation ;¢ y @; refers to the meet of the set of elements {;},;. , which exists for any meet-
semilattice.

8There is no significance to the fact that partial priority rules select the meet of the alternatives
receiving a positive number of votes. Every partial priority rule can equivalently be described through
the use of a partially ordered set in which every pair of elements has a join (unique least upper bound),
where the rule selects the join of the alternatives receiving a positive number of votes.
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Figure 1: A meet-semilattice

3.2 Interpreting partial priority rules

Let f be a partial priority rule with partial order <. Let z,y € X be ordered by =, so
that x < y. We may interpret this statement as reading “x has a higher priority than y.”
In other words, x is “more important” than y. This interpretation is possible because y
can be selected in place of x only if all agents vote for y in lieu of . Thus, each agent

can “veto” y by voting for x.

However, not all alternatives need be related by <. Suppose in fact that x and y are
unrelated according to <. Then we may interpret this as meaning that neither x nor y
can be deemed a more important alternative. In this case, some “compromise” must be
struck between the two. The compromise between x and y is decided using the partial
priority. It is the lowest priority alternative which has priority higher than both x and y.

3.3 The main theorem

The main theorem states that a voting rule is a “representative democracy” if and only
if it is a partial priority rule. The proof is constructive and is divided into five steps.
Given is a rule satisfying the axioms describing “representative democracy.” In the first
step, an order on the alternatives is defined from the rule, and it is verified that this
order is a partial order. This construction is always valid—even if X is not finite. The
most significant obstacle is in showing that this partial order forms a meet-semilattice
when coupled with X, which need not be true if X is not finite. We establish this fact in
Steps 2, 3, and 4. Step 2 shows that the rule is “monotonic” in the partial order. Step 3
shows that for two-agent environments, the selected social alternative lies below the two



alternatives voted for in terms of the partial order. Step 4 uses Steps 2 and 3 to show
that the partial order is actually a meet-semilattice and that for two-agent environments,
the rule selects the meet of the alternatives which receive votes. Step 5 establishes that
the rule always selects the meet of the alternatives which receive votes.

Theorem 1: A rule satisfies unanimity, anonymity, and representative consistency if
and only if it is a partial priority rule.

Proof: If f is a partial priority rule, then it clearly satisfies unanimity, anonymity,
and representative consistency. For the other direction, let f be a rule which satisfies
unamimity, anonymity, and representative consistency.

Step 1: Construction of the order and verification of its properties.

For all z,y € X, define z < y if f (x,y) = z. Let x € X. By unanimity, f (z,z) = z,
so that © < x. Thus, < is reflexive. Let z,y € X. Suppose x < y and y = x. Then by
definition, f (z,y) =z and f (z,y) = y. Thus, 2z = y and = is anti-symmetric.

We claim that < is transitive. Let x,y,z € X. Suppose r < y and y =X z. By
replication tnvariance,

f(ZL’,Z) = f(l’,]f,Z,Z) .
As x <y, by definition,

f(x,x,z,z):f(f(ac,y),f(ac,y),z,z).

By representative consistency,

f(f (@), f(z,y),2,2) = f(2,9,2,2) .

By representative consistency,

f(@y,2,2) = f (2, f(y,2), f(y,2),2).
As y = z, by definition,

f(xaf(yaz)vf(yaz)vz) = f(2,9,y,2).

By representative consistency,

f(ry,y,2) = f(v,y, f(y,2), f(y,2)) .
As y = z, by definition,

fy fy,2), [ (v2)=f(@yyy).

By representative consistency,

f(y,yy) =f(f (@), f(x,9),9,9).

10



As z <y, by definition,

f(f (@), f(ry),yy) = f(z,2,yy).

By replication invariance,
[z yy)=f(zy).
As x <y, by definition,
flz.y) ==

Thus, f(x,z) = x, so that by definition, = < z. Therefore, < is transitive.
Step 2: The rule is monotonic in the partial order.

We claim that for all z,y,2z € X, if x < y, then f(z,2) < f(y,2z). Thus, let
x,y,z € X and suppose x =< y. By replication invariance,

f(f(x,z),f(y,z)):f(f(:v,z),f(x,z),f(y,z),f(y,z)).

By representative consistency,

f(f(m,z),f(x,z),f(y,z),f(y,z)):f(x,z,y,z).

By anonymity, we may rewrite

f(x7z7y7z) :f('r7y7z7z)'

By representative consistency,

f(:v,y,z,z):f(f(x,y),f(m,y),z,z).

By replication invariance,

f(f(x,y),f(x,y),z,z) :f<f($,y),2).

As x < y, by definition,
f(f(y),2) = f(z,2).
Therefore,
f(f(,2), [y, 2) = [ (z,2),
so that, by definition, f (z,2) = f (y, 2).

Step 3: The rule maps every two element set into an element which
precedes them in the partial order.

We claim that for all x,y € X, f(z,y

) 2 x. Let x,y € X. We define an auxiliary
function F' derived from f. Let P = QN (0,1

) (this will be the domain of F).

11



For all p € P, p can be written as p = (( 7, where m (p),n(p) € N.2 For all p € P,

define F' (p) = f (:Em(p), ) —mp )). By replication invariance, which follows from Lemma,
1, F' is well-defined.

We claim that for all p,p’ € P and z € X such that p < p/, if F'(p) = z and F (p/) = z,
then for all p” € (p,p') NP, F (p") = z.

Thus, let p,p’ € P be such that F (p) = F (p') = z. Let p” € (p,p’) N P. Then there

m(a)

exists a € Q such that p” = ap+ (1 —a)p’. Since a € Q, v = 755 for m (o) ,n () € N.

n_ m(@)mp) | ((a)—m(a)) m _ m(@)m(p)n(p’)+(n(a)—m(a))m(p)n(p)
Thus p" = S ww T n@ iy We can write p’ = n(@)n(En) :
Thus, by appropriately arranging terms, F'(p”) is equal to:

f ((xm(p)’ yn(p)fm(p))"(p')m(a) , (xm(pl), yn(p’)m(p’))n(p)(n(a)m(a))) (1)
By assumption, f ( m(p) g (p) ) =f ( mp') ) z, so that by represen-

tative consistency, (1) is equal to f( np)n(p )m(a) , 2" ( nlp) (n(a)— m(a))). By unanimity,
f (z”(p)”(p')m(o‘),z"(p’)”( p)(n(e)—m(a ))) = z. Therefore, F (p") = z. Hence, F' is “convex.”

We next show that F'is constant on P. Since X is finite, there exists z € X and
a sequence {p"} - of elements of P such that p” — 1, for which F'(p") = z for all
n. Conclude by the previous paragraph (using the ¢ convex1ty” of F), that there exists
p* < 1 such that for all p € (p*,1) N P, F (p) =

We claim that for all p,q € P and all « € (0,1) NQ, if F (p) = F (¢), then F (ap) =
F (aq). Thus, let p, ¢, a satisfy these hypotheses and suppose F' (p) = F'(q ) = z. Write
p:%,q:%, anda—% Wherem(p) n(p), () n(q), ( ) ndn(a)e
N. By definition, F (p) = f (mm p)_mp) and F (q ( ‘1)). By
appropriately arranging terms,
Flap)=f ((zm(m, @) =m()y ) ,yn@)(n(a)fm(a))) 2)
and
F(ag) = f ((xm@, @) =m(@) ™ ’yn(qxn(a)fm(a))) ‘ 3)

By replication invariance, we obtain (by replicating n (¢) times the inside of (2))

Flap) = f ((xm@), (e mir)y ) 7yn<p>n<q><n<a>—m<a>>>

and (by replicating n (p) the inside of (3))

F (Oé(]) _ f ((xm(q)7 yn(q)—m(q))n(P)m(a) ’yn(p)n(q)(n(a)—m(a))) )

9This representation of p is obviously not unique.
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By representative consistency,
F(ap) = f ( J (am@) @)= @r@me) 7yn<p>n(q><n<a>fm<a)>)

and
)2 (aq) _ f (f (xm(q)7 yn(q)—m(q))n(P)n(Q)m(a) ’yn(p)n(q)(n(a)—m(a))> ]

As f (l,m(p)7yn(p)—m(p)) — f (Im(q)’yn(q)—m(q)) =z,

F(ap)=f (Zn(p)n(q)m(a)7 yn(p)n(q)(n(a),m(a)))
and
F(agq)=f (zn(P)n(Q)m(a)7yn(p)n(q)(n(a)—m(a))> '
Thus F (ap) = F (aq).
Let ¢* € P satisfy ¢* € (p*,1). Then F(¢*) = 2 and F (p*) = 2. Moreover, there

exists a* € (0,1) N Q such that p* = a*¢*. For all k =1, ..., 00, let g, = (a*)* ¢*. For all
k,q.>0. Asa* <1, g — 0.

We claim that for all k = 1,...,00, F(qx) = 2. By definition, F'(q0) = F (¢1) = z.
Proceed by induction. Let K € N such that K > 2. Suppose that for all £k < K,
F(qx) = z. We show that F'(qx) = z. By definition, F (gx) = F (a*qx_1). By the
induction hypothesis, F'(gx-1) = F (¢x—2) = 2, so that by the result in the previous
paragraph, F' (a*qx_1) = F (a*qx_2). By definition, F' (a*qx_2) = F (gx-1) = z, so that
F(gx) = F(a*qx-1) = 2. Thus, for all k, F'(gx) = 2. By the “convexity” of F', we
conclude that F is constant and equal to z on (0,1).

Lastly, we establish that f (z,y) < x. By the symmetry of this statement, we also
conclude that f (x,y) = y. By replication invariance,

f(f(x,y),x) :f(f(x,y),f(x,y),m,x).

By representative consistency,

f(f(z,9), f(z,9),2,2) = f(y,z,2,2).

By definition,
By the fact that F' is constant on P,
F(3/4)=F(1/2).

By definition,
F(1/2) = f(z,9).
Thus, f(f (z,vy),z) = f(z,y), so that by definition, f (z,y) < x.
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Step 4: For two agents, the rule chooses the meet of the alternatives
receiving votes

Let z,y € X. We claim that f (z,y) is the unique greatest lower bound for x and y
according to <. By Step 3, f (x,y) is a lower bound for = and y. Suppose there exists
another lower bound for x and y, say, z. Then, by definition, 2 < x and 2z < y. By Step
2,as z =Xy, f(z,2) X f(z,y). Asz <z, by definition, f (x,z) = z, so that z < f (z,y).
Thus, by the anti-symmetry of <, f (x,y) is the unique greatest lower bound for x and y.
Therefore, f (z,y) =z Ay. Thus, (X, <) is a meet-semilattice. Therefore, for all N € A/
and all z € XV, A\, y z; is well-defined (as A is associative-see Birkhoff [4], p. 8-10).

Step 5: Extending the result to arbitrary finite numbers of agents

We establish that for all N € A and all z € XV, f(z) = A,.y%;. The proof
proceeds by induction on the cardinality of the set of agents N. Suppose that |[N| = 1. By
unanimity, f (x) = = J\,cy ¥;- Suppose that [N| = 2. Then by Step 4, f (z) = A,cn i

Let K € N such that K > 2. Suppose that for all N € A/ such that |[N| < K and all
z e XN, f(x) = Niey %i- Let N* € N such that |[N*| = K. Without loss of generality,
write N* = {1,..., K}. Let € X"". By representative consistency,

f (ZIIl, ceny ZL‘K) = f (f (I‘l, ...,ZIIK_l) g ooy f (I‘l, ...,ZIIK_l) ,I‘K) .
By the induction hypothesis,

K-1 K-1
f(f (g, 1), [ (21, o 1), 2K) = f (/\ Ty e /\ xi,xK> .
i=1 i=1

By representative consistency (using the fact that K > 3),
) /\fi;l xiaf </\zfi11 Iia"'a/\z‘fizl xiaxK> y
K—1 K—1
f (/\i:l Tir oy Ni1 Ty $K>
By the induction hypothesis, the previous expression is equal to
K-1 K K
f (/\ ZL‘Z',/\ZL‘Z', ,/\l}) .
i=1 =1 i=1
By representative consistency,

" o _ f(/\fi]l%/\l 1371) f(/\@ 1 x“/\z 11'1), >
O O Rl S i )

By the induction hypothesis, the previous expression is equal to

((hehe)

=1
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By unanimity, f </\fi1 iy e, /\fil xz> = /\fil x;. Therefore, our induction hypothesis is
true. W

The following is a natural example of a partial priority rule.

Example 2: Sets of alternatives Let A be a finite set, perhaps representing a set of
public projects. Voters need to determine which public projects to undertake. To
this end, we study the power set of A. Thus, 24 is naturally ordered by set inclusion,
and it is clear that (2’4, C) forms a meet-semilattice, where for all B,C € 24,

BAC = BNC. Define f so that, for all N € N and all B € (2A)N, f ((Bi)z‘eN) =
(Nicn Bi- Thus, f selects all “alternatives” which are voted for by all agents.

The partial priority rules satisfy the three axioms no matter what the cardinality of X
is. But in order for them to be the only rules satisfying the three axioms, it is necessary
that X be finite. Here is an example of a set X which is countably infinite, and a rule f
on X satisfying the three axioms which is not a partial priority rule.

Example 3: A countably infinite set of alternatives Let X be countably infinite.
Let r : @ — X be a bijection (such a bijection exists as X and Q have the same
cardinality). Define f : [Jycy XV — X as

) =r (Bt ),

It is simple to verify that f satisfies the three axioms listed in the theorem. To see
that f is not a partial priority rule, let N be a two-agent set and N’ be a three
agent set. Let 2,5 € X such that » # y. Then (z,y) € XV and (z,2,y) € X',
Suppose f is a partial priority rule. Then f (z,y) =z Ay=x Az Ay = f(z,x,y).
By definition, f(x,y) =r (M) and f (v,z,y) =71 (M) Asr

is a bijection, conclude Fl(x);”ﬁl(y) = 2”71(””); W) Simple algebra allows us to

conclude 7! (z) = r~1 (y). As r is a bijection, x = y. But we supposed z # v, a
contradiction. A partial order < can be defined from f as in the proof of Theorem
1, Step 1. However, it is immediate that if  # y, then f(x,y) ¢ {x,y}. This
means that no pairs of alternatives are comparable, so that < is the trivial partial
order in which all alternatives are only comparable to themselves. Thus, (X, <)
does not form a meet-semilattice. 1011

10We are able to describe a large class of rules on infinite sets of alternatives which satisfy our three
axioms. Essentially, these rules work by composing the partial priority rules with rules similar to those
described in the example.

UTnfinite sets of alternatives are useful in modelling “proportional representation.” Instead of voting
for alternatives, agents vote for lotteries over the alternatives. The interpretation of a lottery is that the
governing body is composed of proportions of agents who support each particular alternative.
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3.4 Positive vote-share and priority orderings

A partial priority rule cannot generally be interpreted as prioritizing all alternatives.
Here, we introduce a condition which implies that the partial order underlying a partial
priority rule is a linear order. It states that an alternative cannot be selected without
receiving any votes. It is natural to impose when X is a set of candidates, for example.

Positive vote-share: For all N € N and all z € XV, f(z) € {z;},.y-

The following corollary states that the partial priority rules satisfying positive vote-
share are exactly those partial priority rules which prioritize all alternatives.!?

Corollary 1: A rule f satisfies unanimity, anonymity, representative consistency, and
positive vote-share if and only if there exists a linear order < over X such that for
all N e N and all 2 € XV, f () = min< {z;}, .

Proof: It is simple to verify that the axioms are satisfied by any such rule.

For the other direction, let < be the partial order constructed from fin Theorem 1.
For all z,y € X, positive vote-share implies that f (z,y) € {z,y}. By definition of =<,
either z <y or y < x. Hence =< is complete, so that it is a linear order. l

The preceding corollary can be proved directly without referring to Theorem 1. In
fact, a crucial step in the proof of Theorem 1 relies on the fact that X is finite. However,
the preceding corollary can be proved even without the finiteness of X. The reasoning is
simple. In the proof of the main theorem, we define the partial order over X by z <y
if f(z,y) = x. However, we had to determine that (X, <) is a meet-semilattice (Step 2,
Step 3, and Step 4). When positive vote-share is satisfied, (X, <) is easily seen to be a
meet-semilattice, as < is complete.

4 The spatial model

As noted, the partial order corresponding to a partial priority rule is interpreted as
a priority of alternatives and not as a way of relating the similarity of alternatives.
However, there is often a natural, exogenous way of ordering the set of alternatives. In
the remainder of this section, we suppose X is exogenously endowed with a linear order
<*. We interpret <* as ordering the alternatives by some attribute in a fashion agreed
upon by all potential agents. Thus, for all z,y,z € X, z <* y <* z is to be read as “y
is more similar to x than z is” in terms of the attribute.

The analysis of this section leads to three progressively more restrictive classes of
rules.

12A linear order is any binary relation which is i) complete, i) transitive, and i) anti-symmetric.
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4.1 Formal notions of compromise

The first condition states that the selected social alternative should be a “compromise”
amongst the agents’ votes, in the weak sense that it lies between the minimal and maximal
votes according to <*. As mentioned in the Introduction, if agents possess single-peaked
preferences over X (to be defined formally below), betweenness is equivalent to requiring
that a rule select Pareto efficient alternatives.

Betweenness: Forall N € N andallz € XV, min- {2;}, .y <* f (2) <* max<- {z;}, -

The next condition is a weak monotonicity condition. If all agents’ votes move in
a certain direction, so should the selected social alternative. This is a simple condition
reflecting the fact that the selected social alternative is “representative” of the agents’
votes.

Vote monotonicity: For all N € A" and all z,y € X¥, if for all i € N, ; <* y;, then
f(x) < f(y)

The following lemmas will be useful.

Lemma 2: If a rule satisfies betweenness, then it satisfies unanimity.

Proof: Let f be a rule that satisfies betweenness. Let N € N and let z € X. Then
min<- {xﬁv}ieN = 2z and max<- {sz}z‘eN = x. By betweenness, © <* f (zV) <* z. As
<* is anti-symmetric, f (xN ) = x. Therefore, f satisfies unanimity. B

Lemma 3: If a rule satisfies unanimity and vote monotonicity, then it satisfies between-
ness.

Proof: Let f be a rule that satisfies unanimity and vote monotonicity. Let N €
N and let 2 € XV, Then for all ¢ € N, mine {2;};cpy <* 2; < max< {z;},cy.

By unanimity, f ((ming* {xi}ieN)N) = min<- {2}, 5 and f ((maxS* {xi}ieN)N
max<- {Z;},.y- Thus, by wvote monotonicity, min<. {z;},., <* f(z) and f(z) <*
max<- {¥;},. . Thus f satisfies betweenness. B

4.2 Results on compromise

We begin this section by defining two subclasses of the partial priority rules, which depend
on the linear order <*.

Say that a rule f is an interval partial priority rule if it is a partial priority rule
and for all z,y,2z € X, if y,z >* x, then y A z >* z, and if y, z <* x, then y A z <* .
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Figure 2: An interval partial priority rule

Thus, a partial priority rule is an interval partial priority rule if the weak lower and upper
contour sets of any alternative according to <* are themselves meet-semilattices under
the partial order induced by <. The term “interval” refers to the fact that restricted to
any interval according to <*, the rule is still a partial priority rule. Say that a rule f
is a separating partial priority rule if it is an interval partial priority rule such that
forall z,y,2z € X, if x <y <* z and z,2z = y, then x A 2 = y. Thus, an interval partial
priority rule is a separating partial priority rule if the weak lower and upper contour
sets of any alternative according to <* never “intersect” at any element greater than the
alternative itself. The term “separating” refers to the fact that these contour sets never
intersect.

Figure 2 displays the meet-semilattice corresponding to a typical interval partial pri-
ority rule under the presumption that a <* b <* ¢ <* d <* e. The general structure of
such rules can be grasped from this diagram. The main characteristic of such a rule is
that there are at most two branches emanating from any alternative. If there are two
branches, one must branch into the upper contour set of the alternative, and the other
must branch into the lower contour set (as in the diagram, the two branches emanating
from b branch into the two different contour sets). These two branches are allowed to re-
join. It is clear that the meet-semilattice in Figure 2 does not correspond to a separating
partial priority rule, as a <* b <* e and a,e = b, yet a A e = a.

Figure 3 displays the meet-semilattice corresponding to a typical separating partial
priority rule. The general structure of separating partial priority rules can be understood
from this diagram. Note that the alternatives a,b, ¢, d, and e are ordered from “left” to
“right.” Moreover, at most two branches emanate from any given alternative. The last
important characteristic is that for any alternative, one can draw an imaginary vertical
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Figure 3: A separating partial priority rule

line branching up from the alternative which never crosses the graph. Thus, the graph
corresponding to a separating partial priority rule is a system of interlocking “y”-shapes.
Such a graph looks like an upside-down game tree in which at any given point, there are
only two possible moves.

Theorem 2: A rule satisfies betweenness, anonymity, and representative consistency if
and only if it is an interval partial priority rule.

Proof: Suppose f is an interval partial priority rule. We already know that it satisfies
anonymity and representative consistency, so we will show that it satisfies betweenness.
Thus, let N € N and # € XV. As f is an interval partial priority rule, and since for all
i € N, minc. {x;},.y <* 23, we obtain min<- {z;},.y <* A;cny 75 A similar expression
holds for max<- {;},.y, so that f satisfies betweenness.

Now suppose that f is a rule satisfying the axioms. By Lemma 2, we know that
it is a partial priority rule. We will verify that f is an interval partial priority rule.
Let z,y,2 € X, and suppose that y,z >* x. Without loss of generality, assume that
y >* z >* x. By betweenness, f (y,z) >* z. By the transitivity of <*, f(y,z) >* x. By
definition, f (y,z) = y A z. Thus, y A z >* z. A similar statement holds for the lower
contour set of z. M

Theorem 3 demonstrates that a partial priority rule is vote monotonic if and only if
it is a separating partial priority rule.

Theorem 3: A rule satisfies unanimity, anonymity, representative consistency, and vote
monotonicity if and only if it is a separating partial priority rule.
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Proof: By Lemma 3 and Theorem 2, if f satisfies the axioms, it is an interval partial
priority rule. Let z,y,2z € X satisfy  <* y <* z and x,2z = y. By vote monotonicity,
Nz =f(z,2) <* f(y,z) =yandxAz = f(x,2) >* f(z,y) = y. By the anti-symmetry
of <*, x A z =y. Thus, f is a separating partial priority rule.

For the other direction, let f be a separating partial priority rule. We will show that
it is vote monotonic.

Let < be the partial order associated with f. Say a partial priority rule f satisfies
condition (%) if for all x,y,z € X, if # <* y, then f (z,2) <* f(y,2z). We claim that
if a partial priority rule satisfies condition (%), then it is vote monotonic. To see why,
suppose (x)is true. Let N € N, and let x,y € XV. Suppose that for all i € N,
x; <* y;. Suppose, without loss of generality, that N can be ordered as N = {1,...,n}.
For all m = 1,....n, let ymz = (Y1, s Ym, T, - Tn). We show by induction that for
all m = 1,...n, f(x) <* f(ymz). Let m = 1. Then z; <* y;. By condition (%),
o1 AN (N—o i) <* y1 A (Ai_y@i). Thus, f(x) <* f(z). Let M < n be some integer.
Now, suppose that for all m < M, f(x) <* f(ymz). By assumption, x,; <* yp. By

condition (x),
(A (4,))
(0 (5

The left-hand side of this expression is f (ya;_12), and the right-hand side is f (yyz).
Thus, f(ym—17) <* f(yn). By transitivity of <*, f(z) <* f(ym—12) <* f(yu®)
implies f (z) <* f (ymx). Thus, for all m = 1,...,n, f(x) <* f(ynz). In particular, if
m = n, then y,x =y and f (z) <* f (y).

We now show that if a rule is a separating partial priority rule, then it satisfies
condition (). Let z,y,z € X, and suppose that x <* y. There are three possible cases.

a) y <* z: In this case, as f is a separating partial priority rule, it is an interval
partial priority rule. Thus, y <* y A z <* z. If x A 2 <* y A z, we are done. Otherwise,
yAz <*xAz. As fisan interval partial priority rule, yAz <* (y A2)A(z A z) <* T Az
As (ynz)AN(xANz)=xAyANz,y< xzAyAz<*z By definition, y,z = x Ay A z. As
f is a separating partial priority rule, conclude y A z = x A (y A z). Thus, by definition,
yANz=z. Thus, z,z = y Az and v <* y A z <* 2. As f is a separating partial priority
rule, conclude x Az =y A z. Thus, z Az <" y A 2.

b) x <* z <* y: In this case, as [ is an interval partial priority rule, z <* z A z <*
2<*yNz<*y,sothat Az <*yAz.

c) z <* x: This case is symmetric to case a). W
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4.3 Strategic considerations in the spatial model

We now study a domain of preferences over X. Say a binary relation R on X is single-
peaked if there exists 2 (R) € X such that for all z,y € X, if z(R) <* 2 <* y or if
x(R) >* z >* y, zPy."3 Let SP (X, <*) be the set of all single-peaked binary relations
for the linearly ordered set (X, <*).

We ask which partial priority rules satisfy the following condition, which states that
if votes are taken to be agents’ peaks, then no agent can ever benefit by lying about his
peak. This condition was first studied in this model by Moulin [15].

Strategy-proofness: For all N € N, all R € SP(X,<*)", all j € N, and all R €
SP (Xa S*)v f ((33 (Ri))ieN) ij ((x (Ri))ieN\{j} » L (R;)>

Say a partial priority rule f is a target rule if there exists x* € X such that for
all y,z € X, i) z <* y <* x*implies z = y, i) x* <* y <* z implies z = y, and 7ii)
y < x* <* z implies y A z = x*. Thus, a target rule is a partial priority rule with two
branches, rooted at z*, one of which agrees with the order <*, the other of which is the
opposite of the order <*. Target rules were first discussed by Thomson and Thomson
and Ching [20, 21] using a different set of axioms. The terminology belongs to them.
The word “target” refers to the element x* € X discussed in the definition. A target rule
selects the alternative in between the agents votes that lies closest (in terms of <*) to
the target.

In Figure 4, we display the meet-semilattice corresponding to a typical target rule.
Here, the alternative x* corresponds to b. The partial orders corresponding to target
rules all have the “v”-shape as depicted here.

Theorem 4: A rule satisfies unanimity, anonymity, representative consistency, and strategy-
proofness if and only if it is a target rule.!®

Proof: Clearly, the target rules are partial priority rules, and thus satisfy unanim-
ity, anonymity, and representative consistency. It is well-known that they also satisfy
strategy-proofness. Thus, we will show that any rule satisfying the axioms must be a
target rule.

First, we show that for all z,y,z € X, if + < y < 2z, then either x <* y <* 2z or
z <* y <* z. Call this property the chain property. Suppose that this statement
is false. There are four alternative orderings of z,y, z according to <*. We will only

13 As usual, for a binary relation R, P denotes the asymmetric part of R. The alternative z (R) is
called the peak of R.

141n this environment, a rule selects only Pareto efficient alternatives if and only if it satisfies between-
ness with respect to the peaks.

5For a fixed population N € N, it follows that the target rules must be generalized median voter
rules, as defined in Moulin [15].
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Figure 4: A target rule

show that one such ordering leads to an impossibility. The remaining three cases can
be similarly proved. Thus, suppose y <* z <* x. Suppose, without loss of generality,
that y <* z (this is without loss of generality, as otherwise, z <* y <* z holds). Let
R e SP(X,<*)suchthat x (R) = zand zPy. Thenasy =< z, f (x (R) ,y) = y. However,
f(z,y) =2Py = f(z(R),y), in contradiction to strategy-proofness.

Next, we show that f is an interval partial priority rule. Thus, let x,y, 2 € X such that
x,y >* z. If x = y, then clearly x Ax = x. So suppose that x # y, and suppose zAy <* z.
Without loss of generality, suppose that y >* z. Let R € SP (X, <*) satisfy z (R) = v.
Then f(z,z) = zP(xAy) = f(x(R),x), a contradiction to strategy-proofness. The
case in which z,y <* z is proved similarly.

Let 2* = A\ .y z. By definition of z*, for all # € X, 2* < z. We prove that 7) in the
definition of target rule is true; i) follows from a symmetric argument.

Let y,z € X such that z <* y <* z*. We show that z = y. As f is an interval
partial priority rule, z <* y A z <* y. Moreover, by definition, y = y A z > z*, so that
by the chain property and the fact that z* >* y, * >* y A z >* y. Thus, y A 2z <* y and
y A z >* y, so that by the anti-symmetry of <*, y A z = y. Thus, by definition, z > y.

To verify 1) in the definition of target rule, let y, z € X satisfy y <* 2* <* 2. As
y = y Az = x*, by the chain property, x* >* y Az >*y. As z = y A z > z*, by the chain
property, x* <* y Az <* z. Therefore, * >* y Az and z* <* y A z. By the anti-symmetry
of <" ynz=2z2". 1
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5 Discussion and conclusion

5.1 Previous literature related to representative consistency

Representative consistency is mathematically not a new condition; however, we believe
that the interpretation here is. Blackorby and Donaldson [5] study a condition called
the “population substitution principle,” which is the same as representative consistency.
Their interest in the condition is in comparing the welfares of varying groups of agents.
The literature on functional equations has studied this (dating back to 1930-see [13, 18],
as well as [6]) and related notions. These works use the notion in a system of axioms
to characterize the quasi-arithmetic means [1, 2]. For a good introduction, see Diewert
[7]. The main analytical distinction between our work and these works is that the cited
works require the domain of a rule to be a continuum, usually the unit interval. To our
knowledge, no other work has allowed the domain to be a finite set. The difference
in the two domains leads to different results, as the continuum model admits a richer
family of rules satisfying representative consistency. Of course, this is not to argue that
representative consistency is unappealing in the finite model. The conceptual appeal of
the condition as a primitive is independent of its analytical implications.

The condition of path independence, first formalized by Plott [19] also resembles rep-
resentative consistency. However, path independence is a only well-defined for choice cor-
respondences. Hence, representative consistency and path independence are not logically
related. Theorem 5 of Plott [19] is closely related to our Corollary 1. Characterizations
of the family of choice rules satisfying path independence are provided by Aizerman and
Aleskerov [3], pp. 167-168.

Finally, the first works to study indirect vote aggregation in social choice models are
those which study representative systems, mentioned in the introduction. This literature
was introduced by Murakami [16, 17], and later studied by Fishburn [11, 12] and Fine
[10]. These works introduce the distinction between direct and indirect voting in formal
social choice models. Their interest is in understanding which voting rules can arise as
representative systems when taking plurality rule as primitive and by allowing different
voters and districts to have different “weights.” The distinction is that they require no
consistency between indirect and direct voting. Rather, they study which rules can be
thought of as arising from indirect voting, where majority rule is applied at each level.
Moulin [15], as also mentioned in the introduction, discusses the related idea of showing
that a representative system of strategy-proof rules is itself strategy-proof.

5.2 General comments

Partial priority rules violate neutrality, which requires that the “names” of alternatives
should not matter for a voting rule. In a pure voting model, anonymity and neutrality are
incompatible when rules must be single-valued and environments with even populations
of agents are permissible. A natural extension of our model would include rules which
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are allowed to be multi-valued. Such an extension requires redefining representative con-
sistency for this case. Whether similar results obtain depends on this notion. Neutrality
can also be captured when lotteries are permitted.

In our model, we implicitly assume that the same voting rule is applied at all levels
of government. A natural extension of the model would study two different voting rules,
say f and g. The rule f would be applied at the district level. The rule g would be used
for aggregating representative votes at the national level. In this scenario, representative
consistency would say that the composition of g with f should always select the same
alternative, independently of the partitioning of agents into districts. It turns out that
if unanimity and anonymity are required for both voting rules, then the two voting
rules coincide and Theorem 1 applies. To see why, let N € A and let z € X7, By
putting each agent into her own district, the outcome of the rule is g ((f (#:)),cy )
putting all agents in the same district, the outcome of the rule is g (f (z), ..., f (z)). B
unanimity of f, g (f (:);cy) = 9 (%), and by unanimity of g, g (f (z),. (x)) f(z )

f

By representative consistency, g (f (2:);en) = 9(f (), .., f (x)), so that g(z) = f(x).
Hence g = f.

II\_/

A natural question is whether Theorem 1 holds when the set of potential agents
is finite. While we have no proof, we conjecture that if the cardinality of the set of
potential agents is at least three, then a result akin to Theorem 1 holds. A potential
approach to solving this problem is presented in Aczél [1] in his characterization of the
quasi-arithmetic means based on the bisymmetry equation.

6 Appendix A-Independence of the axioms

The following are examples establishing the independence of our axioms. Each axiom is
followed by a rule which violates it and satisfies the other two axioms of Theorem 1.

Unanimity (constant rule): Let f be a constant rule—i.e. there exists z € X such
that for all N € Nand all z € XV, f (z) = 2.

Anonymity (dictatorship): Let R be a linear order on the set of agents N. For
all N € N and all z € XV, f(2) = Targmaxy N-  Here, argmaxp N refers to
{i € N:iRj for all j € N}. Thus, this rule selects that alternative voted for by
the agent in N with the highest priority.

Representative consistency (median voter): Let <* be a linear order on X. For
all N € N and all x € XV,

N
f(x) = nii*n {x e{zitey it <Ml > %}
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7 Appendix B-Equipopulous districts

This appendix discusses a restricted version of representative consistency.

Weak representative consistency: For all N € N all partitions {Ny, ..., N,,} of N
such that for all 4, j, | Ni| = |N;|, andallz € XV, f (z) = f <f ()™, f (me)N’").

As the name suggests, weak representative consistency is a weaker condition than
representative consistency. Under unanimily, weak representative consistency has no
bite in environments in which the set of agents cannot be partitioned into nontrivial
districts of equal cardinalities. This is the case if the set of agents has a cardinality
which is a prime number.

We establish that no new rules emerge when requiring that districts be equipopulous.
Thus, even if all districts are required to contain the same number of agents, any rule
which is not a partial priority rule presents some opportunities for gerrymandering.

Theorem 5 generalizes Theorem 1 using the weak representative consistency condition.

Theorem 5: A rule satisfies unanimity, anonymity, and weak representative consistency
if and only if it is a partial priority rule.

The theorem relies on the following lemma, whose proof is identical to Lemma 1.
Thus, we state it without proof.

Lemma 2: If a rule satisfies unanimity, anonymity, and weak representative consistency,
then it satisfies replication invariance.

The next lemma establishes that if a rule satisfies unanimity, weak representative
consistency, and replication invariance, then it satisfies representative consistency. Taken
together, Lemmas 2 and 3 will directly imply Theorem 5.

Lemma 3: If a rule satisfies unanimity, weak representative consistency, and replication
invariance, then it satisfies representative consistency.

Proof: Let f be a rule that satisfies unanimity, weak representative consistency,
and replication invariance. Let N € N and let x € XV. Let {Ny, ..., N,,,} be a partition

of N. We claim that f (z) = f <f (le)Nl,...,f(g;Nm)Nm).

By replication invariance,

[

fla)=fz=
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Rewrite
m m

ﬁw [

f re=t - f (INk>i:1

k=1
Again, rewrite
m m ‘Nk‘ m
[T [T
i=1 i#k
k=1 k=1

Forall k=1,....m xﬁ:c has cardinality H |N;|. By weak representative consistency,

)
i=1

INk[\ ™ INgl | | 1val
[T | J X H
f TN, =f||f]an
k=1
k=1
By replication invariance, for all k =1, ..., m,
H|Ni|
flen = [ (zn,)
Thus,
il | o N
gNi = i | T
VA =/ /f@n) =
k=1
k=1
By replication invariance,
il | vl .
i [ ] = s(Gemr.
k=1
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By anonymity, which is implied by replication invariance,

Thus, f(x)=f ( Flan)™, . f(x Nm)Nm> and representative consistency is satisfied.l

The proof of Theorem 5 is now simple.

Proof: Let f be a partial priority rule. Then it clearly satisfies unanimity, anonymity,
and weak representative consistency.

Let f be a rule that satisfies unanimity, anonymity, and weak representative consis-
tency. By Lemma 2, f satisfies replication invariance. By Lemma 3, f satisfies representa-
tive consistency. Thus, f satisfies unanimity, anonymity, and representative consistency.
By Theorem 1, f is a partial priority rule. B
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