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Abstract

If a decision maker whose behavior conforms to the max-min expected
utility model (Gilboa and Schmeidler [15]) is faced with a scoring rule for
a subjective expected utility decision maker, she will always announce a
probability belonging to her set of priors; moreover, for any prior in the set,
there is a scoring rule inducing the agent to announce that prior. We also
show that on the domain of Choquet expected utility preferences (Schmei-
dler [27]) with risk neutral lottery evaluation and totally monotone capac-
ities, proper scoring rules do not exist. This implies the non-existence of
proper scoring rules for any larger class of preferences (CEU with convex
capacities, multiple priors). Keywords: experimental procedures, scoring
rule, subjective expected utility, implementation, multiple priors, Choquet
expected utility, probability elicitation. JEL classi�cation: D81, C49
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1. Introduction

A typical experimental economics procedure for eliciting subjective beliefs of
agents is the �scoring rule.�1 A scoring rule is a menu of actions. A decision
maker is asked to choose an element from this menu; optimizing behavior of the
decision maker reveals her probability measure.
Consider an environment with an exogenous set of states of the world. In

classical models of subjective expected utility, decision makers make choices be-
tween acts, or state-contingent outcomes. Savage [24] establishes that a decision
maker whose behavior conforms with several intuitive axioms acts as if she be-
haves in an expected utility fashion. For such a decision maker, there exists a
unique probability measure over the states of the world, and a utility function over
money. The decision maker always makes choices over acts in order to maximize
her expected utility. In theory, this unique probability measure can be recovered
by observing all possible choices between pairs of acts. While Savage�s theory
requires an in�nite set of states of the world, other theories, most notably that of
Anscombe and Aumann [2], do not.
Suppose that the decision maker in question is risk-neutral, so that her utility

index over monetary payo¤s is a¢ ne (we will see that this is without loss of
generality). It is not necessary to observe all possible choices between all pairs
of acts in order to elicit the unique probability measure representing beliefs. It is
enough to o¤er such a decision maker one choice over a menu of acts, an insight
originally due to Brier [4]. Optimizing behavior of the decision maker reveals her
probability measure. Such a menu of acts is referred to as a scoring rule. A
scoring rule is proper if the unique optimizing choice is to reveal her probability
measure. The theory of scoring rules can easily be viewed as a subset of the
implementation literature (surveyed, for example, by Jackson [18])�a scoring rule
is a single-agent mechanism whereby it is always a strictly dominant strategy for
a decision maker to reveal her true preference.
The theory of scoring rules meshes well with the �as if�approach of classical

decision theory. A decision maker is only required to make a choice from among a
menu of acts; there need not be any mention of the word �probability�by whoever
o¤ers this menu to the decision maker.
Brier provides the �rst example of a proper scoring rule and McCarthy [19]

1When we use the term beliefs, or the belief of an event E, we mean the maximal monetary
amount an agent would pay for a bet which returns one monetary unit if E obtains and zero
otherwise.



(see also de Finetti [8] and Savage [25]) fully characterizes the proper scoring rules.
The �rst to interpret scoring rules as incentive devices is Good [16]. Scoring rules
are commonly used in the experimental economics literature to elicit probabili-
ties, starting with the work of McKelvey and Page [20], as noted by Camerer [5]
(p. 592-593) (who also discusses the general use of scoring rules in experimen-
tal economics). The typical protocol is as follows. Subjects are assumed to
form probabilistic beliefs over some binary outcome. The experimenter o¤ers the
subject a menu of acts conforming to some scoring rule, typically the quadratic
scoring rule. Subjects are informed that it is in their best interest to choose
that act corresponding to their belief. Subjects then choose accordingly. This
procedure is used throughout experimental economics; two prominent examples
are McKelvey and Page [20] and Nyarko and Schotter [22].
The preceding protocol operates under the presumption that a given decision

maker�s behavior conforms to the subjective expected utility axioms. Of course,
the subjective expected utility paradigm is not universal. Ellsberg [10] demon-
strates this. The behavior of many decision makers does not conform to either
the Savage or Anscombe and Aumann axioms. Informally speaking, there may
be uncertainty about probabilities of certain events, referred to in the literature
as �ambiguity.�2 Given that the experimental protocol presumes that subjects
form probabilistic beliefs, it is important to understand how they behave if they
do not. This brings us to the �rst main result of our note. A well-known model
that accommodates Ellsberg-type behavior is the max-min expected utility model,
axiomatized by Gilboa and Schmeidler [15]. This decision maker can be viewed
as possessing a set of priors. She evaluates the utility of an act by taking the
minimal expected utility of the act across all priors in her set. We uncover which
probabilities such a subject might announce.
Our �rst main result shows that she will choose an act corresponding to some

probability measure in her set of priors. We also conclude that for every such
probability, there exists a proper scoring rule for which she chooses the act corre-
sponding to the probability. This result allows us to conclude that decision makers
facing �ambiguity�systematically overstate their beliefs when facing a traditional
proper scoring rule. This result should serve as a caution to experimentalists to
ensure that their subjects indeed possess probabilistic beliefs.
Ultimately, one would like to design a scoring rule allowing a decision maker

to express beliefs re�ecting subjectively ambiguous situations. We investigate

2General theories of ambiguity are found in the works of Epstein [11], Epstein and Zhang
[12], and Ghirardato and Marinacci [13].



the possibility of this approach in a model which is much less general than max-
min expected utility. A well-known model due to Schmeidler [27] features non-
probabilistic beliefs. A decision maker whose behavior conforms to the Choquet
expected utility model has a unique, possibly non-additive, set function represent-
ing beliefs. Our second result is that there exists no analogue of a proper scoring
rule for this model. This demonstrates the impossibility of recovering beliefs
by observing the choice from a single menu. When consequences are suitably
interpreted, using a single menu is without loss of generality. A decision maker
who is not subjective expected utility will �look ahead,�reducing any sequence or
collection of choices into a single decision by considering only the �nal outcome as
one large act. Otherwise, this decision maker is susceptible to Dutch books (the
idea is originally due to Ramsey [23] and de Finetti [7]; see also Savage [24] and
Schick [26]).
The result is demonstrated on the smallest well-known extension of the sub-

jective expected utility paradigm, giving a broad-ranging impossibility result for
non-expected utility models. It establishes that the existence of proper scoring
rules for subjective expected utility models is knife-edge.
Section 2 introduces the model. Section 3 discusses our primary results.

Section 4 concludes. All proofs are in an Appendix.

2. The model

Let 
 be a �nite set of states of the world. An act is a function x : 
! R. The
set of acts is denoted F . A capacity is a function � : 2
 ! R which is monotonic
(i.e. for all E;F � 
, if E � F , then � (E) � � (F )), and is normalized so
that � (?) = 0, and � (
) = 1. A capacity is totally monotone if for all
fE1; :::; Eng � 2
,
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Denote the set of totally monotone capacities on 
 by TM (
) and denote the
set of probability measures on 
 by �(
).
All probability measures are totally monotone capacities and all totally

monotone capacities are convex. A capacity is a probability measure if and
only if the corresponding � assigns positive value only to singletons.



A risk-neutral Choquet expected utility maximizer evaluates acts x : 
 ! R
through the use of the Choquet integral 3:

E� [x] =

Z



x (!) d� (!) .

The Choquet integral is de�ned as

E� [x] =

Z 1

0

� (f! : f (!) � tg) dt+
Z 0

�1
[� (f! : f (!) � tg)� 1] dt.

Preferences conforming to the Choquet expected utility model were introduced
and axiomatized by Schmeidler [27].4

Say a preference ordering is a max-min expected utility ordering if there
exists a nonempty, closed, convex set P � �(
) such that the decision maker
evaluates acts x according to minp2P Ep [x]. Max-min expected utility preferences
were �rst axiomatized by Gilboa and Schmeidler [15].
Let C be some set of capacities. A scoring rule on C is a function f : C ! F

for which for all �; � 0 2 C,

E� [f (�)] � E� [f (� 0)] .

Obviously, scoring rules exist; simply �x x 2 F , and let f (�) � x for all � 2 C. A
scoring rule is proper5 if for all �; � 0 2 C for which � 6= � 0, E� [f (�)] > E� [f (� 0)].
A decision maker facing a proper scoring rule acts in her best interest (in an
ex-ante sense) by choosing the act corresponding to her capacity.

3Note that we require our decision-maker to be risk-neutral. This is also a feature of the
pioneering work of Brier [4], McCarthy [19], and Savage [25]. However, the key feature of
risk-neutrality is that the decision maker has a von Neumann-Morgenstern utility index which
is linear. If one accepts the theory of Anscombe and Aumann [2], then decision makers need
not be risk-neutral, and one can use lotteries as payo¤s. Instead of monetary compensation,
state-contingent payo¤s would be in the probability of winning some alternative. This idea is
�rst introduced in Allen [1]. The only di¤erence is the requirement that probabilities must lie
in the unit interval [0; 1], whereas monetary payo¤s could be potentially unbounded. However,
any monetary proper scoring rule will also necessarily be bounded, at least in the subjective
expected utility model.

4Other references include Nakamura [21] and Chew and Karni [9].
5Sometimes, such a scoring rule is referred to as strictly proper.



3. Results

The following result is due to McCarthy [19], Theorem 1.6 In the theorem, g is
a function of beliefs which returns the expected payo¤ to a decision maker when
announcing optimally. The primary requirement is that this function is strictly
convex.

Theorem 1 (McCarthy): The function f : � (
) ! F is a proper scoring
rule on �(
) if and only if there exists some strictly convex function g :
� (
)! R for which for all � 2 �(
), the function h� : � (
)! R de�ned
by h� (� 0) � E�0 [f (�)] is an element of the subdi¤erential of g at �.7

The question addressed here is the following. Let f be a scoring rule on�(
),
and let P � �(
) be closed and convex. For which p� is it true that

min
p2P

Ep [f (p
�)] � min

p2P
Ep [f (p

0)]

for all p0 2 �(
)? When a max-min expected utility decision maker is faced with
a scoring rule on �(
), which probability measure will she reveal? The question
is important for experimental economics. For the max-min expected utility model,
decision makers systematically overstate their �beliefs.�
If the scoring rule f is not continuous, a solution to the optimization prob-

lem need not exist, as simple examples verify. To this end, we are concerned
primarily with continuous scoring rules on �(
); those are the scoring rules for
which the corresponding function from Theorem 1 g : � (
) ! R is everywhere
di¤erentiable.

Theorem 2: Let f be a continuous proper scoring rule on �(
) and let P be
convex and compact. Then argmaxp�2�(
) minp2P Ep [f (p�)] exists, is a sin-
gleton, and is equal to argminp�2P maxp2�(
)Ep� [f (p)]. In particular, the
unique solution to the optimization problem is an element of P . Further-
more, for all p 2 P , there exists a continuous probabilistic scoring rule whose
corresponding solution is p.

6An in�nite-dimensional extension is provided by Hendrickson and Buehler [17]. While
McCarthy�s original motivation has little to do with belief elicitation, the formal results found
there are frequently interpreted as statements on the possibility of belief elicitation through
scoring rules (for such interpretations, see Savage [24] and Hendrickson and Buehler [17]).

7Formally speaking, g � h� , and g (�) = h� (�).



We will show that there does not exist a proper scoring rule on TM (
). The
set TM (
) can be identi�ed with a set which is of exponentially higher dimension
than �(
). It is more di¢ cult to use acts in F to distinguish between decision
makers with di¤ering capacities.

Theorem 3: If j
j > 1, there does not exist a proper scoring rule on the domain
TM (
).

Corollary 1: For all C for which TM (
) � C, there does not exist a proper
scoring rule on C.

The preceding corollary applies to the case of those individuals who evaluate
acts with respect to convex capacities and to the general model of biseparable
preferences of Ghirardato and Marinacci [14].
We may de�ne a scoring rule in which decision makers announce sets of priors.

Denote by K (� (
)) the nonempty, compact, convex subsets of �(
).

Corollary 2: There does not exist a function f : K (� (
)) ! F for which for
all P; P 0 2 K (� (
)) with P 6= P 0

min
p2P

Ep [f (P )] > min
p2P

Ep [f (P
0)] .

4. Conclusion

A natural question is exactly what can be elicited from a decision maker facing
a single menu of acts. What Theorem 2 (coupled with Theorem 1) establishes
is that for a max-min expected utility decision maker with prior set P , we may
elicit argminp2P g (p) for any strictly convex and smooth function g : � (
)! R.
This is done by constructing a scoring rule on �(
) which, for each p 2 �(
),
returns an element of the subdi¤erential of g.
In fact, it is not di¢ cult to see that for any convex (not necessarily strictly)

and smooth function g : � (
)! R, one may construct a function f : � (
)! R
such that the probability maximizing minp02P Ep0 [f (p)] over �(
) also minimizes
g over P ; again f is an element of the subdi¤erential. Hence we can, for example,
elicit for a given vector � the value of the support function of P in direction �.
This observation demonstrates that, if independent decisions can be observed,

and if it is known that a decision maker is Choquet expected utility with a convex
capacity, one can elicit the capacity in at most 2
 � 2 steps. The fact that



capacities can be elicited in a �nite number of steps by asking a decision maker
to reveal suitable �marginal willingnesses to pay� is known (see Chambers and
Melkonyan [6]). The procedure we describe gives a choice-based procedure for
such elicitation, instead of asking decision makers to report di¤erentials of their
utility function.

5. Appendix: Proofs

Proof of Theorem 1 (sketch): The existence of a strictly convex function
g : � (
)! R for which for all � 2 �(
), h� is an element of the subdi¤erential
of g for all � is equivalent to the function g : � (
) ! R being de�ned g (�) =
sup�0 h�0 (�) and uniquely maximized (by strict convexity) for � at �

0 = � (as
h� is an element of the subdi¤erential of g at �). This is equivalent to g (�) =
h� (�) and g (�) > h�0 (�) for all � 0 6= �. This latter condition is equivalent to
E� [f (�)] > E� [f (�

0)] for all pairs �; � 0 for which � 0 6= �. This is equivalent to f
being a proper scoring rule. �
Proof of Theorem 2. As f is continuous, existence follows as Ep [f (p�)]

is upper semicontinuous (as an in�mum of continuous functions) as a function of
p�, and as �(
) is compact. The remainder of the proof is an application of
the minimax theorem. De�ne X to be the convex hull of ff (p)gp2�(
). As f is
continuous in p and as �(
) is compact, the set ff (p)gp2�(
) is compact, thus
X is compact (as 
 is �nite). Consider the function G : P �X ! R de�ned by

G (p; x) = Ep [x] .

This function is clearly bilinear. Moreover, by the Sion minimax Theorem (Berge
[3], p. 210), there exist p� 2 P and x� 2 X such that for all (p; x) 2 P �X,

Ep� [x] � Ep� [x�] � Ep [x�] .

We may therefore conclude

min
p2P

max
x2X

Ep [x] = max
x2X

min
p2P

Ep [x] .

and is achieved at p = p�, x = x�. Moreover, for a given p, the unique maximizer
of Ep [x] over x is f (p) (as f is a proper scoring rule and by de�nition of X), so
that x� = f (p�). Hence, we may conclude

min
p2P

max
p02�(
)

Ep [f (p
0)] = max

p02�(
)
min
p2P

Ep [f (p
0)]



and is achieved at p = p�, p0 = p�. We claim that p� is the unique element of
argminp2P maxp02�(
)Ep [f (p

0)]; this follows trivially by the strict convexity of
g (p) = maxp02�(
)Ep [f (p

0)] and the fact that P is convex and compact. More-
over, p� is also the unique element of argmaxp02�(
)minp2P Ep [f (p0)]. To see
this, let p0 2 �(
), p0 6= p�. Then

min
p2P

Ep [f (p
0)]

� Ep� [f (p
0)]

< Ep� [f (p
�)]

= max
p002�(
)

min
p2P

Ep [f (p
00)] .

Here, the �rst inequality follows as p� 2 P and the second follows as f is a
proper scoring rule on �(
). Hence, maxp02�(
)minp2P Ep [f (p0)] is achieved
(uniquely) at p� 2 P , which is the unique minimizer of the strictly convex function
g (p) = maxp02�(
)Ep [f (p

0)] over P .
To see that for all p� 2 P , there exists a continuous probabilistic scoring

rule for which argmaxp2�(
)minp�2P Ep� [f (p)] = fp�g, simply let g be a strictly
convex and smooth function g : � (
) ! R whose global minimum is achieved
at p� (for example, let g (p) � kp� p�k2, where k�k denotes the Euclidean norm).
Let f : � (
) ! R be the continuous probabilistic scoring rule which consists
of the subdi¤erentials of g. Then g (p0) = maxp2�(
)Ep0 [f (p)], from which we
utilize our preceding result. �
Proof of Theorem 3. Suppose, by means of contradiction, that there exists

a proper scoring rule f on the domain TM (
). For all E � 
, E 6= ?, de�ne

�E (F ) =

�
1 if E � F
0 otherwise

. A classical representation theorem, due to Dempster,

Shafer, and Shapley (see Shapley [28], for example), states that � is a totally
monotone capacity if and only if for all E � 
, there exists � (�; E) � 0 for whichP

F 6=? � (�; F ) = 1 such that � =
P

F � (�; F ) �F . Moreover, it is also well-known
that, in this case, the Choquet integral becomes

E� [x] =
X
E 6=?

min
!2E

fx (!)g� (�; E) .

Without loss of generality, we may work with the Dempster, Shafer, and Shap-
ley representation of totally monotone capacities; therefore, assume that f maps



from �
�
2
n?

�
into F . If �; � 2 �

�
2
n?

�
and � 6= �, by properness of f ,X

E22
n?

min
!2E

ff (�) (!)g� (E) >
X

E22
n?

min
!2E

ff (�) (!)g� (E) .

As the payo¤ from telling the truth is U (�) =
P

E22
n?min!2E ff (�) (!)g� (E),
the function

U (�) = sup
�2�(2
n?)

X
E22
n?

min
!2E

ff (�) (!)g� (E)

is a strictly convex supremum of linear functionals. Note that there is no problem
in requiring U to be convex; the impossibility will result in requiring it to be strictly
convex.
We will show that it is impossible for U to be strictly convex. Let W (
) be

the set of weak orders on 
.8 We will say an act x : 
! R is monotonic with
respect to �2 W (
) if x (!) � x (!0) , ! � !0. Note that W (
) is a �nite
set.
For all acts x 2 F , there exists an order� with respect to which x is monotonic.

Note that if x is monotonic with respect to �, thenX
E22
n?

min
!2E

fx (!)g� (E) =
X

E22
n?

x

�
argmin

!2E
�
�
� (E) .

Denote by x (�) the set of acts that are monotonic with respect to �.
For all � for which x (�) \ f (TM (
)) is nonempty, de�ne U� (�) =
supx2x(�)\f(TM(
))

P
E22
n? x (argmin!2E �)� (E). Note that each such U� is

convex and subdi¤erentiable on the boundary of �
�
2
n?

�
. Here, the de�nitions

are required because our proof requires us to partition the range of the scoring
rule into the ordinal score-orderings of states.
We claim that for all V open in �

�
2
n?

�
and convex, there exists �; � 2

V , � 6= �, and � 2 (0; 1) such that U� (�) = U� (�) = U� (��+ (1� �) �),
so that U� is not strictly convex. Let !� 2 argmin!2
 �, and consider any
E 6= f!�g which contains !�. Then in particular, !� 2 argmin!2E �� and
!� 2 argmin!2f!�g �. As V is open, there exists � 2 V for which � (f!�g) > 0.
Let " < � (f!�g) be small enough so that

� (F ) =

8<:
� (F )� " if F = f!�g
� (F ) + " if F = E
� (F ) otherwise

9=;
8An order � is a weak order if it is complete and transitive.



is contained in V (as V is open, such an " exists). As for all F =2 ff!�g ; Eg,
� (F ) = � (F ), it is clear that

sup
x2x(�)\f(TM(
))

X
E22
n?

x

�
argmin

!2E
�
�
� (E)

= sup
x2x(�)\f(TM(
))

X
E22
n?

x

�
argmin

!2E
�
�
� (E) .

Moreover, it is also clear that for any � 2 (0; 1),

sup
x2x(�)\f(TM(
))

X
E22
n?

x

�
argmin

!2E
�
�
� (E)

= sup
x2x(�)\f(TM(
))

X
E22
n?

x

�
argmin

!2E
�
�
(��+ (1� �) �) (E) .

Therefore, U� is not strictly convex on any open neighborhood V .
Clearly, U = sup� U

�. We claim that there exists some open V and some
� for which U jV = U�jV . The theorem will then be complete, as U is not
strictly convex on V . Enumerate the functions

�
U�
	
as
�
U1; :::; UK

	
. Clearly,

�
�
2
n?

�
is relatively open. Set V 1 = �

�
2
n?

�
. For all i = 2; :::; K, set

V i = f� 2 V i�1 : there exists j such that U j (�) > U i�1 (�)g. Set V K+1 = ?.
Clearly, V i is open for all i, and for all i = 1; :::K, V i � V i�1. Let i� satisfy
V i

� 6= ? and V i
�+1 = ? (clearly such an i� must exist). As V i

�+1 = ?, it
must be that U i

�
(�) � U i (�) for all i on V i�. We therefore establish that there

exists some open set V for which there exists �� for which U = U��. This is an
immediate contradiction to the strict convexity of U . Therefore, there exists no
proper scoring rule on TM (
). �
Proof of Corollary 2. For all � 2 TM (
), let C (�) =

fp 2 �(
) : p (E) � � (E) for all E � 
g. A classic result of Schmeidler (for
example, see Schmeidler [27], p. 582-583) states that for all E � 
, � (E) =
min fp (E) : p 2 C (�)g, and moreover, E� [x] = minp2C(�)Ep [x] for all x 2 F .
The corollary now follows trivially. �

References

[1] F. Allen, Discovering personal probabilities when utility functions are un-
known, Management Science 33 (1987), 542-544.



[2] F.J. Anscombe and R. Aumann, A de�nition of subjective probability, Annals
of Mathematical Statistics 34 (1963), 199-205.

[3] C. Berge, Topological Spaces, Dover Publications, Minneola NY, (1997).

[4] G. Brier, Veri�cation of forecasts expressed in terms of probability, Monthly
Weather Review 78 (1950), 1-3.

[5] C. Camerer, Individual decision making in Handbook of Experimental Eco-
nomics, J. Kagel and A. Roth (eds.), Princeton University Press, Princeton
NJ, 1995.

[6] R.G. Chambers and T. Melkonyan, Eliciting the core of a supermodular ca-
pacity, Economic Theory 26 (2005), 203-209.

[7] B. de Finetti, Foresight: Its logical laws, its subjective sources in Studies
in Subjective Probability, H.E. Kyburg Jr. and H.E. Smokler (eds.), Wiley,
New York, NY, 1964.

[8] B. de Finetti, Does it make sense to speak of �good probability appraisers�?
in The Scientist Speculates, I.J. Good (ed.), Basic Books, New York, NY,
1962.

[9] S.H. Chew and E. Karni, Choquet expected utility with a �nite state
space: commutativity and act-independence, Journal of Economic Theory
62 (1994), 469-479.

[10] D. Ellsberg, Risk, ambiguity, and the Savage axioms, Quarterly Journal of
Economics 75 (1961), 643-669.

[11] L. Epstein, A de�nition of uncertainty aversion, Review of Economic Studies
66 (1999), 579-608.

[12] L. Epstein and J. Zhang, Subjective probabilities on subjectively unambigu-
ous events, Econometrica 69 (2001), 265-305.

[13] P. Ghirardato and M. Marinacci, Ambiguity made precise: A comparative
foundation, Journal of Economic Theory 102 (2002), 251-289.

[14] P. Ghirardato and M. Marinacci, Risk, ambiguity, and the separation of util-
ity and beliefs, Mathematics of Operations Research 26 (2001), 864-890.



[15] I. Gilboa and D. Schmeidler, Maxmin expected utility with nonunique prior,
Journal of Mathematical Economics 18 (1989), 141-153.

[16] I.J. Good, Rational decisions, Journal of the Royal Statistical Society, Series
B (Methodological) 14 (1952), 107-114.

[17] A.D. Hendrickson and R.J. Buehler, Proper scores for probability forecasters,
Annals of Mathematical Statistics 42 (1971), 1916-1921.

[18] M. Jackson, A crash course in implementation theory, Social Choice and
Welfare 18 (2001), 655-708.

[19] J. McCarthy, Measures of the value of information, Proceedings of the Na-
tional Academy of Sciences 42 (1956), 654-655.

[20] R.D. McKelvey and T. Page, Public and private information: An experimen-
tal study of information pooling, Econometrica 58 (1990), 1321-1339.

[21] Y. Nakamura, Subjective expected utility with non-additive probabilities on
�nite state spaces, Journal of Economic Theory 51 (1990), 346-366.

[22] Y. Nyarko and A. Schotter, An experimental study of belief learning using
elicited beliefs, Econometrica 70 (2002), 971-1005.

[23] F.P. Ramsey, Truth and probability in Studies in Subjective Probability,
H.E. Kyburg Jr. and H.E. Smokler (eds.), Wiley, New York, NY, 1964.

[24] L.J. Savage, The Foundations of Statistics, Dover Publications, Minneola
NY, (1972).

[25] L.J. Savage, Elicitation of personal probabilities and expectations, Journal
of the American Statistical Association 66 (1971), 783-801.

[26] F. Schick, Dutch bookies and money pumps, Journal of Philosophy 83 (1986),
112-119.

[27] D. Schmeidler, Expected utility and probability without additivity, Econo-
metrica 57 (1989), 571-587.

[28] L.S. Shapley, A value for n-person games, Annals of Mathematical Studies
28 (1953), 307-317.


