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Abstract

In the 60’s Shapley provided an example of a two player fictitious game with periodic
behaviour. In this game, player A aims to copy B’s behaviour and player B aims to play one
ahead of player A. In this paper we continue to study a family of games which generalize
Shapley’s example by introducing an external parameter, and prove that there exists an
abundance of periodic and chaotic behavior with players dithering between different strate-
gies. The reason for all this, is that there exists a periodic orbit (consisting of playing mixed
strategies) which is of ‘jitter type’: such an orbit is neither attracting, repelling or of saddle
type as nearby orbits jitter closer and further away from it in a manner which is reminiscent
of a random walk motion. We prove that this behaviour holds for an open set of games.

1 Introduction

The purpose of this paper is to show how complicated the dynamics of fictitious play can be (for
an interpretation of fictitious play as a model for rational learning, see for example Fudenberg and
Levine [1998]). We do this by analysing in detail the following family of 3× 3 games determined
by the matrices

Aβ =

 1 0 β
β 1 0
0 β 1

 Bβ =

 −β 1 0
0 −β 1
1 0 −β

 , (1.1)

which depend on a parameter β ∈ (0, 1) (and best response dynamics given by the differential
inclusion (1.2)). In fact, we shall show in Theorem 1.4 that our results even hold for matrices
A,B with

||A−Aβ ||, ||B −Bβ || ≤ ε with ε > 0 small.

However, except for Theorem 1.4 and Section 6, we shall simply write A = Aβ and B = Bβ .
As usual, player A has utility pAApB whereas player B has utility pABpB where the row vector
pA ∈ ΣA ⊂ R3 denoted the position of player A and the column vector pB ∈ ΣB ⊂ R3 the
position of player B. For later use we write vA = ApB and vB = pAB. Here ΣA,ΣB are the set
of probability vectors in R3. In other words, Σ := ΣA × ΣB is the product of two-dimensional
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triangles and so topologically it is a ball in R4. Player B (resp. A) is indifferent between all three
strategies when pA = EA, pB = EB and E = (EA, EB) is the Nash equilibrium of the game. For
the game A = Aβ , B = Bβ one has EA := (1/3, 1/3, 1/3) and EB := (1/3, 1/3, 1/3)′.

For β = 0 the game A,B is equivalent to the classical example introduced by Shapley [1964]
(where each of the players eventually chooses strategies periodically). For β = (

√
5−1)/2 ≈ 0.618,

the game is equivalent to a zero-sume game (rescaling B to B̃ = σ(B − 1) gives A+ B̃ = 0), so
then [1951] play always converges to the interior equilibrium EA, EB .

The best response BRA(pB) of player A is the i-th unit vector if the i-th component of vA

is larger than the other components of vA (if several components of vA are equally large, then
BRA(pB) is the convex combination of unit vectors corresponding to the largest components of
vA). Define BRB(pA) similarly. Once best responses are selected, the dynamics is determined
by moving in a straight line towards the best responses. In some of the literature this is done by
taking the piecewise linear differential equation

dpA/dt = BRA(pB)− pA
dpB/dt = BRB(pA)− pB (1.2)

whereas others take
dpA/ds = (1/s) (BRA(pB)− pA)
dpB/ds = (1/s) (BRB(pA)− pB). (1.3)

The orbits are the same in both cases, only the time parametrisation of the orbits differs (take
s = et); for the latter, orbits slow down and a periodic orbit of period T (1.2) corresponds to
an orbit of (1.3) which returns in time eT , e2T , e3T , . . . . Equations (1.2) and (1.3) determine the
dynamics up until such time as one or other (or both) players become indifferent between two (or
more) pure strategies. When one or more of the players is indifferent between two strategies their
dynamics may not be uniquely determined. So (1.2) and (1.3) are in fact differential inclusions
rather than differential equations, but as the best response correspondences pB 7→ BRA(pB) and
pA 7→ BRB(pA) are upper semicontinous with values closed, convex sets, it follows from Aubin
and Cellina [1984, Chapter 2.1] that through each initial value there exists at least one solution
which is Lipschitz continuous and defined for all positive time. It is shown in Hofbauer [1995]
that, under mild regularity conditions (which are satisfied in our case), any solution is piecewise
linear.

In fact, when the matrices (1.1) are chosen, play is not affected at all by this ambiguity except
at E (because a certain transversality condition is satisfied, see Sparrow [2008]). In other words,
all the orbits (except the one through E) are uniquely determined (outside E, the dynamics is
not affected by a choice of tie-breaking rule). Moreover, when β ∈ (0, 1) the flow is continuous
except at E (when β 6= σ, for a proof, see Sparrow et al [2008]).

Note that the best response of A to any pB 6= EB is either an integer i ∈ {1, 2, 3} or a mixed
strategy set ī where ī := {1, 2, 3}\{i} corresponding to where player A is indifferent between two
strategies but will not play i. Similarly for B. Hence one can associate to any orbit (pA(t), pB(t)
outside E, a sequence of times t0 := 0 < t1 < t2 < . . . and a sequence of best-response strategies
(i0, j0), (i1, ji), (i2, j2), . . . where

(in, jn) = (BRA(pB(t), BRB(pA(t)) for t ∈ (tn, tn+1)

with in and jn equal to 1, 2, 3, 1̄, 2̄ or 3̄ for each n = 0, 1, 2, . . . . In Sparrow et al [2008] we showed
that there are three periodic orbits: one for β ∈ (0, σ) with play (1, 2), (2, 2), (2, 3), (3, 3), (3, 1),
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(1, 1) (the Shapley orbit), one for β ∈ (σ, 1) with cyclic play (1, 3), (1, 2), (3, 2), (3, 1), (2, 1), (2, 3)
and a third one with a period 6 orbit of mixed strategies (1̄, 1̄), (1̄, 2̄), (2̄, 2̄), (2̄, 3̄), (3̄, 3̄), (3̄, 1̄).
The latter sequence of strategies correspond to a fully-invariant set C(Γ) (so an orbit starting in
this set remains in this set, and an orbit starting outside this set remains outside this set); this
fully invariant set exists for each β ∈ (0, 1) and contains a periodic orbit when β ∈ (σ, 1). The
latter orbit is of ‘jitter type’: it is neither attracting, repelling or of saddle type; instead nearby
orbits jitter closer and further away from it in a manner which is reminiscent of a random walk
motion. We describe this behavior in the final sections of this paper.

1.1 Abundance of Periodic Play

Let us state now the main results of this paper. To do this, let us say that an orbit of the game
has cyclic play of period n if the associated sequence (in, jn) is periodic: (ik+n, jk+n) = (ik, ik)
for all k = 0, 1, . . . . Given k ∈ {0, . . . , n − 1} we say that the players are indecisive at the k-th
step if k ≥ 3 and moreover

{ik−3, ik−2, jk−1, ik} 6= {1, 2, 3} and {jk−3, jk−2, jk−1, jk} 6= {1, 2, 3}

holds (so during this and the previous three moves, both players never deviated from a choice of
two strategies). Sometimes we also will say that the players dither at the k-step. In the opposite
case, we say the k-th step is decisive. The essential period of a cyclic play of period n is the
number of decisive steps k ≤ n. For example, the cycle of period 6

(1, 2), (2, 2), (2, 3), (3, 3), (3, 1), (1, 1)

never dithers whereas for the cycle of period 7

(1, 2), (2, 2), (2, 3), (3, 3), (3, 2), (3, 1), (1, 1)

players dither in the 5th step, so the essential period is again 6. Let σ = (
√

5− 1)/2 ≈ 0.618.

Theorem 1.1. [An abundance of periodic play] For each β ∈ (0, 1) and each n ≥ 1 there are
infinitely many different orbits γs, s = 1, 2, . . . of the differential equation (1.2) (and of (1.3))
with corresponding cyclic play of period Ns →∞ as s→∞ but with essential period equal to 6n.
Moreover,

• for β ∈ (0, σ), these orbits with cyclic play reach the interior equilibrium E in finite time;

• for β ∈ (σ, 1) these orbits with cyclic play are genuine periodic orbits of (1.2) (and of (1.3)).

In Sparrow et al [2008] we showed that for β ∈ (−1, σ) there exists a periodic orbit corre-
sponding to cyclic play (1, 2), (2, 2), (2, 3), (3, 3), (3, 1), (1, 1) (the Shapley orbit) which attracts
an open set of initial conditions; the above theorem shows that many periodic orbits are not
attracted to this cycle. In that paper it was also shown that for β ∈ (σ, 1) there exists another
periodic orbit corresponding to cyclic play (1, 3), (1, 2), (3, 2), (3, 1), (2, 1), (2, 3) (the anti-Shapley
orbit) which becomes attracting when σ ∈ (τ, 1) where τ ≈ 0.915. Again this attracting orbit
does not attract everything.

That the players can have infinitely many orbits with the same essential period, is a conse-
quence of the fact that there is a sequence of periodic orbits converging to the orbit of mixed
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strategies (1̄, 1̄), (1̄, 2̄), (2̄, 2̄), (2̄, 3̄), (3̄, 3̄), (3̄, 1̄), and which all have the same essential period. For
these periodic orbits, the essential period is the number of times it follows the period 6 orbit
before returning to its original position, whereas the actual period increases if the players dither
for longer along each of the 6 legs. Along these periodic orbits at any given moment only one of
the players is indifferent, but they dither for a long time between each decisive move.

Let us relate this theorem to a result of Krishna and Sjöström [1998] (which builds on earlier
work of Rosenmüller [1971]). In this interesting paper, they show that for a generic game (i.e.
for Lebesgue almost all pay-off matrices) there exists no open set of initial conditions for which
fictitious play converges cyclically to a mixed strategy equilibrium (unless both players use at most
two pure strategies). In other words, if fictitious play converges to a mixed strategy equilibrium
with both players using more than two strategies then the choice of strategies cannot follow
a cyclic pattern unless possibly the initial conditions are in some codimension-one space. Our
result shows that for β ∈ (0, σ) countably many orbits do indeed converge cyclically to the
equilibrium (and along these orbits at any given moment only one of the players is indifferent).
Our result does not rely on the symmetry of the matrices: it holds for an open set of matrices,
see Theorem 1.4 and Section 6.

For their result, Krishna and Sjöström only only needed to consider orbits for which at any
given moment only one of the players is indifferent. It is interesting to note however that, as
becomes clear from this paper, it is precisely near the set C(Γ) where both players are simulta-
neously indifferent that much of the interesting behaviour happens (and this set ’organises’ the
local dynamics).

1.2 Abundance of Dithering Behavior

The next theorem shows that there are many orbits which dither for very long periods. To make
this precise, let us assume the players start at p ∈ Σ and aim for (i0, j0), (i1, j1), (i2, j2), . . . .
Next associate to these moves a sequence (Rk)k≥3 with Rk ∈ {D, I}, where Rk is equal to D or
I depending on whether the players are decisive or indecisive at time k ≥ 3. In this way we get
a map

Σ 3 p 7→ {Rk(p)}k≥3 ∈ {D, I}N

which captures partly what play evolves from starting position p ∈ Σ. (We ignore k < 3 because
by definition the players are then always decisive. More precisely, if T denotes the map which
assigns to (ik, jk)k≥0 the sequence (Rk)k≥k0 and σ the shift map, then T ◦ σ = σ ◦ T only if we
take k0 ≥ 3.)

To simplify the coding even further, define the times 3 ≤ N0(p) < N1(p) < N2(p) < . . .
for which the players are decisive (only considering times ≥ 3). Note that these times uniquely
determine again the sequence R3(p), R4(p), . . . . If Ns+1(p) − Ns(p) is large, then we say that
the players dither for a long time (as they then each play back and forth between two strategies).

Theorem 1.2. [There is a lot of freedom in the choice of dithering sequences] For each β ∈ (0, 1)
there exist N0 ∈ N, 0 < λ < 1 < µ and a compact set X ⊂ Σ, so that for each sequence
N0 < N2 < N4 < . . . with N0 ≥ 3 and with

λ ≤ N2s+4 −N2s+2

N2s+2 −N2s
≤ µ and N2s+2 −N2s ≥ N0 for all s ≥ 0
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there exists p ∈ X such that

|N2s(p)−N2s| ≤ 4 for all s ≥ 0.

Moreover,

• for β ∈ (0, σ) orbits in X converge to E;

• for β ∈ (σ, 1) orbits starting in X do not converge to E.

That this theorem only refers to the gaps between even decisive moments, N2s+2 − N2s, is
because the gaps between the even and odd moments are somewhat more arbitrary. However, if
N2s+2(p)−N2s(p) is large for all s ≥ 0, then Ns+1(p)−Ns(p) is also large for all s ≥ 0, i.e., the
players dither for long periods between making a decisive move for orbits described above.

We did some numerical simulations for games determined by completely different matrices.
In many of these, similar dithering behaviour also occurred. Even for zero-sum games, the
players seem to converge to equilibria in a dithering fashion (in fact, in 2×n games, dithering is
unavoidable). We will report on these simulations in a subsequent paper.

1.3 Chaotic Behavior

The previous theorem states that there are orbits starting in X which dither for more or less
arbitrary lengths N2s+2 −Ns. An immediate application of this theorem is the following result:

Theorem 1.3 (Chaos). Take N̂ ≥ N0 so large that λ ≤ (N̂ − 1)/N̂ ≤ (N̂ + 1)/N̂ ≤ µ. For each
sequence (ε2s)s≥0 with ε2s ∈ {−5, 0, 5} there exists p ∈ X with

N2s+2 −N2s ∈ [N̂ + ε2s, N̂ + 4 + ε2s] for all s ≥ 0.

So for such a p, N2s+2 − N2s is in the interval [N̂ − 5, N̂ − 1], [N̂ , N̂ + 4] or [N̂ + 5, N̂ + 9]
depending on the parity of ε2s. In particular the flow contains subshifts of finite type and has
positive topological entropy. The flow also has sensitive dependence on initial conditions.

The definition of the notions ‘subshifts of finite type’, ‘positive topological entropy’ and ‘sen-
sitive dependence on initial conditions’ can be found in almost any book on dynamical systems,
for example Guckenheimer and Holmes [1983]. We have numerical evidence that this game is
chaotic in a more profound sense: it appears that there exists a range of parameters β ∈ (σ, τ)
so that (Lebesgue) almost all starting positions correspond to chaotic behaviour. We will report
on this in a subsequent paper.

1.4 Robustness

The above results do not require the matrices to be of a special form, and hold for games
corresponding to an open set of matrices:

Theorem 1.4 (Robustness). For each β ∈ (0, 1) with β 6= σ, there exists ε > 0 so that for each
3× 3 matrices A and B with

||A−Aβ ||, ||B −Bβ || < ε

the previous theorems also hold. More precisely,
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• for β ∈ (0, σ) and ε > 0 sufficiently small,

– there exists a periodic orbit corresponding to cyclic play (1, 2), (2, 2), (2, 3), (3, 3),
(3, 1), (1, 1) (the Shapley orbit) which attracts an open set of initial conditions;

– there exist orbits of mixed strategies (1̄, 1̄), (1̄, 2̄), (2̄, 2̄), (2̄, 3̄), (3̄, 3̄), (3̄, 1̄); such orbits
lie on a cone with apex E; all orbits on this cone converge to E; there are infinitely
many different orbits γs, s = 1, 2, . . . as in Theorem 1.1 which reach the interior
equilibrium E in finite time;

– there are orbits which dither as in Theorem 1.2 which again reach the interior equilib-
rium E in finite time;

• for β ∈ (σ, 1) and ε > 0 sufficiently small,

– there exist a periodic orbit Γ of mixed strategies (1̄, 1̄), (1̄, 2̄), (2̄, 2̄), (2̄, 3̄), (3̄, 3̄), (3̄, 1̄);
the cone through this periodic orbit with apex E is completely invariant and all orbits
on this cone (apart from E) converge to this periodic orbit;

– there are infinitely many different periodic orbits γs, s = 1, 2, . . . as in Theorem 1.1
(these orbits stay near Γ);

– there are orbits which dither as in Theorem 1.2 (these orbits also stay near Γ);

– one has chaos and sensitive dependence on initial conditions;

• for β ∈ (τ, 1) and ε > 0 sufficiently small, there exists an attracting orbit which correspond-
ing to cyclic play (1, 3), (1, 2), (3, 2), (3, 1), (2, 1), (2, 3) (the anti-Shapley orbit).

Here τ ≈ 0.915 is the root of some polynomial of degree 6, which we computed in Sparrow et
al [2008]. Of course A and B near Aβ resp. Bβ will have a Nash equilibrium E, which is close
but not necessarily equal to the Nash equilibrium of Aβ , Bβ . For matrices A,B near Aσ, Bσ
the existence of periodic orbits and of a dithering set also hold, but it is no longer clear whether
these orbits converge to the Nash equilibria E or not.

1.5 The idea of the proof and some general comments

The main point of our analysis is to exploit that one can simplify the study by identifying
points on half-lines through E. This way we get an induced flow on ∂Σ (which is topologi-
cally a three sphere). Associated to each set Y ⊂ ∂Σ which is forward invariant under the
induced flow is the cone C(Y ) over Y with apex E which is forward invariant under the original
flow. Similarly, a periodic orbit γ of the original flow, corresponds to a periodic orbit γ̃ of the
induced flow. We apply this idea in particular to the periodic orbit Γ with mixed strategies
(1̄, 1̄), (1̄, 2̄), (2̄, 2̄), (2̄, 3̄), (3̄, 3̄), (3̄, 1̄) and the corresponding periodic orbit Γ̃ of the induced flow.
It turns out that a first return map to a section through a point in Γ̃ has extremely interesting
behaviour: it is of ‘jitter type’, see the final section of this paper.

We believe that looking at our approach of analysing the induced flow, and the notion of
orbits of ‘jitter type’ will be useful in analysing fictitious play in general.

This is not the first time subshifts of finite type were shown to exist in fictitious play. Cowan
[1992] already did this, by considering a matrix with extremely large coefficients. Our work is
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closer in spirit to Berger [1995] who considers a family of symmetric bimatrix games depending
on a parameter k such that (i) for k ∈ (−2, 0) has a Shapley orbit which degenerates as k → 0,
and (ii) for k > 0, as in our case, there exists a hexagonal orbit along which both players are
indifferent between (at least) 2 strategies. Berger observes similar ’chaotic’ numerical phenomena
as we did in our previous paper Sparrow et al [2008] and also shows the existence of an additional
periodic orbit of saddle-type.

As mentioned, we have numerical evidence that there exists a range of parameters β ∈ (σ, τ)
so that (Lebesgue) almost all starting positions correspond to chaotic behaviour. More general
games also show up the same dithering behaviour.

There are many papers which show that one has convergence to the equilibrium for games
where one or both of the players have only 2 strategies to choose from, see Miyasawa [1961] and
Metrick & Polak [1994] for the 2 × 2 case; Sela [2000] for the 2 × 3 case; and Berger [2005] for
the general 2× n case. Jordan [1993] constructed a 2× 2× 2 fictitious game with a stable limit
cycle. The 3× 3 example studied in this paper, shows that the situation is far more complicated
in general.

2 Basic results on the Shapley system

Let us recall some results from Sparrow et all [2008]. Let us denote the set where player A is
indifferent between strategies PAi and PAj by ZAi,j ⊂ ΣB and define ZBij similarly. Figure 1 shows
pictures of the phase space marking the lines ZAij and ZBij (for β > 0). Note that for all values
of β both players are indifferent between all three strategies at the point E = (EA, EB) where
EA = (EB)T = (1/3, 1/3, 1/3).

As mentioned, for β ∈ [0, σ) the game has a periodic orbit with cyclic play (1, 2), (2, 2), (2, 3),
(3, 3), (3, 1), (1, 1) and this orbit attracts an open set. For β ∈ (σ, 1) the game has another
periodic orbit with cyclic play (1, 3), (1, 2), (3, 2), (3, 1), (2, 1), (2, 3) and this orbit is attracting
for β ∈ (τ, 1). When β → σ these orbits shrink to E. A third periodic orbit Γ exists when
β ∈ (σ, 1) with periodic 6 cyclic play (1̄, 1̄), (1̄, 2̄), (2̄, 2̄), (2̄, 3̄), (3̄, 3̄), (3̄, 1̄). For β ∈ (0, σ) there
still exist orbits with this periodic 6 play, but these orbit are not periodic, instead they converge
to E. Two of the six sides of the corresponding hexagon are schematically drawn in Figure 1.
Note that Γ is contained in

J := (ZB1,2 × ZA3,1) ∪ (ZB1,2 × ZA1,2)
⋃

(ZB2,3 × ZA1,2) ∪ (ZB1,2 × ZA2,3)
⋃

⋃
(ZB3,1 × ZA2,3) ∪ (ZB2,3 × ZA3,1) (2.4)

We call this the Jitter set, as nearby orbits jitter back and forth between strategies. When β → σ
these orbits all shrink to E.

3 The induced dynamics on ∂Σ for the Shapley family

In order to get a better understanding of the geometric and topological structure of all orbits in
the Shapley family we will now consider an induced flow on ∂Σ. This is obtained by projecting
the original flow on Σ \ {E} onto ∂Σ using the projection π : Σ \ {E} → ∂Σ obtained by defining
π (p) to be the unique point of ∂Σ that lies on the half line through E in the direction p. Since
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Figure 1: The simplices ΣA and ΣB and the periodic orbit on the jitter set J (for β ∈ (σ, 1)). Two of

the six legs of the periodic orbit are drawn in the figure (contained in ZB
1,2 ×ZA

1,3 and ZB
1,2 ×ZA

1,2); after

this piece of the orbit, the orbit turns in ΣA clockwise to the leg containing fA
23 and in ΣB it doubles

back onto itself. The points fA
ij , fB

kl give the maximum extent of the periodic orbit on J and RA
ij and

RB
ij are the intersections of J with the boundary of ΣA resp. ΣB . In this way the periodic orbit forms a

hexagon in the four-dimensional space ΣA ×ΣB which moves (cyclically) around the different legs of J .

the best response of the two players for all points on this half-line is the same, this gives a well-
defined flow on ∂Σ. The new flow obtained in this way is a faithful representation of the ’angular’
component of the original flow, but it contains no information about the radial component of the
flow. It is easier to visualize because it is three dimensional. For example, the topological three
sphere ∂Σ is homeomorphic (via stereographic projection) to the one-point compactification of
R3.

The geometry of this induced flow will give us more insight in the original flow. Indeed let
γ ⊂ ∂Σ and let C(γ) ⊂ Σ be union of the closed half-lines through E in the direction of p ∈ γ
(for any such p). This set we will call the cone of γ over E (this set is equal to the closure of
π−1(γ)). Note that if γ is a periodic orbit of the induced flow, then the cone C(γ) is an invariant
set under the original flow.

3.1 Simple periodic orbits on the induced flow on ∂Σ

Even though the flow on ΣA×ΣB does not have a periodic orbit on the jitter-set J for β ∈ (0, σ),
the induced flow does have a periodic orbit on J ∩ ∂Σ. The reason for this is that J is invariant,
so the closed curve J ∩ ∂Σ is an invariant set for the induced flow. When β ∈ (0, σ) then
orbits in J of the original flow spiral towards (EA, EB) (inside the topological surface J ; but the
motion is never straight towards (EA, EB)). Therefore in the induced flow this spiralling motion
corresponds to a periodic motion on the closed curve ∂Σ ∩ J . Let us denote this periodic orbit
by Γ̃.

We can summarize the previous results on the existence and stability of periodic orbits as
follows.

Proposition 3.1 (Periodic orbits for the induced flow on ∂Σ). For β ∈ (0, 1] there are (at least)
three periodic orbits for the induced flow: the one corresponding to the clockwise periodic orbit
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(Shapley’s orbit), an anticlockwise periodic orbit and a periodic orbit Γ̃ corresponding to the Jitter
set J . Moreover,

• for β ∈ (0, σ) the clockwise periodic orbit is attracting, the anticlockwise orbit is of saddle-
type, and the orbit Γ̃ is of jitter type;

• for β ∈ (σ, τ), the clockwise periodic orbit is attracting, the anticlockwise orbit is of saddle-
type whereas the orbit Γ̃ is still of jitter type;

• for β ∈ (τ, 1], the clockwise periodic orbit is of saddle-type, the anticlockwise orbit is of
attracting and the orbit Γ̃ is of jitter type.

That Γ̃ is a periodic orbit of ‘jitter type’ means that it has the random walk behavior described
in Theorem .

The induced flow is not smooth near the periodic orbit Γ̃ corresponding to the Jitter set J .
Analyzing the local dynamics near Γ is the main purpose of this paper and is done in the final
section of this paper.

Proof. The existence of the periodic orbits for the induced flow follows immediately from the
existence of the corresponding orbits for the original system (which were established in Sparrow
et al [2008]). In fact, the proof in the appendix in Sparrow et al [2008] shows that the induced
flow has a Shapley periodic orbit for β ∈ [σ, 1] even though the original flow does not (so for the
original flow the Shapley orbit spirals to E when β ∈ [σ, 1]). Similarly the other two orbits exist
for all β ∈ (0, 1].

So let us discuss the stability type. If a periodic orbit of the original flow is attracting (or
repelling) then obviously the corresponding periodic orbit of the induced flow is also attracting
(repelling). If a periodic orbit γ is originally of saddle-type then it depends on the eigendirections:
the direction corresponding to the (invariant) cone C(γ) consisting of all rays from the midpoint
to the points on the periodic orbit γ disappears in the induced flow. So we only need to consider
the anticlockwise periodic orbit which we will still denote by γ. In the appendix of Sparrow et al
[2008] it was shown that γ consists of three line segments in Σ and we computed the linear part of
the Poincaré transition map of γ with sections taken in indifference planes. These sections were
taken at two symmetrically positioned distinct points computing in this way only the transition
along one third of γ. Because of the symmetry of the system, the actual return map to a section
Z is the third iterate of the linear map computed in that appendix. Note that Z was chosen
to be contained in one of the indifference sets and so Z contains E. It was shown in Sparrow
[2008] that two eigenvalues are negative, and one positive (which was equal to n2/n1). The
positive eigenvalue remains in (0, 1) for all β ∈ (σ, 1), one of the negative eigenvalues remains in
(−1, 0) for all β ∈ (σ, 1) whereas the other negative eigenvalue is in (−∞,−1) for β ∈ (σ, τ) and
in (−1, 0) for β ∈ (τ, 1). For the induced flow, the first return map has only two eigenvalues.
Let us explain why the positive eigenvalue corresponds to an eigenvector which lies in the cone
C(γ) and which therefore disappears after projecting to ∂Σ. Indeed, one of the eigenvalues of
the linearisation at z := Z ∩ γ of the Poincaré map P : Z → Z lies in the cone C(γ) (because
this cone is invariant under the flow), and so this eigenvalue is along the line segment C(γ) ∩ Z
through z. This cone over the triangle γ consists of a surface made up of three (two-dimensional)
triangles in Σ, and so the corresponding eigenvalue is positive (since the flow preserves C(γ) and
therefore an orbit starting on one side of γ ⊂ C(γ) remains on that side). It follows that in the
induced flow the positive eigenvalue disappears under the projection. The other two eigenvectors
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are projected, and their eigenvalues remain exactly the same under the projection. The original
eigenvalue equation now is solved modulo the direction corresponding the projection, and so the
two other eigenvalues stay the same for the induced flow. It follows that γ is a saddle orbit if
and only if the corresponding orbit for the induced flow is a saddle orbit.

3.2 Many additional periodic orbits and chaos for the induced flow

The next theorem is about the first return map to a section Z based at some point in Γ̃. It shows
that orbits under this first return map can move closer and further away from the fixed point.
More precisely, orbits can jump between the annuli {z ∈ Z; dist(z, z0) ∈

(
1

ki+1 ,
1
ki

)
} around z0

in rather free way. Here ki corresponds to the number Ni from Theorem 1.2. We refer to this
behavior as of ‘jitter type’.

Theorem 3.1. Take β ∈ (0, 1) and consider the periodic orbit Γ̃ for the induced flow correspond-
ing to the jitter set J . Let Z be a two-dimensional surface in ∂Σ through some point z0 ∈ Γ̃ which
is transversal to the induced flow, and let P be the Poincaré first return map of the induced flow
to Z. Then

• for each period n ∈ N, there are infinitely many periodic orbits of P of period n (and one
can even choose a sequence of such periodic orbits so that the distance of the whole orbit to
z0 converges to zero);

• there exist orbits which jitter in the following sense: there exist a sum metric dist in Z and
0 < λ < 1 < µ and N0 so that for each sequence ki ∈ N so that

λ ≤ ki+1

ki
≤ µ and ki ≥ N0,

there exists z ∈ Z \ Γ with

dist(P i(z), z0) ∈ (
1

ki + 2
,

1
ki

) for all i ≥ 0.

• the return map P has subshifts of finite type, positive topological entropy and has sensitive
dependence on initial conditions.

Proof. We will give the proof of this theorem in Section 5.

Denote the period of the periodic orbit Γ̃ under the induced flow by T . Since the induced
flow is continuous, a periodic orbit τn which corresponds to a period n of the first return map P
and which is close to Γ̃ has, under the induced flow, period approximately n · T (and the closer
the orbit is chosen to Γ̃ the better this approximation is). Hence

Corollary 3.1. Take β ∈ (0, 1) and consider the periodic orbit Γ̃ for the induced flow corre-
sponding to the jitter set J . Let n ∈ N be arbitrary. There exists a sequence of periodic orbits τk,
k = 1, 2, . . . for the induced flow arbitrarily close to Γ̃ whose period converges to nT as k →∞.

Furthermore,

Corollary 3.2. Take β ∈ (0, 1). The induced flow contains subshifts of finite type, positive
topological entropy and has sensitive dependence on initial conditions.
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3.3 Global return section

Figure 2: The subset of ∂Σ where players A and B are indifferent, where we identify ∂Σ with
R3 ∪ {∞}. Part of the periodic orbit Γ̃ is drawn as a fat curve. Another view of this periodic
orbit is in Figure 3 (rotated 180 degrees about the z-axis).

Remember that Σ is a ball in R4 and ∂Σ is homeomorphic to S3. This set can be thought of as
R3∪{∞}. Usually it is not easy to easy to give a geometric image of dynamics on S3. But in fact,
we are lucky. Instead of taking a section through a point z ∈ Γ̃ transversal to the periodic orbit Γ̃,
we can find a set S which is topologically a disc, such that ∂S = Γ̃, and such that orbits cross S\Γ̃
transversally. This disc lies in the indifference sets. The subset of ∂Σ where player A is indifferent
between strategies i and j is equal to (∂ΣA × ZAij) ∪ (ΣA × (ZAij ∩ ∂ΣB)). This two-dimensional
set is equal to a triangular tube together with a triangle at one end of the tube, in other words,
it is homeomorphic to a topological disc. The boundary of this disc corresponds to the triangle
∂ΣA × EB . Note that for each pair i, j the boundary of this disc is the same. So if we identify
∂Σ with R3∪{∞}, the set where player A is indifferent between two strategies can be thought of
as the union of the upper and lower part of the unit sphere in R3 (i.e. {(x, y, z) ; x2 + y2 + z2 =
1 and z 6= 0}) and the disc {(x, y, z) ; x2 + y2 ≤ 1 and z = 0}. Similarly, the set where B is
indifferent can then be thought of as {(x, y, z) ; (x, y) = (r cosφ, r sinφ) with r ≥ 0 and φ =
2π/3, 4π/3, 0} ∪ {∞}. The choice for φ represents which of the two strategies are indifferent for
B. Again this represents three discs which all meet along the circle {(x, y, z) ; x = y = 0}∪{∞}
in R3 ∪ {∞}. The orbit Γ lies on the intersection of the sets where A and B are indifferent and
is drawn in Figure 3. It turns out that one can find a subset S of the space where player A is
indifferent, such that ∂S = Γ̃ and for which the orbits go through S transversally.
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Figure 3: The periodic orbit Γ̃ in the Jitter set drawn in ∂Σ where we identify ∂Σ with R3∪{∞}.
The vertical line is not part of the curve, but is drawn for clarity and because it forms the part
where the four pieces from the global return section, introduced in Proposition 3.2 meet (the
half-disc, and the two quarter discs, which meet along the vertical axis). The global return
surface S is the surface consisting of the half-disc, and two quarter discs meeting at the z-axis.
The return section Z mentioned in Theorem 3.1 is transversal to Γ̃ and so is not contained in S.

Proposition 3.2. There exists a topological disc S in ∂Σ with the following properties

• S is a piecewise linear;

• ∂S = Γ̃;

• each orbit of the induced flow (except Γ̃) intersects Γ̃ transversally;

• the Poincaré return map to S is a well-defined homeomorphism.

Proof. Let S consists of four pieces within the linear indifference sets ΣA×ZAi,j . These pieces are
U3 × ZA1,3, U3 × ZA2,3, U1 × ZA1,2, U1 × ZA3,1, where Ui is the part of ΣA where player B prefers to
head for corner PAi . The flow is transversal to each of these four linear sets. Also, inspection in
the diagram of Figure 7 in Sparrow et al [2008] shows that no orbit can miss these sets (except
if it is in J). The section S forms a disc made up from the semi-disc and the two-half semi-discs
depicted in Figure 3.

Instead as in Figure 3, we can also visualise the section S as in Figure 4. Indeed, S ⊂ ∂Σ is
made up of the following regions:

1. (the two triangles in ΣA where player B heads for 1 resp. 3) × (the point RB12);

2. (the part of ∂ΣA where player B heads for 1 resp. 3) × (the segment [RB12, E
B ] in ΣB);
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3. (the part of ∂ΣA where player B heads for 3) × (the segment [RB23, E
B ] in ΣB);

4. (the triangle ΣA where player B heads for 3) × (the point RB23);

5. (the part of ∂ΣA where player B heads for 1) × (the segment [RB31, E
B ] in ΣB);

6. (the part of ΣA where player B heads for 1) × (the point RB23).

Using polar-like coordinates based at EA ∈ ΣA, the region 1 can be represented as an isosceles
triangle (with, say, angles 80, 50, 50). Attaching region 2 then gives a similar triangle (which is
the bigger triangle in Figure 4). Joining all these regions together appropriately gives that S can
also be represented as in Figure 4. In this figure we also show an orbit of the first return map
for β = σ (the zero-sum case). The orbits, which tend to the Nash equilibrium in the full flow,
do so in a rather chaotic fashion.

!2 !1.5 !1 !0.5 0 0.5 1 1.5 2
!2

!1.5

!1

!0.5

0

0.5

1

1.5

2

Figure 4: The orbit of a typical starting point under the first return map to S when β = σ. The
dynamics is similar to that of an area preserving map. There are two ’egg-shaped’ regions which
are permuted by the first return map. Orbits within this region form invariant circles.

4 Dynamics for the original flow in Σ

Let us now state the implications of the results on the induced flow from the last section for the
original flow.

4.1 Invariant cones

The implications of Theorem 3.1 for the real flow in ΣA × ΣB depend on the value of β, as
described in the following proposition.

Proposition 4.1. For the original flow the statements from Theorem 3.1 still hold in the fol-
lowing sense.
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• For β ∈ (0, σ) each periodic orbit γ near Γ̃ of the induced flow, corresponds to an invariant
cone C(γ). Each orbit of the original flow starting in such a cone reaches the interior
equilibrium in finite time (and then remains there).

• For β ∈ (σ, 1) periodic orbits near Γ̃ in ∂Σ correspond to periodic orbits near Γ on J . Thus
there are infinitely many orbits of the flow in this parameter range. Moreover, there are
orbits which jitter in the sense of the 2nd assertion of Theorem 3.1 and the flow contains
a subshift of finite type, has positive topological entropy and has sensitive dependence on
initial conditions.

Proof. In Prop A2 in Sparrow et al [2008] it was shown that each orbit in J tends to E when
β ∈ (0, σ). In fact, on page 290 of that paper it was shown that if we take a section in J , then
orbits converge exponentially fast to zero under iterates of the Poincaré map; moreover the time
to spiral into the equilibrium E is finite.

Now let Ṽ be a plane in Σ̃ through a point x0 ∈ Γ̃ transversal to Γ̃ and R̃ be the first return
map to Ṽ corresponding to the induced flow. Identify Σ with ∂Σ× [0, 1] where (x, 0) ∈ ∂Σ× [0, 1]
corresponds to E and let V = Ṽ × [0, 1]. Let R be the first return map to V of the original flow.
Then R is of the form R(x, t) = (R̃(x), %x(t)). As we noted above, it was shown in Sparrow et al
[2008] that t 7→ %x(t) has derivative less than one when x = x0 and β ∈ (0, σ). Note that

Rn(x, t) = (R̃n(x), %R̃n−1(x) ◦ · · · ◦ %x(t))

Since for β ∈ (0, σ), 0 is a hyperbolic attracting fixed point of %x0 : R+ → R+, if R̃n(x) = x,
x ∈ ∂Σ and x, . . . , R̃n−1(x) are all sufficiently close to x0 then t 7→ %Rn−1(x) ◦ . . . %x(t) still has
an attracting fixed point at 0. So the periodic point x for the induced flow corresponds to an
orbit which tends towards the equilibrium point E as t → ∞ for the original flow. (Because of
the parametrisation, orbits actually reach E in finite time; during this time the orbit switches
infinitely often between strategies.)

On the other hand, if β ∈ (σ, 1), then there exists a t0 ∈ (0, 1) so that Γ ∩ V corresponds
to (x0, t0). It was shown in Sparrow et al [2008] that t0 is a hyperbolic attracting fixed point
(and 0 a repelling fixed point) of %z : R+ → R+, where t0 > 0 is so that z̃ = (z, t0) ∈ Γ. So if
the periodic point Tn(x) = x is sufficiently close to z then t 7→ %Tn−1(x) ◦ · · · ◦ %x(t) still has an
attracting fixed point t near t0. It follows that to each periodic point x of the induced flow is
associated a periodic point (x, t) of the Poincaré return map of the flow (of the same period).
In the same way one can prove that there are invariant sets which correspond to the second and
third assertions of Theorem 3.1.

5 Proof of Theorem 3.1

5.1 A geometric description of the flow near the Jitter set

Before doing a rather cumbersome explicit calculation in the next subsection (for the game under
consideration), we first want to explain geometrically what the dynamics near Z∗ looks like. As
before let Z ′ = ZBk,l×ZAi,j be a codimension-two plane where both players are indifferent between
two strategies. In this section we consider the situation that near part of this set where both
players are indifferent, both players choose repeatedly the strategies in a period four pattern
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Figure 5: The targets PA
i , P

A
j , P

B
k , P

B
l in the plane S are drawn marked as •. The dashed line corre-

sponds to Z. A quadrangle Q in S is also drawn and also another quadrangle Qz = pr−1(Q) ∩ S0 which

is in the plane S0 3 z0. The cone of the quadrangle with apex T is invariant under the flow. In the figure

we have taken the case that da
i and db

i are equal to 1.

(i, k), (i, l), (j, l), (j, k). Let S be the two-dimensional plane spanned by [PAi , P
A
j ] × [PBk , P

B
l ] ⊂

ΣA×ΣB . The orbit segments aim to the four targets in S, but an orbit which starts in Z ′ remains
in Z ′ and aims for the point T := S ∩ Z ′. We call this point the cone-target. The linear (affine)
spaces S and Z ′ are of complementary dimensions and transverse. Let L be a line through the
cone-target T contained in Z ′, and let W be the three dimensional space W = S + L. Take
z0 ∈ L, and assume that on some neighbourhood U ⊂W of z0, the players only choose the above
strategies. In other words, U \Z ′ consists of four components, Sst where s ∈ {i, j} and t ∈ {k, l}
such that players A and B aim for PAs resp. PBt in Sst. First we prove that each orbit in U lies
within a cone with apex T (the cone-target) induced over some quadrangles Q, see Figure 5.

Let us define these quadrangles Q. To do this, it is convenient apply a translation to S ⊂ ΣA×
ΣB which puts T = S ∩Z ′ as the origin (0, 0) of S ⊂ R2 and identifies S = [PAi , P

A
j ]× [PBk , P

B
l ]

with a rectangle in R × R so that (PAi , P
B
k ), (PAi , P

B
l ), (PAj , P

B
l ) and (PAj , P

B
k ) correspond to

(−da1 , db1), (−da1 ,−db2), (da2 ,−db2), (da2 , d
b
1) for some da1 , d

a
2 , d

b
1, d

b
2 6= 0 with da1d

a
2 > 0 and db1d

b
2 > 0.

(The signs of da1 , d
a
2 , d

b
1, d

b
2 depend on whether the orbits flow clockwise or anticlockwise along

L.) Now let Q be the quadrangle with corners

(da2 , 0), (0,
da2
da1
db1), (−d

b
1

db2
da2 , 0), (0,−db1) (5.5)

(or a multiple of it). Note that the four corners of this quadrangle lie on the coordinate axes
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and the sides of this quadrangle are parallel with the vector pointing from O to (PAs , P
B
t ) in the

region Ŝst corresponding to the projection of Sst along the direction L. The quadrangle Q is
shown in Figure 5.

Next take a plane S0 ⊂ W through z0 transversal to L and take the projection pr : S0 → S
along L. Furthermore, take z ∈ S0, take the multiple εQ of the quadrangle Q in S which contains
pr(z) ∈ S and define a quadrangle Qz = pr−1(εQ) ∩ S0, see Figure 5. Each z ∈ S0 sufficiently
close to z0 is contained in some quadrangle Qz in this way. These quadrangles in S0 have the
following two property: (1) their corners are contained in two lines in S0 which are orthogonal
to each other and (2) the quadrangles are self-similar (they are all scalings of each other around
the common ‘centre point’ z0).

The reason these quadrangles are important is the following: Consider the cone C(Qz) over
Qz with as apex the cone-target T . Since the ’vertical’ sides of this cone are contained in planes
through the cone-target T and the targets (PAs , P

B
t ), for each z in this side the vector pointing

from z to (PAs , P
B
t ) is contained in the side of the cone. It follows that orbits which start in

C(Qz) remain in C(Qz) until such time as one or both of the players start to play a third strategy.
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Figure 6: Arbitrary quadrangles can be mapped to standard quadrangles {(x, y) ∈ R2; |x|+ |y| = r} by

piecewise linear maps. An arc γ connecting one of the corners of Q to some point z ∈ Q is also drawn

(with dotted points). The angle of z is equal to the l(γ)/l(Q) where l is the usual Euclidean length in

R2.

So consider such a family Q of quadrangles. Let us define a natural metric in S0 associated
to these quadrangles in the following way. The family Q of quadrangles can be mapped to the
standard family of quadrangles {(x, y) ∈ R2; |x| + |y| = r} by a map L which restricted to each
quadrant is linear, see Figure 6 and with L(z0) = 0. Thus we can define for each z ∈ S0,

||z||S0 = ||Lz||

where || · || is the sum-norm on R2: if w = (x, y) then ||w|| = |x| + |y|. So ||z0||S0 = 0 and the
set {w ∈ S0; ||w||S0 = r} is exactly a quadrangle from the above family. By analogy to the usual
polar coordinates, we can associate an angle to z ∈ S0 \ {z0} in the following way. Pick one of
the corners q of the quadrangle Q = {w ∈ S0; ||w||S0 = r} where r = ||z||S0 , let γ be the curve

on this quadrangle which connects q to z (anti-clockwise). Then define φ(z) = 2π
l(γ)
l(Q)

where l

stands for the usual Euclidean length in R2. Thus we have defined quadrilateral polar coordinates
(r, φ) of z ∈ S0 \ {z0} as follows:

r := ||z||S0 and φ = 2π
l(γ)
l(Q)

where Q = {w ∈ S0; ||w||S0 = r} and r = ||z||S0 . (This is completely analogous to how the usual
polar coordinates are defined.)
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Proposition 5.1 (Poincaré transition map for two planes parallel to S.). Take two points z0, z′0 ∈
L so that along the segment [z0, z′0] no other strategy becomes preferential (or indifferent) to the
strategies i, j for A and k, l for B. Let S0, S

′
0 be two-dimensional planes in W through z0 resp. z′0

which are both transversal to L. For z ∈ S0 consider the quadrangle Qz in S0 constructed above
and let C(Qz) be the cone of Qz over the cone-target T . Let R(z) be the Poincaré map from S0

to S′0. Then R(z) is well-defined for z close to z0 and is contained in C(Qz) ∩ S′0. Moreover,
consider polar coordinates in the plane S′0 with the distance and angle taken from the point S′0∩L.
Then one can take a continuous map

Ψ: S0 \ {z0} 3 z 7→ R

so that for each z ∈ S0 \{z0} the value of Ψ(z) modulo 2π is equal to the quadrilateral polar angle
of R(z) ∈ S0 \ {z′0} (as defined above). Then Ψ(z) is equal to

2π · 1− c(z)
a · c(z) · r

+B(z) +B0. (5.6)

Here r := ||z||S0 , c(z) is equal to c0(1 + O(r)) where c0 = dist(z0, T )/dist(z′0, T ) ∈ (0, 1) and
where O(r) is a function with O(r)/r bounded as r → 0, B(z) : S0 \ {z0} → R is continuous
function on S0 with B(z)→ 0 as z → z0, and B0 ∈ R and a > 0 are constants. Here dist is the
usual Euclidean norm on the line L.

So the angle of R(z) increases very fast as r = ||z||S0 tends to zero.
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Figure 7: The spiral motion in S and the half-lines li emanating from the centre O. The transition map

from some quadrangle Q to c0Q is also drawn.

Proof. The only thing we need to prove is that (5.6) holds. To do this, note that the vector
field is the product of a vector field in a direction along L and one in the direction parallel to S.
If we ignore the direction along L, then we get a new two-dimensional vector field on S which
corresponds to a two-dimensional game with spiral behaviour, see Figure 7. In other words, if
we define pr : W → S to be the (linear) projection along L and let (z, t) 7→ Ψt(z) be the flow
through z, then pr projects the orbits of this flow in W to orbits of a two-dimensional system
in S. Moreover Qz = pr(Qz̃) is a quadrangle in S as defined above, where z̃ := pr(z) ∈ S.
Denote the flow of this two-dimensional system through z̃ by (z̃, t) 7→ Φ̃t(z̃). Consider the piece
[0, A] 3 t 7→ Φt(z) of the orbit through z ∈ S0 until it hits S′0. Then [0, A] 3 t 7→ Φ̃t(z̃) is an arc
with z̃ ∈ Qz̃ and R̃(z̃) ∈ c(z) ·Qz̃ where c(z) > 0 is equal to c0(1 +O(dist(z, z0))) where

c0 := dist(S′0 ∩ L,O)/dist(S0 ∩ L,O)

17



and O(x) is a function so that O(x)/x is bounded when x → 0. This holds because the angle
between the ’vertical sides’ of C(Qz) and L tends to zero as z ∈ S tends to z0. (In fact, if S0

and S′0 are both parallel to S then c(z) is exactly c0.)
So it suffices to consider the projected flow Φ̃t(z̃) on S. That is, let us consider the Poincaré

transition map R̃ which assigns to a point z̃ ∈ Qz̃ ⊂ S the intersection of c0Qz̃ with the orbit
t 7→ Φ̃t(z̃). Next consider the quadrilateral polar coordinates in S (with the origin centered
at O) and let t 7→ φt(z̃) be the angle of Φ̃t(z̃) (where we choose t 7→ φ(z̃) continuous). Then
the angular change φA(z̃) − φ0(z̃) is equal to the 2π times the integer number of times the
[0, A] 3 t 7→ Φ̃t(z̃) winds around O plus some number in [0, 2π]. To compute this integer number
of winding, consider the four half-line li through the equilibrium ES of the two-dimensional game
in S where one of the players is indifferent and the other player always prefers one strategy, and
denote these by lm, m = 1, . . . , 4 (numbered so the flow meets these half-lines periodically in
this order). Given x ∈ lm, let fm(x) be the first time the flow meets lm+1 mod 4. Let us identify
these lines with [0, 1] where 0 corresponds to the equilibrium ES . Since going from lm to lm+1 is
just the stereographic projection from lm to lm+1 through lines of the target in the next region,
fm(x) is of the form

r 7→ r

1 + amr
with m = 1, 2, 3, 4

where r stands for the distance to the origin measured in the metric || · ||S (if, instead, we take
the Euclidean metric then we get these maps are of the form r 7→ θmr

1+amr
where θm is related to

the shape of the quadrangle). Since the composition of two Moebius transformations of the form
r 7→ r/(1 + %1r) and r 7→ r/(1 + %2r) is equal to x 7→ r/(1 + (%1 + %2)r, we get that the Poincaré
first return map f to l1 is of the form

f(r) = f4 ◦ f3 ◦ f2 ◦ f1(r) =
r

1 + ar
where a = a1 + a2 + a3 + a4.

Hence fn(r) = r
1+nar for all n. So let n be maximal so that fn(r) ≥ cr where c is equal to the

number c(z) from above. Then n is the maximal integer so that r/(1 + nar) ≥ c · r, i.e.,

n ≤ 1
ar

(
1− c
c

)
.

In fact, φ(R̃(z̃))− φ(z̃) is constant for z ∈ Q, because the relative length of an arc in Q (as a
proportion of total perimeter length of Q) is preserved under one central projections, see Figure 8
and therefore also under a composition of such maps. So in particular if c0 is equal to 1/(1+nar)
then the angle of R̃(z̃) and z̃ are the same modulo 2π. If 1/(1 + (n+ 1)car) < c0 < 1/(1 + ncar)
then the result follows from a simple geometric consideration, see Figure 8. Thus we have proved
Proposition 5.1.

Note that after n = [1/r] iterates of the map f one has fn(r) = r
1+nar ≈ c1r where c1 ∈ (0, 1)

is equal to 1/(1 + a). During this time, the orbit has spiraled n times around O with each spiral
between Tr and Tc1r. The length (and so the time-length) of the two-dimensional orbit is roughly
n · c2r ≈ c2. Hence in one unit of time, the flow moves a point z̃ a definite factor closer to O.

5.2 An analytic computation of the flow near the Jitter set

In this section we will make some precise calculations for the periodic orbit Γ̃ on the Jitter set for
the induced flow on ∂Σ. More precisely, we will consider the first return map to some first return
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Figure 8: Relative length (i.e. quadrilateral angle) is preserved by central projection. Moreover, let

Q = {z; ||z||S = r}. Then the length of the arc γc between the vertical axis and the intersection of the

line with cQ is equal to (1 − c)θr whereas the length of Q is equal to
√

2cr, where θ is a constant. So

the angle of γc is equal to (1− c)θ/(
√

2c) (plus a constant).
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Figure 9: The simplices ΣA and ΣB . The closed curve Γ travels in both triangles clockwise along the

three legs. Γ reverses at the points fA
ij and fB

ij .

section at some point in Γ. To do this, consider the line V0 in ΣA where player B is indifferent
between strategies 2 and 3 (it goes from RA23 to QA23, see Figure 9 for the location of these points).
Similarly, let V1 in ΣB be where player A is indifferent between strategies 2 and 3 (it goes from
RB23 to QB23) and let V2 be the line in ΣA where player B is indifferent between strategies 1 and
3 (it goes from RA31 to QA31). Moreover, let ∂ΣijA be the side of ∂ΣA containing RAij and similarly
define ∂ΣijB as the side of ∂ΣB containing RBij .

Let R0 be the first entry map V0 × ∂Σ31
B → ∂Σ12

A × V1 and R1 be the first entry map
∂Σ12

A × V1 → V2 × ∂Σ12
B corresponding to the induced flows on ∂Σ. By the symmetry of the

system, the first return map to V0 × ∂Σ31
B is equal to the third iterate of R1 ◦R0. (Provided we

make sure we choose the axis consistently.)
The first leg of the orbit Γ (the one which is contained in ZB1,2 × ZB1,3 ⊂ ΣA × ΣB and which

is the first piece of the two legs of the orbit Γ shown in Figure 9) corresponds to the first entry
map R0. During the transition which corresponds to R0, player A only chooses between strategy
1 and 3 and player B only chooses between strategy 2 and 1. Note that as soon as the orbit hits
ΣA × V1 and until it hits V2 × ΣB , player A will only choose between strategies 1 and 2 (while
player B still only plays 1 and 2). So the first entry maps to these sections allow us to consider
the pieces of the orbit where each players only switch between two strategies.
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Let us describe how much further or closer an orbits near Γ̃ can get to Γ̃ while it orbits nearby.
To do this, define the sum-distance (i.e. the metric dist) on ∂Σ ⊂ Σ ⊂ R6 between two points
z = (z1, . . . , z6), w = (z1, . . . , w6) by

dist(z, w) =
∑

i=1,...,6

|zi − wi|.

This metric is well-suited to dealing with quadrilaterals. Because of the discussion in the pre-
vious subsection, there exist quadrilaterals in V0 × ∂Σ13

B which are mapped by R1 into another
quadrilaterals in ∂Σ12

A × V1 (and similarly for R2). Let us compute these quadrilaterals (up to
first order). It will be important to be consistent in the choice so let us write

V0 × ∂Σ13
B = [RA23, Q

A
23]× [PB1 , P

B
3 ],

∂Σ12
A × V1 = [PA1 , P

A
3 ]× [QB23, R

B
23],

V2 × ∂Σ21
B = [RA31, Q

A
31]× [PB2 , P

B
1 ]

and number the half-lines clockwise starting with the positive horizontal axis, see Figure 10.
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Figure 10: The first return map to [RA
23, Q

A
23]× [PB

1 , P
B
3 ] is equal to the third iterate of R1 ◦R0 provided

we identify [RA
31, Q

A
31] × [PB

2 , P
B
1 ] with [RA

23, Q
A
23] × [PB

1 , P
B
3 ] in a consistent way. For this reason we

order the half-lines in the coordinate axis in the return sections as shown. The origins of these axes are

(EA, RB
31), (RA

12, E
B) and (EA, RB

12).

Proposition 5.2. For each ε > 0 small, there exists a quadrilateral Qε
V0,R0

⊂ V0 × ∂Σ13
B with

corners in the coordinate axes, and such that the sum-distance of corners (1),(2),(3),(4) (labeled
as in Figure 10 on the left) to (EA, RB13) are equal, up to terms of order ε2, to

2
3

(2 + β)ε
1 + β + β2

,
2ε

(2− β)(1 + β)
,

2
3

(2 + β)ε
β(1 + β + β2)

,
2ε

2− β
. (5.7)

Similarly there exists a quadrilateral Qε
V1,R0

⊂ ∂Σ12
A × V1 with corners in the coordinate axes,

and such that the sum-distance of these corners (1),(2),(3),(4) (labeled as in Figure 10 in the
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middle) to (RA12, E
B) are equal, up to terms of order ε2, to

2(2− β)ε
(1 + β)(2 + β)

,

2
3

(4− 4β + β2)ε
1 + β3 + β + β4

for β ∈ (0, 1/2) and
2
3

(2− β)ε
1 + β3

for β ∈ (1/2, 1),

2(2− β)ε
β(1 + β)(2 + β)

,

2
3

(4− 4β + β2)ε
(1 + β3)

for β ∈ (0, 1/2) and
2
3

(2− β)ε
1− β + β2

for β ∈ (1/2, 1).

(5.8)

The first entry map R0 maps QεV0,R0
into QεV1,R0

.
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Figure 11: The simplices ΣA and ΣB . The line V0 ⊂ ΣA is drawn in the left triangle and the line

V1 ⊂ ΣB on the right, and the first four line segments of the orbit (starting at time t0 = 0 at the point

∗) which are computed in the proof of Proposition 5.2 are shown.

So this proposition gives precise information on how much further or closer one gets to Γ̃
during the transition from V0 × ∂Σ13

B to ∂Σ12
A × V1. Remember that we saw in the previous

subsection that the angle of R0(z) depends extremely sensitively on ε and so it essentially suffices
to compare the size of the terms in (5.7) to those in (5.7).

What we need to do in the proof of Proposition 5.2 is to associate to R0 invariant cones as
in the previous subsection, and the corresponding quadrangles in V0 × ∂Σ13

B and in ∂Σ12
A × V1.

After that, we will do the same for the first entry map R1.

Proof. Since we want to consider the induced flow on ∂Σ, we take a starting point (pA, pB) ∈
V0 × ∂Σ12

B when considering the map R0. During this part of the orbit, the orbit jitters around
this first leg of Γ. To describe this precisely, we explicitly compute the quadrilateral from the
previous subsection. As we have seen in the previous subsection the orbit is contained in a cone
with apex the ’cone-target’ which in this case is equal to (TA, TB) = (RA12, Q

B
13). To compute this

cone, let us take as a special starting point in V0 × ∂Σ13
B the point pA = (1/3, 1/3, 1/3), pB =

(1−β− ε, 0, 1 + ε)/(2−β) (where pB = RB13 when ε = 0) and compute the first four pieces where
this orbit aims for (PA3 , P

B
1 ), (PA1 , P

B
1 ), (PA1 , P

B
2 ) and (PA3 , P

B
2 ) under the original flow (i.e. the
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first four times when the players hit an indifference plane under the original flow). Since the
calculations are rather laborious and it is easy to make a mistake, we did this by using Maple
(the worksheet can be requested from the authors - and also is available on the first author’s
webpage). For simplicity we take the parametrisation pA(tk + s) = pA(tk)(1 − s) + sPAi and
pA(tk + s) = pA(tk)(1− s) + sPAj for all t ∈ (tk, tk+1) provided A resp. B aim for PAi , P

B
j during

this time interval. The first hitting time is at t̂1 := t1 := ε/(1 + ε), and then

pA(t̂1) =
(

1
3(1 + ε)

,
1

3(1 + ε)
,

1 + 3ε
3(1 + ε)

)
, pB(t̂1) =

(
1− β
2− β

, 0,
1

2− β

)
.

The next time the players hit an indifference plane is at t̂2 := t1+t2 where t2 := ε/(β+βε+1+2ε)
and then

pA(t̂2) :=
(

1
3

ε+ β + 1
β + β ε+ 1 + 2 ε

,
1
3

β + 1
β + β ε+ 1 + 2 ε

,
1
3

(1 + 3 ε) (β + 1)
β + β ε+ 1 + 2 ε

)
,

pB(t̂2) :=
(

β2 + β2ε− 1− 3 ε+ β ε

(β + β ε+ 1 + 2 ε) (−2 + β)
, 0 , − β + β ε+ 1 + ε

(β + β ε+ 1 + 2 ε) (−2 + β)

)
Then it hits at t̂3 := t1 + t2 + t3 with t3 := ε/(β2 +β2ε+β+2β ε+ ε) and then pA(t̂3) and pB(t̂3)
are equal to (

1
3

β + 3 ε
β + β ε+ ε

,
1
3

β

β + β ε+ ε
,

1
3
β (1 + 3 ε)
β + β ε+ ε

)
,( (

β2 + β2ε− 1− 3 ε+ β ε
)
β

(−2 + β) (β2 + β2ε+ β + 2β ε+ ε)
,

ε

β2 + β2ε+ β + 2β ε+ ε
, − (1 + ε)β

(−2 + β) (β + β ε+ ε)

)
and again at t̂4 := t̂3 + t4 where t4 := ε/(β + βε+ 2ε) and then pA(t̂4) and pB(t̂4) are(

1
3

β + 3 ε
β + β ε+ 2 ε

,
1
3

β

β + β ε+ 2 ε
,

1
3
β + 3β ε+ 3 ε
β + β ε+ 2 ε

)
,

(
β
(
β2 + β2ε− 1− 3 ε+ β ε

)
(β + 1) (−2 + β) (β + β ε+ 2 ε)

,
(β + 2) ε

(β + 1) (β + β ε+ 2 ε)
, − β (1 + ε)

(−2 + β) (β + β ε+ 2 ε)

)
.

Next we compute the cone. As mentioned, the cone-targets are

TA :=
(

1
β + 2

, 0 ,
β + 1
β + 2

)
and TB :=

(
β

β + 1
,

1
β + 1

, 0
)

and we compute the intersection of the line through (TA, TB) and the points (pA(t̂i), pB(t̂i)),
i = 1, . . . , 4 with the three-dimensional section V0 × ΣB . This gives an intersection point at t̂1,(

1/3
−3β ε+ β2 + β + 1
β2 + β − β ε+ 1 + ε

, 1/3
β2 + β + 1

β2 + β − β ε+ 1 + ε
, 1/3

β2 + β + 1 + 3 ε
β2 + β − β ε+ 1 + ε

)
,

(
4β2ε+ β4 + β3 + β3ε− β − 1− β ε− ε
(β2 + β − β ε+ 1 + ε) (β + 1) (−2 + β)

, − β ε (β + 2)
(β2 + β − β ε+ 1 + ε) (β + 1)

,
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−
(
β2 + β + 1

)
(1 + ε)

(β2 + β − β ε+ 1 + ε) (−2 + β)

)
;

at t̂2 the intersection point is
(1/3, 1/3, 1/3),(

2β ε+ β3 + β2 + 2β2ε− β − 1− 3 ε
(β + 1)2 (−2 + β)

, −ε (β + 2)
(β + 1)2

, − 1 + ε

−2 + β

)
;

at t̂3 the intersection point is(
1/3

(
β2 + β + 1 + 3 ε

)
β

β2 + β + β3 + β ε− ε
, 1/3

(
β2 + β + 1

)
β

β2 + β + β3 + β ε− ε
, 1/3

β3 + β2 + β − 3 ε
β2 + β + β3 + β ε− ε

)
(
β
(
β4 + 2β3ε+ β3 + 2β2ε− 2β ε− β + ε− 1

)
(β + 1) (−2 + β) (β2 + β + β3 + β ε− ε)

, −
ε
(
β3 + β2 + 1

)
(β2 + β + β3 + β ε− ε) (β + 1)

,

−
(
β2 + β + 1

)
(1 + ε)β

(β2 + β + β3 + β ε− ε) (−2 + β)

)
while at t̂4 the intersection point we get is the original starting point (this is not surprising
because the orbit lies on the cone through these points):

(1/3, 1/3, 1/3) ,
(

1− β
2− β

, 0,
1

2− β

)
.

These four points in ΣA×ΣB together with the apex (TA, TB) determine a cone (for each ε > 0).
However, remember we want to compute the cone for the induced flow. This means that we

have to take the intersection of the lines from (EA, EB) through these points with ∂Σ. Since
ε > 0 is small, these points will be contained in V0 × ∂Σ13

B . This gives at t̂1,(
1/3

β3 + 2β2 + 2β + 1 + 3β ε
β3 + 2β2 + 2β + 2β2ε+ 1 + ε+ 6β ε

, 1/3
β3 + 2β2 + 2β + 3β2ε+ 1 + 6β ε

β3 + 2β2 + 2β + 2β2ε+ 1 + ε+ 6β ε
,

1/3
β3 + 2β2 + 2β + 3β2ε+ 1 + 3 ε+ 9β ε
β3 + 2β2 + 2β + 2β2ε+ 1 + ε+ 6β ε

)
(
−1 + β

−2 + β
, 0 ,

1
2− β

)
at t̂2,

(1/3, 1/3, 1/3) ,(
β3 − β − 1 + 3β2ε− 7 ε+ 2β ε+ β2

(β2 + 2β + 1 + 3β ε+ 6 ε) (−2 + β)
, 0 , − 2β + 1 + 5 ε+ β2 + 2β ε

(β2 + 2β + 1 + 3β ε+ 6 ε) (−2 + β)

)
at t̂3,(

1/3
2β3 + 2β2 + β + β4 + 6β2ε+ 3 ε+ 3β3ε+ 3β ε

2β3 + 2β2 + β + β4 + 4β2ε+ 2 ε+ 3β3ε
, 1/3

2β3 + 2β2 + β + β4 + 3β2ε+ 3 ε+ 3β3ε

2β3 + 2β2 + β + β4 + 4β2ε+ 2 ε+ 3β3ε
,
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1/3
β
(
2β2 + 2β + 1 + β3 + 3β ε+ 3β2ε− 3 ε

)
2β3 + 2β2 + β + β4 + 4β2ε+ 2 ε+ 3β3ε

)
(

1− β
2− β

, 0 ,
1

2− β

)
and at t̂4 again the point we started with

(1/3, 1/3, 1/3) ,

(
β + ε− 1
−2 + β

, 0 ,
1− ε
−2 + β

)
.

These four points determine a quadrangle Qε
V0,R0

in V0 × ∂Σ13
B .

Next we find the intersection points of these cones with ΣA×V1 and then take the intersections
with ∂Σ of half-lines from E in the direction of these points. Since the expressions are rather
similar to the ones before, we will only give these final points in ∂ΣB × V1. The intersection
corresponding to t̂1 is(

β + β ε+ 1 + ε

(3 ε+ β + 1) (β + 2)
, 0 ,

2β + 1 + 5 ε+ β2 + 2β ε
(3 ε+ β + 1) (β + 2)

)
, (1/3, 1/3, 1/3) ,

to t̂2 is (
1

β + 2
, 0 ,

β + 1
β + 2

)
,(

1/3
3β2ε− 9β ε+ 1 + 9 ε+ β3 + 3β3ε+ β + β4

2β2ε− 5β ε+ 1 + 5 ε+ β3 + 3β3ε+ β + β4
, 1/3

3β2ε− 6β ε+ 1 + 3 ε+ β3 + 3β3ε+ β + β4

2β2ε− 5β ε+ 1 + 5 ε+ β3 + 3β3ε+ β + β4
,

1/3
1 + β3 + β + β4 + 3 ε+ 3β3ε

2β2ε− 5β ε+ 1 + 5 ε+ β3 + 3β3ε+ β + β4

)
,

to t̂3, (
2β ε+ β2 + β + 2 ε

(3 ε+ β + 1)β (β + 2)
, 0 ,

3β2ε+ 4β ε+ β3 + 2β2 + β − 2 ε
(3 ε+ β + 1)β (β + 2)

)
, (1/3, 1/3, 1/3) ,

and to t̂4, (
1

β + 2
, 0 ,

β + 1
β + 2

)
,(

1/3
6β ε+ 1− 3 ε+ β3

2β ε+ 1 + ε+ β2ε+ β3
, 1/3

β2 − β + 1 + 3 ε
β2 − β + β ε+ 1 + ε

, 1/3
1 + β3 − 3β ε+ 3 ε+ 3β2ε

2β ε+ 1 + ε+ β2ε+ β3

)
.

These points form the quadrilaterals Qε
V1,R0

in ∂Σ12
B × V1.

To get Proposition 5.2 we differentiate the points forming the quadrilaterals Qε
V0,R0

and
Qε
V1,R0

with respect to ε. Since these points correspond to probability vectors, the sum of these
derivatives is equal to zero. So we merely need to take the sum of the absolute values of these
derivatives (or twice the positive terms).
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Figure 12: The simplices ΣA and ΣB . The line V1 ⊂ ΣB is drawn in the right triangle and the line

V2 ⊂ ΣA on the left, and the first four line segments of the orbit (starting at time t0 = 0 at the point

∗) which are computed in the proof of Proposition 5.2 are shown. Notice that t1, t2, t3, t4 correspond

to half-lines (2), (3), (4), (1) in the middle of Figure 10 and to (4), (1), (2), (3) on the right. This can

be seen by taking the cones through the target points, intersect them respectively with ΣA × V1 and

V2 × ΣB , and then project from E on the boundary of Σ.

Since the calculations from R1 are similar to those done in the Proposition 5.2 we shall not
show them here. The maple worksheet in which these computations are done can be obtained
from the authors on request.

Proposition 5.3. For each ε > 0 small, there exists a quadrilateral Qε
V1,R1

⊂ ∂Σ12
A × V1 with

corners in the coordinate axes, and such that the sum-distance of these corners (1),(2),(3),(4)
(labeled as in Figure 10) to (RB12, E

B) are equal, up to terms of order ε2, to

2ε
2 + β

2
3

(2− 3β + β2)ε
1 + β3

for β ∈ (0, 1/2) and
2
3

1− β
1− β + β2

for β ∈ (1/2, 1),

2(1− β)ε
2 + β

,

2
3

(2− 3β + β2)ε
β(1− β + β2)

for β ∈ (0, 1/2) and
2
3

(1− β2)ε
β(1− β + β2)

for β ∈ (1/2, 1)

(5.9)

Similarly there exists a quadrilateral Qε
V2,R1

⊂ V2×∂Σ12
B with corners in the coordinate axes, and

such that the sum-distance of these corners (1),(2),(3),(4) (labeled as in the figure on the right
in Figure 10) corners to (EA, RA12) are equal, up to terms of order ε2, to

2
3

(4− 3β2 − β3)ε
1 + 3β + 3β2 + 2β3

,
2(2− β − β2)ε

(1 + 2β)(2− β)β
,

2
3

(11 + 21β + 15β2 + 7β3)ε
(1 + 3β + 3β2 + 2β3)(2 + β)

,
2(2− β − β2)ε

(1 + 2β)(1 + β)(2− β)
.

(5.10)

The first entry map R1 maps QεV1,R1
into QεV2,R1

.
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5.3 The dynamics of a Jitter map

The dynamics near the periodic orbit Γ is very complicated. As we have seen, the Poincaré
transition map to a section at a point of Γ is a composition of maps of the following form:

x 7→ A1 ◦R2π/||y||+B(y) ◦A−1
0 (x) where y = A−1

0 (x).

In this section we shall first study the iterations of one of these maps. In the next section we will
then consider the composition of two suitable Jitter maps.

Let dist be a metric on R2 with the property that each half-line through the origin intersects
∂Dr in a unique point (where Dr := {z ∈ R2; |z| := dist(z, 0) = r}). Next take Rt : R2 → R2

to be the quadrilateral rotation, i.e. the unique map so that R2 × R 3 (z, t) 7→ Rt(z) ∈ R2 is
continuous, R0 = id, so that for each z ∈ R2, dist(Rt(z), 0) = dist(z, 0) and so that for each
x ∈ R2\{0} the angles of Rt(z) and z differ by t. If dist is the Euclidean metric then this coincides
with the usual rotation, but in our setting it is convenient to take for dist the sum-metric on R2

(defined by dist(z, z′) := ||z − z′|| := |x − x′|+ |y − y′| for z = (x, y) and z′ = (x′, y′)) in which
case t 7→ Rt(z) moves each point along a square ∂Dr(0).

Next define two homeomorphisms A0, A1 : R2 → R2 which preserve the axes and which map
quadrilaterals containing 0 with corners on the axes to quadrilaterals of the form ∂Dr = {(x, y) ∈
R2 ; |x| + |y| = r}. Assume that there exist λ < 1 < µ so that for each t ∈ (λ, µ) there exists a
smooth curve lt through 0 so that

dist(A−1
0 ◦A1(z), 0) = t · dist(z, 0) for each z ∈ lt (5.11)

and such that A−1
0 A1(lt) is transversal to ∂Dr for each r > 0. Consider

F (z) = A1 ◦Rθ(w) ◦A−1
0 (z)

where
θ(w) = 2π/||w||+B(w) , w = A−1

0 (z) and ||w|| = dist(w, 0)

and w 7→ B(w) ∈ R is a continuous function which converges to zero as w → 0. We will refer to
F as a ‘jitter map’.

Let us prove that such a Jitter map maps are ’chaotic’.

Proposition 5.4 (A jitter map has many periodic orbits). Let F be as above and assume (5.11).
Then the map F has periodic orbits of arbitrary period in each neighbourhood of 0.

Proposition 5.5 (A jitter map contains a shift with infinitely many symbols). Let F be as above
and assume (5.11). Then there exists N0 so that for each sequence ki ∈ N satisfying

λ ≤ ki+1

ki
≤ µ with ki ≥ N0

there exist a sequence δi ∈ (0, 1) and z 6= 0 with ||F i(z)|| ∈ ( 1
ki+1+δi

, 1
ki+δi

) for all i ≥ 0.

Proposition 5.6. Let F be as above and assume (5.11). Then there exists N0 so that for each
sequence ki ∈ N there exists a sequence δi ∈ (0, 1) so that

λ ≤ ki+1

ki
≤ µ and ki ≥ N0

there exists z 6= 0 with ||F i(z)|| ∈ ( 1
ki+1+δi

, 1
ki+δi

) for all i ≥ 0.
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The first proposition implies, for example, that there is a sequence of fixed points of F
converging to 0.

The second proposition implies that F contains a shift on infinitely many symbols. Indeed,
define the annuli

Annk := {z ∈ R2;
1

(k + 2)
≤ ||z|| ≤ 1

k
}.

The annuli with k even are all disjoint. Hence, taking ki ∈ 2Z in Proposition 5.5, we get the
existence of x ∈ Annk0 with F i(x) ∈ Annki for all i. If we would consider ki ∈ {k0, k0 + 2}
this would give a one-sided shift on two symbols, but the proposition guarantees the existence
of orbits which jump several annuli further in or out (the number is determined by λ and µ). It
follows that F has positive topological entropy. In fact, the topological entropy is infinite because
for each n, it contains a full one-sided shift of n symbols (which has entropy log n).

Corollary 5.1 (A jitter map has sensitive dependence on initial conditions). Let F be as above
and assume (5.11). Then F has sensitive dependence on initial conditions for all points in the
set corresponding to the shift on infinitely many symbols.
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Figure 13: On the left, the image of a curve l through 0 is a spiral. A conveniently chosen curve l

contains a sequence of fixed points, converging to 0. On the right, the sequence of annuli discussed below

the statement of Proposition 5.5. Orbits can jump between annuli according to these allowed sequences

(5.5).

Proof of Proposition 5.4. Let us start by showing why F has a sequence of fixed points tending
to 0. It will be convenient to consider

F̂ (y) := A ◦Rθ(y)(y) where A = A−1
0 ◦A1.

By assumption there exists a curve l through 0 so that ||A(z)|| = ||z|| for z ∈ l. Let l+ be one of
the two components of l \ {0}, let l′+ := A(l+) and let m+ := A1(l+). We shall find a sequence
of fixed points y of F on m+ \ {0}. Indeed, for each r > 0 small, let α(r) be the angle between
the vectors l′rO and lrO where l′r ∈ l′+ and lr ∈ l+ are the unique points so that ||l′r|| = ||lr|| = r.
Then choose y ∈ l′+ so that

θ(y) = 2π/||y||+B(y) = α(||y||) mod 2π. (5.12)

SinceB(y) is bounded and continuous, there exists a sequence of such points on l′+ converging to 0.
More precisely, there exists α so that for each sufficiently large k ∈ N there exists r ∈ ( 1

k+1+θ ,
1

k+θ )
so that y ∈ l′+ with |y| = r satisfied (5.12). So assume that (5.12) holds. Then for any such
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y ∈ l′+ the point x := A0y ∈ m+ is a fixed point of F . Indeed, Rθ(y)(y) = Rα(|y|)(y) ∈ l by the
choice of y and α. So

||F̂ (y)|| = ||A ◦Rθ(y)(y)|| = ||Rθ(y)(y)|| = ||y|| (5.13)

and
A ◦Rθ(y)(y) ∈ l′. (5.14)

Since y ∈ l′+ and l′+ is a smooth curve which is transversal to the quadrangles Dr, equations
(5.13) and 5.14) implies that F̂ (y) = A ◦ Rθ(y)(y) = y. Hence A0 ◦ F̂ (y) = A0(y) and so
F (x) = A0 ◦ F̂ ◦A−1

0 (x) = x for x = A0(y) ∈ m+.
To explain the general case of periodic points of higher periods, let us show how to construct

a periodic orbit of period three (the general case goes similarly). Consider the surface

P̃ (3) = {(a1, a2, a3) ; ai ∈ R+ and a1a2a3 = 1}.

Choose a1, a2, a3 ∈ (λ, µ) on this surface P̃ (3) and a disc neighbourhood U of this point in this
surface. Associate to a = (a1, a2, a3) the curves li, i = 1, 2, 3 through 0 such that ||A(z)|| = ai||z||
for all z ∈ li and let li,+ be a component of li \ {0}. Let l′i,+ = A(li,+). For each r > 0, let αi(r)
be the angle between the Ol′i,r and Oli+1,r where l′i,r = l′i,+ ∩∂Dr and li+1,r = li+1,+ ∩∂Dr (and
where we take l3+1 = l1). Assume there exists r > 0 and a ∈ P̃ (3) so that

θ(l′1,r) = α1(r) mod 2π
θ(l′2,a2r) = α2(a2r) mod 2π
θ(l′3,a2a3r) = α3(a2a3r) mod 2π.

(5.15)

We claim that this implies that x := A0(y) is a periodic point of F of period three where y = l1,r.
Indeed, because y = l1,r = l′1,+ ∩Dr the first equation from (5.15) implies that Rθ(y)(y) ∈ l2,+
and therefore that ||F̂ (y)|| = ||A◦Rθ(y)(y)|| = a2||y|| = a2r and F̂ (y) = A◦Rθ(y)(y) ∈ l′2,+. This
and the second equation from (5.15) implies that Rθ(F̂ (x))(F̂ (y)) ∈ l3,+ and so ||F̂ ◦ F̂ (y)|| =

||A ◦ Rθ(F̂ (x))(F̂ (y))|| = a3|||F̂ (y)|| = a2a3r. Finally, this and the third equation from (5.15)

implies that RF̂ 2(y)(F̂
2(y)) ∈ l1,+ and so ||F̂ 3(y)|| = a1a2a3||y|| and F̂ 3(y) ∈ l′1,+. Because

a1a2a3 = 1 and both F̂ 3(y) and y are in l′1,+ we get therefore that F̂ 3(y) = y. Hence F 3(x) =
A0 ◦ F̂ 3 ◦A−1

0 (x) = x.
So we need to show that (5.15) has solutions. Define G : R+ × P̃ (3)→ R× R× R by

G(r, a1, a2, a3) = (α1(r), α2(a2r), α3(a2a3r))

where y ∈ l′1,+ ∩Dr and αi are the angles defined above. This map is continuous and bounded.
In fact, for each ε > 0 there exist δ > 0 and a neighbourhood U in P̃ (3) as above so that
G((0, δ)× U) is contained in ε-ball in R3. Next define the map

H : R+ × P̃ (3) 3 (r, a) 7→ (θ(l′1,r), θ(l
′
2,a2r), θ(l

′
3,a2a3r)) ∈ R× R× R.

H can be written as H1 +H2 where

H1(r, a) = (2π/r, 2π/(a2r), 2π/(a2a3r)) and H2(r, a) = (B(l′1,r), B(l′2,a2r), B(l′3,a2a3r)).
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Note that (5.15) is equivalent to G(r, a) = H(r, a), i.e. to G(r, a)−H2(r, a) = H1(r, a) (modulo
2π). The values of the left-side map (0, δ) × U 3 (r, a) 7→ G(r, a) − H2(r, a) are contained in
a 2ε-ball, provided we choose δ > 0 so small that |B(y)| ≤ ε for all y with ||y|| ≤ δ. Note
that H1 : (0, δ) × U → R3 is invertible and has inverse H−1

1 (y1, y2, y3) = (2π/y1, y1/y2, y2/y3).
Hence H−1

1 maps 2πk + [0, 2π]3, k = (k0, k1, k2) ∈ Z3 into (0, δ) × U provided |ki| is large.
So (G − H2) ◦ H−1

1 maps 2πk + [0, 2π]3 into some 2ε ball. By Brouwer’s fixed point theorem,
(G −H2) ◦H−1

1 has a fixed point (modulo 2π) in 2πk + κ0 + [0, 2π]3 for some κ0 ∈ R3 (where
k is arbitrary but with |ki| large. Hence there exists a constant κ so that for each k0 large,
G(r, a) = H(r, a) (modulo 2π) has a solution (r, a) with r ∈ ( 1

k0+1+κ ,
1

k0+κ
) and a ∈ U ⊂ P̃ (3).

Proof of Proposition 5.5. The proof of the second assertion also has a similar flavour, but to
explain the proof more clearly we will assume that B(z) = 0 and that the curve lt as in (5.11)
are lines. Again write F̂ = A−1 ◦F where A = A−1

0 ◦A1. Assume that k0, k1, . . . is a sequence as
in the assumption of the proposition, and let κ0, κ1, · · · ∈ (0, 1) be a sequence to be determined
later on. Take U0 = (1/(k0 + κ + 1), 1/k0 + κ0) and inductively choose a sequence of intervals
U1, U2, . . . so that Un is the set of all an ∈ R so that for all x ∈ U0 and all ai ∈ Ui, i = 1, . . . , n−1,

1/(a1 . . . anx) ∈ (kn + κn, kn + κn + 1).

Next let l′0 = R+ and for i ≥ 1, let li be the half-line in the positive quadrant with ||Ax|| = ai||x||
on li. Define l′i = Ali, i ≥ 1 and for i = 0, 1, 2, . . . let αi be the angle between l′i and li+1. Note
that αi depends on ai and ai+1.

We want to show that for each n there exists a solution x ∈ U1 and ai ∈ Ui, i = 2, 3, . . . of
the system of equalities (analogous to (5.15)):

2π/x = α0(a1) mod 2π
2π/(a2x) = α1(a1, a2) mod 2π

...
2π/(an · · · · · a3a2x) = αn−1(an−1, an) mod 2π.

(5.16)

Let us show that this is enough. Take x ∈ l′0 = R+ with distance x to 0. Assume that we have
F̂ i(x) ∈ l′i and ||F̂ i(x)|| = a1 . . . aix. Then the above equations give Rθ(F̂ i(x))(F̂

i(x)) ∈ li+1,

||F̂ i+1(x)|| = ai+1||F̂ i(x)|| = |a1 · · · ai+1x| for i = 0, 1, . . . , n and F̂ i+1(x) ∈ l′i+1. Since x ∈ U0

and ai ∈ Ui, i = 1, 2, . . . this proves by induction that

||F̂ i(x)|| ∈ (
1

ki + δi + 1
,

1
ki + δi

).

for each i = 0, 1, 2, . . . .
To prove that for each n there exist x ∈ U0 and ai ∈ Ui as in (5.16), let

H(x, a2, . . . , an) = (2π/x, 2π/(a2x), . . . , 2π/(anan−1 · · · a2x))

and
G(x, a2, . . . , an) = (α0(a1), α1(a1, a2), α2(a2, a3), . . . , αn−1(an−1, an)).
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H is invertible with

H−1(y0, . . . , yn−1) = (2π/y0, y1/y0, . . . , yn−1/yn−2).

Now take k = (k0, k1, . . . , kn−1) with ki ≥ N0 and with λ ≤ ki+1/ki ≤ µ. For each ε > 0 there ex-
istsN0 so thatH−1 maps 2πk+[−2π, 4π]n into some ε-neighbourhood of (k0, k1/k0, . . . , kn−1/kn−2).
Then G maps this neighbourhood into a neighbourhood of some point in Rn. It follows that there
exists κ = (κ0, . . . , κn−1) ∈ Rn so that G◦H−1 maps 2πk+2πκ+[0, 2π]n into itself, and therefore
has a fixed point (y0, . . . , yn−1) ∈ 2πk + 2πκ+ [0, 2π]n. It follows G = H (modulo 2π) has as a
solution (x, a2, . . . , an) = H(y0, . . . , yn−1) of the required form.

5.4 The dynamics of the composition of two jitter maps and the Proof
of Theorem 3.1

To prove Theorem 3.1 note that we have seen in Proposition 5.1 that the first entry maps R0

and R1 are of the form

x 7→ A1 ◦R2π/||y||+B(y) ◦A−1
0 (x) where y = A−1

0 (x)

and
x 7→ A3 ◦R2π/||y||+B′(y) ◦A−1

2 (x) where y = A−1
2 (x).

The first return map to the section associated to V0 is the third iterate of R1 ◦R0 (provided we
identify the target space of R1 appropriately with the domain space of R0, as we have done in
the previous subsection, see for example Figure 10). To show that this map has the required
properties, we proceed as in the proof of Proposition 5.4 and write

F̂ (x) = A−1
0 ◦A3 ◦R1/||y′||+B′(y′) ◦A−1

2 ◦A1 ◦R1/||y||+B(y).

Note that Ai is a piecewise linear map (linear on each quadrant), and so we can describe these by
four parameters (which determine the position of each corner of the quadrilaterals). To compute
the condition analogous to (5.11), for A−1

2 ◦A1 we take the ratio of the i-th term in (5.8) to the
i-th term in (5.9):

(2− β)
(β + 1)

,
(2− β)
(1− β2)

,
(2− β)

(β + 1)β(1− β)
,

(2− β)β
(1− β2)

.

The largest one of these (the third one) is ≥ 3.5 for all β ∈ (0, 1) whereas the last one is ≤ 1 for
all β ∈ (0, 1/2) (it is increasing) and the first one is ≤ 1 for all β(1/2, 1) (it is decreasing). So
|A−1

2 A1(z)|/|z| can vary between 1 and 3.5.
To compute the condition analogous to (5.11), for A−1

3 ◦A0 we take the ratio of the i-th term
in (5.7) to the i-th term in (5.10):

(2− β − β2)
(1 + 2β)

,
(2− β − β2)(1 + β)

(1 + 2β)β
,
β(11 + 21β + 15β2 + 7β3)

(2 + β)2(1 + 2β)
,

(2− β − β2)
(1 + 2β)(1 + β)

.

The largest of these is either the 2nd or the 3rd, and the maximum of these two is ≥ 1.2 for all
β ∈ (0, 1). The third one is increasing and the last one increasing, with the first one < 0.8 for
β ∈ (0, 0.35) and the last one < 0.8 for β ∈ (0.35, 1). So |A−1

0 A3(z)|/|z| can vary between 0.8
and 3.5.

So the condition corresponding to (5.11) holds. It follows that F̂ has a sequence of fixed
points (and periodic orbits) as before, and that the properties as in Theorem 3.1 hold.
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6 Proof of Theorem 1.4.

Take matrices A and B with
||A−Aβ ||, ||B −Bβ || ≤ ε

where || || stands for some matrix norm.
That the Shapley and anti-Shapley orbit exists for A,B near Aβ , Bβ , simply follows from the

hyperbolicity of the first return map to a section transversal to these orbits. (The first return
maps are projective transformations.)

So let us discuss the persistence of the orbit Γ. Provided ε > 0 is small enough, the set
ΣA and ΣB are still divided up in three regions meeting in a Nash equilibrium as in Figure 1.
(The angles between the lines will no longer be necessarily equal and the Nash equilibria will no
longer be in the barycentre.) Now again consider the induced flow on the boundary. The set
where one or two players are indifferent are still arranged as in Figures 2 and 3 (they change
continuously with A and B). The part of ∂Σ where both players are indifferent still consists of a
closed curve Γ along which orbits spiral (along cones as in Figure 5), and the other part through
which orbits cross transversally. The transition maps can be computed along this orbit as was
done in Section 5.2, but in any case, the quadrangles computed in that section depend again
continuously on A and B. So it follows that for fictitious play associated to A and B sufficiently
close to Aβ , Bβ , one still has the existence of a sequence of periodic orbits for the flow induced
on the boundary.

Next we argue for the original system. The cone over the hexagonal Γ with apex the Nash
equilibrium E is completely invariant and depends continuously on A,B. Moreover, this cone
is two dimensional (but of course embedded in the four-dimensional space Σ). So now take a
half-line l in this cone through the apex, and consider the first return map to l. Because of the
general form of the return maps, this first return map R : l → l is a Moebius transformation,
with a fixed point at E. As we showed in the appendix of Sparrow et al [2008], taking Aβ , Bβ
we have the following: for β ∈ (0, σ) the fixed point E of R : l → l is attracting, for β = σ it is
neutral, and for β ∈ (σ, 1) repelling and another fixed point appears which attracts all points in
l\{E}, because the map is a Moebius map. (For β ∈ (0, σ), the map R : l→ l also has a ’virtual’
2nd fixed point, corresponding to the ’negative’ part of the half-line l.) For A,B close to Aβ , Bβ
the corresponding first return maps are also near those of Aβ , Bβ . So when β 6= σ, and A,B is
sufficiently close to Aβ , Bβ we have the same behaviour for Γ.

Using Proposition 4.1 one can get the same conclusions for the other periodic orbits for the
original flow.

7 Conclusion

For β ∈ (−1, 0] players always asymptotically become periodic. When β ∈ (0, σ) the Shapley
orbit is still attracting but not globally attracting: there is an abundance of orbits (many with
periodic play) as described in Theorem 1.1 which tend to E. For β ∈ (σ, 1) we have chaos (in
the sense that there exist subshifts of finite type). This chaos is caused by a periodic orbit Γ
whose first return map is of what we call ‘jitter type’: orbits can move further away and closer
to the periodic orbit Γ in a manner which is reminiscent to that of a random walk. Numerical
simulations suggest that for β ∈ (σ, τ) this is precisely what happens for most starting points.
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However, when β ∈ (τ, 1) there exists an attracting anti-Shapley orbit, but again this orbit is not
globally attracting.

As shown in Theorem 1.4 the analysis we give does not depend on the symmetry of our
matrices. The symmetric matrices Aβ , Bβ merely simplified our calculations, but using simple
perturbation arguments the results also apply to nearby maps.

Given the relationship established in Gaunersdorfer & Hofbauer [1995] between fictitious play
and replicator dynamics, it would be interesting to see whether chaos can also occur in the latter.1
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[1998] Krishna, V. and Sjöström, T. (1998). “On the convergence of fictitious play”, Math. of
Operations Research, 23, 479-511.

[1994] Metrick, A. and Polak, B. (1994): “Fictitious Play in 2× 2 Games: a Geometric Proof of
Convergence”, Economic Theory, 4, 923-933.

[1991] Milgrom, P. and Roberts, J. (1991). “Adaptive and sophisticated learning in normal form
games”. Games and Economic Behavior 3, 82-100.

[1961] Miyasawa, K. (1961): “On the Convergence of the Learning Process in a 2 × 2 Non-
Zero-Sum Two-Person Game”, Economic Research Program, Princeton University, Research
Memorandum No. 33.

[1996] Monderer, D., and Shapley, L. S. (1996): “Fictitious-Play Property for Games with Iden-
tical Interests”, Journal of Economic Theory, 68, 258-265.

[1951] Robinson, J. (1951): “An Iterative Method of Solving a Game”, Annals of Mathematics,
54, pp. 296-301.
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