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Abstract

What explains the large variation in the number of contacts (degree) that different

participants of social networks have: age, randomness, or some unobservable fitness

measure? To answer this question, I extend the model presented in Jackson and

Rogers (2007) to allow individuals to vary in their ability to attract contacts. I

estimate the parameters of the extended model, using a social network of citations

among high-energy physics papers, and find that the extended Jackson-Rogers model

can parsimoniously fit the degree distribution of each age cohort. Moreover, both the

length of time spent in the network and the unobservable fitness measure are important

in explaining the observed variation in participants’degrees.
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1 Introduction

Why do some participants of social networks have so many contacts, while most oth-

ers have so few? How important are age and randomness in explaining the variation in

the number of contacts (i.e., the degree) that participants have? What is the underlying

process that produces the degree distributions that are repeatedly observed in studies of

social networks?

I answer these questions by extending the framework introduced in Jackson and

Rogers (2007). In that paper, the authors construct a simple model that fits degree dis-

tributions observed in different social networks. In their model, nodes enter the network

one at a time and form links with existing nodes in a two-step process. First, in random

meetings, the entrant uniformly samples from the population of incumbents. Second, in

network-based meetings, the entrant samples from the contacts of the incumbents that it
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met. In each of these meetings, the entrant forms a directed link to the sampled incumbent.

When network-based meetings are more prevalent, incumbents with many contacts are rel-

atively more likely to gain additional contacts. At one extreme, when all links are formed

via networking, nodes’degrees are Pareto distributed. At the other extreme, when all links

are formed randomly, the degree distribution is that of an exponential random variable.1

In Sections 3.1 and 3.2, I review the arguments that are used to solve for the exact

joint distribution of participants’ages and degrees. According to the baseline model, par-

ticipants are only distinguished by their age (when they entered the network) and chance

(whether they happened to be contacted by entrants more or less often than expected). As

I show in Section 3.2, the role of chance in the model is limited: almost all of the variation in

the number of contacts is due to differences in participants’dates of entry into the social net-

work. I illustrate in Section 2 and Appendix A that this fact conflicts with what is actually

observed in social networks. There is wide variation in the number of contacts of individuals

within any age group. Therefore, there must exist some other factor, independent of age or

chance, that contributes to the observed variation in nodes’degrees.

I extend the baseline model by allowing nodes to differ in the rate at which they

can expect to gain additional links. In Section 3.3, I define the fitness of a node as the

probability that each of its meetings will generate a link. I cannot observe nodes’fitness

measures. However, using the variation of degrees across nodes of a particular age, I can

identify the variation of fitness. With more variability in fitness, there is more variability

in the degree distribution of nodes of a particular age.

In Section 4, I use a dataset of citations among high-energy physics papers to show

that heterogenous node fitness is necessary to fit the observed within-cohort degree distri-

butions. I estimate– via maximum likelihood– the network formation model, both with

and without heterogenous fitness. When nodes are assumed to have identical fitness, the

model struggles to fit the relatively weak correlation between age and degree. By contrast,

when nodes’fitness levels are drawn from a parametric distribution (that is the same for all

age cohorts), I am able to parsimoniously fit the weak correlation between age and degree.2

Maximum likelihood estimates indicate that a large fraction of the variation in degree is

due to variation in fitness. For example, for a median-aged paper, the expected number of

citations increases from 1.4 to 20.7 as fitness increases from the 25th to the 75th percentile.

For a median-fitness paper, the expected number of citations increases from 2.7 to 13.6 as

1The model introduced in Jackson and Rogers (2007) closely resembles those presented in earlier articles,
including Dorogovtsev et al. (2000), Pennock et al. (2002), and Vázquez (2003).

2These results are not specific to the network of citations among physics articles. In Appendix A, I show
that the same patterns hold for two additional social networks, a network of citations among patents and a
network of buyer-supplier relationships among publicly traded firms.
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age increases from the 25th to the 75th percentile.

In Section 4.3, I show that, for most age-fitness combinations, a marginal increase in

age has a smaller effect– compared to a marginal increase in fitness– on a node’s expected

number of contacts. For all but the youngest and lowest-fitness nodes, differences in the

rate at which contacts are formed are due mainly to heterogeneity in fitness, rather than

heterogeneity in the length of time spent in the network. Randomness in the link formation

process plays a tertiary role in explaining the variation in nodes’degrees.

Apart from the shape of the degree distribution, the model introduced in Jackson

and Rogers (2007) generates predictions on other features observed in social networks. First,

their model predicts that the degrees of two linked nodes are positively correlated. Second,

the probability that two nodes are linked is larger conditional on the two nodes having

a common contact. In Section 5, I argue that introducing heterogeneity in nodes’fitness

levels does not qualitatively alter either of these predictions of the Jackson and Rogers (2007)

model. However, the theoretical prediction of the probability that two nodes form a link,

conditional on the presence of a common contact, can be matched in the data only when the

average fitness is substantially larger than what is estimated in Section 4.

Parsimony and tractability are two of the main strengths of the Jackson-Rogers

model. With only two parameters, the model captures several features ubiquitous in social

networks. The model that I present in this paper retains much of the tractability of the

original Jackson-Rogers model.3 In addition, it is able to capture not only the within-cohort

degree distributions, but also the other characteristics of social networks that are studied in

Jackson and Rogers (2007).

In many environments, the manner in which agents are linked to one another has

important economic consequences. Jackson (2011, page 512) catalogs a list of examples:

Social networks play an important role by "...transmitting information about jobs, new

products, technologies, and political opinions. They also serve as channels for informal

insurance and risk sharing, and network structure influences patterns of decisions regarding

education, career, hobbies, criminal activity, and even participation in micro-finance." The

role that social networks play in economic activity makes it important to understand the

mechanisms through which social networks form and the reasons why some agents have so

many contacts while most others have so few.

3Of course, allowing fitness to vary arbitrarily across nodes would allow one to explain 100% of the
variation in nodes’degrees. The point of this paper is that, with only two extra parameters (which govern
the first two moments of the distribution of nodes’fitness levels), the extended Jackson-Rogers model can
better fit the degree distribution of each age cohort.
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1.1 Literature Review

Before proceeding to Section 2, I discuss the theoretical literature from which the current

paper borrows, and the empirical literature to which the current paper might lend some

insights.

The two main theoretical ideas– first, that one can solve for the exact degree distri-

bution using a mass-balance equation, and, second, that one can embed heterogenous node

fitness into a network formation model– are taken from earlier papers. The method of solv-

ing for the exact degree distribution is taken directly from Dorogovtsev et al. (2000). The

recognition that one can embed heterogenous node fitness into a network formation model

is due to Bianconi and Barabási (2001) (in the context of a pure preferential attachment

model) and Caldarelli et al. (2002) (in the context of a variant of the Erdös and Rényi

(1960) network formation model).

The primary contribution of the current paper is to apply the above-mentioned

theoretical arguments to show that, for a social network of citations among high-energy

physics papers, both age and fitness are important for explaining the observed variation of

nodes’degrees. Related to this finding, allowing for heterogenous node fitness results in a

less prominent estimated role of network-based meetings versus random meetings. These

observations have implications for the interpretation of Jackson and Rogers (2007) and its

successors.

In an application of Jackson and Rogers (2007), Bramoullé et al. (2012) introduce

a social network with different types of individuals and assume random meetings are more

likely to occur between individuals of the same type. With this assumption, Bramoullé et al.

generate clear, testable predictions on the relationship between an individual’s degree and

the fraction of its contacts that are of the same type. In a second application of Jackson and

Rogers (2007), Chaney (2011) studies a network of inter-firm relationships and exogenously

assigns each firm to a physical location. By assumption, random meetings are less likely to

occur when two firms are far apart. The key empirical prediction generated by Chaney’s

model relates the number of counterparties a firm has to the average distance of the firm’s

contacts.

Allowing for heterogenous fitness, as I do in the current paper, will moderate some

of the conclusions of these extensions of Jackson and Rogers (2007). Take, as an example,

Chaney (2011). In Chaney (2011), network-based meetings serve to increase the geographic

dispersion of a firm’s contacts.4 As I argue in Section 4.2, accounting for heterogenous fitness

4As Chaney (2011, pages 2-3) writes: "The theory therefore predicts that as firms acquire more foreign
contacts, they expand into more remote countries, so that their exports become geographically more distant.
The speed at which the geographic distance of exports increases depends on the relative importance of direct
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tends to decrease the estimate of the probability that any particular incumbent node is met

in a given network-based meeting. This result, in turn, weakens the predicted relationship

between the number of contacts a firm has and the average distance of the firm’s contacts.

2 Data

In this paper, I use a dataset of citations among papers in the high-energy physics section

of arXiv.5 Between January 1992 and April 2003, 27, 770 high-energy physics papers were

uploaded onto arXiv. There were 352, 807 citations among these papers, as of April 2003.

In the terminology of social networks, each node represents an uploaded paper. A link

from node i to node j represents a citation from paper i to paper j. The birth of node

i corresponds to the date at which the paper was first uploaded onto the arXiv website.6

Finally, the degree of a node is the citation count of the corresponding article.

In the left panel of Figure 1, I plot the degree distribution. Like most other social

networks, the degree distribution is skewed: Over half of the papers have four or fewer

citations, while the most-cited paper has 2414 citations.

In the right panel of Figure 1, I plot the degree distribution separately for old,

medium-aged, and young papers. I define young papers to be the ones that were posted

on or after May, 2000; old papers were originally posted onto arXiv on or before November,

1996. The remaining papers are classified as medium aged. While older papers tend to

have more citations than younger papers, the relationship between age and citation count

is weak. The correlation between age and degree is 0.08.7 The weak relationship between

age and citation count indicates that there is substantial within-cohort heterogeneity in the

rate at which papers are prone to attract citations.

I have chosen to study the citation network not because it is the most interesting or

important social network. Rather, the high-energy physics citation network is representative

of a broad class of real-world social networks. Many of the empirical results of the paper

are robust to the particular social network that is being studied. I provide support for this

assertion in two ways. First, in Appendix A on page 29, I reproduce a few of the main

and remote search."
5arXiv is an internet repository of working papers in physics, mathematics, and other mathematical

sciences.
See Gehrke et al. (2003) for a description of the construction of the dataset.
The dataset can be downloaded at the Stanford Network Analysis Platform at
http://snap.stanford.edu/data/index.html.
6Approximately 2% of the papers contain more than one date of submission. For the analysis, below, I

choose the earliest date as the node’s date of entry into the social network.
7The relationship between age and citation count may be non-linear. Below, on page 12, I describe a

correlation coeffi cient that accounts for this potential non-linearity.
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Figure 1: Empirical degree distributions. In the left panel, I plot the distribution of the
number of citations for all 27,770 papers in the dataset. In the right panel, I plot the degree
distributions separately for old, medium-aged, and young papers. Papers uploaded onto the
arXiv website on or before November, 1996 are classified as old, while papers posted on or
after May, 2000 are classified as young.

empirical results, using data from two other social networks.

Second, I show that the high-energy physics social network is consistent with several

stylized facts that characterize most social networks (see Jackson and Rogers (2007)). I list

these stylized facts, below:

1. The degree distribution is heavy tailed.8

2. It is possible to construct a relatively short path between any two connected nodes, i

and j.9

3. The probability that i is linked to k is, all else equal, higher when i is linked to j and

j is linked to k.

4. If i and j are linked, the degree of i is correlated with the degree of j.

The citation network that I study is consistent with these stylized facts. The left panel

of Figure 1 displays that the first stylized fact holds. The second stylized fact holds as well:

Gehrke et al. (2003) have computed that there exists a path of fewer than 15 links between

any two connected nodes. In Section 5, I will argue that the third and fourth stylized facts

8A random variable, X, follows a heavy-tailed distribution if Pr {X > x} ∝ x−κ as x→∞.
9A path between nodes i and m is a sequence of nodes {i, j, k, ..., l,m} such that i is linked to j, j is

linked to k, etc..., and l is linked to m. The distance between i and m, ϕim, is the number of links in the
shortest path between i and m. For future reference, define the diameter of a network as max

i,m:ϕim<∞
ϕim.
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also hold. Thus, given the archetypal nature of the citation network, it is likely that many

of the empirical conclusions of the current paper will be shared by studies of other real-world

social networks.

3 Theory

The goal of this section is to develop an estimable network formation model in which

heterogeneity in age, randomness, and fitness have the potential to generate variation in

nodes’degrees.

In Sections 3.1 and 3.2, I review the calculations that produce the stationary degree

distribution– both for the overall population and for each cohort– of the Jackson and Rogers

(2007) model. With the exact degree distribution in hand, I provide expressions for the

relationship between nodes’ages and degrees, and argue that this relationship is stronger

than what is observed in the data. In Section 3.3, I extend the network formation model, so

that each node is endowed with an unobserved fitness measure that is drawn from a known

distribution. Each node’s fitness corresponds to the probability that any of its meetings

with an entrant will result in a link. This extension breaks the strong relationship between

age and degree.

3.1 A review of Jackson and Rogers (2007)

I begin this subsection with some notation. At each point in time, t, the network is

defined by a t× t matrix, Dt. Each node, i, is indexed by the period in which it entered the

network. A directed link exists from node i to node j when Dt
ij = 1. Otherwise, when no

link exists from node i to node j, Dt
ij = 0. For each link from node i to node j, i is called

the predecessor node and j is called the successor node. The object of interest, for any node

j, is the number of links for which j is the successor. Call this object dj, the degree of j:10

dj ≡
∑
i

Dt
ij .

The Jackson-Rogers network formation model is defined as follows: In each period

a single node enters the network. Nodes never leave the network and existing links are

never broken. Time begins in period t0 > 0. In the initial period there are t0 nodes in the

10In Jackson and Rogers (2007), dj is called the in-degree. The "in" prefix distinguishes links for which j is
the successor from links for which j is the predecessor. The out-degree of a node j is defined as d̃j ≡

∑
iD

t
ji.

Neither Jackson and Rogers (2007) nor the current paper analyzes the out-degree distribution. Since I will
only refer to dj , and not d̃j , I drop the "in" prefix.
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network. Thus, in period t, the number of nodes in the network equals t. Entrants have a

degree of 0. Upon entry, the node meets m ≡ mr + mn successors. The identity of each

of the successors is the only source of randomness in Jackson-Rogers model.11 In each of

the mr random meetings, the entering node forms directed links by uniformly sampling from

the population of existing nodes.12 Then, in the same period, it forms mn directed links

by uniformly sampling from the successors of the nodes that it just met. The probability

that an existing node gains any one of the mr links equals 1
t
. Similarly, the probability

that an existing node of degree d receives any of the mn links in a network-based meeting

equals d
mr+mn

1
t
. On average, the number of additional predecessors gained by a degree-d

node equals d
mr+mn

mn

t
+ mr

t
.

To solve for the stationary degree distribution, Jackson and Rogers employ a mean-

field approximation.13 Under this approximation, nodes deterministically gain d
mr+mn

mn

t
+

mr

t
predecessors each period. Even though time and degree are discrete in the formulation

of the model, the evolution of nodes’degrees are calculated as continuous functions of time

and degree.

Given this set-up, Jackson and Rogers solve for a) the relationship between a node’s

age and its degree, and b) the stationary probability distribution function of nodes’degrees.

These relationships are given in Equations 1 and 2, below. In these equations, a ∈ [0, 1] is

the age quantile of the node and r ≡ mr

mn
is the ratio of random meetings to network-based

meetings.

d ≡ ψ(a) = rm
(

(1− a)−
1

1+r − 1
)

(1)

f(d) =
1 + r

d+mr

(
mr

d+mr

)1+r

(2)

As a result of the mean-field approximation, there is a one-to-one mapping between

age and degree: a node, i, that has entered after i′ will never have a degree, di, greater

than di′ . This result contrasts with the small difference between the degree distributions for

young, medium-aged, and old nodes observed in the right panel of Figure 1.

Perhaps though, the difference between theory and data is due solely to the mean-

11Jackson and Rogers (2007) include a term, p, which represents the fraction of meetings that generate
a link. The authors assume that this fraction is identical across all meetings. Jackson and Rogers note
that p is not identified from the degree distribution. In other words, the Jackson-Rogers model predicts the
same degree distribution for all m, p combinations for which m · p is constant. Thus, when describing the
Jackson-Rogers model, I assume each meeting generates a link with probability 1.
12The entrants sample with replacement. It is true that there is a nonzero probability that an entrant will

sample an existing node more than once. However, the probability that an entrant will sample any given
node more than once is little-o of the probability that the entrant samples the node exactly once.
13Throughout this paper, the focus is on the stationary degree distribution. See Crespo and Cuenda (2010)

for an analysis of the finite-population properties of the degree distribution in the Jackson and Rogers (2007)
model.
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field approximation. I examine this hypothesis in the following subsection, by solving for

the degree distribution without invoking a mean-field approximation.

3.2 The exact degree distribution

In this subsection, I restate the main results of Dorogovtsev et al. (2000). Without

invoking a mean-field approximation, Dorogovtsev et al. are able to provide an expression

for the degree distribution of the Jackson and Rogers (2007) model. With the exact solution

to the degree distribution in hand, I will conclude this subsection by discussing the strength

of the relationship between age and expected degree.

To solve for the exact stationary degree distribution, h(d), it will be useful to describe

the evolution of nodes’degrees from period to period. In Section 3.1, I argued that the

expected number of predecessors that a node of degree d gains in a period is d
t(mr+mn)

mn +
1
t
mr = 1

t

[
d

1+r
+ rm

1+r

]
. As the size of the network becomes large, the probability of receiving

a link approaches 0. Moreover, the probability of receiving more than 1 link approaches 0

at a much faster rate. In terms of little-o notation, the probability of receiving more than

1 link is little-o the probability of receiving exactly 1 link. Thus, as t → ∞, a node with
degree d will gain an additional predecessor with probability 1

t

[
d

1+r
+ rm

1+r

]
and will not gain

any predecessors with probability 1− 1
t

[
d

1+r
+ rm

1+r

]
.

I begin by solving for the stationary degree distribution for nodes of a particular age

quantile. Then, I will integrate across the age quantiles to solve for the entire population’s

degree distribution.14

Let i ∈ [0, t] be the period in which the node was born. The mass-balance equation

for period-i nodes is:

h̃ (d; i, t+ 1) =
1

t

d− 1 +mr

1 + r
h̃ (d− 1; i, t) 1d>0 +

(
1− 1

t

d+mr

1 + r

)
h̃ (d; i, t) .

The left-hand side gives the number of nodes, in period t+ 1, that were born in period i

and have degree d.15 A node that is born in period i can have degree d at time t+1 either if

a) it had degree d− 1 in period t and gained a predecessor, or b) it had degree d in period t

and did not gain a predecessor. Following Dorogovtsev et al., I replace h̃(d;i,t+1)−h̃(d;i,t)
1

with
∂h̃(d;i,t)

∂t
. Thus, I may write:

t
∂h̃ (d; i, t)

∂t
=
d− 1 +mr

1 + r
h̃ (d− 1; i, t) 1d>0 −

d+mr

1 + r
h̃ (d; i, t) . (3)

14See page 4634 of Dorogovtsev et al. (2000) for an alternative method of solving for h(d).
15Since one node is born per period, the number of nodes of a given age with degree d equals the fraction

of nodes of a given age with degree d.

9



In Appendix B on page 32, I show that one solution to Equation 3 is:

h̃ (d; i, t) =

(
mr + d− 1

d

)(
1−

(
i

t

)1/(1+r)
)
h̃ (d− 1; i, t) . (4)

Let a ≡ t−i
t
be the age quantile of the node. With this change of variables, also define the

function h(d, a) ≡ limt→∞ h̃(d, i, t) to be the stationary degree distribution for age-quantile

a nodes. Equation 4 is equivalent to:

h (d; a) =

(
mr + d− 1

d

)(
1− (1− a)1/(1+r)

)
h (d− 1; a) . (5)

For each age quantile, Equation 5 provides a recurrence relationship between nodes

with degree d and degree d− 1. Iteratively applying Equation 5 yields:

h(1; a) = mr
(
1− (1− a)1/(1+r)

)
h(0; a) , and

h(2; a) =
mr + 1

2

(
1− (1− a)1/(1+r)

)
h(1; a)

=
mr + 1

2

mr

1

(
1− (1− a)1/(1+r)

)2
h(0; a) .

For a general d:16

h(d; a) =
Γ [mr + d]

d!Γ [mr]

(
1− (1− a)1/(1+r)

)d
h(0; a) .

The final step in solving for h(d; a) is to compute the fraction of age-quantile a nodes

that have a degree of 0. To compute h(0; a), I use the fact that h(d; a) is a probability

distribution function. The sum of h(d; a) must equal one.

∞∑
d=0

h(d; a) =

∞∑
d=0

h(0; a)
(
1− (1− a)1/(1+r)

)d Γ [mr + d]

d!Γ [mr]

= h(0; a)(1− a)−mr/(1+r) .

Since
∑∞

d=0 h(d; a) = 1, h(0; a) = (1− a)mr/(1+r). Thus:

h(d; a) =
Γ [mr + d]

d!Γ [mr]
(1− a)mr/(1+r)

(
1− (1− a)1/(1+r)

)d
. (6)

16Γ [·] is the gamma function: Γ[x] =
∫∞

0
tx−1e−tdt. When x is a positive integer, Γ [x] = (x− 1)!.
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Equation 6 is equivalent to Equation 15 of Dorogovtsev et al. (2000).

I integrate the right-hand side of Equation 6 across all age quantiles to arrive at the

overall degree distribution:

h(d) =
Γ [mr + d]

d!Γ [mr]

∫ 1

0

(1− a)mr/(1+r)
(
1− (1− a)1/(1+r)

)d
da

= (1 + r)
Γ [(m+ 1)r + 1]

Γ [mr]

Γ [mr + d]

Γ [(m+ 1)r + 2 + d]
. (7)

Equation 7 is equivalent to Equation 5 of Dorogovtsev et al. (2000).17

In Figure 2, I plot h
(
d; 1

6

)
, h
(
d; 1

2

)
, h
(
d; 5

6

)
, and h(d). The theoretical prediction

of the stationary degree distribution matches the empirical degree distribution from the left

panel of Figure 1. At the same time, the model’s predictions for the degree distributions of

specific cohorts are not aligned with the data. In the citation network, the modal number of

citations for young, medium-aged, and old papers is zero. The degree distribution for each

age group has a heavy right tail. On the other hand, Figure 2 indicates the modal degree

increases monotonically with a. Furthermore, for any one age group, the degree distribution

does not have a heavy right tail. In the citation network, there is more within-cohort degree

variation– and less between-cohort degree variation– than the model would predict.18

To make this point more clearly, I invoke Equation 6 to assess the strength of the

relationship between a node’s age quantile and its degree. In this exercise, one complicating

factor is the non-linearity in the relationship between age and degree, which has the potential

to make the correlation between a and d significantly less than 1, even when these variables

are strongly related to one another. Making this complicating factor more important, the

extent of the non-linearity depends on m and r. With these issues in mind, I apply ψ−1 to

d. This transformation is aimed at removing the non-linearity in the relationship between

age and degree.

In Figure 3, I plot the correlation between a and ψ−1(d). In the left panel, I vary

r; in the right panel, I vary m. As the fraction of links formed in network-based meetings

17By comparing Equations 2 and 7, I can evaluate whether, as Jackson and Rogers argue, the mean-field
approximation produces a degree distribution that is similar to the exact degree distribution. I compare
Equations 2 and 7 in Appendix C, on page 34. I find that the mean-field approximation produces a degree
distribution that closely matches the exact distribution, except when m is small or when d is close to 0 or
∞.
18To understand why under-estimation of within-cohort degree variation is associated with over-estimation

of the strength of the relationship between age and degree, consider the following variance decomposition:

E (V ar (d|a)) + V ar (E (d|a)) = V ar(d) .

If, according to some model, E (V ar (d|a)) is small, then, to correctly match the variance of d, the model
must have a large estimate of V ar (E (d|a)).
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Figure 2: Theoretical degree distributions: h(d) ("+" signs), h(d, 5
6
) (solid squares), h(d, 1

2
)

(hollow squares), and h(d, 1
6
) (solid circles). In this figure, m = 15, and r = 0.5.

increases (r decreases), the relationship between age and degree weakens. The relationship

between node age and degree is also weaker when the average degree in the network is smaller

(m is smaller).

The correlations presented in Figure 3 indicate that, in the Jackson-Rogers model,

the relationship between age and degree is strong. By contrast, the correlation between age

and degree is low in the citation network. For (m, r) = (14.8, 0.5), the correlation between

a and ψ−1(d) is 19%.19

3.3 Heterogeneity in node fitness

In this subsection, I introduce an additional source of heterogeneity to the network

formation model. I assume that, upon entry into the network, each node is endowed with a

fitness p ∈ (0, 1] drawn from a distribution with probability distribution function, b(p). The

main restriction on b(p) is that it is the same for all age cohorts. The model that I review

in Section 3.1 corresponds to the case in which p = 1 for all nodes.

A node’s fitness simply corresponds to the probability that it will receive a link

when met by an entrant. In this paper, the term fitness does not have any deeper meaning.

In the empirical application, for example, some articles will be called "high-fitness" while

others will be called "low-fitness" articles. High-fitness articles are not necessarily superior

to low-fitness articles. Instead, fitness simply reflects the propensity, for an article with a

1914.8 and 0.5 are close to the maximum likelihood estimates of m and r. See Table 1, Column 1.
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Figure 3: Correlation between a and ψ−1(d), for different parameter values. In the left panel,
m = 15; r is given on the x-axis. In the right panel, r = 0.5; m is given on the x-axis.

given number of citations, to gain additional citations.

To begin, consider the degree distribution for nodes of a particular fitness, p. Let p̄

be the average probability that a meeting results in the creation of a link. Suppose that,

upon entry, entering nodes meet m existing nodes, so that the average degree in the network

equals p̄m. As before, r denotes the ratio of random meetings to network-based meetings.

The expected number of additional links that a node of degree d will gain in period t is:

p

[
d

mp̄
· mn

t
+
mr

t

]
=

1

t

[
d

(1 + r) p̄
p

+
mrp̄

(1 + r) p̄
p

]
.

So, a node with degree d and fitness p will gain an additional link in period t with

probability 1
t

[
d

(1+r) p̄
p

+ mrp̄

(1+r) p̄
p

]
.

For nodes with a given fitness, p, all of the analysis from Sections 3.1 and 3.2 applies,

with (1 + r) replaced by (1 + r) p
p̄
and mr replaced by mrp̄. For example, the degree

distribution, conditional on a and p, is:

f(d|a, p) =
Γ [mrp̄+ d]

d!Γ [mrp̄]
(1− a)

pmr
1+r

(
1− (1− a)

p
p̄(1+r)

)d
. (8)

Before proceeding to Section 4, I must specify how p̄ is computed. To solve for p̄, I

13



integrate Equation 8 over a and p and then use the formula for an expected value:

∞∑
d=0

∫ 1

0

d (1 + r)
p̄

p

Γ
[
mrp̄+ (1 + r) p̄

p

]
Γ [mrp̄]

Γ [mrp̄+ d]

Γ
[
mrp̄+ (1 + r) p̄

p
+ d+ 1

]b(p)dp = mp̄ . (9)

Equation 9 implicitly defines p̄ as a function of m, r, and the parameters describing the

distribution of p. As r → ∞, p̄ approaches
∫ 1

0
pb(p)dp. In words, since links are assigned

uniformly across all the nodes in the network, the probability that a meeting produces a

link tends to the average fitness of the network. When r <∞, p̄ is greater than
∫ 1

0
pb(p)dp,

since high degree nodes are both more likely to be sampled in network-based meetings and

also have a higher fitness, p.

4 Estimation and Results

This section contains the empirical content of the paper. I begin, in Section 4.1, by

writing likelihood functions for three variants of the Jackson-Rogers model. The maximum

likelihood estimates are then presented in Section 4.2. In Section 4.3, I discuss which of

the three sources of variation– age, fitness, or luck– is most important for explaining degree

heterogeneity. Finally, in Section 4.4, I compare each article’s unobservable fitness measure

with an observable proxy for fitness: the journal in which the article was published.

4.1 Likelihood functions

The parameters that I wish to estimate are m, the number meetings per entrant; r, the

ratio of the number of random to network-based meetings; and the parameters of the fitness

distribution, b(p).

I estimate the model’s parameters using maximum likelihood. Below, I describe the

three different likelihood functions that I employ.

First, I estimate m and r without invoking any information on nodes’ages. From

Equation 7:

Pr(di|m, r) = (1 + r)
Γ [(m+ 1)r + 1]

Γ [mr]

Γ [di +mr]

Γ [di + 2 + (m+ 1)r]
.

The corresponding likelihood function is then:

L1(m, r) = n log(1+r)+n log

(
Γ [(m+ 1)r + 1]

Γ [mr]

)
+

n∑
i=1

log

(
Γ [di +mr]

Γ [di + 2 + (m+ 1)r]

)
. (10)
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Next, I include information on the age quantile of each node in the likelihood func-

tion. From Equation 6:

Pr(di|ai,m, r) =
Γ [mr + di]

Γ [mr] (di)!
(1− ai)mr/(1+r) (1− (1− ai)1/(1+r))di .

The corresponding likelihood function is then:

L2(m, r) =
n∑
i=1

log

(
Γ [mr + di]

Γ [mr] (di)!
(1− ai)mr/(1+r) (1− (1− ai)1/(1+r))di

)
. (11)

Finally, I estimate an unrestricted model, in which nodes are allowed to vary in the

rate at which they are apt to gain additional links. I assume that p is drawn from the

Beta(α,β) distribution. The probability distribution function for p ∈ [0, 1] is:

b(p) = pα−1(1− p)β−1 Γ [α + β]

Γ [α] Γ [β]
for α, β > 0. (12)

As α increases relative to β, the expected value of p increases. As α and β both increase, the

variance of p decreases. In the special case of α = β = 1, the Beta distribution coincides with

a uniform distribution. The Beta distribution is a convenient choice because it is sparingly

parameterized, flexible, and has the unit interval as its support. However, I could have

chosen a different parametric family for p without reducing the tractability of the estimation

procedure.20

Given α, β,m, and r, the probability that a node with age quantile, ai, has degree, di,

is (see Equation 8):

Pr(di|ai, α, β,m, r) =
Γ [α + β]

Γ [α] Γ [β]
× (13)∫ 1

0

pα−1(1− p)β−1 Γ [p̄mr + di]

Γ [p̄mr] (di)!
(1− ai)

pmr
1+r

(
1− (1− ai)

p
p̄(1+r)

)di
dp .

The corresponding likelihood function is then:

L3(α, β,m, r) =

n∑
i=1

log (Pr(di|ai, α, β,m, r)) . (14)

Using simulated data, I analyze the performance of the different maximum likelihood

20In Appendix E, on page 36, I argue that the main results of the current section are robust to the
assumption that fitness levels are drawn from the Beta distribution. To do so, I maximize Equation 14,
allowing for a much more flexible parameterization of b(p).
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estimators. See Appendix D on page 35.

4.2 Results

Parameter estimates are collected in Table 1. In the first column, I give the maximum

likelihood estimates for m and r that maximize Equation 10. The estimate for the total

number of meetings, 14.82, is somewhat higher than the average degree in the network,

12.70. The estimated ratio of random to network-based meetings indicates that roughly

34% (=0.513
1.513

) of the links are formed in random meetings.

The second column also gives maximum likelihood estimates of m and r. In this

column, though, the likelihood function incorporates information on the dates at which nodes

entered the network. Now the maximum likelihood estimate of m is extremely large, while

the maximum likelihood estimate of r is close to 0. The model struggles to fit the degrees

of the most-connected nodes. According to the model, the most connected nodes should

be the oldest nodes. In the data, this is not the case: there are both young and old nodes

at the right tail of the degree distribution. To fit the relatively young and well-connected

nodes, the estimated fraction of meetings that are random is driven towards 0.21,22

The third column of Table 1 provides the maximum likelihood estimates for the full

model. According to the model, an entrant meets over 2000 incumbents upon entry. Of

these meetings, approximately 53% (=1.121
2.121

) are random meetings. Given the parameter

estimates, the average probability that a meeting produces a link equals p̄ = 0.031 (see

Equation 9). According to the full model, an entrant forms p̄m = 67 links upon entry, of

which 20 were formed in random meetings and the remainder in network-based meetings.23

In the full model, a link is formed with greater probability in a network-based meeting than

in a random meeting.24 Thus, even though the estimate of r increases, from 0.513 to 1.121,

when allowing for heterogenous node fitness, the fraction of links formed in network-based

meetings increases from 66% to 71%(= 67.25−19.68
67.25

).

Allowing for heterogenous node fitness reduces the importance of the "rich-get-

21Concomitant to the small estimate of r, the estimate of m is large, of the same order of magnitude as
1
r . Notice how the m term, whenever it appears in Equation 11, is always multiplied by r.
22The near-singularity of the Fisher information matrix is another result indicating that the Jackson-Rogers

model has diffi culty incorporating nodes’ages into the estimation procedure.

The Fisher information matrix associated with L2 is
(

1.7639 · 10−30

1.5962 · 104
1.5962 · 104

1.4445 · 1038

)
. The eigenvalues

of this matrix are 1.4445·1038 and −1.5449·10−35. Since the latter eigenvalue is so close to 0, the information
matrix is near-singular. In this part of the parameter space, the likelihood function is nearly flat for m, r
combinations for which m · r is constant.
23The number of links formed in random meetings equals 1.121

2.121 ×
0.491

0.491+28.121 × 2169.39 ≈ 20.
24On average, random meetings yield a link with probability α

α+β ≈ 1.7%, while network-based meetings
produce a link with probability p̄(1 + r)− r α

α+β ≈ 4.7%.
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Parameter L1 L2 L3

m
14.82
(0.411)

1.86·1017

(?)
2169.39
(108.38)

r
0.513
(0.025)

2.05·10−17

(?)
1.121
(0.076)

α
0.491
(0.004)

β
28.121
(0.947)

Log-Likelihood -91,894 -243,027 -96,324

Table 1: Maximum likelihood estimates, with asymptotic standard errors in parentheses.

richer" mechanism of the network formation model. The strength of the "rich-get-richer"

mechanism is embodied in the probability that an incumbent will be met in a network-based

meeting, conditional on the entrant meeting one of the incumbent’s predecessors in a random

meeting. The estimate of this term, 1
p̄rm
, is smaller in the third column, compared to the

first.25 So, the most-connected nodes are prone to receive more contacts not only because

they already have many contacts, but also because they tend to be of high fitness.

Figure 4 displays the estimated probability distribution function of node fitness. I

construct this figure by plugging the maximum likelihood estimates of α and β into the

probability distribution function for a Beta-distributed random variable (see Equation 12).

According to estimates of α and β, fitness is skewed. The median and mean fitness measures

are 0.0079 and 0.0172. Most likely, the skewness of the estimated fitness distribution is a

result of the skewness of the within-cohort degree distributions.

The overall degree distributions predicted by each of the three models are plotted in

Figure 5. Despite the vastly different parameter estimates, the predicted degree distributions

that are generated by the three likelihood functions are similar to one another. So, using only

the overall degree distribution, one would have trouble distinguishing the original Jackson-

Rogers model from a model with heterogenous fitness nodes. Both models have similar

predictions for the degree distribution.

However, the models have significantly different implications for the degree distribu-

tions of specific cohorts. To provide support for this claim, I form a likelihood-ratio test. Let

25The entrant forms mn network-based meetings. In each of these meetings, there are, on average, mr · p̄·
(mr +mn) potential successors of successors with whom the entrant will form a link. Thus, the probability
that any one incumbent is met, conditional on the entrant meeting a predecessor of the incumbent, is

mn

mr·p̄· (mr+mn) = 1
rp̄m .

For the original Jackson-Rogers model, this term equals 1
14.8·0.5 = 13%. Allowing for heterogenous fitness,

the probability that an incumbent is met in a network-based meeting is 1
67·1.12 = 1.3%.
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plot a subset of the points.
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Figure 6: Likelihood-ratio test statistics. Each point gives the likelihood-ratio test statistic
using data on the citation count distribution of articles distributed in a given month. The
dashed line gives the critical value, at a 0.1% significance level, of the likelihood ratio test.

the null hypothesis, for this test, be that articles have equal fitness: H0 : α = 0 or β = 0.26

The alternative hypothesis states that both α and β are greater than 0. From the final row of

Table 1, the value for the likelihood-ratio test statistic is 293, 406 (= 2 · (243, 027− 96, 324)).

The full sample of data on articles’ ages and citation counts overwhelmingly rejects the

homogenous-fitness model. In addition, Figure 6 plots the likelihood ratio test statistics,

separately for each age cohort. (Here a cohort is a set of papers distributed in a given

month-year.) Figure 6 indicates that the null hypothesis is rejected by the data on the

citation counts for any single cohort of articles.

The degree distributions for four different sets of papers are presented in Figure 7.

In the top-left panel, I plot the predicted degree distribution for a = 0.2. The solid line

corresponds to the maximum likelihood estimates of the unrestricted model and the dashed

line gives the predicted degree distribution from the homogenous-fitness model. In the top-

left panel, I also plot the empirical degree distribution for articles that have an age between

the 15th and 25th percentiles. The other panels give the theoretical prediction of the degree

distributions for a = 0.4, a = 0.6, and a = 0.8, as well as the empirical degree distributions

for papers with ages in the 35-45th percentiles, 55-65th percentiles, and 75-85th percentiles.

Except for the bottom-right panel, the predicted degree distributions of the heterogenous-

fitness model fit the data reasonably well. The heterogenous-fitness model, however, has

trouble fitting the data for the older articles. Contrary to what the model would predict,

the oldest articles do not, on average, have more citations than medium-aged papers. From

26The variance of a Beta(α, β)-distributed random variable equals 0 when α = 0 or β = 0.
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youngest to oldest, the average number of citations for papers in each of the five age quin-

tiles are 5.33, 11.37, 15.81, 18.14, and 12.77. Most likely, the sample of papers uploaded

during arXiv’s infancy is different, for idiosyncratic reasons, compared to the sets of papers

uploaded once the website had become well-established.27

4.3 Sources of degree heterogeneity

In this subsection, I analyze the extent to which variability in nodes’degrees is caused

by variation in age, variation in fitness, or chance.

I begin by writing the conditional mean and variance for nodes of a given age-fitness

combination. Using Equation 8, one can check that,

E [d|a, p] = mp̄r
(

(1− a)−
p

p̄(1+r) − 1
)
, and (15)

V ar [d|a, p] = mp̄r
(

(1− a)−
p

p̄(1+r) − 1
)

(1− a)−
p

p̄(1+r) . (16)

In Figure 8, I use Equation 15 to plot several isoquants of E [d|a, p] . Each plotted
line gives a locus of a, p combinations for which the expected degree is constant. As expected,

older nodes and nodes with higher fitness have a larger expected degree. For a median-age,

median-fitness node the expected degree equals 6.51.

Since expected degree is a nonlinear function of age and fitness, there exists no

simple statistic summarizing whether age or fitness plays a bigger role in explaining a node’s

expected degree. Thus, it will be necessary to consider the effect of increasing age or fitness

for all a, p combinations. For θ ∈ [0, 1], define q(θ) as the θ-quantile fitness. For example,

since the median fitness paper had p = 0.0079, q(0.5) = 0.0079.

In Appendix F, I show how to compute28

Ψ(a, p) ≡
∂E[d|a,p]

∂a
∂E[d|a,p]

∂θ

. (17)

The numerator on the right hand side of Equation 17 is the marginal effect on expected

27Using a sample of papers published after April, 1995 (the 20th percentile date), I have reproduced the
maximum likelihood estimates given by Equations 10, 11, and 14. Removing the oldest papers produces a
somewhat larger estimate of r and a somewhat smaller estimate ofm; the estimates of α and β are unchanged.
The parameter estimates, as well as any of the tables or figures given in Sections 4.2-4.3, are available upon
request.
28Notice that, since the expected value of nodes’degrees exactly equals the expression for the degree of a

node that would result from the mean-field approximation (compare Equations 1 and 15 with p = p̄ = 1), it
would have been possible to compare the relative importance of fitness versus age without actually computing
the exact degree distribution. Expressions for the exact degree distribution are, however, necessary to assess
the relative importance of luck (see Figure 10).
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Figure 7: Degree distributions for different cohorts. In the top-left panel, I plot the predicted
degree distribution from the full model (solid line) and the original Jackson-Rogers model
(dashed line) for a = 0.2. In the top-left panel, I also plot the empirical degree distribution
("+" signs) for articles that have an age between the 15th and 25th percentiles. The other
three panels plot the theoretical degree distributions for a = 0.4, a = 0.6, and a = 0.8, and
the empirical degree distributions for papers with ages in the 35-45th percentiles, 55-65th
percentiles, and 75-85th percentiles.
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Figure 8: Isoquants of E[d|a, p], which are computed using Equation 15.

degree of marginally increasing the age quantile. The denominator gives the marginal effect

of increasing the quantile of fitness. When Ψ(a, p) > 1, increasing age marginally will have

a greater effect on expected degree than marginally increasing fitness. The opposite is true

when Ψ(a, p) < 1.

To give one example, considerΨ evaluated at the median age and fitness: Ψ(0.5, 0.0079).

From before, the expected degree of this node equals 6.508. Increasing age by one percentile

leads to an expected degree of E[d|0.51, 0.0079] = 6.71. On the other hand, increasing

fitness by one percentile leads to an expected degree of E [d|0.50, 0.0082] = 6.83. Thus,

Ψ(0.5, 0.079) ≈ 6.71−6.51
6.83−6.51

= 0.63.

I plot the isoquants of Ψ(a, p) in Figure 9. Expected degree steeply increases with

age when a is close to 0 or 1. For these values, Ψ(a, p) is large. Between the 30th and

80th percentiles of age, Ψ(a, p) is always less than 1. For medium-aged nodes, increasing

fitness– instead of age– by one percentile will have a greater effect on expected degree.

So far, I have ignored the role that luck may play in generating variability in degree.

In Figure 9, I plot the isoquants of SD[d|a,p]
E[d|a,p] . For a, p combinations along a particular locus,

the coeffi cient of variation of nodes’degrees is constant. As a or p increases, the coeffi cient

of variation decreases. So, for old or high-fitness papers, randomness cannot explain much

of the variability in citation counts. For example, for an article with age and fitness each

at the 75th percentile, the standard deviation of degrees is only 19% of the expected degree.

On the other hand, for young nodes or nodes with low fitness, randomness explains a large

fraction of the variability that is observed in the data.
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Figure 9: Isoquants of Ψ(a, p), which are defined using Equation 17.
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E[d|a,p] , which are computed using Equations 15 and 16.
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4.4 An observable proxy for fitness

Up to now, papers’fitness measures have been unobserved. In this subsection, I examine

the relationship between an observable proxy for fitness and a model-based estimate of

unobserved fitness. Papers that I estimate to have a high fitness measure are eventually

published in more prestigious journals.

Of the 27, 770 papers in the high-energy physics citation network, 20, 228 were pub-

lished in a journal. The three most popular journals– Nuclear Physics B, Physics Letters B,

and Physical Review D– each published approximately 12% of the articles in the network.

The average degree was highest for papers published in Advances in Theoretical and Math-

ematical Physics and Physics Reports. The average citation counts for papers from these

journals were over five times the average for the entire citation network.

I begin the analysis of this subsection by constructing an estimate of each paper’s

unobserved fitness. A paper is likely to be of high fitness if it has a high degree relative to

other papers in its cohort. The distribution of unobserved paper fitness, given its observed

age and citation count, is given by the following formula:29

η (p|d, a) ∝ (1− a)
pmr
1+r

(
1− (1− a)

p
p̄(1+r)

)d
pα−1 (1− p)β−1 . (18)

I then sum Equation 18 over different sets of papers, yielding an estimated fitness

distribution for different subsets of the high-energy physics literature. In Figure 11, I plot

the estimated distribution of fitness measures for four groups of papers: papers published

in Advances in Theoretical and Mathematical Physics, papers published in Physics Reports,

unpublished papers, and all other papers. As expected, the nodes’estimated fitness levels

are lowest for the seven thousand unpublished papers. The median estimated fitness is

0.0069 for unpublished papers. By contrast, papers published in Advances in Theoretical

and Mathematical Physics or Physics Reports have much higher estimated fitness measures.

The median estimated fitness levels for these journals are 0.0256 and 0.0277, respectively.

The correlation between my estimates of nodes’unobservable fitness levels and ob-

servable node characteristics motivates the reduced-form regressions that have recently been

employed in analyses of social networks. For instance, Atalay et al. (2011) study the buyer-

supplier network of the United States. In this network, a node represents a firm and a

directed link exists from one node to another provided one of the firms purchased intermedi-

29Via Bayes’Theorem:

η (p|d, a) =
f(d|a, p)b(p)

f(d|a)

To arrive at the desired result, substitute f(d|a, p), using Equation 8; b(p), using Equation 12; and f(d|a),
using Equation 13.
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Figure 11: Fitness distributions for four sets of papers. The fitness distribution, for each
individual paper, is estimated using Equation 18.

ate inputs from the other firm. In this paper, Atalay et al. run a logit regression, in which

the dependent variable equals 1 if firm i was a supplier of firm j. The authors find that firms

with higher labor productivity and assets tend to have more suppliers. So, in the context of

the buyer-supplier network, two proxies for node fitness are the labor productivity and asset

value of the firms that the nodes are representing.

In a second example, Conley and Udry (2010) consider a social network among

pineapple farmers in Ghana. A link exists between two individuals when one farmer asks

the other about farming techniques. Conley and Udry employ a logit regression in which

the dependent variable equals 1 when two farmers are linked. The authors find that the

probability of a link is lower when either farmer holds a traditional offi ce in the village.

Thus, in the social network that Conley and Udry study, an offi cial position can be used as

a proxy for low node fitness.

5 Clustering and Assortativity

Besides the degree distribution, the Jackson-Rogers model makes predictions on several

other features observed in actual social networks. In this section, I describe two of these

features, clustering and assortativity. I then argue that introducing heterogeneity in node

fitness does not overturn either of the predictions of the Jackson-Rogers model.30

30Jackson and Rogers (2007) discuss two other characteristics of social networks: a) a small diameter and
b) a negative relationship between a node’s degree and the probability that neighbors of the node are linked.
The proofs that Jackson and Rogers provide, related to "a" and "b", are significantly more intricate than
the proofs related to clustering and assortativity. Moreover, Jackson and Rogers are able to prove that the
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5.1 Clustering

Define the clustering coeffi cient of a network, at time t, as:

Ct =

∑
i,j,kD

t
ijD

t
jkD

t
ik∑

i,j,kD
t
ijD

t
jk

. (19)

The clustering coeffi cient equals the fraction of pairs of i→ j and j → k links for which

a link exists from node i to node k. In a network where links are assigned randomly across

pairs of nodes, the clustering coeffi cient approaches 0 as the number of nodes approaches

infinity. In many social networks, the clustering coeffi cient is significantly greater than 0.

In the high-energy physics citation network, for instance, the clustering coeffi cient is 9.0%.

In the Jackson-Rogers model, clustering is a direct result of the network-based meet-

ings. For every instance in which the random meeting, i→ j, and the network-based meet-

ing, i → k, both produce links, a set of links i → j, j → k, and i → k is formed. This

mechanism for generating triples of i → j, j → k, i → k links remains even when nodes are

heterogenous in their fitness.

I need to make additional assumptions to derive an approximate expression for the

clustering coeffi cient, Ct. First, I re-introduce the mean-field approximation: the number of

links that an existing node gains exactly equals the expected number of such links. Second,

I assume that the number of links that an entrant forms, mp̄, is an integer. Third, I assume

that r > βp̄
2α+β−βp̄ .

31 Fourth, I assume that each entrant forms at most one link with the

successors of any one particular successor. The first, second, and fourth assumptions are

also made in Jackson and Rogers (2007). The assumption that r is greater than βp̄
2α+β−βp̄ is

made to simplify the proof, and holds for the set of parameters that are estimated in Section

4.2.32

Proposition 1 Given the assumptions specified above, the clustering coeffi cient tends to:

C =
1

mp̄
· α

α + β

(
1− α

α + β
· 1

p̄
· r

1 + r

)
.

The proof is given in Appendix G. See page 40.

The addition of heterogeneity in p does not alter the Jackson-Rogers model’s predic-

tion of a positive clustering coeffi cient. In Jackson and Rogers (2007), p̄ is a free parameter;

diameter of social networks is small only for r → 0. Given these diffi culties, I have not attempted to modify
the proofs of Jackson and Rogers (2007), to allow heterogeneity in node fitness.
31This condition is equivalent to mr > p̄nmn, where p̄n is the average fitness of the successor in a network-

based meeting.
32For (α, β, p̄) = (0.491, 28.121, 0.031), βp̄

2α+β−βp̄ = 28.121·0.031
0.892·+28.121−28.121·0.031 = 0.031, which is considerably

less than the estimate of r, 1.121.
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the authors use this parameter to fit C exactly. I cannot do so here, as I have already esti-

mated p̄, α, and β using information on the relationship between age and expected degree.

Using (m, r, α, β, p̄) = (2169, 1.121, 0.491, 28.131, 0.031), the model’s theoretical prediction

for C is 0.02%. This value is much lower than the 9.0% value that is actually observed in

the data. In this way, there is a trade-off: fitting the within-cohort degree distributions

leads to a reduced ability to quantitatively match the substantial clustering that is observed

in the high-energy physics social network.

In summation, the heterogenous-fitness model maintains the theoretical prediction of

a positive clustering coeffi cient. However, the theoretical prediction is an order of magnitude

smaller than what is actually observed in the citation network.

5.2 Assortativity

Another feature observed in many social networks is the positive relationship between

the degree of a node and the degree of its predecessors. A social network is assortative when

such a positive relationship exists.33 In the citation network, the correlation between the

degree of a node and the degree of its predecessors is 4.1%.

In the Jackson-Rogers model, assortativity is a direct result of the dynamic process

under which nodes enter the network. In the model, the age of the predecessor node is

restricted to be less than the age of the successor node. In a link from node i to node j,

if j is a young node then node i must be young, as well. Indeed, in the citation network,

the date of publication of the cited paper must be before that of the citing paper. The

correlation between the publication dates of the cited and citing papers is 2.4%.

Using the mean-field approximation, Jackson and Rogers show that the degree of a

randomly selected predecessor of node i first order stochastically dominates the degree of

a randomly selected predecessor of node i′, provided the degree of i is strictly greater than

that of i′. I am able to show that the same result holds, even if nodes differ in their fitness.

Proposition 2 Consider two nodes, i and i′, with di > di′. Under the mean-field approx-

imation, the degree distribution of the predecessors of i first order stochastically dominates

the degree distribution of the predecessors of i′.

The proof is given in Appendix G. See page 41.

In Jackson and Rogers (2007), the proof of this result is straightforward, since there

is a one-to-one relationship between age and degree. If di > di′ it must be the case that

33In contrast to social networks, biological and technological networks tend to be disassortative: the degrees
of two linked nodes are negatively correlated. Newman (2003) computes, for different complex networks, the
relationships between linked nodes’degrees.
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i entered the network before i′. Thus the age distribution of a predecessor of i first order

stochastically dominates the age distribution of a predecessor of i′. Again invoking the one-

to-one relationship between age and degree, the degree distribution of a predecessor of i first

order stochastically dominates the degree distribution of a predecessor of i′.

When nodes differ in fitness, things are not so simple. Even if di > di′ , i might have

entered the network after i′. This will be the case if the fitness of i is suffi ciently larger than

the fitness of i′. However, one can show, as I do in the appendix, that di > di′ implies that

the age distribution of i first order stochastically dominates that of i′. Using this result, I

then show that the age distribution of a randomly selected predecessor of node i first order

stochastically dominates that of a randomly selected predecessor of node i′. Continuing with

this logic gives the desired result.

6 Conclusion

Using a social network constructed from citations among high-energy physics papers,

I estimate the extent to which articles vary in their fitness (ability to attract citations).

Heterogeneity in fitness is identified using within-cohort variation in citation counts. If it

had been the case that papers of a given age had similar citation counts, the model would have

predicted a small variability in paper fitness. In contrast, the maximum likelihood estimates

suggest that there is substantial heterogeneity in fitness. As a result, heterogeneity in fitness

is a primary source of the variation in articles’citation counts.

The citation network that I study in this paper is, along several dimensions, a typical

social network. First, the shape of the degree distribution for this network is similar to that

observed in many other social networks. Second, the citation network exhibits the small-

world property: it is possible to construct a relatively short path between any two papers,

i and j. Third and fourth, the citation network is assortative and exhibits clustering.

These four features of the citation network are also present in most other social networks

(see Jackson and Rogers (2007)). Given the archetypal nature of the citation network, it is

likely that many of the empirical conclusions of the current paper will be shared by studies

of other real-world social networks.

In this paper, fitness represents any characteristic of a node, independent of age and

degree, that makes the node more or less likely to acquire additional links in the future. In

future work, I hope to explain why some nodes have higher fitness than others. Fitness

may be a choice variable of the participants of the social network. For example, in the

context of a buyer-supplier network, firms may exert differing levels of effort in searching

for suppliers of material inputs. The different levels of effort can be explained by a cost to
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searching combined with heterogenous productivity or complexity of production. Whatever

the source of the underlying heterogeneity, the different levels of search intensity will result

in a distribution of fitness measures.

Incorporating agents’decisions over their fitness levels would result in a model that

bridges the gap between two strands of the literature on network formation: a) the purely

mechanical models (e.g., Erdös and Rényi (1960), Barabási and Albert (1999), and Jackson

and Rogers (2007)) and b) the economic models (e.g., Jackson and Wolinsky (1996) and

Ostrovsky (2008)). The model would also retain the theoretical predictions on cluster-

ing, assortativity, and the degree distribution which are the hallmarks of real-world social

networks.
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Appendix

A Other Examples of Social Networks

The purpose of this section is to argue that the main empirical results of Sections 2 and

4 are not special to the high-energy physics social network. In this section, I reproduce

Figure 1 and Table 1, using data from two other social networks. The two social networks

consist of a) buyer-supplier relationships among publicly traded U.S. firms and b) citations

among utility patents.

First, I consider a social network among large, publicly traded U.S. firms. In this

social network, each node represents a firm. A directed link exists from node i to node j

provided firm i sold goods or services to good j. I define the degree of a node, i, to be the

number of suppliers that it has. See Atalay et al. (2011) for a description of the dataset.34

Using data from 2006, I plot the degree distributions for this social network in Figure

A1. There were, in 2006, 1607 firms in the social network, of which 980 had no reported

34One key difference between the buyer-supplier network and the physics citation network is that nodes
and links are not permanent. Over time, firms exit and buyer-supplier relationships are severed. Atalay et
al. (2011) amend the model of Jackson and Rogers (2007) and show that the predicted degree distributions
are similar when node and link removal are possible.
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Figure A1: Empirical degree distributions, as of 2006. In the left panel, I plot the distribution
of the number of customers for all 1607 firms in the Compustat dataset. In the right panel, I
plot the degree distributions separately for old, medium-aged, and young firms. Firms which
were first observed prior to 1986 are classified as old, while firms that were first observed
after 1995 are classified as young.

suppliers. The most connected firm, Wal-mart, had 125 reported suppliers. Other top

firms were Cardinal Health (45 suppliers), General Motors (34 suppliers), and McKesson (34

suppliers).

In the right panel of Figure A1, I plot the degree distributions separately for old,

medium-aged, and young firms. The correlation between a firm’s age-quantile and its degree

is 16%, which is higher than the correlation for the high-energy physics social network, but

still lower than what would be predicted by Jackson and Rogers (2007).

Next, in Table A1, I present the results of the maximum likelihood estimates of

the three variants of the Jackson and Rogers (2007) model. Again, once information on

nodes’ages is included in the likelihood function, the Jackson-Rogers generates nonsensical

parameter estimates for m and r. The parameter estimates of the full model are more

sensible: The average number of contacts per node is 118.2 · 0.048 ≈ 5.7. Of these, 0.46
1+0.46

·
0.85

0.85+35.92
·118.2 ≈ 0.9 are formed as a result of random meetings. The remainder are formed

following network-based meetings.

As a second example, I consider a social network constructed from the NBER patent

database. Here, a node represents a particular patent, while a directed link exists from node

i to node j if patent i cites patent j. The data span all utility patents between 1975 and

1999. See Hall et al. (2001) for a thorough introduction to this dataset.

For the patent citation social network, I plot the degree distributions in Figure A2.

Again, the degree distribution is skewed to the right. The median patent received 3 citations.
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Parameter L1 L2 L3

m 1.01 4.45·1038 118.19
r 1.32 1.30·10−39 0.46
α 0.85
β 35.92

Log-Likelihood -2034.6 -2147.6 -2006.8

Table A1: Maximum likelihood estimates. For this table, I use data from the buyer-supplier
social network.
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Figure A2: Empirical degree distributions, as of 1999. In the left panel, I plot the distribution
of the number of citations for all 2,139,314 patents in the dataset. In the right panel, I plot the
degree distributions separately for old, medium-aged, and young patents. Patents granted
on or before 1985 are classified as old, while patents granted on or after 1993 are classified
as young.

The 90th percentile and 99th percentile patents received 12 and 35 citations, respectively.

In the right panel, I plot the degree distributions separately for old, medium-aged, and young

patents. Patents in the youngest tercile (those granted before 1986) received, on average,

2.1 citations. This is significantly lower than the average number of citations received by

medium-aged (6.5 citations) or old (6.9 citations) patents. Compared to the buyer-supplier

social network and the high-energy physics social network, the correlation between degree and

age is higher in the patent citation social network. For this social network, the correlation

between a node’s degree and its age quantile is 29%.

Table A2 contains the maximum likelihood estimates for the patent citation social

network.

In both the buyer-supplier social network and the patent citation social network, I

showed that the relationship between age and degree is too weak to be consistent with the

model of Jackson and Rogers (2007). While, I have not ruled out the possibility that there
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Parameter L1 L2 L3

m 4.98 3.15·1026 364.42
r 2.44 6.84·10−27 1.37
α 0.86
β 31.14

Log-Likelihood -5.66·106 -7.20·106 -5.45·106

Table A2: Maximum likelihood estimates. For this table, I use data from the NBER patent
citation social network.

exist some social networks in which the age-degree relationship conforms to the Jackson-

Rogers model, the additional examples that I have given show that the main empirical

results of the paper are not due to some special feature of the high-energy physics social

network.

B Verifying that Equation 4 Obeys Equation 3

The objective of this section is to show that

h̃ (d; i, t) =

(
mr + d− 1

d

)(
1−

(
i

t

)1/(1+r)
)
h̃ (d− 1; i, t) (4)

obeys

t
∂h̃ (d; i, t)

∂t
=
d− 1 +mr

1 + r
h̃ (d− 1; i, t) 1d>0 −

d+mr

1 + r
h̃ (d; i, t) . (3)

First, take the derivative of Equation 4 with respect to t:

∂h̃ (d; i, t)

∂t
=

(
mr + d− 1

d

)[
∂h̃ (d− 1; i, t)

∂t

(
1−

(
i

t

)1/(1+r)
)

+
[
h̃(d− 1; i, t)

]( i
t

)1/(1+r)
1

(1 + r)t

]
.

(B1)
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Plug B1 into Equation 3:

(d− 1 +mr) h̃(d− 1, i, t)

(1 + r)t
=

(
mr + d− 1

d

)
(d− 2 +mr) h̃(d− 2, i, t)

(1 + r)t

(
1−

(
i

t

)1/(1+r)
)

−(d− 1 +mr) h̃(d− 1, i, t)

(1 + r)t

(
mr + d− 1

d

)(
1−

(
i

t

)1/(1+r)
)

+

(
mr + d− 1

d

)[
h̃(d− 1; i, t)

]( i
t

)1/(1+r)
1

(1 + r)t

+
(d+mr) h̃(d, i, t)

(1 + r)t
.

Use Equation 4 to replace h̃ (d; i, t) with h̃ (d− 1; i, t) . Then cancel out the h̃(d −
1; i, t)’s.

d

(1 + r)t
−

(d+mr)
(

1−
(
i
t

)1/(1+r)
)

(1 + r)t
=

 (d− 2 +mr) d−1
mr+d−2

(1 + r)t
(

1−
(
i
t

)1/(1+r)
) − (d− 1 +mr)

(1 + r)t

×
(

1−
(
i

t

)1/(1+r)
)

+

(
i

t

)1/(1+r)
1

(1 + r)t
.

Simplify:

d− (d+mr)

(
1−

(
i

t

)1/(1+r)
)

=

 d− 1(
1−

(
i
t

)1/(1+r)
) − (d− 1 +mr)

(1−
(
i

t

)1/(1+r)
)

+

(
i

t

)1/(1+r)

− (d+mr)

(
1−

(
i

t

)1/(1+r)
)

= −1− (d− 1 +mr)

(
1−

(
i

t

)1/(1+r)
)

+

(
i

t

)1/(1+r)

1 =

(
1−

(
i

t

)1/(1+r)
)

+

(
i

t

)1/(1+r)

1 = 1

Since the two sides of the previous equation are equivalent, I conclude that Equation

4 obeys Equation 3.
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C Effect of the Mean-Field Approximation on the De-

gree Distribution

In this section, I compare the exact degree distribution to the one computed in Jackson

and Rogers (2007). Remember that Jackson and Rogers invoke a mean-field approximation

to solve for the stationary degree distribution. Under the mean-field approximation, the

number of contacts that a node gains each period is a deterministic function of its degree.

The stationary degree distribution that Jackson and Rogers compute is:

f(d) =
1 + r

d+mr

(
mr

d+mr

)1+r

.

Since the rate at which nodes gain contacts is approximated by a continuous function of

degree and time, the stationary degree distribution is a continuous function of d.

I argue in Section 3.3 that the exact degree distribution resulting from the Jackson-

Rogers model is:

h(d) = (1 + r)
Γ [(m+ 1)r + 1]

Γ [mr]

Γ [mr + d]

Γ [(m+ 1)r + 2 + d]
.

This function is defined over the set of nonnegative integers, d ∈ 0, 1, 2, ....

I define the function ε(d;m, r) as the log ratio of the two degree distributions:

ε(d;m, r) ≡ log

[
f(d)

h(d)

]
= log

[
(mr)1+r · Γ [mr] · Γ [(m+ 1)r + 2 + d]

(d+mr)2+r · Γ [mr + d] · Γ [(m+ 1)r + 1]

]
. (C1)

In Figure C1, I plot ε(d;m, r) for different m, r combinations. For the eight combi-

nations that are given in this figure, ε(d;m, r) is positive for small d and negative for large d.

When m is small, the mean-field approximation produces a stationary degree distribution

that is substantially different from the exact degree distribution. According to the right

panel, ε(d;m, r) tends to increase in r.

I assert, without proof, that

ε(0;m, r) = log

[
Γ [2 + r +mr]

mr · Γ [(m+ 1)r + 1]

]
,

lim
d→∞

ε(d;m, r) = log

[
(mr)1+r Γ [mr]

Γ [(m+ 1)r + 1]

]
, and

∂ε(d;m, r)

∂d
=
−2 + r

d+mr
− Γ′ [d+mr]

Γ [d+mr]
+

Γ′ [2 + d+mr]

Γ [2 + d+mr]
< 0 .
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Figure C1: Values of ε(d;m, r) for different m, r combinations. In the left panel, I plot
ε(d;m, r) for r = 0.5 and different values of m. In the right panel, I plot ε(d;m, r) for
m = 15 and different values of r. To make the figure more readable, I only plot a subset of
the points.

Given these results, bounds for ε(d;m, r) are given by the following inequalities:

log

[
Γ [2 + r +mr]

mr · Γ [(m+ 1)r + 1]

]
≥ ε(d;m, r) ≥ log

[
(mr)1+r · Γ [mr]

Γ [(m+ 1)r + 1]

]
.

For different m, r combinations, I plot the lower bound (left panel) and upper bound

(right panel) of ε(d;m, r) in Figure C2.

For extreme values of d, the mean-field approximation generates a degree distribution

that is orders of magnitude off from the exact degree distribution. The difference between

the two degree distributions is especially acute when m is small. Still, as I have shown in

Figure C1, the mean-field approximation is innocuous for intermediate values of d.

D Simulations

Using simulated data, I analyze the accuracy and precision of the maximum likelihood

estimators that are presented in Section 4.1.

In the synthetic datasets that I construct, each node i is endowed with an age

quantile, ai, fitness, pi, and degree, di. Each node’s fitness is independently drawn from a

Beta(α, β) distribution. Then, given ai and pi, the degree distribution is randomly generated

from the following probability distribution function,

f(di|ai, pi) =
Γ [p̄mr + di]

di!Γ [mrp̄]
(1− ai)

pimr

1+r

(
1− (1− ai)

pi
p̄(1+r)

)di
.
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Figure C2: Upper and lower bounds of ε(d;m, r) for different m, r combinations. The lower
bounds are given in the left panel and the upper bounds are given in the right panel. In the
left panel, the top line gives the lower bound of ε(d, 125, r).

For eight different m, r, α, β combinations, I generate a random sample of 25,000

nodes. I then perform maximum likelihood estimation using the L1,L2, and L3 likelihood

functions. In Table D1, I present the results. As one would hope, the estimates presented

in the third column match up with the actual parameters. However, the estimated standard

errors are large, even with a sample size of 25,000 nodes.

E Non-parametric estimate of b(p)

In this section, I argue that the main results of Section 4 do not hinge on the assumption

that fitness levels are drawn from the Beta distribution.

To provide support for this claim, I re-estimate the model corresponding to the L3

likelihood function, allowing for many more degrees of freedom for the fitness distribution,

b(p). In particular, I assume that:

b(p) = bx if p ∈
[
x

100
,
x+ 1

100

)
(E1)

for x ∈ 0, 1, 2, ..., 99 ,

where bx ≥ 0 and
1

100

99∑
x=0

bx = 1 .

In words, b(p) is constant within bins of size 0.01, but may vary arbitrarily across bins.
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Parameters Estimates
m, r, α, β L1 L2 L3

20,2,1,5
4.36,0.47
(0.14,0.02)

8.33·1030,1.40·10−31

(?,?)
21.60,2.13,1.01,5.66
(2.57,0.21,0.02,0.63)

20,2,1,1
13.40,0.51
(0.38,0.03)

1.56·1019,2.22·10−19

(?,?)
19.92,1.87,1.00, 0.96
(0.29,0.04,0.02,0.03)

20,1,1,5
4.91,0.28
(0.25,0.02)

2.21·1033,4.42·10−34

(?,?)
22.68, 0.98,1.04,5.90
(3.83,0.15,0.03,0.70)

20,1,1,1
15.98,0.29
(0.80,0.02)

5.81·1019,5.02·10−20

(?,?)
20.02,0.96,0.99,0.96
(0.37,0.02,0.02,0.04)

40,2,1,5
11.26,0.29
(0.55,0.02)

4.80·1025,4.48·10−26

(?,?)
38.66,1.99,0.98,4.63
(3.00,0.13,0.02,0.36)

40,2,1,1
27.88,0.46
(0.87,0.02)

3.75·1014,1.78·10−14

(?,?)
39.71,1.92,0.99,0.96
(0.39,0.03,0.01,0.03)

40,1,1,5
12.20,0.19
(0.89,0.02)

2.76·1027,6.28·10−28

(?,?)
39.95,1.12,1.00,5.34
(5.34,0.13,0.02,0.55)

40,1,1,1
37.86,0.20
(2.63,0.02)

1.06·1019,5.25·10−19

(?,?)
39.65,1.00,0.97,0.96
(0.50,0.02,0.01,0.03)

Table D1: Maximum likelihood estimates, with asymptotic standard errors in parentheses.
For the first two columns, the likelihood functions depend only on m and r. The estimated
standard errors in the middle column cannot be computed because of the near-singularity of
the Fisher information matrix.
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Figure E1: Estimates of b(p). The solid line gives the estimate of b(p) resulting from the
assumption of Beta-distributed fitness. The dashed line gives the estimate corresponding to
Equation E1.

The MLE estimate of b(p), for this new model, is of similar shape to the estimate of

b(p) given in Figure 4. The MLE estimates of m and r are (729.31, 1.75). Compared to

the estimates given in Table 1, the estimate of m is smaller, and the estimate of r is larger.

Finally, I re-produce Figure 9, to compare the relative importance of age and fitness

as a source of variation in the degree distribution. Note that, because of the discontinuities

in the new version of b(p), Ψ(a, p) ≡ ∂E[d|a,p]
∂a

÷ ∂E[d|a,p]
∂θ

will now be discontinuous as well.

Again, for most of the relevant part of the parameter space, Ψ(a, p) is less than 1.

F Computing Ψ(a, p)

The task in this section is to compute:

Ψ(a, p) ≡
∂E[d|a,p]

∂a
∂E[d|a,p]

∂θ

.

Remember from Equation 15 that E [d|a, p] = mp̄r
(

(1− a)−
p

p̄(1+r) − 1
)
.

The marginal effect on expected degree of increasing age is:

∂E [d|a, p]
∂a

=
pmr

1 + r
(1− a)−

p
p̄(1+r)

−1 . (F1)

For θ ∈ [0, 1], define q(θ;α, β) to be the θ-quantile fitness. The marginal effect, on
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Figure E2: Isoquants of Ψ(a, p), using the estimate of b(p) parameterized by Equation E1.

expected degree, of increasing θ is:

∂E [d|a, p]
∂θ

=
∂E [d|a, p]

∂p

∂p

∂θ
(F2)

= − mr

1 + r
(1− a)−

p
p̄(1+r) log (1− a)

∂p

∂θ
.

The partial derivative, ∂p
∂θ
, tells us how much the fitness increases from one percentile to

the next. For example, the median-fitness node has p = 0.00786, while the 51st percentile

node has a fitness of p = 0.00823. Thus, the derivative, evaluated at θ = 0.5, is roughly
0.00823−0.00786

0.01
= 0.0376.

From the definition of q and the probability distribution function of a Beta distrib-

ution:
∂p

∂θ
=

Γ [α] Γ [β]

Γ [α + β]
(q(θ;α, β))1−α (1− q(θ;α, β))1−β . (F3)

Plug θ = q−1(p;α, β) into Equation F3 to get:

∂p

∂θ
=

Γ [α] Γ [β]

Γ [α + β]

(
q(q−1(p;α, β);α, β)

)1−α (
1− q(q−1(p;α, β);α, β)

)1−β
. (F4)

Combining Equations F1 and F2 leads us to

Ψ(a, p) = − p
∂p
∂θ

1

(1− a) log [1− a]
,

where ∂p
∂θ
is given in Equation F4.
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G Proofs of Propositions 1 and 2

In this section, I restate and prove Propositions 1 and 2.

Proposition 1 (Reminded) Given the assumptions specified above, the clustering
coeffi cient tends to:

C =
1

mp̄
· α

α + β

(
1− α

α + β
· 1

p̄
· r

1 + r

)
.

Proof. To solve for C, I closely mimic the proof of Theorem 2 of Jackson and Rogers (2007).
First, I compute, p̄n, the probability that a network-based meeting ends with a link.

To do so, I note that the average probability that a random meeting produces a link is simply

p̄r =

∫ 1

0

pb(p)dp =
α

α + β
. (G1)

Also, p̄ is a weighted average of p̄r and p̄n :

p̄ =
mrp̄r +mnp̄n
mr +mn

=
r

1 + r
· α

α + β
+

1

1 + r
p̄n .

Solve for p̄n:

p̄n = p̄(1 + r)− r α

α + β
. (G2)

For future reference, note that r > βp̄
2α+β−βp̄ corresponds to

r > p̄(1 + r)− r
(

α

α + β

)
,

which is equivalent to:

r > p̄n or

mr > p̄nmn.

Now, consider a node i. Upon entry, it forms mp̄ links. From each node that i

links to, there are mp̄ directed links. Thus, there are (mp̄)2 possible pairs of directed links

i→ j → k. To determine C, I need to calculate the fraction of these links that have i→ k

present. As in the proof of Theorem 2 of Jackson and Rogers (2007), I can alternatively
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count the number of times that either j → k or k → j is present, conditional on both i→ j

and i→ k being present.

Since, by assumption, r > βp̄
2α+β−βp̄ (which is equivalent to mr > p̄nmn), I only need

to count the number of instances for which node i formed a link with j in a random meeting

and then formed a link with a successor of j in a network-based meeting. (In the language

of the proof of Theorem 2 of Jackson and Rogers (2007), I only need to consider case 2, and

not case 3.)

Because of our assumption that the entrant forms at most one link with the successors

of any one particular successor, the number of j → k links, conditional on both i → j and

i→ k being present, equals p̄r ·mn · p̄n. Why? I have assumed thatmr > p̄nmn, so that there

are strictly fewer links formed in network-based meetings than there are random meetings.

Therefore, the number of network-based meetings is an upper bound for the number of i→ k

links for which i → j and j → k are also present. Thus, I simply need to multiply mn by

the probability that both the random meeting generates a link and the probability that the

network-based meeting generates a link. This explains the p̄r and p̄n terms in our product.

Using Equations G1 and G2 p̄r ·mn · p̄n equals:

α

α + β
· m

1 + r

(
p̄(1 + r)− r α

α + β

)
=

α

α + β
·mp̄

(
1− r

1 + r
· 1

p̄
· α

α + β

)
.

Divide by (mp̄)2 to get the desired expression for C:

C =
α

α + β
· 1

mp̄

(
1− r

1 + r
· 1

p̄
· α

α + β

)
.

Proposition 2 (Reminded) Consider two nodes, i and i′, with di > di′ . Under the

mean-field approximation, the degree distribution of the predecessors of i first order

stochastically dominates the degree distribution of the predecessors of i′.

Proof. The proof proceeds in three steps. In the first step, I argue that the age distribution
of node i FOSD the age distribution of i′. In the second step, I use the finding of the first

step to argue that the age of a randomly selected predecessor of node i FOSD the age of a

randomly selected predecessor of i′. Then, in third step, I integrate over the age distributions

of the predecessors of i and i′ to arrive at the desired result.

Under the mean-field approximation, d is deterministically given by any a, p combi-

nation. In particular, d = p̄rm
(

(1− a)−
p
p̄

1
1+r − 1

)
. I invert this relationship to solve for p
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in terms of a and d:

p̄rm

d+ p̄rm
= (1− a)

p
p̄

1
1+r (G3)

p = p̄(1 + r)
log
(

p̄rm
d+p̄rm

)
log(1− a)

≡ π(d, a) .

Let k(a|d) be the probability distribution function of a node’s age quantile, condi-

tional on the degree of the node equaling d. Let the analogous cumulative distribution

function be K(a|d). Using Equation G3, the probability that a node’s age is less than a

equals the probability that the fitness of the node is greater than π(d, a).

K(a|d) =

∫ 1

π(d,a)

b(p)dp .

Differentiate with respect to d:

∂K(a|d)

∂d
= −b(π(d, a))

∂π (d|a)

∂d
< 0 .

This concludes the first step of the proof, which states that di > di′ impliesK(a|di) <
K(a|di′).

Before proceeding to the second step of the proof, in Figure G1, I graphically depict

the idea behind the first step. This is purely for pedagogical purposes. Consider the

expression K(0.005, di). To compute this function, I integrate b(p) from p = π(di, 0.005)

to p = 1. This is the thick part of the solid curve in Figure G1. The difference between

K(0.005, di′) and K(0.005, di) is simply the integral of b(p) from p = π(di′ , a) to p = π(di, a)

(which in the Figure G1 is the solid vertical line that connects p = π(di′ , a) to p = π(di, a)

at a = 0.005). The important thing to notice is that this integral must be positive, so

K(0.005, di′) > K(0.005, di).

To begin the second step, define J(a|ξi) as the cumulative distribution function of
the age of a randomly selected predecessor of node i, given that the age of i is ξi. Note that

J (a|ξi) is a weakly decreasing function of ξi: knowing that node i is younger (ξi is smaller)
means that it is more likely that a is small (J (a|ξi) is bigger). Also, note that J (a|ξi) = 1

for ξ ∈ [0, a], since the predecessor of i cannot be older than i. Furthermore, define G (a|di)
as the cumulative distribution function of the age of a predecessor of i, conditional on the
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Figure G1: Graphical representation of the first part of the proof. p = π(d|a) is drawn for
two different values of d. As d gets bigger, the interval of p such that age is less than a gets
smaller. Because of this, as d increases, K(a|d) decreases.

degree of i being di. Using these definitions:

G (a|di)−G (a|di′) =

∫ 1

0

J (a|ξ) [k (ξ|di)− k (ξ|di′)] dξ (G4)

Because a) K is increasing in d, in the sense of first-order stochastic dominance,

and b) J (a|ξ) is non-increasing in d, the right-hand side of Equation G4 is negative. This
completes the second part of the proof.

For the final step, define L(d|di) as the cumulative distribution function of the degree
of a randomly chosen predecessor of i, conditional on the degree of i being di. I need to

show that di > di′ implies L(d|di) < L(d|di′).
Conditional on its fitness level, a node has degree less than d if its age is less than

1 −
(

p̄rm
d+p̄rm

) p̄
p

(1+r)

(see Equation G3). Thus, conditional on the degree of node i, the

cumulative distribution function of a randomly selected predecessor of node i is:

L(d|di) =
Γ [α + β]

Γ [α] Γ [β]

∫ 1

0

G

(
1−

(
p̄rm

d+ p̄rm

) p̄
p

(1+r)

; di

)
pα−1(1− p)β−1dp .
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Also:

L(d|di′) =
Γ [α + β]

Γ [α] Γ [β]

∫ 1

0

G

(
1−

(
p̄rm

d+ p̄rm

) p̄
p

(1+r)

; di′

)
pα−1(1− p)β−1dp .

Thus:

L(d|di)− L(d|di′) =
Γ [α + β]

Γ [α] Γ [β]

∫ 1

0

pα−1(1− p)β−1 ×{
G

(
1−

(
p̄rm

d+ p̄rm

) p̄
p

(1+r)

; di

)
−G

(
1−

(
p̄rm

d+ p̄rm

) p̄
p

(1+r)

; di′

)}
dp

< 0 .

This implies that L(d|di) < L(d|di′), which was the desired result.
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