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Abstract

We study a dynamic model of information provision. A state of na-

ture evolves according to a Markov chain. An informed advisor decides

how much information to provide to an uninformed decision maker, so

as to influence his short-term decisions. We deal with a stylized class of

situations, in which the decision maker has a risky action and a safe ac-

tion, and the payoff to the advisor only depends on the action chosen by

the decision maker. The greedy disclosure policy is the policy which, at

each round, minimizes the amount of information being disclosed in that

round, under the constraint that it maximizes the current payoff of the

advisor. We prove that the greedy policy is optimal in many cases – but

not always.
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1 Introduction

Market conditions evolve over time, and information that is privately available

to a market participant is a valuable asset. In this paper we study the optimal

provision of information by an informed “expert” with no decision power, to an

uninformed agent in a dynamic setup. We develop a stylized model in which an

“investor” chooses at each date whether or not to choose a risky action, such as

a short-run investment. The payoff from investing depends on some underlying

state of nature, which is unknown to the investor. This state accounts for all

relevant external factors and evolves exogenously according to a Markov chain.

At each date, the investor may get information through the advisor. How

much information is being disclosed is the choice variable of the advisor. To be

specific, the advisor publicly chooses an information provision rule, which maps

each history into a distribution over signals. The investor observes both the

rule chosen by the advisor and the realized signal. We assume that the advi-

sor receives a fixed fee whenever investment takes place, and that the investor

invests whenever the expected net payoff given his current posterior belief is

nonnegative.

This allows us to recast the problem faced by the advisor as a Markov de-

cision problem (MDP) in which the state space is the compact set of posterior

beliefs of the investor, and the action space is the set of information provision

rules. In that MDP, the advisor chooses dynamically the provision of informa-

tion so as to maximize the (expected) discounted frequency of dates in which

investment takes place. Advising is thus both honest, in that realized signals

cannot be manipulated, and strategic, in that the information content of the

signal is strategic.

There are two (mutually exclusive) interpretations that befit this descrip-

tion. In the first one, the advisor does not observe the underlying state, and

chooses how much information will be publicly obtained. In other words, he

chooses a statistical experiment à la Blackwell, whose outcome is public. In the

second interpretation, the advisor does observe the successive states of nature

but commits ex ante to a dynamic information provision policy.

The basic trade-off faced by the advisor is the following. By disclosing

information at a given date, the advisor may increase his payoff at that date,

but then gives up part of his information advantage for later dates, as soon as
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successive states are autocorrelated. Our focus is on structural properties of the

model. Characterizing optimal information provision in general is out-of-reach,

and we instead focus on the optimality of rules in which the above trade-off is

solved in a very simple way. We define the greedy policy as the one that, at

any given date, minimizes the amount of information being disclosed, subject

to the current payoff of the advisor being maximized. We prove that this policy

is optimal in the case of two states of nature. We then exhibit a class of Markov

chains, described by a renewal property, for which this policy is optimal for a

large range of initial distributions of the state (including most natural ones),

and is eventually optimal, for any initial distribution of the state. Our main

message is thus that this policy is likely to perform very well in a large number

of cases, but not always, as we show by means of a counterexample.

Our modelling of information acquisition/disclosure is a dynamic version

of the persuasion mechanisms of Kamenica and Gentskow (2011) who study

optimal signals in a broader, yet static, setup. It also parallels the independent

paper by Ely (2014). Our paper joins the growing literature on dynamic models

in which uncertainty evolves, see, e.g., Mailath and Samuelson (2001), Phelan

(2006), Wiseman (2008), or Athey and Bagwell (2008), and Escobar and Toikka

(2013) for economic applications. These references focus on game models, whose

mathematical analysis is in general quite challenging, see Renault (2006) and

Hörner et al. (2010). Although our basic model is a game-theoretic one, its

reduced form, and the commitment assumption makes it more comparable to

contract theory ones, see e.g. Battaglini (2005), Zhang and Zenios (2008) or

Zhang, Nagarajan and Sosic (2008).

2 Model and Main Results

2.1 Model

We consider the following stylized class of two-player games between an “advi-

sor” (Player 1) and an “investor” (Player 2). The advisor observes a stochastic

process (ωn)n∈N with values in a finite set of states Ω, and may provide the in-

vestor with information regarding the current or past values of the process. In

each round, the investor chooses whether to invest or not. The investor’s payoff

from investing in round n is r(ωn), where r : Ω → R. The advisor receives a
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fee whenever investment takes place (this fee is already accounted for in r) and

discounts future payoffs according to a discount factor δ.

While the investor knows the law of the sequence (ωn)n∈N, he receives no

information on the realized states, except through the advisor. It is then natural

to assume that he chooses to invest whenever his expected (net) payoff from in-

vesting is nonnegative, where the expectation is computed using the information

released by the advisor.1,2 Thus, the game reduces to a stochastic optimization

problem, in which the advisor chooses whether and how to reveal information

to the investor, so as to maximize the expected discounted frequency of rounds

in which investment takes place.

We assume that the process (ωn)n∈N follows an irreducible Markov chain

with transition matrix M = (π(ω′ | ω))ω,ω′∈Ω and invariant measure m ∈ ∆(Ω).

The set ∆(Ω) is the set of probability distributions over Ω, whose elements are

potential “beliefs” of the investor. Throughout, we identify each ω ∈ Ω with a

unit basis vector in RΩ, and ∆(Ω) with the (|Ω| − 1)-dimensional unit simplex

in RΩ, endowed with the induced topology.

The game is played as follows. In each round n, the state ωn is drawn

according to π(· | ωn−1), the advisor observes ωn and chooses which message to

send to the investor; The investor next chooses whether to invest, and the game

moves to the next round.3 When the investor’s belief is p ∈ ∆(Ω), his expected

net payoff from investing is given by the scalar product 〈p, r〉 =
∑
ω∈Ω p(ω)r(ω).

Accordingly, the investment region is I := {p ∈ ∆(Ω), 〈p, r〉 ≥ 0} and the

investment frontier is F := {p ∈ ∆(Ω), 〈p, r〉 = 0}. We also denote by J :=

∆(Ω) \ I the noninvestment region.

Throughout, we will denote by Ω+ := {ω ∈ Ω, r(ω) ≥ 0} and Ω− := {ω ∈
Ω, r(ω) < 0} the states with nonnegative and negative payoff respectively, so

that Ω+ and Ω− form a partition of Ω.

1From the literature on dynamic games we know that more sophisticated equilibria may

possibly be designed. Besides being natural, our assumption allows to cover the case of short-

lived investors or of a large number of investors.
2To simplify the analysis we will assume that the investor also invests on the investment

frontier, that is, when his expected profit is 0. Indeed, otherwise, whenever the investor’s

belief is on the investment frontier, the advisor would reveal a small amount of additional

information, so as to push the investor’s belief to the region where the investor strictly prefers

investing to not investing.
3We are not explicit about the message set. It will be convenient to first assume that it is

rich enough, e.g., equal to ∆(Ω). We will show that w.l.o.g. two messages suffice.
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An information disclosure policy for the advisor specifies for each round,

the probability law of the message being sent in that round, as a function of

previous messages and the information privately available to the advisor, that

is, past and current states.

We will assume that the advisor has commitment power. To be specific, we

assume that in any given round, the investor knows which disclosure policy was

used in that round, and therefore knows unambiguously how to interpret the

message received from the advisor.

An equivalent and alternative interpretation is to assume that the advisor

does not observe the process (ωn)n∈N and chooses in each round a statistical

experiment à la Blackwell. Such an experiment yields a random outcome, whose

distribution is contingent on the current state. Under this alternative interpre-

tation, the advisor has no private information, but by choosing the experiment,

he effectively determines how much information is being publicly obtained, and

the investor observes both the experiment choice and the outcome of the exper-

iment.

2.2 A Reformulation

Given an information disclosure policy, the investor uses the successive messages

received from the advisor to update his belief on the current state. We find it

convenient to distinguish the beliefs pn and qn held in round n, respectively

before and after receiving the message of the advisor. Formally, pn is the con-

ditional law of ωn given the messages received prior to round n, while qn is the

updated belief, once the round n message has been received, so that the investor

invests in round n if and only if qn ∈ I.

The beliefs qn and pn+1 differ because the state evolves: ωn and ωn+1 need

not be equal, and one has pn+1 = φ(qn) := qnM . The difference between pn

and qn is the result of the information provided by the advisor.

For a given p ∈ ∆(Ω), denote by S(p) ⊂ ∆(∆(Ω)) the set of probability

distributions over ∆(Ω) with mean p. We denote by µp ∈ S(p) the distribution

over ∆(Ω) that assigns probability 1 to p.

As a consequence of Bayesian updating, the (conditional) law µ of qn belongs

to S(pn), for every information disclosure policy. Conversely, a classical result

from the literature of repeated games with incomplete information (see Aumann
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and Maschler (1995)4) states that the converse also holds. That is, given any

distribution p ∈ ∆(Ω) and any distribution µ ∈ S(p) of beliefs with mean p,

the advisor can correlate the message with the state in such a way that the

investor’s updated belief is distributed according to µ. Elements of S(p) will be

called splittings at p, as is common in the literature.5

These observations allow us to reformulate the decision problem faced by

the advisor as a dynamic optimization problem Γ. The state space in Γ is the

set ∆(Ω) of investor’s beliefs and the initial state is p1, the law of ω1. At each

state p ∈ ∆(Ω), the set of available actions is the set S(p), so that the advisor

chooses a distribution µ of posterior beliefs that is consistent with p. Given the

posterior belief q, the current payoff is 1 if q ∈ I and 0 if q /∈ I, and the next

state in Γ is φ(q). Thus, the (expected) stage payoff given µ is µ(q ∈ I).

We denote by Vδ(p1) the value of Γ as a function of the initial distribution

p1. The value function Vδ is characterized as the unique solution of the dynamic

programming equation6

Vδ(p) = max
µ∈S(p)

{(1− δ)µ(q ∈ I) + δEµ [Vδ(φ(q))]} , ∀p ∈ ∆(Ω). (1)

2.3 The (static) value of information

We first argue that the value function Vδ is concave. This result has a number

of implications on the structure of the advisor’s optimal strategy. We will point

at two such implications which are especially useful in the sequel.

Lemma 1 The function Vδ is concave on ∆(Ω).

Proof. This is a standard result in the literature on zero-sum games with

incomplete information, see, e.g., Sorin (2002, Proposition 2.2). While the setup

here is different, the proof follows the same logic, and we only sketch it. We

need to prove that Vδ(p) ≥ a′Vδ(p′) + a′′Vδ(p
′′) whenever p = a′p′ + a′′p′′, with

a′, a′′ ≥ 0 and a′ + a′′ = 1. Starting from p, consider the following strategy

σ for the advisor. Pick first the element µ ∈ S(p) that assigns probabilities a′

4Aumann and Maschler (1995) contains a proof when the distribution µ has a finite support.

Their proof readily extends to the case in which the support of µ is general.
5Or simply splitting, if p is clear from the context.
6We write max on the right-hand side because it is readily checked that Vδ is Lipschitz over

∆(Ω), the expression between braces is upper hemi-continuous w.r.t. µ in the weak-* topology

on ∆(∆(Ω)), and S(p) is compact in that topology. Details are standard and omitted.
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and a′′ to p′ and p′′ respectively, and next follow an optimal strategy in Γ(p′)

or Γ(p′′), depending on the outcome of µ. Thus, the advisor’s behavior at p is a

so-called compound lottery obtained as the result of first using µ, and then the

first choice of an optimal strategy in either Γ(p′) or Γ(p′′).

The strategy σ yields at p a payoff equal to a′Vδ(p
′) + a′′Vδ(p

′′), hence the

result.

The first consequence of Lemma 1 is that the advisor does not reveal infor-

mation when the investor’s belief is in the investment region.

Corollary 2 At any p ∈ I, it is optimal for the advisor not to provide infor-

mation to the investor.

That is, the distribution µp ∈ S(p) that assigns probability one to p achieves

the maximum in (1).

The intuition is as follows. When p ∈ I, revealing information cannot in-

crease the current payoff, and therefore, such revelation may only possibly be

beneficial in subsequent stages. However, every information that is disclosed

today could instead be revealed tomorrow, so that there is no reason to provide

information to the investor when p ∈ I. Note that we do not rule out the pos-

sibility that there are additional optimal strategies that do reveal information

in I.

Proof. Fix µ ∈ S(p). By the concavity of the function q 7→ Vδ(φ(q)) and

Jensen’s inequality, one has

Eµ [Vδ(φ(q))] ≤ Vδ(φ(Eµ[q])) = Vδ(φ(p)),

with equality for µ = µp. Moreover, µ(q ∈ I) cannot exceed 1, and is equal to 1

for µ = µp. Therefore the right-hand side in (1) is at most (1− δ) + δVδ(φ(p)),

and this upper bound is achieved for µ = µp.

A second corollary of Lemma 1 states that in the investment region, the

advisor can restrict himself to splitting the investor’s belief among at most two

beliefs.

Corollary 3 At any p /∈ I, there is an optimal choice µ ∈ S(p), which is carried

by at most two points.

7



That is, at each p /∈ I it is either optimal not to disclose information, or to

disclose information in a coarse way so that the posterior belief of the investor

takes only two well-chosen values in ∆(Ω). This result hinges on the fact that

(i) the advisor’s stage payoff assumes two values only, and (ii) the investment

region I is convex.

Proof. Let p /∈ I and µ ∈ S(p) be arbitrary. Assume first that µ(q ∈ I) = 0

and compare the distribution µ to the distribution µp in which no information

is revealed. The two distributions yield the same current payoff, because µ(q ∈
I) = µp(q ∈ I) = 0. However, µp yields a (weakly) higher continuation payoff,

because by Jensen’s inequality

Eµp
[Vδ(φ(q))] = Vδ(φ(p)) ≥ Eµ [Vδ(φ(q))] .

Assume now that µ(q ∈ I) > 0. Since p ∈ J and I is convex, one also has

µ(q ∈ J) > 0.

Denote by qI := Eµ [q | q ∈ I] (resp. qJ := Eµ [q | q ∈ J ]) the expected pos-

terior belief conditional on it being in (resp. not in) the investment region. Then

p = µ(q ∈ I)qI + µ(q ∈ J)qJ .

Denote by µ̃ ∈ S(p) the two-point distribution that assigns probabilities µ(q ∈ I)

and µ(q ∈ J) to qI and qJ respectively. Plainly, µ̃(q ∈ I) = µ(q ∈ I) and

Eµ̃ [Vδ(φ(q))] = µ(q ∈ I)Vδ(φ(qI)) + µ(q ∈ J)Vδ(φ(qJ)),

while

Eµ [Vδ(φ(q))] = µ(q ∈ I)Eµ [Vδ(φ(q)) | q ∈ I] + µ(q ∈ J)Eµ [Vδ(φ(q)) | q ∈ J ]

≤ µ(q ∈ I)Vδ(φ (Eµ [q | q ∈ I])) + µ(q ∈ J)Vδ(φ (Eµ [q | q ∈ J ]))

≤ Eµ̃ [Vδ(φ(q))] .

To sum up, for any given µ, we have shown that either the no disclosure policy

µp, or some two-point distribution µ̃ yields a weakly higher right-hand side in

(1) than µ. This proves the result.

Note that it may still be optimal not to disclose information at p ∈ J . This

is in particular the case whenever p(Ω+) = 0.
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2.4 Main Results

The intuition behind Corollaries 2 and 3 above is clear. When p ∈ I, no infor-

mation should be revealed, because it cannot help to increase the current payoff,

and can only hurt continuation values. When p /∈ I, there are two conflicting

effects at play. For the sake of maximizing payoffs, the advisor should release

information. But releasing information may only hurt continuation payoffs, be-

cause of concavity.

Corollary 3 shows qualitatively (but not explicitly) how to compromise be-

tween the two effects. The main message of our results is that in many cases

but not all, the explicit compromise is simple: the advisor should minimize the

amount of information released, subject to current payoffs being maximal. We

define accordingly the greedy strategy σ∗ as follows.

Definition 4 The greedy strategy for the advisor is the strategy σ∗ that depends

on the investor’s current belief p, and plays as follows:

G1 At any p ∈ I, the strategy σ∗ discloses no information.

G2 At any p /∈ I, the strategy σ∗ chooses a solution µ̃ ∈ S(p) to the problem

max aI , under the constraints p = aIqI + aJqJ , qI ∈ I, aI + aJ = 1,

aI , aJ ≥ 0.

Thus, the greedy strategy is stationary in the investor’s belief, which can be

computed by the advisor using the investor’s initial belief p1 and the messages

sent to the investor in earlier rounds.

An important point is that σ∗ does not depend on the discount factor, nor

on the transition matrix. So it can be implemented without knowing δ nor π.

It will be convenient to identify, whenever there is no ambiguity, a decom-

position p = aIqI + aJqJ with the splitting µ which selects qI and qJ with

probabilities aI and aJ respectively. We will call the decomposition in G2 the

greedy splitting at p.

As an illustration, consider Figure 1 below, with Ω = {A,B,C}.
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I

J

A

B C

B+

C+

F
q

(1)
I

q
(2)
I

q
(3)
I

q
(1)
J

q
(2)
J

q
(3)
J

p

Figure 1: Three splittings at p.

Three different splittings at p have been drawn: p = a
(i)
I q

(i)
I + a

(i)
J q

(i)
J , i ∈

{1, 2, 3}, with a
(i)
I =

‖p− q(i)
J ‖2

‖q(i)
I − q

(i)
J ‖2

, so that a
(1)
I > a

(2)
I > a

(3)
I . Since a

(i)
I is the

current payoff under splitting i, the first of the three splittings yields a higher

payoff.

For every two points p1, p2 ∈ ∆(Ω) denote by (p1, p2) the line that passes

through p1 and p2, and by [p1, p2] the line segment that connects p1 and p2. The

noninvestment region J is divided into two triangles by the segment [B+, C],

see Figure 2 below.
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I

J

A

B C

B+

C+

F

p

p′

Figure 2: The decomposition of the noninvestment region.

Because the line (B+, C+) has a positive slope, every point p in the lower

triangle (B+, B,C) is split by the greedy strategy σ∗ between B+ and a point

on the line segment [B,C], and points p′ in the upper triangle are split by σ∗

between C and a point on the line segment [B+, C+].

Only in the case where the line (B+, C+) is parallel to the line (B,C) are

there several optimal splittings. This is a nongeneric situation7 where r(B) =

r(C).

Theorem 5 If |Ω| = 2, the greedy strategy is optimal, irrespective of the initial

distribution p1.

7see lemma 11 later.

11



Although interesting in its own sake, the two-state problem is specific in

many respects, and we next investigate the robustness of the conclusion of The-

orem 5.

From now on, we restrict ourselves to a class of Markov chains, in which

shocks occur at random times, and the state remains unchanged between two

consecutive shocks. When a shock occurs, the next state is drawn according

to a fixed distribution (and may thus coincide with the previous state). The

durations between successive shocks are i.i.d. random variables with a geometric

distribution. Note that the invariant distribution m is then equal to the fixed

distribution according to which new states are drawn. Equivalently, these are

the chains with a transition function given by

π(ω | ω) = (1− λ)m(ω) + λ, (2)

π(ω′ | ω) = (1− λ)m(ω′) if ω′ 6= ω, (3)

for some λ ∈ [0, 1). Note that the drift map φ : ∆(Ω) → ∆(Ω) that describes

the evolution of the investor’s belief when no new information is provided is

given by

φ(p)−m = λ(p−m),

so that φ is an homothety on the simplex with center m and ratio λ. Notice

that we only consider homotheties with non negative ratio.

It turns out that even in this restricted class of chains, and with as few as

three states, Theorem 5 does not extend without qualifications.

Proposition 6 Let |Ω| = 3. The greedy strategy need not be optimal for all

initial distributions.

Indeed, we exhibit in Section 5 a simple counterexample in which, for some

initial distributions, it is strictly optimal not to disclose any information in early

stages.

Yet, this counterexample hinges on fairly extreme choices of the invariant

measure and the initial distribution. In many cases the greedy strategy is a very

relevant strategy. We substantiate this claim by means of three results.

First, it may be natural to assume that the initial distribution and the

invariant measure coincide.8 In that case, the conclusion of Theorem 5 extends

to an arbitrary number of states.

8Or are very close. This is in particular relevant when the interaction between the advisor

and the investor starts at a given date, long after the Markov chain has started evolving.
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Theorem 7 Let the cardinality of Ω be arbitrary and suppose that φ is an

homothety. If p1 = m, then the greedy strategy is optimal.

In fact, we will identify a polytope of initial distributions in ∆(Ω) of full

dimension that contains m in its interior, for which the greedy strategy is op-

timal. This allows us to prove that, irrespective of the initial distribution, it is

eventually optimal to use the greedy strategy.

Theorem 8 Let the cardinality of Ω and the initial distribution be arbitrary,

and suppose that φ is an homothety. There is an optimal strategy σ and an

a.s. finite stopping time after which σ coincides with the greedy strategy.

Under the assumption that no two states yield the same payoff, the conclu-

sion of Theorem 8 holds for every optimal strategy σ. That is, the suboptimality

identified in Proposition 6 is typically transitory. On almost every history, the

advisor will at some point switch to the greedy strategy. Whether or not it is

possible to put a deterministic upper bound on this stopping time is unknown

to us.

We finally provide an in-depth analysis of the three-state case. As it turns

out, σ∗ is optimal in most circumstances.

When |Ω−| = 2, we use the notations of Figure 1: Ω− = {B,C} with

r(B) ≥ r(C), and the vertices of F are denoted by B+ and C+.

Theorem 9 Assume |Ω| = 3 and suppose that φ is an homothety. The strategy

σ∗ is optimal in the following cases:

• |Ω−| = 1;

• |Ω−| = 2 and m belongs to either I or to the triangle (C+, B+, C).

When instead m belongs to the triangle (B,B+, C), the greedy strategy may

fail to be optimal only when three conditions are met simultaneously: (i) the

advisor is very patient, that is, δ is close to one; (ii) the state is very persistent,

that is, λ is close to one; and (iii) the line segment F is close to parallel to the

line (B,C), that is, r(B) and r(C) do not differ by much. While the first two

conditions are natural, we have no intuition to offer for the last condition.
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3 Preparations

3.1 The greedy strategy

In this section we provide more details and results on the greedy strategy σ∗.

We let E be the set of extreme points of F . One can verify that for each

ω− ∈ Ω− and ω+ ∈ Ω+, the line segment [ω−, ω+] contains a unique point in

E . Conversely, any e ∈ E lies on a line segment [ω−, ω+] for some ω− ∈ Ω−,

ω+ ∈ Ω+.

It is convenient to reformulate the optimization problem G2 in Definition

4 as a linear program. Given a finite set A ⊂ RΩ we denote9 by cone(A) the

closed convex hull of A∪{0}. The optimization program in G2 is equivalent to

the following linear program

(LP ) : maxπ1(Ω),

where the maximum is over pairs (π1, π2) ∈ cone(E) × cone(Ω−) such that

π1 + π2 = p.

Lemma 10 The value of the program (LP) is equal to the value of the following

problem (LP’).

(LP ′) : maxπ(Ω),

where the supremum is over all π ∈ cone(Ω) such that π ≤ p and
∑
ω∈Ω

π(ω)r(ω) ≥

0.

Proof. Recall that in G2 p /∈ I. If (π1, π2) ∈ cone(E) × cone(Ω−) is an

optimal solution of (LP) then π1 is a feasible solution of (LP’), and therefore

the value of (LP’) is at least the value of (LP).

Fix now an optimal solution π of (LP’). If
∑
ω∈Ω π(ω)r(ω) > 0, then by

increasing the weight of states in Ω− we can increase π(Ω), which would contra-

dict the fact that π is an optimal solution of (LP’). The weight of some states in

Ω− can be increased because π ≤ p and 〈p, r〉 < 0. It follows that π ∈ cone(E).

Set π′ := p− π ∈ cone(Ω). It is readily checked that π′(Ω+) = 0, for otherwise

the corresponding probability could be transferred to π. Hence π′ ∈ cone(Ω+)

and (π, π′) is a feasible solution of (LP). This implies that the value of (LP) is

at least the value of (LP’).

9Elements of cone(Ω) are best seen as “sub”-probability measures.
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This reformulation allows for a straightforward description of the greedy

strategy at p ∈ J . Intuitively, the weight p(ω−) of each ω− ∈ Ω− should be

“allocated” between F and ∆(Ω−) so as to maximize the total weight assigned

to F . Since F is defined by the equality 〈π, r〉 = 0, it is optimal to allocate to

F the states ω− in which the payoff r(ω−) is the least negative.

Formally, we order the elements of Ω− into ω1, . . . , ω|Ω−| by decreasing pay-

off: 0 > r(ω1) ≥ · · · ≥ r(ω|Ω−|). Next, we define linear maps L1, . . . , L|Ω−| over

∆(Ω) by

Lk(p) :=
∑
ω∈Ω+

p(ω)r(ω) +
∑
i≤k

p(ωi)r(ωi).

Lk(p) is a linear combination of the payoff of all states whose payoff is positive

or whose index is at most k; that is, this linear combination assumes only states

which are “better” than state k.

Observe that L1(·) ≥ · · · ≥ L|Ω−|(·). We set k∗ := inf{k : Lk(p) ≤ 0} to be

the minimal index for which the linear combination Lk(p) is nonpositive. With

these notations the optimal solution π∗ of (LP ′) is given by

• π∗(ω+) = p(ω+) for ω+ ∈ Ω+;

• π∗(ωi) = p(ωi) for i < k∗;

• π∗(ωi) = 0 for i > k∗;

• π∗(ωk∗) = −Lk∗−1(p)

r(ωk∗ ) .

The vector π∗ is the unique solution of (LP’) as soon as no two states in

Ω− yield the same payoff. If different states yield the same negative payoff, the

ordering of Ω− is nonunique. To sum up, we have proven the lemma below.

Lemma 11 Assume that no two states in Ω− yield the same payoff: r(ω) 6=
r(ω′) for every ω 6= ω′ ∈ Ω−. Then the greedy splitting p = aIqI + aJqJ is

uniquely defined at each p ∈ J . In addition, qI ∈ F and qJ ∈ ∆(Ω−).

The distributions qI and qJ are obtained by renormalizing π∗ and p − π∗,
respectively. Note that for p ∈ ∆(Ω−) one has aI = 0, so that formally speaking,

qI is indeterminate. Yet, the solution to (LP) is unique.

For k ∈ {1, . . . , |Ω−|}, we let Ō(k) := {p ∈ J : Lk−1(p) ≥ 0 ≥ Lk(p)}
(with L0 = 1). The following figure depicts the sets Ō(1) and Ō(2) when

Ω = {ω+, ω1, ω2}, r(ω+) = 2, r(ω1) = −1 and r(ω2) = −4.
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Ō(1)

Ō(2)

ω+

ω1 ω2

Figure 3: The sets Ō(1) and Ō(2).

A useful consequence of the solution of Problem (LP’) is that each set Ō(k)

is stable under the greedy splitting.

Lemma 12 If p ∈ Ō(k) and if p = aIqI +aJqJ is the greedy splitting at p, then

qI and qJ are in Ō(k).

Proof. Fix p ∈ Ō(k). Then the optimal solution π∗ to (LP’) satisfies

π∗(ω+) = p(ω+), ω+ ∈ Ω+, (4)

π∗(ωi) = p(ωi), 1 ≤ i ≤ k − 1, (5)

0 ≤ π∗(ωk) ≤ p(ωk). (6)

By Lemma 11, qI is the normalization of π∗. However, Lk−1(π∗) > 0 and

Lk(π∗) = 0, so that Lk−1(qI) > 0 and Lk(qI) = 0, and therefore qI ∈ Ō(k).

By Lemma 11, qJ is the normalization of p−π∗. This implies that qJ(ω+) = 0

for every ω+ ∈ Ω+ and qJ(ωi) = 0 for every 1 ≤ i ≤ k−1, so that Lk−1(qJ) = 0

and Lk(qJ) ≤ 0, and therefore qJ ∈ Ō(k).

3.2 Preparatory results

For later use we collect in this section a number of simple, yet general and useful

observations. None of the results here uses the specific structure of the Markov

chain.
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For p ∈ ∆(Ω) we let r̂(p) := maxµ∈S(p) µ(q ∈ I) be the highest stage payoff

of the advisor when the investor’s belief is p. Notice that r̂ coincides with the

value function V0 with null discount factor, so as an immediate corollary of

lemma 1 we obtain:

Lemma 13 The map r̂ is concave.

Lemma 13 has the following noteworthy implication. Fix n ≥ 1 and let

p̄n := φ(n−1)(p1) be the (unconditional) distribution of the state in round n.

Then Eσ[pn] = p̄n for every strategy σ of the advisor. In particular, by concavity

of the function r̂ and Jensen’s inequality, the expected payoff of the advisor in

round n cannot exceed r̂(p̄n), so that

γ∗(p1) := (1− δ)
∞∑
n=1

δn−1r̂(p̄n)

is an upper bound on the total discounted payoff to the advisor.

Fix δ < 1. We denote by γ(p) the payoff induced by the greedy strategy as

a function of the initial belief p. We also set

d(p) := γ(p)− δγ(φ(p)).

For p ∈ J , the quantity d(p) is the payoff difference when playing greedy, com-

pared to disclosing no information in the first round and then switching to the

greedy strategy in round 2.

If the greedy strategy is optimal for all initial distributions, then γ coin-

cides with Vδ, and therefore γ is concave and d(·) ≥ 0 over ∆(Ω). Somewhat

surprisingly, the converse implication also holds.

Lemma 14 Assume that γ is concave and that d ≥ 0 over J . Then σ∗ is

optimal for all initial distributions.

Proof. It suffices to show that γ(·) solves the dynamic programming equa-

tion, that is,

γ(p) = max
µ∈S(p)

{(1− δ)µ(q ∈ I) + δEµ [(γ ◦ φ)(q)]} .

Denoting by µ∗p the greedy splitting at p, we have

γ(p) = (1− δ)µ∗p(q ∈ I) + δEµ∗p
[γ ◦ φ(p)]
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and therefore

γ(p) ≤ max
µ∈S(p)

{(1− δ)µ(q ∈ I) + δEµ [(γ ◦ φ)(q)]} .

We now show the reverse inequality. Let µ ∈ S(p) be arbitrary. Because d(·) ≥ 0

on J , one has for each q ∈ ∆(Ω),

(1− δ)1{q∈I} + δ(γ ◦ φ(q)) ≤ γ(q).

Taking expectations w.r.t. µ and using the concavity of γ, one gets

(1− δ)µ(q ∈ I) + δEµ [(γ ◦ φ)(q)] ≤ Eµ [γ(q)] ≤ γ(Eµ[q]) = γ(p).

This concludes the proof.

4 The 2-state case: proof of Theorem 5

We here assume that Ω = {ω−, ω+} is a two-point set. W.l.o.g. we assume

that r(ω+) > 0 > r(ω−), and we identify a belief over Ω with the probability

assigned to state ω+. Here, the investor is willing to invest as soon as the

probability assigned to ω+ is high enough, and the investment region is the

interval I = [p∗, 1], where p∗ ∈ (0, 1) solves p∗r(ω
+) + (1− p∗)r(ω−) = 0.

At any p < p∗, σ∗ chooses the distribution µ ∈ S(p) which assigns probabil-

ities
p

p∗
and 1− p

p∗
to p∗ and 0, respectively, and does not disclose information

if p ≥ p∗. In particular,

γ(p) =
p

p∗
γ(p∗) +

(
1− p

p∗

)
γ(0) for p ∈ [0, p∗], (7)

and

γ(p) = (1− δ) + δ(γ ◦ φ)(p) for p ∈ [p∗, 1].

Eq. (7) shows that γ(·) is affine over [0, p∗] (but need not be affine on [p∗, 1]).

Note that γ(0) = δ(γ ◦ φ)(0).

In this setup,10 concavity of γ(·) alone is equivalent to the optimality of σ∗.

Indeed, assume γ(·) is concave. Recall that d(p) = 0 for p ∈ I. In addition,

γ(·) is affine on [0, p∗], and since φ is affine and γ is concave, the composition

(γ ◦φ)(·) is concave on [0, p∗]. Thus, d(·) is convex on [0, p∗]. Observe now that

10This observation does not generalize to |Ω| ≥ 3.
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d(0) = d(p∗) = 0, hence d(·) ≥ 0 on ∆(Ω), and the optimality of σ∗ then follows

from Lemma 14.

It is left to prove that γ is concave. The invariant measure m assigns prob-

ability
π(ω+ | ω−)

π(ω+ | ω−) + π(ω− | ω+)
to ω+. With our notations, for q ∈ [0, 1](=

∆(Ω)) one has

φ(q) = m+ (1− π(ω+ | ω−)− π(ω− | ω+))(q −m),

hence φ is a homothety on [0, 1] centered at m with ratio λ := 1 − π(ω+ |
ω−)− π(ω− | ω+) ∈ (−1, 1).

It is convenient to organize the proof below according to the relative values

of p∗ and m, and to the sign of the ratio λ. In the first case we provide a direct

argument. In the following cases we prove the concavity of γ.

Case 1: p∗ ≥ m and λ ≥ 0.

0 1m p∗φ(p∗)

Establishing directly the concavity of γ(·) is possible, yet involved, as γ(·)
fails to be affine on I. We instead argue that γ(p) = γ∗(p) for each p, where

γ∗(p) is the upper bound on payoffs identified earlier.

Assume first that p1 ∈ [0, p∗]. Since the interval [0, p∗] is stable under φ

under σ∗, one has qn ∈ {0, p∗} for each n ≥ 1, and pn ∈ {φ(0), φ(p∗)} for each

n > 1. In each stage n ≥ 1, conditional on the previous history, the strategy σ∗

maximizes the expected payoff in stage n, so that the expected payoff in stage

n is given by Eσ∗ [r̂(pn)]. Since r̂ is affine on [0, p∗], the expected payoff in stage

n is also equal to r̂ (Eσ∗ [pn]) = r̂(p̄n), so that γ(p1) = γ∗(p1).

Assume now that p1 ∈ I. Then the sequence (p̄n)n≥1 is decreasing (towards

m). Let n∗ := inf{n ≥ 1 : p̂n < p∗} be the stage in which the unconditional

distribution of the state leaves I. Under σ∗, the advisor discloses no information

up to stage n∗, so that r(qn) = 1 = r̂(p̄n) for all n < n∗. That is, σ∗ achieves the

upper bound on the payoff in each stage n < n∗, and, by the previous argument,

in each stage n ≥ n∗ as well.

Case 2: p∗ ≤ m and λ ≥ 0.
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0 1mp∗ φ(p∗)q∗

Since m ≥ p∗, one has φ([p∗, 1]) ⊆ [p∗, 1]: the investment region is stable

under φ. Thus, once in I, σ∗ yields a payoff of 1 in each stage: γ(p) = 1 for

p ≥ p∗. Using (7), one thus has

γ(p) =
p

p∗
+

(
1− p

p∗

)
γ(0) for p > p∗.

Since γ(0) < 1 it follows that γ is increasing (and affine) on [0, p∗]. Hence the

concavity of γ on [0, 1].

Case 3: p∗ ≥ m and λ ≤ 0.

0 1m p∗φ(p∗)

Recall that γ is affine on [0, p∗]. From the formula φ(p) = m+λ(p−m), one

has φ(p) ≤ φ(p∗) ≤ p∗ for all p ≥ p∗, that is, I is mapped into [0, p∗] under φ.

Since

γ(p) = (1− δ) + δ(γ ◦ φ)(p) for p ∈ I, (8)

this implies that γ is also affine on [p∗, 1]. To establish the concavity of γ we

need to compare the slopes of γ on I and J = [0, p∗). Differentiating (8) yields

γ′(p) = δλ(γ′ ◦φ)(p) for p > p∗, hence the two slopes are of opposite signs. Note

finally that γ(p∗) = (1− δ) + δ(γ ◦ φ)(p∗), hence γ(p∗) > (γ ◦ φ)(p∗), so that γ

is increasing on [0, p∗] (and then decreasing on [p∗, 1]).

Case 4: p∗ ≤ m and λ ≤ 0.

0 1mp∗ q∗φ(p∗)

The dynamics of the belief under σ∗ is here slightly more complex. If φ(1) ≥
p∗, the investment region I is stable under φ, hence γ(p) = 1 for all p ∈ I, and

the concavity of γ follows as in Case 2. If instead φ(1) < p∗, we introduce the

cutoff q∗ ∈ [m, 1] defined by φ(q∗) = p∗. Since φ is contracting, the length of

the interval [φ(q∗), φ(p∗)] is smaller than that of [p∗, q∗], which implies that the
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interval [p∗, q∗] is stable under φ. Therefore, γ(p) = 1 for all p ∈ [p∗, q∗]. As in

Case 2, this implies that γ is increasing (and affine) on [0, p∗].

For p ≥ q∗, γ(p) = (1 − δ) + (γ ◦ φ)(p). Since the interval [q∗, 1] is mapped

into [0, p∗] under φ, this implies in turn that γ is affine on [q∗, 1], with slope

given by γ′(p) = λδ(γ′ ◦ φ)(p) < 0. That is, γ is piecewise affine, increasing on

[0, p∗], constant on [p∗, q∗] and decreasing on [q∗, 1].

5 A counterexample: proof of Proposition 6

We here provide an example in which σ∗ fails to be optimal for some initial

distribution p1.

There are three states, Ω = {ω1, ω2, ω3}, and the investment region is the

triangle with vertices ω1, εω1+(1−ε)ω2, and 1
2ω1+ 1

2ω3 where ε > 0 is sufficiently

small (see Figure 1). Assume first that the invariant distribution is m = ω2,

and that λ = 1
2 . Let the initial belief be p1 = 2εω1 + (1− 2ε)ω3.

I

ω1

ω2 ω3

εω1 + (1− ε)ω2 εω1 + (1− ε)ω3

p1 = 2εω1 + (1− 2ε)ω3

εω1 + 1
2ω2 + ( 1

2 − ε)ω3

ω∗ = 1
2ω1 + 1

2ω3

Figure 4: The counterexample.

According to σ∗, at the first stage p1 is split between ω3 (with probability

1− 4ε) and 1
2ω1 + 1

2ω3 (with probability 4ε). Because the line segment [ω2, ω3]

is contained in J and m = ω2, the payoff to the investor once the belief reaches

ω3 is 0. It follows that the payoff under σ∗ is γ(p1) = 4εγ( 1
2ω1 + 1

2ω3) ≤ 4ε.

Consider the alternative strategy, in which the advisor discloses no informa-
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tion in the first stage, so that

p2 = φ(p1) = 1
2ω2 + 1

2p1 = εω1 + 1
2ω2 + ( 1

2 − ε)ω3,

and then at the second stage splits p2 between q2 = εω1 + (1− ε)ω2 (with prob-

ability 1
2(1−ε) ) and q2 = εω1 + (1− ε)ω3 (with the complementary probability).

The expected payoff in the second stage is therefore 1
2(1−ε) .

Hence, the alternative strategy is better than σ∗ as soon as 4ε < 1
2(1−ε) ×

δ(1− δ). For fixed δ ∈ (0, 1), this is the case for small ε.

In this example, the invariant distribution m is on the boundary of ∆(Ω).

However, for fixed δ, the above argument is robust to a perturbation of the

transition probabilities. In particular we obtain a similar result for an invariant

distribution m that is in the interior of ∆(Ω).

The example shows that the greedy strategy is not always optimal. Then, a

natural question is whether there is always an optimal strategy that satisfies the

following property: whenever the strategy provides information to the investor,

it does so according to the greedy splitting. The answer is negative, and we end

this section by showing that the optimal strategy in this example sometimes

splits the investor’s belief in a way that is not the greedy splitting.

Assume then to the contrary that in this example there is an optimal strategy

σ that, at every belief p, either does not provide information or reveals infor-

mation according to the greedy splitting. Consider the line segment [ω∗, ω3]. If

there is a belief p on this line segment for which the greedy splitting is optimal,

then by Lemma 16 below the greedy splitting is optimal for every belief on this

line segment, which contradicts the fact that the greedy splitting is not optimal

at 2εω1 + (1 − 2ε)ω3. Thus, σ does not provide information for any p on this

line segment. In particular,

Vδ(p) = (1− δ)1{p∈F} + δVδ(φ(p)).

Whereas the functions Vδ and Vδ ◦ φ are continuous, the function 1{p∈F} is not

continuous on the line segment [ω∗, ω3], a contradiction.
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6 Invariant initial distributions: proof of Theo-

rem 7

We will prove a strengthened version of Theorem 7, which will be used in the

proof of Theorem 8. We recall from Section 3.1 that Lk(·) is the linear map

defined by

Lk(p) =
∑
ω∈Ω+

p(ω)r(ω) +
∑
i≤k

r(ωi)p(ωi).

Note that, with the notations of Section 3.1, the map p 7→ π∗1(p) is affine on the

set Ō(k) = {Lk(·) ≥ 0 ≥ Lk+1(·)} and, therefore, so is r̂(·).

Theorem 15 Let k be such that m ∈ Ō(k). Then γ(p1) = γ∗(p1) for every

initial distribution p1 ∈ Ō(k). In particular, the greedy strategy σ∗ is optimal

whenever p1 ∈ Ō(k).

Proof. Let p ∈ Ō(k) be arbitrary, and denote by p = aIqI + aJqJ the

greedy splitting at p. Lemma 12 implies that both qI and qJ belong to Ō(k).

Since m ∈ Ō(k), the set Ō(k) is stable under the greedy strategy σ∗. That is,

if p1 ∈ Ō(k) then under σ∗ we have pn ∈ Ō(k) for every n.

Since r̂ is affine on Ō(k), one has for each stage n,

Eσ∗ [r̂(pn)] = r̂ (Eσ∗ [pn]) = r̂(p̄n).

Hence the result.

7 Eventually greedy strategies: proof of Theo-

rem 8

We will assume that m ∈ J , which is the more difficult case. The case where

m ∈ I is dealt with at the end of the proof. We start with an additional, simple,

observation on the shape of the value function.

Lemma 16 Let p ∈ J be given, and let p = aIqI +aJqJ be an optimal splitting

at p. If aI , aJ > 0, then

1. Vδ is affine on [qI , qJ ];
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2. at each p′ ∈ [qI , qJ ], it is optimal to split between qI and qJ .

We stress that p = aIqI + aJqJ need not be the greedy splitting at p.

Proof. By assumption, Vδ(p) = aIVδ(qI) + aJVδ(qJ), hence the first state-

ment follows from the concavity of Vδ on [qI , qJ ]. Given a point p′ = a′IqI +

a′JqJ ∈ [qI , qJ ], this affine property implies

Vδ(p
′) = a′IVδ(qI) + a′JVδ(qJ).

On the other hand, splitting p′ into qI and qJ yields a′IVδ(qI) +a′JVδ(qJ), hence

the second statement.

In the sequel, we let k be such that m ∈ Ō(k). By Theorem 15, γ(p) = γ∗(p)

for every p ∈ Ō(k). We denote by J̄ := J ∪ F = {p ∈ ∆(Ω), 〈p, r〉 ≤ 0} the

closure of J .

Lemma 17 Let p ∈ J̄ \ Ō(k) be given, and let p = aIqI + aJqJ be an optimal

splitting at p. Then [qI , qJ ] ∩ Ō(k) = ∅.

Proof. We argue by contradiction and assume that there exists p′ ∈ Ō(k)∩
[qI , qJ ]. By Lemma 16, the splitting p′ = a′IqI + a′JqJ is optimal at p′. Since

p′ ∈ Ō(k), one has Vδ(p
′) = γ∗(p

′). This implies that under the optimal strategy,

the expected payoff in each stage is equal to the first best payoff in that stage.

In particular, any optimal splitting at p′ must be the greedy one. By Lemma 12

this implies that both qI and qJ belong to Ō(k), hence by convexity p ∈ Ō(k)

– a contradiction.

We will need to make use of a set P of the same type as Ō(k), which contains

m in its interior, and starting from which σ∗ is optimal.

If m belongs to the interior of Ō(k) for some k, we simply set P := Ō(k).

Otherwise, one has

Lk−1(m) > 0 = Lk(m) = · · · = Ll(m) > Ll+1(m) for some k ≤ l. (9)

We then set P := {p ∈ J̄ , Lk−1(p) ≥ 0 ≥ Ll+1(p)} = Ō(k − 1) ∪ · · · ∪ Ō(l).

By construction, m belongs to the interior of P . By (9), one has m ∈ Ō(i) for

i = k− 1, . . . , l, hence the set P is stable under the Markov chain. This implies

that σ∗ is optimal whenever p1 ∈ P .
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Lemma 18 Assume that all connected components of J̄ \P in ∆(Ω) are convex.

Then the conclusion of Theorem 8 holds.

Proof. Let C be an arbitrary connected component of J̄ \ P . Since C is

convex, there is an hyperplane H (in ∆(Ω)) that (weakly) separates C from P ,

and we denote by Q the open half-space of ∆(Ω) that contains m.

We will make use of the following observation. Since Q̄ ∩∆(Ω) is compact,

there is a constant c > 0 such that the following holds: for all p̃ ∈ Q̄ ∩ ∆(Ω)

and all µ ∈ S(p̃), one has µ(q ∈ Q̄) ≥ c.
Since m ∈ Q, the distance from m to H is positive. Since ∆(Ω) is compact

and φ is contracting, there exists n̄ ∈ N such that φ(n̄)(p) ∈ Q for all p ∈ ∆(Ω).

Fix p ∈ C and let τ be any optimal policy when p1 = p. We let θ := inf{n ≥
1, qn ∈ P} be the stage at which the investor’s belief reaches P . We prove below

that θ < +∞ with probability 1 under τ . This proves the result, since θ is an

upper bound on the actual stage at which the advisor can switch to σ∗.

Since m ∈ J , under τ one has qn ∈ J̄ with probability 1 for all n. By

Lemma 17, one has qn ∈ C on the event n < θ. On the other hand, the

(unconditional) law of qn belongs to S(p̄n) for each n: E [qn] = p̄n. This implies

that Pτ (qn̄ ∈ Q) ≥ c, so that Pτ (θ ≤ n̄) ≥ c.
The same argument, applied more generally, yields Pτ (θ ≤ (j + 1)n̄ | θ >

jn̄) ≥ c for all j ∈ N. Therefore, P(θ < +∞) = 1, as desired.

The complement of P in J̄ is the disjoint union of {p ∈ J : Lk(p) < 0}
and {p ∈ J : Ll(p) > 0}. Both sets are convex, hence Theorem 8 follows from

Lemma 18.

For completeness, we now provide a proof for the case m ∈ I. In that case,

the entire investment region I is stable under σ∗. Hence, it is enough to prove

that the stopping time θ := inf{n ≥ 1: qn ∈ I} is a.s. finite, for any initial

distribution p ∈ J and any optimal policy τ . Observe first that the payoff γ(p)

under σ∗ is bounded away from zero and therefore so is Vδ(p) ≥ γ(p). For a

fixed δ, this implies the existence of a constant c > 0 and of a stage n̄ ∈ N, such

that Pτ (θ ≤ n̄) ≥ c. This implies the result, as in the first part of the proof.

25



8 The case of 3 states: proof of Theorem 9

The analysis relies on a detailed study of the belief dynamics under σ∗. We will

exhibit a simplicial decomposition of ∆(Ω) with respect to which γ is affine.

This partition will be used to prove that γ(·) is concave and d(·) nonnegative

on ∆(Ω). We will organize the discussion in two cases, depending on the size of

Ω−.

Case 1: Ω− = {C}.
We prove the optimality of σ∗ in two steps. We first argue that γ is concave

and d nonnegative on the straight line joining C and m. We next check that

both γ and d are constant on each line parallel to F . These two steps together

readily imply that γ is concave and d nonnegative throughout ∆(Ω), as desired.

Step 1. Denote by L the line (C,m), and by p∗ the intersection of L and

F . The line L is stable under φ, and σ∗ splits any p ∈ L ∩ J between C and

p∗. The dynamics of beliefs and of payoffs thus follows the same pattern as in

the two-state case. Hence11 it follows from Section 4 that γ is concave and d(·)
nonnegative on L.

11We emphasize however that this is not sufficient to conclude the optimality of σ∗ on L.
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J

C

F

m

pL

p

p∗

Figure 5: The case |Ω−| = 1.

Step 2. With the notations of Figure 5, σ∗ splits any p ∈ J between C and

a point in the investment frontier F , and r̂(p) = r̂(pL), where pL is a point for

which (ppL) is parallel to F . Note that any line parallel to F is mapped by φ

into some line parallel to F . This implies that γ and γ ◦ φ are constant on each

line parallel to F , and so is ∆(·).

Denote by J0 the triangle (C+, B+, C).

Case 2: Ω− = {B,C} and m ∈ I ∪ J0.

Again, we proceed in several steps. We first prove that γ is concave and d

nonnegative on I ∪ J0. We next explicit the dynamics of beliefs under σ∗. This

in turn leads to the concavity of γ in Step 3. In Step 4, we prove that d ≥ 0 on

∆(Ω).

Step 1. The function γ is concave and d ≥ 0 on I ∪ J0.
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The analysis is identical to that in Case 1. First, it follows from the two-

state case that the conclusion holds on the line (C,m). Next, as before, both γ

and γ ◦ φ are constant on each line segment contained in I ∪ J0 and parallel to

F .

Step 2. The belief dynamics under σ∗.

We construct recursively a finite sequence O1, . . . , OK of points in the line

segment [B,C] as follows. Set first O1 = C and let k ≥ 1. If φ maps B into the

triangle (C+, Ok, Ok−1) (or J0, if k = 1), we set K = k. Otherwise, Ok+1 is the

unique point in the line segment [C,Ok] such that Pk+1 := φ(Ok+1) ∈ [C,Ok].

Since φ is an homothety, all points (Pk)k≤K lie on some line P parallel to

(B,C), see Figure 6.
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O2O3
O4O5

J5

P2P3P4P5

Figure 6: The points (Ok)k and (Pk)k.

The next claim states that this algorithm ends in a finite number of steps.

Claim 19 K < +∞.

Proof. We introduce the map f from the line segment [B,C] to the line

(B,C) as follows. Given X ∈ [B,C], we let f(X) be the intersection of (B+, Y )

with (B,C), where Y is the intersection of (X,m) with P, see Figure 7.

29



I

J

A

B C

B+

C+

F

X f(X)

Y

Z

m

P

Figure 7: The definition of f .

Since m belongs to I ∪ J0 and to the relative interior of ∆(Ω), f(X) is

well-defined and f(B) lies strictly “to the right” of B.

Observe that (by Thales Theorem), the Euclidian distance Xf(X) is pro-

portional to the distance B+Z. Hence, as m moves away from B towards C,

Xf(X) increases if m ∈ I, and decreases if m ∈ J0. In the former case, this

implies that Ok+1f(Ok+1) = Ok+1Ok ≥ Bf(B) for each k. In the latter one,

this implies that OkOk+1 increases with k. In both cases, K < +∞.

For k = 1, . . . ,K − 1, denote by Jk the triangle (B+, Ok, Ok+1) (see Figure

6), and observe that φ([Ok, Ok+1]) = [Pk, Pk+1]. The belief dynamics is similar

for any initial belief in Jk. Any p1 ∈ Jk is first split between B+ and some

q1 ∈ [Ok, Ok+1]. In the latter case, q1 is mapped to p2 := φ(q1) ∈ [Pk, Pk+1].
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The belief p2 is then split between B+ and q2 ∈ [Ok−1, Ok], etc. The (random)

belief pk+1 in stage k + 1 lies in I ∪ J0.

Step 3. The function γ is concave on ∆(Ω).

We proceed with a series of claims.

Claim 20 The function γ is affine on Jk, for every k ≤ K.

Proof. We argue by induction and start with k = 0. We denote by γ(F)

the constant value of γ on F . Given p = xC+(1−x)q ∈ J0 with q ∈ [B,C], one

has γ(p) = xγ(C) + (1− x)γ(F), hence the affine property. For later use, note

also that, as p moves towards [A,C+] on a line parallel to [B,C], the weight x

decreases, hence γ(·) is decreasing on such a line.

Assume now that γ is affine on Jk−1 for some k ≥ 1. For p ∈ [Ok, Ok+1],

γ(p) = δγ ◦ φ(p). Since φ(p) ∈ Jk−1, γ is affine on [Ok, Ok+1]. Next, for

p = xIB
+ + xkOk + xk+1Ok+1 ∈ Jk,

γ(p) = xIγ(B+) + (xk + xk+1)γ

(
xkOk + xk+1Ok+1

xk + xk+1

)
= xIγ(B+) + xkγ(Ok) + xk+1γ(Ok+1).

That is, γ is affine on Jk.

Claim 21 The function γ is concave on Jk ∪ Jk+1 for k = 1, . . . ,K − 2.

Proof. We will use the following elementary observation. Let g1, g2 : R2 →
R be affine maps. Let L be a line in R2, such that g1 = g2 on L. Let H1 and H2

be the two half-spaces defined by L, and let h be the map that coincides with

gi on Hi. Assume that for i = 1, 2, there is a point Ai in the relative interior of

Hi such that h is concave on [A1, A2]. Then h is concave12 on R2.

We prove the claim by induction. Pick first p̃0 ∈ J0 ∩ P and p̃1 ∈ J1 ∩ P,

and let p∗ be the point of intersection of P with the line (B+, C). Under σ∗,

any point p ∈ [p̃1, p∗] is split as p = (1− x)B+ + xqJ , where qJ ∈ (B,C). Note

that x does not depend on p, and

γ(p) = (1− x)γ(B+) + xγ

(
p− (1− x)B+

x

)
= (1− x)γ(B+) + xδγ ◦ φ

(
p− (1− x)B+

x

)
.

12If g1 = g2 everywhere the conclusion holds trivially. Otherwise, g1 and g2 coincide only

on L, and then h = min{g1, g2}.
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As p moves from p̃1 towards p∗, φ

(
p− (1− x)B+

x

)
moves from p∗ towards p̃0.

Hence, the derivative of γ on [p̃1, p∗] is equal to δλ times the derivative of γ on

[p∗, p̃0].13 Since the latter derivative is negative, and δλ < 1, γ(·) is concave

on [p̃1, p̃0]. The concavity of γ on J1 ∪ J0 then follows from the preliminary

observation.

Assume now that γ is concave on Jk ∪ Jk−1 for some k ≥ 1. For p ∈
[Ok+1, Ok−1], we have γ(p) = δγ (φ(p)). Since φ(p) ∈ [Pk+1, Pk−1] ⊂ Jk ∪ Jk−1,

the function γ is concave on [Ok+1, Ok] hence by the preliminary observation it

is also concave on Jk+1 ∪ Jk.

Claim 22 The function γ is concave on J .

Proof. Let p̃1 and p̃2 be given in the relative interior of Jk1 and Jk2 respec-

tively, with k1 ≤ k2. Since the intersection of the line segment [p̃1, p̃2] with each

of the sets Jk1 , Jk1+1, . . . , Jk2 is a line segment with a nonempty interior, the

concavity of the function γ on each Jk ∪ Jk+1 implies its concavity on [p̃1, p̃2].

The concavity of the function γ on J follows by continuity.

Claim 23 The function γ is concave on ∆(Ω).

Proof. As above, it suffices to prove that γ is concave on the relative interior
◦
∆ (Ω) of ∆(Ω). Pick p̃1, p̃2 ∈

◦
∆ (Ω), with p̃1 ∈ I and p̃2 ∈ Jk for some k ≥ 1.14

Since [p̃1, p̃2] ⊂
◦
∆ (Ω), there is a line segment [p∗, p∗∗] ⊆ [p̃1, p̃2] with p∗, p∗∗ ∈ J0

and p∗ 6= p∗∗. By Step 1 the function γ is concave on [p̃1, p∗∗] and by Claim 22

it is concave on [p∗, p̃2]. Therefore it is concave on [p̃1, p̃2].

Step 4. d ≥ 0 on ∆(Ω).

We start with the intuitive observation that the payoff under σ∗ is higher

when starting from F than from J .

Claim 24 γ(p) ≤ γ(F) for all p ∈ J .

Proof. This is trivial if m ∈ I, since γ(B+) is then equal to 1. Assume then

that m ∈ J0.

13We are here identifying any point p = yp̃0 + (1− y)p̃1 of [p̃1, p̃0] with the real number y,

and we view γ as defined over [0, 1].
14For other cases, the concavity of γ on [p̃1, p̃2] follows from either Step 1 or Claim 22.
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We prove inductively that γ(p) ≤ γ(F) for all p ∈ Jk. Note first that

γ(C) = δγ(φ(C)), so that γ(C) ≤ γ(φ(C)). Since m,C ∈ J0, we have φ(C) ∈
J0, hence γ(φ(C)) is a convex combination of γ(C) and γ(F). This implies

that γ(C) ≤ γ(F). Note next that, for p ∈ J0, the quantity γ(p) is a convex

combination of γ(C) and γ(F), hence γ(p) ≤ γ(F).

Assume that the conclusion holds on Jk−1 for some k ≥ 1. For p ∈
[Ok+1, Ok], since φ(p) ∈ Jk−1, we have γ(p) = δγ(φ(p)) ≤ γ(F). Observe

finally that for some p ∈ Jk, the quantity γ(p) is a convex combination of γ(F)

and of γ(q) for some q ∈ [Ok+1, Ok], hence γ(p) ≤ γ(F) and the conclusion

holds on Jk as well.

We conclude with the tricky part of the proof.

Claim 25 For k ≥ 1, we have d ≥ 0 on some neighborhood of Ok+1 in Jk.

Proof. Given ε > 0, let pε := εB+ + (1 − ε)Ok+1 ∈ Jk. Fix ε > 0 small

enough so that φ(pε) ∈ Jk−1. Observe that both γ and γ ◦ φ are affine on the

triangle (pε, Ok+1, Ok), hence d is affine on this triangle as well. Since d = 0 on

[Ok+1, Ok] it thus suffices to prove that d(pε) ≥ 0.

We denote by γk : ∆(Ω)→ R the affine map which coincides with γ on Jk.

Set qε := εB+ + (1− ε)Pk+1 and observe that

d(pε) = γ(pε)− δγ(φ(pε)) = γ(pε)− δγ(qε) + δ (γ(qε)− γ(φ(pε))) . (10)

Since γ(pε) = εγ(B+) + (1− ε)δγ(Pk+1) and γ(qε) = εγ(B+) + (1− ε)γ(Pk+1),

one has

γ(pε)− δγ(qε) = εγ(B+)(1− δ). (11)

On the other hand, since qε and φ(pε) belong to Jk−1, one has

γ(qε)−γ(φ(pε)) = γk(qε)−γk(φ(pε)) = γk(qε−φ(pε)) = εγk(B+−φ(B+)). (12)

Substituting (11) and (12) into (10) one gets

d(pε) = ε
(
γ(B+)(1− δ) + δγk(B+ − φ(B+))

)
. (13)

Now rewrite B+ − φ(B+) as

B+ − φ(B+) = B+ −Ok +Ok − Pk + Pk − φ(B+)

= Ok − Pk + (1− λ)(B+ −Ok)
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(recall that Pk = φ(Ok)).

Since all three points Ok, Pk and B+ belong to Jk−1, one has

γk(B+ − φ(B+)) = λγk(Ok)− γk(Pk) + (1− λ)γk(B+)

= λγ(Ok)− γ(Pk) + (1− λ)γ(B+)

= (1− λ)γ(B+)− (1− λδ)γ(Pk).

Plugging into (13), one finally gets

d(pε) = ε(1− λδ)
(
γ(B+)− δγ(Pk)

)
,

which is nonnegative by Claim 1.

We now conclude the proof of Step 4. Let p ∈ Jk be given. Since γ is affine

on Jk and concave on ∆(Ω), the function d is convex on Jk. Since d(Ok+1) = 0

and d ≥ 0 in a neighborhood of Ok+1 (in Jk), d is nonnegative on the entire line

segment [Ok+1, p].
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