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Abstract

We propose a new stochastic frontier model with sample selection, in which the dependencies
between the sample selection mechanism, the inefficiency term and the two-sided error in the
production equation are modeled by a trivariate Gaussian copula. This model is compared
to Greene’s original stochastic frontier model with sample selection, and to an alternative
model based on two bivariate copulas. The relative performances of the three models are
analyzed using simulated data and cross-sectional data about Jasmine rice production in
Thailand. We show that our trivariate Gaussian copula model has the best performance
among all models, and that ignoring some correlations may cause estimation bias as well as
over or underestimation of technical efficiency scores.

Keywords: Production model, multivariate copula, dependence, sample selection,
technical efficiency, rice production.

1. Introduction1

Since a selection-corrected stochastic frontier model (SFM) was introduced by Greene2

[14] in 2006, this model has been widely used. One of the first applications was described3

by Rahman et al. [34] who analyzed production efficiency of Jasmine rice in Northern and4

North-Eastern Thailand. Later, Mayen et al. [25], Rahman [33], Bravo-Ureta et al. [4],5

Wollni and Brummer [46], González-Flores et al. [13], Santos-Montero and Bravo-Ureta [8]6

and others applied the selection-corrected SFM (hereafter referred to as Greene’s model)7

to estimate the technical efficiency of farm crops. Other applications include assessing the8

technical efficiency of food retailers [28], labor market [2], fisheries [39], etc.9

However, Greene’s original model has some limitations. It assumes, without any other10

justification than technical convenience, the two error components of the production equation11

to be independent, which may result in over- or underestimation of technical efficiency [45].12

∗Corresponding author.
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Greene [15] also questioned whether it is reasonable to assume that the heterogeneity and13

the inefficiency in the production model are uncorrelated. Furthermore, the model is usually14

fitted using a heuristic two-stage estimation method; as a result, the estimators may not15

be efficient. Finally, the model’s distributional assumptions (bivariate normality of the16

sample selection and symmetric part of the production equation error terms, half-normal17

distribution of the inefficiency term) can be questioned.18

In recent years, some scholars further developed the sample selection and production19

models, with the aim to overcome some limitations of the original Greene’s model. For20

example, Smith [37] and Kruger et al. [21] proposed copula-based sample selection mod-21

els to relax the multivariate normality assumption. Smith [38] and Wiboonpongse et al.22

[45] modeled the dependence between the two error terms of the production model using23

copulas and demonstrated that accounting for this dependence can improve the estimation24

of technical efficiency. Mehdi and Hafner [12] also found that the estimated technical effi-25

ciencies taking into account dependence through copulas tend to be lower than those under26

the independence assumption. Huang et al. [20] proposed a simultaneous SFM with corre-27

lated composite errors based on copula functions. Greene [16], Beckers and Hammond [3],28

Stevenson [41], Kumbhakar and Lovell [22], etc., proposed several probability distribution29

functions for the inefficiency term in SFMs. Sriboonchitta et al. [40] proposed an alternative30

to Greene’s model using two copula functions. The double-copula SFM with sample selec-31

tion relaxes the assumption of independence between the two error components in the SFM,32

and also accounts for nonlinear correlation between the error in the selection equation and33

the composite error in the production equation. However, this double-copula model neglects34

the correlation between the unobservables in the selection model and the random error in35

the SFM, in contrast to Greene’s model. From this literature review, it appears that: (1)36

previous studies have laid the foundation for further improvement of Greene’s model, and37

(2) the most advanced extension of Greene’s model, the double copula-based model, can be38

perfected.39

To further improve the flexibility of Greene’s model, a trivariate Gaussian copula SFM40

with sample selection is proposed in this paper. This model generalizes Greene’s model by41

modeling the dependence between the unobservables in the selection equation and the two42

error terms in the production equation using a trivariate Gaussian copula. To assess the43

feasibility of this approach, we perform a simulation study and compare our model to the44

double-copula SFM with sample selection and Greene’s model. The three models are then45

applied to cross-sectional data about the technical efficiency of rice production in Thailand.46

The remainder of this paper is organized as follows. The previous models considered47

in this paper are first recalled in Section 2. The new model is then introduced in Section48

3, where a simulation study is also presented. Finally, the application to rice production49

efficiency analysis is described in Section 4, and Section 5 concludes the paper.50

2. Previous models51

In this section, we briefly review previous SFM’s that provide the starting point of this52

study. The basic SFM is first recalled in Section 2.1. Two SFM’s with sample selection are53
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then summarized: the original Greene model in Section 2.2 and the double-copula SFM in54

Section 2.3.55

2.1. Basic SFM56

Stochastic frontier analysis [1] is commonly used to fit a production function and to
estimate farm-level technical efficiency. The basic SFM is defined by the following equation:

Yi = βTxi + εi, (1a)
εi = Vi −Wi, (1b)

i = 1, . . . , n, where Yi represents the output of production unit i, xi is a vector of input57

quantities, β is a vector of coefficients, and the random error term εi is divided into two58

parts: a two-sided firm-specific effect Vi (which can be positive or negative) and a positive59

inefficiency term Wi. The “frontier”, or optimal output achievable by production unit i is60

βTxi +Vi; it is stochastic, hence the term “stochastic frontier”. Typically, it is assumed that61

Vi and Wi have, respectively, a normal distribution N (0, σ2
v) and a half-normal distribution62

with scale parameter σw, i.e., Wi = σw|Ui| with Ui ∼ N (0, 1). The technical efficiency (TE)63

of production unit i is defined as exp(−Wi). As Wi is not observed, TE is usually measured64

by its conditional expectation given εi, called the TE score:65

TEi = EW [exp(−W )|ε = εi]. (2)

In the classical SFM, the two error components Vi andWi are assumed to be independent.66

Following [38], Wiboonpongse et al. [45] have proposed to relax this assumption and to model67

the dependence between error terms V andW using a parameterized family of copulas. They68

proposed a methodology that consists in considering several copula families and selecting the69

best model according to the Akaike information criterion (AIC) or the Bayesian information70

criterion (BIC). They advised against the systematic use of the assumption of independence71

between V and W , which may lead to a gross overestimation of technical efficiency for some72

datasets. More recently, Wei et al. [44] investigated the use of a skew normal copula to73

model the asymmetric dependence between V and W .74

2.2. SFM with sample selection75

To address the problem of selection bias in linear regression, Heckman [19] proposed to76

model the process of inclusion of an observation in the sample (or “sample selection process”)77

by an equation of the form78

Si =

{
1 if Y ∗i = αTzi + ξi ≥ 0

0 if Y ∗i = αTzi + ξi < 0
, (3)

for i = 1, . . . , n, where α is a vector of coefficients, zi is a vector of exogenous variables,
ξi is an error term assumed to have a standard normal distribution N (0, 1), Y ∗i is a latent
variable, and Si is a dummy variable that indicates whether the response variable is observed
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(Si = 1) or not (Si = 0). Greene [15] combined the selection equation (3) with the production
equation (1) to propose a SFM with sample selection. He assumed that Vi and Wi are
independent with, respectively, normal and half-normal distributions, and that the random
vector (Vi, ξi) has a bivariate normal distribution with zero mean and variance matrix

Σ =

(
σ2
v ρσv

ρσv 1

)
.

From [15], the conditional probability density function (pdf) for an observation in this
model is

f(yi | xi, |Ui|, zi, si) = si

[
1

σv
√

2π
exp

(
−(yi − βTxi + σw|Ui|)2

2σ2
v

)
×

Φ

(
ρ(yi − βTxi + σw|Ui|)/σε +αTzi√

1− ρ2

)]
+ (1− si)Φ(−αTzi), (4)

where σε is the standard deviation of ε = V −W and Φ is the standard normal cumulative79

distribution function (cdf).80

To simplify the estimation problem, Greene uses a two-step estimation method. The
vectorα of coefficients in the selection equation is first estimated by unconstrained maximum
likelihood using Eq. (3) only, which defines a Probit model. In the second step, the estimate
α̂ of α is plugged in (4), and the log-likelihood is formed by integrating out |Ui| (see [15]
for details). This integral is intractable and is approximated by simulation. The simulated
log-likelihood is finally given by:

logLS(β, σw, σv, ρ) =
n∑
i=1

log
1

M

M∑
m=1

{
si

[
1

σv
√

2π
exp

(
−(yi − βTxi + σw|Uim|)2

2σ2
v

)
×

Φ

(
ρ(yi − βTxi + σw|Uim|)/σε + α̂Tzi√

1− ρ2

)]
+ (1− si)Φ(−α̂Tzi)

}
,

where Uim, m = 1, . . . ,M is a sequence of M random draws from the standard normal81

distribution. A gradient-based optimization procedure, such as the BFGS algorithm, can be82

used to maximize logLS and estimate the parameters of the model.83

2.3. Double-copula SFM with sample selection84

In [40], Sriboonchitta et al. proposed a more flexible SFM with sample selection, in
which the dependence relations between ξ and ε on the one hand, and between V and W
on the other hand, are modeled by two bivariate copulas [27]. Assuming, as before, the
distributions of ξ and V to be normal, and the distribution ofW to be half-normal, the joint
cdf of (ξ, ε) can be written as

Fξ,ε(ξ, ε) = C
(1)
θ [Φ(ξ), Fε(ε)],
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where Fε is the cdf of ε and C(1)
θ is a copula function in a family C(1) = {C(1)

θ : θ ∈ Θ}, and
the joint cdf of (V,W ) can be expressed as

FV,W (v, w) = C(2)
ω

[
Φ

(
v

σv

)
, FW (w;σw)

]
,

where FW (·;σw) is the cdf of the half-normal distribution with scale parameter σw and C(2)
ω85

is a copula function in a family C(2) = {C(2)
ω : ω ∈ Ω}. Sriboonchitta et al. [40] proposed86

a methodology that consists in exploring a range of copula families for C(1) and C(2), fitting87

the parameters by maximizing the simulated likelihood for each model, and selecting the88

best model according to AIC or BIC. Using simulated and real data, they showed that89

improperly assuming independence between the two components of the error term in the90

SFM may result in biased estimates of technical efficiency scores, hence potentially leading91

to wrong conclusions and recommendations.92

We can remark that, in Greene’s model summarized in Section 2.2, V and W are linked93

by the independence (product) copula, while ξ and V are linked by a Gaussian copula. This94

corresponds to the following decomposition of the joint density of (V,W, ξ):95

f(v, w, ξ) = f(v)f(w)f(ξ|v).

In contrast, in a double copula model in which V and W are linked by the independence96

copula, the distribution of ξ depends on the difference ε = V −W , which corresponds to97

the following decomposition of the joint distribution:98

f(v, w, ξ) = f(v)f(w)f(ξ|v, w)

As a consequence, Greene’s model is not a special case of the double-copula model, except99

in the particular case where we have a fully efficient SFM characterized by the condition100

W = 0. In the following section, we introduce a new model that is, by construction, a direct101

generalization of Greene’s model.102

3. A trivariate Gaussian copula SFM with sample selection103

Our main purpose in this study is to construct a flexible SFM with sample selection,104

in which the dependence between the three error terms W , V , and ξ is modeled by a105

three-dimensional copula that can be learnt from the data. Whereas many parameterized106

families of bivariate copulas have been proposed, the construction of multivariate copulas107

with dimension strictly greater than two is still an ongoing research topic [26][48]. In this108

work, we choose the three-dimensional Gaussian copula family for the following reasons:109

(1) it can be parameterized by a correlation matrix R with natural interpretation; (2) it110

allows for easy calculation of the simulated likelihood, and (3) it makes it possible to recover111

Greene’s model as a special case. This copula family and the unconstrained parameterization112

of the correlation matrix are first recalled in Section 3.1. Our model is then introduced in113

Section 3.2, and a simulation study is reported in Section 3.3.114

5



3.1. Trivariate Gaussian copula115

A copula is a multivariate probability distribution for which the marginal probability116

distribution of each variable is uniformly distributed [27, 42, 43, 7]. Sklar’s Theorem [36]117

states that any multivariate joint distribution can be written in terms of univariate marginal118

distribution functions and a copula that describes the dependence structure between the119

variables. As noted in [9], the tool of copulas is less universal in the case of m (m ≥ 3)120

variables than it is in the case of two. However, an m-dimensional copula function CH can121

be constructed from an m-dimensional cdf H with margins H1, . . . , Hm as122

CH(u1, . . . , um) = H
[
H−11 (u1), . . . , H

−1
m (um)

]
, (u1, . . . , um) ∈ [0, 1]m.

In the case m = 3, choosing as H the three-dimensional Gaussian cdf ΦR with standard123

normal marginals and covariance matrix equal to the correlation matrix124

R =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 ,

we get the following trivariate Gaussian copula

CR(u1, u2, u3) =ΦR(q1, q2, q3) (5a)

=

∫ q1

−∞

∫ q2

−∞

∫ q3

−∞
φR(x, y, z)dxdydz, (5b)

where125

φR(x, y, z) =
1

(2π)3/2|R|1/2
exp

(
−1

2
(x, y, z)R−1(x, y, z)T

)
(5c)

is the three-dimensional Gaussian pdf with zero mean and covariance matrix R, and qk =
Φ−1(uk) for k ∈ {1, 2, 3} are the normal scores. The density of this copula is [47]:

cR(u1, u2, u3) =
∂3CR(u1, u2, u3)

∂u1∂u2∂u3
(6a)

=
1

φ(q1)φ(q2)φ(q3)
φR(q1, q2, q3) (6b)

=
1

|R|1/2
exp

(
1

2
qT (I−R)q

)
, (6c)

where q = (q1, q2, q3)
T is the vector of normal scores, I is the 3× 3 identity matrix, and φ is126

the standard univariate normal pdf.127

Unconstrained parameterization of R. When maximizing the likelihood of our model with
respect to R, we will need to ensure that R remains nonnegative. Pinheiro and Bates [29]
reviewed different parameterization of covariance matrices that ensure this property. One of
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those with good properties and easy interpretation is the spherical parameterization, which
starts with the Cholesky decomposition:

R = LLT ,

where L is a lower triangular matrix with nonnegative diagonal elements. In the three-128

dimensional case, L can be parametrized as follows [29][35]:129

L =

 1 0 0
cos θ12 sin θ12 0
cos θ13 cos θ23 sin θ13 sin θ23 sin θ13,


with (θ12, θ13, θ23) ∈ R3. The correlation matrix R can then be expressed as a function of130

(θ12, θ13, θ23) as131

R =

 1 cos θ12 cos θ13
cos θ12 1 cos θ12 cos θ13 + sin θ12 cos θ23 cos θ13
cos θ13 cos θ12 cos θ13 + sin θ12 cos θ23 cos θ13 1

 ,

(7)
i.e., the correlation coefficients ρij can be recovered as

ρ12 = cos θ12,

ρ13 = cos θ13,

ρ23 = cos θ12 cos θ13 + sin θ12 cos θ23 sin θ13.

3.2. Model description and likelihood132

In this section, we describe the proposed generalization of Greene’s model, referred to as133

the Trivariate Gaussian Copula (TGC) model, in which the dependence between the three134

error terms ξ, V and W is modeled by a Gaussian copula with correlation matrix R. The135

three parameters in this model, denoted as ρvw, ρwξ and ρvξ, are correlation coefficients mea-136

suring the dependence between, respectively, the pairs (V,W ), (W, ξ) and (V, ξ). Greene’s137

model recalled in Section 2.2 is recovered as a special case where ρvw = ρwξ = 0.138

As shown by Smith [37], the likelihood function of the model described by (1) and (3) is

L(ψ) =
∏
{i:si=0}

P (Y ∗i ≤ 0)
∏
{i:si=1}

P (Y ∗i > 0)f(yi|y∗i > 0) (8a)

=

 ∏
{i:si=0}

Φ(−αTzi)

× ∏
{i:si=1}

[1− Φ(−αTzi)]fε(εi|Si = 1), (8b)

where ψ is the vector of all parameters in the model (including α, β, σv, the three parameters
θwv, θwξ and θvξ defining matrix R in (7), and the parameters of the distribution of W ,
which need not be assumed to be half-normal). The difficulty resides in the calculation of
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the conditional pdf fε(ε|si = 1). As ε = V −W , we need to express the joint conditional
density of V and W given Si = 1. As shown in [37] and [40], this conditional pdf can be
written as

fV,W (v, w|Si = 1) =
1

1− P (Y ∗ ≤ 0)

∂2 [P (V ≤ v,W ≤ w)− P (V ≤ v,W ≤ w, Y ∗ ≤ 0)]

∂v∂w
(9a)

=
1

1− Φ(−αTz)

∂2
[
FV,W (v, w)−H(v, w,−αTz)

]
∂v∂w

(9b)

=
1

1− Φ(−αTz)

(
fV,W (v, w)− ∂2H(v, w,−αTz)

∂v∂w

)
, (9c)

where H, fV,W and FV,W are, respectively, the joint cdf of (V,W, ξ), and the joint pdf and139

cdf of V and W . Random variables V and W are linked by a bivariate Gaussian copula140

Cρvw with correlation ρvw. Using a formula similar to (6) for bivariate Gaussian copula, the141

corresponding copula density is142

cρvw(u1, u2) =
1

1− ρvw
exp

(
2ρvwq1q2 − ρ2vw(q21 + q22)

2(1− ρ2vw)

)
,

where q1 = Φ−1(u1) and q2 = Φ−1(u2). The pdf fV,W (v, w) can then be written as

fV,W (v, w) = cρvw(FV (v), FW (w))fV (v)fW (w) (10a)

= cρvw [Φ (v/σv) , FW (w)]
φ(v/σv)

σv
fW (w). (10b)

Let us now compute the second derivative in (9c). The multivariate cdf H of V , W143

and ξ can be expressed using the trivariate Gaussian copula function CR, where correlation144

matrix R is composed of ρvw, ρwξ, and ρvξ, as145

H(v, w, ξ) = CR[Φ (v/σv) , FW (W ),Φ(ξ)].

Using the following notation:146

C ′′R(u1, u2, u3) =
∂2CR (u1, u2, u3)

∂u1∂u2

for the partial derivative of CR with respect to its first two arguments, we can express the147

second partial derivatives of H with respect to v and w as148

∂2H(v, w,−αTz)

∂v∂w
= C ′′R

(
Φ (v/σv) , FW (w),Φ(−αTz)

) φ(v/σv)

σv
fW (w). (11)

The expression of function C ′′R is derived in Appendix A.149
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Given that ε = V −W , we can replace v by ε+w in (10)-(11) and obtain the conditional
pdf of (ε,W ) as

fε,W (ε, w|Si = 1) =
1

1− Φ(−αTz)

{
cρvw

[
Φ

(
ε+ w

σv

)
, FW (w)

]
−

C ′′R

(
Φ

(
ε+ w

σv

)
, FW (w),Φ(−αTz)

)} φ
(
ε+w
σv

)
σv

fW (w).

Marginalizing out W , we get the conditional pdf of ε as

fε(ε|Si = 1) =

∫ +∞

0

fW,ε(ε, w|Si = 1)dw,

which can be expressed as

fε(ε|Si = 1) =
1

1− Φ(−αTz)
EW

[{
cρvw

[
Φ

(
ε+W

σv

)
, FW (W )

]
−

C ′′R

(
Φ

(
ε+W

σv

)
, FW (W ),Φ(−αTz)

)} φ
(
ε+W
σv

)
σv

 , (12)

where EW [·] denotes expectation with respect toW . The expectation in (12) can be approx-
imated by Monte Carlo simulation or a quasi-random low-discrepancy sequences such as a
Halton sequence [18], which is known to yield better results than a uniform random number
generator [17, page 625]. The conditional pdf fε(ε|Si = 1) can, thus, be approximated as
follows:

fε(ε|Si = 1) ≈ 1

1− Φ(−αTz)

1

M

M∑
m=1

[{
cρvw

[
Φ

(
ε+ F−1W (qm)

σv

)
, qm

]
−

C ′′R

(
Φ

(
ε+ F−1W (qm)

σv

)
, qm,Φ(−αTz)

)} φ
(
ε+F−1

W (qm)

σv

)
σv

 ,
where qm, m = 1, . . . ,M is a Halton sequence of length M . Plugging this approximation
into the expression of the likelihood (8), we get the simulated likelihood:

LS(ψ) =

 ∏
{i:si=0}

Φ(−αTzi)

× ∏
{i:si=1}

1

M

M∑
m=1

[{
cρvw

[
Φ

(
εi + F−1W (qi,m)

σv

)
, qi,m

]
−

C ′′R

(
Φ

(
εi + F−1W (qi,m)

σv

)
, qi,m,Φ(−αTzi)

)} φ
(
εi+F

−1
W (qi,m)

σv

)
σv

 ,
where (qi,m) for m = 1, . . . ,M and is a Halton sequence for observation i. This function can150

be maximized using an iterative optimization algorithm.151
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Estimation of TE scores. After all parameter estimates have been obtained, TE scores can152

be calculated as well (see [38] and [40]). From (2), we have153

TE =
1

fε(ε)

∫ +∞

0

exp(−w)fε,W (ε, w)dw (13)

From (10), we have154

fε,W (ε, w) = cρvw [Φ ((w + ε)/σv) , FW (w)]
φ((w + ε)/σv)

σv
fW (w).

Hence,

fε(ε) =

∫ +∞

0

cρvw [Φ ((w + ε)/σv) , FW (w)]
φ((w + ε)/σv)

σv
fW (w)dw (14a)

= EW
(
cρvw [Φ ((W + ε)/σv) , FW (W )]

φ((W + ε)/σv)

σv

)
. (14b)

Now, let A denote the integral on the right-hand side of (13); it can be written as

A =

∫ +∞

0

exp(−w)cρvw [Φ ((w + ε)/σv) , FW (w)]
φ((w + ε)/σv)

σv
fW (w)dw (15a)

= EW
(

exp(−W )cρvw [Φ ((W + ε)/σv) , FW (W )]
φ((W + ε)/σv)

σv

)
. (15b)

The technical efficients TEi for each observation i can be estimated by plugging the maximum-155

likelihood estimates of the parameters in (14b) and (15b), and approximating the expecta-156

tions using Halton sequences as before.157

Comparison with the double-copula model. We can remark that the TGCmodel introduced in158

this section and the double-copula model recalled in Section 2.3 rely on different assumptions159

about the joint distribution of V ,W and ξ. The TGCmodel does not make any independence160

assumption, so it corresponds to the following general decomposition of the joint pdf of161

(V,W, ξ):162

f(v, w, ξ) = f(v)f(w|v)f(ξ|v, w).

The double-copula model corresponds to a similar decomposition but it further assumes that163

f(ξ|v, w) = f(ξ|v − w), i.e., given V = v and W = w, the distribution of ξ depends only164

on the difference ε = v − w. For this reason, the double-copula model with two Gaussian165

copulas and the TGC model are not nested. We can remark that the former model has two166

correlation parameters ρvw and ρξε, whereas the latter has three: ρvw, ρwξ and ρvξ. As a167

consequence, the TGC model is slightly more flexible.168

10



3.3. Simulation study169

To demonstrate the feasibility of estimation procedure described in the previous section,170

and to study the impact of model misspecification, we randomly generated 100 datasets of171

size n = 500 and 100 datasets of size n = 2000 from the TGC model described in Section172

3.2, with the following parameter values: β = 2, α = 1, σv = 0.2, ρv,w = 0.5, ρw,ξ = 0.4,173

ρv,ξ = 0.2. The inefficiency W was assumed to have a half-normal distribution with scale174

parameter σw = 0.7.175

We fitted four models to each dataset: the correct TGC model, Greene’s model (assuming176

independence between V and W ), and two double-copula models described in Section 2.3:177

the Double Gaussian copula (DGC) model, and the Gaussian-Clayton copula (GCC) model178

representing the dependence between V and W by a Gaussian copula and the dependence179

between ξ and ε by a Clayton copula. To implement the simulated maximum likelihood180

method, we generated a Halton sequence of size M = 200 and we maximized the simulated181

log-likelihood using the R implementation of the Nelder-Mead algorithm [32]. The starting182

value of α was obtained by logistic regression using the R function glm, and parameters β,183

σv and σw were estimated using function sfa in the R package frontier [6] by neglecting184

the sample selection process as well as the correlation between V and W .185

Tables 1 and 2 report, respectively, the bias and standard errors of the estimators for186

the four models, and the mean-square errors (MSE’s). Figure 1 displays the histograms of187

parameter estimates when postulating the correct TGC model, with a normal fit (solid line)188

together with the 2.5% and 97.5% quantiles shown as dotted vertical lines. As shown in189

Table 2, the TGC model, which is correctly specified, has the lowest MSE’s for all parameters190

except ρw,v, for which the double-copula models have a lower MSE. Looking at Table 1, we191

can see that the estimates of ρw,v in the double-copula models have higher bias, but lower192

variance as compared to TGC, which is due to the fact that the DGC and GCC models are193

misspecified, but have fewer parameters that TGC. Somewhat surprisingly, parameters β194

and, to a lesser extent, α are well estimated by all models, which is not true for the variance195

and correlation parameters. In particular, Greene’s model, which does not represent the196

dependence between V and W , severely underestimates the scale parameters σv and σw197

and gets the correlation coefficient ρv,ξ completely wrong. As they do not make the wrong198

assumption of independence between V and W , the two double-copula models do a better199

job at estimating σv and ρv,w, but they overestimate σw.200

Poor estimation of σv, σw and ρv,w by Green’s model and, to a lesser extent, by the two201

double-copula models can be expected to have an impact on the estimation of TE scores.202

To verify this assumption, we computed, for each dataset, the RMSE’s between the true203

TE scores and their estimates obtained by each of the four models. As shown in Figure204

2, Greene’s model performs comparatively poorly in terms of TE score estimation, which205

is due to the wrong assumption of independence between V and W . In contrast, the two206

double-copula models yield almost as good estimates of TE scores as does the TGC model,207

which confirms the good performance of these models already reported in [40].208

Tables 1-2 and Figure 2 show that the double-copula models fit the TGC-generated data209

quite well, which suggests that the TGE and double-copula models are actually quite close.210

To verify this assumption, we fitted the TGC and DGC models on 100 datasets generated211
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Figure 1: Histograms of parameter estimates for the simulated data of size n = 2000, when specifying the
true TGC model. The normal fit is represented as a solid blue line. The true value is shown as a solid
vertical red line, while the 2.5% and 97.5% quantiles are shown as broken vertical red lines.
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Table 2: MSE of the four models. The smallest value is shown in bold.

n = 500 TGC DGC GCC Greene

α 2.36e-02 2.69e-02 2.38e-02 2.40e-02
β 6.78e-05 6.84e-05 6.79e-05 1.02e-04
σw 1.14e-03 2.12e-03 2.11e-03 1.54e-03
σv 1.45e-03 1.57e-03 1.69e-03 6.41e-03
ρw,v 9.57e-03 4.88e-03 5.00e-03 –
ρw,ξ 1.02e-01 – — –
ρv,ξ 3.17e-01 – — 1.06

n = 2000

α 6.64e-03 8.00e-03 7.35e-03 7.14e-03
β 2.22e-05 2.34e-05 2.32e-05 2.60e-05
σw 2.81e-04 1.30e-03 1.40e-03 1.18e-03
σv 2.59e-04 4.42e-04 4.35e-04 4.53e-03
ρw,v 1.92e-03 1.15e-03 1.34e-03 —
ρw,ξ 2.77e-02 — — —
ρv,ξ 8.52e-02 — — 1.07

TGC DGC GCC Greene
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Figure 2: Box plots of RMSEs on TE scores estimated using the four models, for 100 randomly generated
datasets of size n = 500 (a) and n = 2000 (b). (The scales of the two figures on the vertical axis are
different).
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from the TGC model with the previous parameter values, and 100 datasets generated from212

the DGC model with the following parameter values: α = 5, β = 0.7, σw = 1, σv = 1,213

ρwv = 0.7 and ρξε = 0.5. We repeated this experiment with two sample sizes: n = 500214

and n = 2000. Figure 3 shows that the AIC values of both models are quite close, under215

both data distributions. With TGC-generated data, the TGC model achieves a lower AIC216

than the DGC model for 62% of the datasets of size n = 500 and 93% of the datasets of217

size n = 2000. For DGC-generated data, the DGC model achieves a lower AIC for 88%218

of the datasets of size n = 500, but only 11% of the datasets of size n = 2000. The TGC219

model would, thus, be selected more often when fitted to the larger datasets according to220

AIC, even when the true distribution is that of the DGC model. However, using the BIC221

for model selection would lead to different conclusions: the TGC model would be selected222

only for 15% and 47% of the TGC-generated data of size, respectively, 500 and 2000, while223

the DGC model would be selected for, respectively, 100% and 97% of the DGC-generated224

data of size, respectively, 500 and 2000. The conclusion of this simulation experiment is225

that it would be very difficult to select the true model for any of the two data distributions.226

However, the analysis of a real dataset presented in the next section shows that the TGC227

model may indeed fit the data better than double-copula models in some cases, and yield228

significantly different TE scores.229

4. Application to Jasmine rice data230

In this section, we compare our TGC model to the Greene and double-copula models231

using a real dataset about Jasmine rice production in Thailand. The data and model232

specification will first be described in Section 4.1, and the results will be reported in Section233

4.2.234

4.1. Data and model specification235

The dataset used in this study was collected in the crop year 1999-2000 by interviewing236

farmers in three provinces of Thailand: Chiang Mai, Phitsanulok and Tung Gula Rong Hai237

(TGR). A total of 348 farmers were interviewed, of which 141 were purely Jasmine rice238

producers, while the remaining 207 farmers were mainly non-Jasmine rice producers.239

The selection equation of the three models was specified as

Y ∗i = α0 + α1returni + α2edui + α3tempi + α4raini + α5rice_ratioi+
α6attitudei + α7irrigation_ratioi + α8Phitsanuloki + α9TGRi + ξi,

where the explanatory variables for the selection of Jasmine rice are the gross return from240

growing rice (return), the highest level of education in the household (edu), the mean an-241

nual temperature (temp), the total annual rainfall (rain), a dummy variable to account for242

farmers who transplanted rice (rice_ratio), the farmers’ attitude towards commercialisation243

(attitude), a measure of access to irrigation (irrigation_ratio), and dummy variables for the244

Phitsanulok (Phitsanulok) and TGR (TGR) provinces. It is assumed that farmer i chooses245

to produce Jasmine rice if Y ∗i > 0.246
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Figure 3: Biplots of AIC values for the TGC model (y-axis) vs. the DGC model (x-axis) fitted on 100
datasets generated from the TGC model (a,c) and from the DGC model (b,d). Size of datasets: n = 500
(a,b) and n = 2000 (c,d).
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The stochastic frontier equation for Jasmine rice production is

log outputi = β0 + β1 log labori + β2 log fertilizeri+
β3 log irrigationi + β4 log landi + β5Phitsanuloki + β6TGRi + εi,

εi = Vi −Wi,

where the four input variables are labour, chemical fertilizers, irrigation and land, all of which247

are expected to have a positive influence on rice output. Moreover, the same two regional248

dummy variables used in the selection equation were included to account for differences with249

respect to bio-physical and environmental factors.250

Table 3 shows the correlation coefficients between the quantitative covariates in the selec-251

tion and stochastic frontier equations. The highest correlations are observed between temp252

and rain in the selection equation, and between log fertilizer and log land in the frontier equa-253

tion. In least-squares linear regression, multicollinearity is known to cause a high variance254

of coefficient estimates. Although this issue has not received as much attention in stochastic255

frontier modeling as it has in least-squares regression [5], it is likely that multicollinearity256

may cause similar problems in SFM’s too, the main possible effect being a high standard257

error of some coefficient estimates making them statistically nonsignificant. As will be seen258

in the next section (Table 5), this does not seem to be the case with the dataset under study.259

Furthermore, multicollinearity is not likely to have an important effect on the estimation of260

technical efficiencies, which is often the main objective of stochastic frontier analysis [31].261

4.2. Results and discussion262

For parameter estimation, we used Halton sequences of lengthM = 200 for each observa-263

tion. Table 4 shows the values of the log-likelihood as well as three information criteria: AIC,264

BIC, and the Hannan-Quinn Information Criterion (HQIC) [24] for the three models. Every265

model was evaluated with four different distributions of the inefficiency W : half-normal,266

exponential, gamma and truncated normal. The results of the double-copula model is for267

the best fitted model among several copula families including Gaussian, Clayton, Rotated268

Clayton, Gumbel, Rotated Gumbel, and Frank copulas. The double-copula best model has a269

Clayton copula rotated by 90 degrees for the dependence between V andW , and a Gaussian270

copula for the dependence between ε and ξ.271

Overall, we can see that the TGC model with a gamma-distributed inefficiency has the272

best explanatory ability according to log-likelihood and the three information criteria. As the273

Greene and TGC models are nested, the likelihood ratio (LR) test can be used to compare274

them. According to this test, the correlations coefficients ρvw and ρwξ are significantly275

different from zero with a p-value less than 10−4, whatever the inefficiency distribution. The276

double-copula model with a gamma-distributed inefficiency is a better fit than the Greene277

model, which can be explained by the fact that it accounts for the dependence between V278

and W ; however, it is not as good as the TGC model.279

Table 5 shows the parameter estimates and their standard errors for the three models280

with gamma-distributed inefficiency. We observe that the standard errors of all parameter281
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Table 4: Information criteria of the TGC, Greene and double-copula models for the Jasmine rice data.
HN, EX, GA, and TN stand for half-normal, exponential, gamma and truncated normal distributions,
respectively. For each criterion, the best value for each model is underlined, and the overall best value is
printed in bold.

HN EX GA TN

TGC
Log-likelihood −252.92 −247.97 −235.3 −248.97
AIC 549.85 539.94 516.6 543.93
BIC 634.6 624.68 605.2 632.53
HQIC 544.72 534.81 511.24 538.57
Greene
Log-likelihood −273.06 −275.03 −273.16 271.25
AIC 586.13 590.05 588.31 584.49
BIC 663.17 667.1 669.21 665.39
HQIC 581.46 585.39 583.41 579.6
χ2 stat. 40.28 54.12 75.72 44.56
p-value <.0001 <.0001 <.0001 <.0001
Double copula
Log-likelihood −285.50 −268.71 −266.58 −285.49
AIC 613.01 579.42 577.15 614.98
BIC 693.90 660.32 661.90 699.73
HQIC 608.11 574.52 572.02 609.85
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estimates for the TGCmodel are smaller than those of the two other models, which suggests a282

better fit to the data. The double-copula and TGC models agree on finding a high negative283

correlation between V and W , which shows the necessity of relaxing the independence284

assumption. Greene’s model and the TGC model both find a high positive correlation285

between V and ξ, which confirms that a serious selection bias exists, i.e., estimation using286

observations from only Jasmine or non-Jasmine rice producer data would provide biased287

estimates of productivity. This finding confirms the importance of accounting for sample288

selection in the estimation. The estimates of the parameters related to the error distributions289

(shape and scale of the gamma distribution, and σv) are quite different for the three models,290

which can be expected to impact the influence of technical efficiencies. This assumption will291

be confirmed later.292

Except for α7 and α9, the estimates of the coefficients in the selection equation are similar293

across the three models. The estimates of coefficients β1, . . . , β4 are of particular interest294

because they are elasticities, i.e., βj is interpreted as the percentage change in output per295

one percent change in input xj. We can see that the TGC and Greene models do not296

have much difference between elasticities. According to the result of the TGC model, the297

production elasticity with respect to changes in land area has the highest value of 0.67,298

implying that a 1% increase in land area allocated to Jasmine rice increases production299

by 0.67%. The production elasticities with respect to irrigation, fertilizer and labor are300

estimated, respectively, at 0.17, 0.13, and 0.09. The elasticity estimates of the double-copula301

model depart from those of the two other models. In particular, the negative estimate of the302

production elasticity with respect to labor is not realistic from an economic point of view.303

This observation shows that caution should be exercised when interpreting results obtained304

with an ill-specified model.305

Summary statistics of technical efficiency scores for the three models are reported in306

Table 6. We observe large differences in the distributions of technical efficiency scores for307

the three models, which suggests that the correlations between W and V , and between W308

and ξ have a big impact on the estimates of technical efficiency, as was already observed in309

other studies [40]. Both Greene’s model and, to an even larger extent, the double-copula310

model appear to overestimate technical efficiency. According to the TGC model, farmers311

also exhibit a wider range of production technical efficiency in Jasmine rice farming, which312

is consistent with previous findings reported by Ebers et al. [11] and Piya et al. [30].313

Figures 4 and 5 show scatter plots of the TE scores estimated, respectively, using the314

Greene model and the double-copula model, vs. the TGC estimates, with different inef-315

ficiency distributions. Regardless of the distribution postulated for W , both the Greene316

model and the double-copula model overestimate TE as compared to the TGC model. Fig-317

ure 6 shows kernel density estimates of the TE distributions for the three models. The318

TE distribution appears to be more robust with respect to the choice of the positive error319

distribution for the trivariate-copula model than it is for the other two models, which can320

be regarded as additional evidence for the superiority of the TGC model.321
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Table 5: Parameter estimates and standard errors for the three models with gamma-distributed inefficiency
applied to the Jasmine rice data. For the coefficients αj and βj , one, two and three stars correspond,
respectively, to significance at the 5%, 1% and 0.1% levels.

TGC Greene Double copula

estimate se estimate se estimate se
α0 296.14∗∗∗ 2.41 296.23∗∗∗ 6.09 294.11∗∗∗ 4.30
α1 −0.001∗∗∗ < 0.001 −0.001∗∗∗ < 0.001 −0.001∗∗∗ < 0.001
α2 0.06∗ 0.03 0.06∗ 0.03 0.07∗∗ 0.03
α3 −91.65∗∗∗ 0.67 −91.65∗∗∗ 1.58 −91.45∗∗∗ 1.73
α4 0.47 0.35 0.47 0.57 0.45 0.69
α5 0.02 0.11 0.09 0.17 −0.02 0.19
α6 0.05∗∗ 0.02 0.05 0.03 0.06 0.03
α7 0.46∗∗∗ 0.14 1.18∗∗∗ 0.23 1.07∗∗∗ 0.23
α8 2.40∗∗∗ 0.35 2.15∗∗∗ 0.46 2.88∗∗∗ 0.56
α9 −0.35 0.26 −0.71∗ 0.34 0.24 0.39
β0 6.46∗∗∗ 0.01 5.90∗∗∗ 0.34 6.39∗∗∗ 0.03
β1 0.08∗∗∗ < 0.001 0.12∗∗ 0.05 −0.04∗∗∗ < 0.001
β2 0.13∗∗∗ < 0.001 0.11∗ 0.05 0.02∗∗∗ 0.005
β3 0.17∗∗∗ 0.002 0.41∗∗∗ 0.11 0.12∗∗∗ 0.006
β4 0.67∗∗∗ <0.001 0.65∗∗∗ 0.08 0.97∗∗∗ 0.006
β5 0.49∗∗∗ 0.001 −0.31∗ 0.13 −0.42∗∗∗ 0.004
β6 0.52∗∗∗ 0.002 −0.57∗∗∗ 0.10 −0.58∗∗∗ 0.006
Shape 2.09 0.04 2.27 0.83 0.33 0.04
Scale 0.60 0.003 0.22 0.04 0.55 0.01
σv 0.11 0.005 0.39 0.06 0.30 0.03
ρwv −0.99 −0.93
ρwξ −0.96
ρvξ 0.96 0.98
ρξε 0.15
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Figure 4: TE scores estimated using Greene’s model (y-axis) versus those estimated using the TGC model
(x-axis) for the three different inefficiency distributions.
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Figure 5: TE scores estimated using the double-copula model (y-axis) versus those estimated using the TGC
model (x-axis) for the three different inefficiency distributions.
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Figure 6: Kernel density estimates of the technical efficiency distributions from the Greene (a), double-copula
(b) and TGC (c) models, with different inefficiency distributions.
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Table 6: Range and frequency of TE scores.

TGC Greene Double

Range # Farmers % # Farmers % # Farmers %
(0, 0.25] 12 0.08 0 0.00 2 0.01
(0.25, 0.5] 41 0.29 9 0.06 9 0.06
(0.5, 0.6] 32 0.23 8 0.06 1 0.01
(0.6, 0.7] 29 0.21 49 0.35 8 0.06
(0.7, 0.8] 14 0.10 75 0.53 8 0.06
(0.8, 1] 13 0.09 0 0.00 113 0.80
Mean 0.54 0.68 0.88
sd 0.20 0.09 0.19
Min 0.08 0.27 0.18
Max 0.97 0.80 0.99

5. Conclusions322

In recent years, it has been realized that adequately representing the dependencies be-323

tween error terms is a key issue when designing SFMs, and that wrong assumptions on these324

dependencies can result in large errors in the estimation of technical efficiency. Copulas325

have proved to be a useful device for building more flexible SFMs [38, 45, 20]. For instance,326

in [45], we showed that wrongly assuming independence between the two-sided error term327

and the inefficiency term in the production equation may result in gross overestimation of328

technical efficiency, and that modeling this dependency using Gaussian copulas allows for a329

better fit to some datasets.330

In this paper, we have applied a similar approach to stochastic frontier analysis with331

sample selection. We have relaxed the assumption of independence between two-sided ran-332

dom error and inefficiency in Greene’s original model [15], by representing the dependencies333

between these two terms and the random error in the selection equation using a trivariate334

Gaussian copula parameterized by a correlation matrix. Our model is, thus, a proper gener-335

alization of Greene’s model. We have compared the new model to Greene’s model and to an336

alternative solution based on two bivariate copulas introduced in [40], using both simulated337

data and real data about Jasmine rice production. Our model has been shown to fit the338

real data better than the other two models, which tend to overestimate technical efficiency,339

confirming the trend already reported in [45].340

In the future, it will be interesting to investigate alternative multidimensional copula341

families such as proposed by Durante et al. [10], Liebscher [23], Mazo et al. [26] or Zhu et342

al. [48].343
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Appendix A. Second derivative of the trivariate Gaussian copula455

From (5), the first derivative of trivariate Gaussian copula CR w.r.t u1 can be expressed
as

∂CR(u1, u2, u3)

∂u1
=

dΦ−1(u1)

du1︸ ︷︷ ︸
1/φ(q1)

∫ q2

−∞

∫ q3

−∞
φR(q1, y, z)dydz,

where qk = Φ−1(uk), k ∈ {1, 2, 3}, and its second derivative w.r.t. u1 and u2 is

C ′′R(u1, u2, u3) =
1

φ(q1)φ(q2)

∫ q3

−∞
φR(q1, q2, z)dz (A.1)

=
1

φ(q1)φ(q2)(2π)3/2|R|1/2
× I, (A.2)

= (2π|R|)−1/2 exp

(
q21 + q22

2

)
× I (A.3)

where I is the integral456

I =

q3∫
−∞

exp

(
−1

2
(q1, q2, z)R

−1(q1, q2, z)
T

)
dz (A.4)

with

(q1, q2, z)R
−1(q1, q2, z)

T = [(1− ρ223)q21 + (1− ρ213)q22 + (1− ρ212)z2 − 2ρ12q1q2

− 2ρ13q1z − 2ρ23q2z + 2ρ13ρ23q1q2 + 2ρ12ρ23q1z + 2ρ12ρ13q2z] / |R| . (A.5)

From (A.4) and (A.5), we get457

I = exp

{
− 1

2 |R|
[(1− ρ223)q21 + (1− ρ213)q22 − 2(ρ12 − ρ13ρ23)q1q2]

}
× J, (A.6)
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with

J =

∫ q3

−∞
exp

{
− 1

2 |R|
[(1− ρ212)z2 − 2(ρ13q1 + ρ23q2 − ρ12ρ23q1 − ρ12ρ13q2)z]

}
dz.

Let

√
1− ρ212
|R|

z = t, then z = t

√
|R|

1− ρ212
and dz = dt

√
|R|

1− ρ212
. With these notations,

J can be written as

J =

√
|R|

1− ρ212
×

q3
√

1−ρ212/
√
|R|∫

−∞

exp

{
−1

2

[
t2 − 2[(ρ13 − ρ12ρ23)q1 + (ρ23 − ρ12ρ13)q2]

t√
(1− ρ212) |R|

]}
dt.

Let458

D =
2[(ρ13 − ρ12ρ23)q1 + (ρ23 − ρ12ρ13)q2]√

(1− ρ212) |R|
,

then

J =

√
|R|

1− ρ212
×

q3
√

1−ρ212/
√
|R|∫

−∞

exp

{
−1

2

(
t− D

2

)2

− D2

4

}
dt

=

√
|R|

1− ρ212
exp

(
D2

8

) q3
√

1−ρ212/
√
|R|∫

−∞

exp

{
−1

2
(t− D

2
)2
}
dt

=

√
|R|

1− ρ212
exp

(
D2

8

)
(2π)1/2Φ

(
q3

√
1− ρ212
|R|

− D

2

)
(A.7)

From (A.1), (A.6) and (A.7), we get

C ′′R(u1, u2, u3) = (2π|R|)−1/2 exp

(
q21 + q22

2

)
×

exp

{
− 1

2 |R|
[(1− ρ223)q21 + (1− ρ213)q22 − 2(ρ12 − ρ13ρ23)q1q2]

}
×√

|R|
1− ρ212

exp

(
D2

8

)
(2π)1/2Φ

(
q3

√
1− ρ212
|R|

− D

2

)
(A.8)

To further simplify the notation, let

B = exp

{
− 1

2 |R|
[(1− ρ223)q21 + (1− ρ213)q22 − 2(ρ12 − ρ13ρ23)q1q2]

}
.
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We have finally:459

C ′′R(u1, u2, u3) =
B√

1− ρ212
exp

(
D2

8

)
exp

(
q21 + q22

2

)
Φ

(
q3

√
1− ρ212
|R|

− D

2

)
. (A.9)
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