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Abstract

We consider the problem of collective decision-making from an arbitrary set of clas-
sifiers under Sugeno fuzzy integral (S-FI). We assume that classifiers are given, i.e.,
they cannot be modified towards their effective combination. Under this baseline, we
propose a selection-combination strategy, which separates the whole process into two
stages: the classifiers selection, to discover a subset of cooperative classifiers under
S-FI, and the typical S-FI combination of selected classifiers. The proposed selection
is based on a greedy algorithm which through a heuristic allows an efficient search.

Key words: Multiclassifier scalability, Fuzzy integral, Greedy selection
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1 Introduction

Multiclassifier systems aim to enhance the performance of any single classifier.
Although there are many ways to use more than one classifier, all of them
requires the cooperation among classifiers, i.e., classifiers specifically combined
do not propagate individual mistakes to collective results. Clearly, cooperation
is only possible if classifiers make errors in different samples, which can be
easily achieved with specialized classifiers. However, in the most general case,
i.e., non specialized classifiers, the cooperation must be induced [1,5,8] or
exploited [6].

The design of multiclassifier systems usually involves two steps [9]: the genera-
tion of classifiers, and their combination. In general, the first step creates a set
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of classifiers inducing their cooperation ability towards a later combination.
However, the set of classifiers may be given and just the combination stage can
be done. In this latter case, the cooperation can be merely exploited without
altering the classifier behavior. A typical example of this situation is focused
in this paper: the requirement of a single decision-making from a population
of classifiers that were not adapted to the collective work.

To guarantee effective results under the above condition, untrained combina-
tion rules are useless since collective generalization strength must be charac-
terized. That means that the combination process should handle knowledge
about collective skills of a possible numerous set of classifiers. Clearly, this
knowledge induction can be extremely complex, i.e., it requires the behavior
characterization of each classifier subset. Therefore, the treatment of a general
population of classifiers entails an alternative design strategy.

From the above discussion, the characterization complexity of a given popula-
tion of classifiers is separated into two trained and complementary processes:
selection and combination (Fig. 1). The selection should reduce the initial set
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Fig. 1. Selection-Combination strategy.

to a tractable subset of cooperative classifiers. We desire both efficient and
effective solutions. Regarding efficiency, exhausted searches are discarded. We
suggest a heuristic search guided by a cooperation ability index. This index
values the cooperation aptitude among classifiers under a specific combination
rule by a rough analysis in the whole set of classifiers. After the selection, the
combination takes place. Regarding effectiveness, the combination should be
able to make a deeper characterization of collective behavior of the selected
subset. The Sugeno integral allows such description thanks to a simple, but
powerful, combination mechanism which takes into account, by the means of
a fuzzy measure, the collective generalization strength.
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The paper is organized as follows. Section 2 looks into the selection-combination
strategy based on Sugeno fuzzy integral. Section 3 is dedicated to show the
experiments on both benchmark data from the UCI repository and a new
application. Finally, the main conclusions are highlighted in section 4.

2 Selection-combination strategy

The selection of cooperative classifiers should address the following questions:
1) Which are the matters associated with the effective work under the posterior
and known combination?, and 2) How to reach efficiently an effective subset?
Considering the Sugeno FI combination, its behavior must be analyzed to
answer the first question. To answer the second one, a heuristic selection that
exploits the information of the former step, based on greedy algorithms is
suggested.

2.1 Sugeno FI combination

The fuzzy integral is a general trained combination methods. Its definition
w.r.t. a fuzzy measure [7] provides a good framework to represent imprecise
knowledge associated with the behavior of classifier subsets. See [4] for de-
tails. We focus on Sugeno FI assuming a given population of classifiers, X =
{X1, ..., Xi, ..., Xn}, which associate each input s with {w1, ..., wc} possible
classes. The classification function associated with i -th classifier is fi : s → [0, 1]c.
The fi components (f 1

i , ..., f c
i ) can be interpreted as degrees of support of the

i -th classifier to each class prediction.

Collective FI results are obtained by aggregating levels of decision where clas-
sifiers agree with collective abilities (g) of classifiers that support them. These
classifier abilities represent the generalization strength which are characterized
by fuzzy measures.

A set function g : 2X → [0, 1] is a fuzzy measure if it satisfies the following
conditions:

(1) g(∅) = 0, g(X) = 1 (boundary conditions).
(2) A ⊆ B ⇒ g(A) ≤ g(B) (monotonicity) for A,B ∈ 2X .

The Sugeno integral [7] of a function f : X → [0, 1] w.r.t. g on (X, 2X) is
defined by

Sg(f) :=
n

max
i=1

{min(f(X(i)), g(A(i)))} (1)
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·(i) indicates the permutation of indices, 0≤ f(X(1)) ≤ . . . ≤ f(X(n)) ≤1, f(X(0)):=0,
and A(i):={X(i), . . . , X(n)}. The measure g(A(i)) (or g(i) for short) quantifies
the generalization ability of the subset A(i). In particular, the Sugeno integral

for the class wj is: Sg(f
j) :=

n
max
i=1

{min(f j

(i), g
(i)
j )}.

2.1.1 Behavior of Sugeno integral

When the first point of collective classification design is the construction of
classifiers, their collective behavior can be induced. However, when they are
externally given, the collective behavior must be carefully analyzed and char-
acterized during the multiclassification procedure.

The collective behavior of classifiers under S-FI depend on f and g values, i.e.,
the relationship among classification decisions of the current sample and the
characterization value of generalization ability, determines the final decision.

(1) The final decision is defined by just one classifier. This happens when
there is a classifier with clear decisions (fi) joint with strong ability mea-
sures (gi), i.e., the minimum among a classifier decision and its fuzzy
density is bigger than the rest of fuzzy densities. The corresponding clas-
sifier is named predominant.

(2) The final decision is collectively defined. This situation is presented when
there is no classifier that prevails in its decision-ability relation for over
the others. So, the final result depends on the collective generalization
ability of classifiers that consents on different levels of decisions.

Clearly, both situations show that S-FI can be successful with a correct pre-
dominant or with a correct consensus. Under these conditions, the selection
looks for those classifiers that maximize the number of well classified samples
in the training dataset, taking into account the f-g relationship.

2.2 Selection process

The proposed selection is based on a heuristic search by means of a greedy
algorithm. In other words, the selection of classifiers that can cooperate are
computed based on a single criterion (selection rule), instead of having a re-
cursive analysis over any of the alternative options or its effect on further
steps. The selection process starts with an empty set and seeks to include
it the most cooperative candidates. If the best candidate does not improves
the already selected (stop rule), the selection ends. Otherwise, the process is
repeated until there are no more classifiers to add.
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Being X a set of candidates from which a selection is done, its overall design
involves iterations over the followings steps:

(1) The classifiers selection. It is performed by applying a selection rule,
which chooses at each decision point the best candidate for working with
the already selected classifiers.

(2) The selection end. It is evaluated through a stop rule, which determines
the contribution of new candidates and so, the algorithm cut.

2.2.1 Selection rule

The set of selected classifiers (set O) starts as an empty set that is extended
with the best candidate (X∗

r ) at each selection step. X∗

r is determined from the
analysis of each extended subset, Or = {Xr ∪ O} with r = 1, ..., nr, being nr

the amount of candidates. With this aim, the selection knowledge completes
the S-FI behavior description: while S-FI knowledge handles a full descrip-
tion of collective behavior (2X subsets) at class level, the selection knowledge
characterizes a simplified view of collective behavior but at sample level. The
selection picks the candidate that exploits the cooperation under S-FI applying
the following selection rule.

X∗

r maximizes on the training dataset Z:

(1) The coverage index that evaluates the minimal condition to achieve cor-
rect collective results: at least one classifier of Or must be correct.

(2) The f-g relationship index that evaluates the possibility of correct pre-
dominant or consensus by the relation among decisions-abilities of Or

classifiers.

In order to facilitate the coverage and f-g relationship study, the matrices
of decision pattern F and error pattern E on Z = {zk} (k = 1, ..., K) are
analyzed.

F, E =

















F1, E1 · · · Fi, Ei · · · Fn, En

z1 f1(z1), 0 · · · fi(z1), 1 · · · fn(z1), 1
...

...
...

zk fk,i, ek,i

...
...

...
zK f1(zK), 1 · · · fi(zK), 0 · · · fn(zK), 0

















While ek,i = 0 means correct classification and ek,i = 1 implies error, fk,i is
the decision vector of Xi on the sample zk associated with the class wj. The
matrices E and F encloses a complete classifier generalization description;
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several diversity and accuracy measures [2,3] can be computed from it. From
their horizontal and vertical scanning, the collective behavior on the dataset
can be examined: the vertical scanning shows the individual generalization
strength on Z, and the horizontal scanning shows the collective behavior per
sample.

Coverage index of Xr, Br: It is computed as the average coverage on Z of
classifiers of Or, being the coverage per sample:

bk,r =











0, if classifiers of Or have a common error on zk;

1, if at least a classifiers of Or is correct on zk.

bk,r values are initialized with the error pattern of the first selected classi-
fier. Br (with r = 1, . . . , nr) is the fraction of covered samples on Z, i.e., the
proportion of “ones” of bk,r, with k = 1, . . . , K.

f-g relationship value of Xr, FGr: It is computed as the average on Z of
the coverage strength or consensus of each candidate Xr, being:
- the coverage strength per sample zk, the maximal correct decision (class

wj) of Or members ponderated by the generalization ability.

sk,r =
Qr

max
q=1

{min(f j
q,k, g

q
j )} (2)

being Qr the cardinality of Or.
- the consensus per sample zk, the average of correct decision values (class

wj) of Or members ponderated by the generalization abilities.

ck,r =
1

Qr

Qr
∑

q=1

f j
q,k × gq

j (3)

The selection of X∗

r gives priority to the classifier that maximizes values of
decisions-abilities when it is correct, and positive consensus when it is wrong.
Based on the above characterizations, a vector of f-g characterization
fgr of Xr is built.

fgr,k =











sk,r if Xr is correct in zk;

ck,r if Xr is wrong in zk.

For each candidate, the f-g relationship value FGr is valued as the mean of
the (fgr,k) components.

Selection rule: X∗

r is the candidate that achieves with the already selected ones,

both the major coverage and f-g relation on Z, X∗

r ↔
nr

max
r=1

{Br + FGr}
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2.2.2 Selection end

A new X∗

r becomes a member of O whenever its selection contributes to the
combination. To decide its inclusion, a collective performance (P ∗

r (Z)) of O∗

r =
{X∗

r ∪O} is estimated. With this aim, the existence of predominant classifiers
is determined. Samples store the f-g relationship, initially, the highest value
(associated with wm class) of minimum f-g relation, min(fm

t ; gt
m). This value

is compared with the highest decision (fm∗

r ) of the coming classifier. The
following cases can be presented:

(1) If the min(fm
t ; gt

m) > fm∗

r then Xt continues predominating.
(2) If the min(fm

t ; gt
m) < fm∗

r we can have:
- If min(fm∗

r ; gr
m∗

) > fm
t then X∗

r predominates
- If min(fm∗

r ; gr
m∗

) < fm
t then there are no predominant. An estimation

of the collective performance of O∗

r , such as weighted vote with f, g
measures, is required .

If the candidate X∗

r predominates in zk, the values of the sample characteri-
zation are updated by those of X∗

r ; in addition, P ∗

r (zk) is directly evaluated
by comparing wm∗ with the real class wj. Otherwise, collective performance is
estimated.

2.2.3 Selection algorithm

The main input are the matrices E and F of the given set of classifiers. They
are evaluated using ten-fold cross-validation on Z, by appending the tenth
parts of each fold.

Process beginning: Given are EK×n, FK×n.

(1) Evaluate the individual accuracy of classifiers and select the most accu-
rate as the initial member of O, denoted by Xb.

(2) Evaluate the coverage index Br = 1
K

K
∑

k=1
bk,r of each Xr with r =

1, . . . , nr and with k = 1, . . . , K.
(3) Evaluate the f-g relationship index FGr of each Xr according to fgr,k

sample values.
(4) Choose X∗

r applying the selection rule: X∗

r ↔
nr

max
r=1

{Br + FGr}.

(5) Evaluate the selection end rule: P ∗

r to decide the X∗

r inclusion:
IF (P ∗

r < P (O) · α)
THEN stop selections.
ELSE O = {O ∪ X∗

r } and GOTO 2.

In the first step, the most accurate classifier (Xb) is included in O. In this way,
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an initial subset is defined and its greedy augmentation starts. In addition,
coverage values bk,r are initialized with its error pattern.

The selection of X∗

r is done according to the potential cooperation among
the already selected classifiers and the remaining ones. The cooperation is
evaluated using measures of coverage and f-g relationship. These measures
are computed using the given error pattern and decision pattern matrices.
Br is an optimist estimation of collective error distribution if the candidate
Xr were included in O; a zero entry in bk,r means that at least one classifier
of Or classifies correctly the row sample. Additionally, the f-g relationship
characterizes the strength of the candidate contribution depending on its levels
of decisions and generalization abilities on Z dataset. A highest level of correct
f-g relationship of some classifier of O as well as the high positive consensus
may give a correct sample classification even if the new candidate is mistaken.

The selection process continues until the collective performance drops. The
parameter α prevents the method for possible staking, especially at the begin-
ning where the best classifier could reject further inclusions. We should note
that the cooperation is sometimes impossible, e.g., when one classifier is much
better than others. In that case the combination is not proper and the use of
the best classifier is better.

3 Experiments

We evaluate selective multiclassfiers on benchmark UCI and real data. With-
out loss of generality, we considered population of 30 classifiers based on neural
networks 1 (NN) and fuzzy inference systems 2 (FIS) trained in an automatic
way over the whole output space, i.e., they were not adapted to any combina-
tion rule. The configurable parameters for their training are the following:

NN parameters

• Neural Net structure: Three layers, the first with a number of neurons equal
to the number of input variables; the last two layers with a quantity of
neurons equal to the number of classes.

• Weight update: The update algorithm is backpropagation, taking blocks of
[1;10] examples for the updating.

• Epochs: The number of epochs is taken from the interval [50;500] in random
form.

1 http://fuzzy.cs.uni-magdeburg.de/˜borgelt/software.html
2 http://www.inra.fr/Internet/Departements/MIA/M/fispro/
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FIS parameters

• Input variables partitions: In the range [1;5].
• Partition induction from data: The used algorithms are Hierarchical Fuzzy

Partitioning (HFP); Regular Partitioning or Kmeans.
• Rule induction: The used algorithms are Fast Prototyping Algorithm (FPA),

Wang and Mendel (W&M) and FDT (Fuzzy Decision Trees).

Regarding the training of the Sugeno FI, we use λ-measures. Fuzzy densities
are determined (per classes) as the proportion of

gi
j = P (zk ∈ wj/f

j
i = max{fi(zk)}) − P (zk /∈ wj/f

j
i = max{fi(zk)}) (4)

Being P (zk ∈ wj/f
j
i = max{fi(zk)}) the proportion of correct classification

in the class, and P (zk /∈ wj/f
j
i = max{fi(zk)}) the “false ones” in the others.

The applied protocol to datasets uses random sampling techniques to generate
10 independent experiences. Each experience has the Z with 75% of the total
samples and the validation set with the last 25%. Cross-validation technique is
applied on Z to evaluate the error patterns of classifiers and the fuzzy densities.

Benchmark datasets: Table I shows the characteristics of six data sets from
UCI 3 repository.

Dataset Samples #Attributes #Classes

Car 1728 6 4

Glass 214 10 6

Iris 150 4 3

Pima 768 8 2

Wine 178 13 3

Yeast 1484 8 10

Table 1
Description of used datasets

Real dataset: The objective is to determine the grape variety from 8 in-
put variables. These variables are expert selected wavelengths, due to their
physical meaning, from a 512 wavelength near infrared spectrum.

The dataset consists of 50 examples for each grape variety. The output
space is composed of 8 classes: carignan, grenache blanc, chardonnay, rous-
sane, marselan, mourvèdre, grenache noir and clairette.

3 http://www.ics.uci.edu/˜mlearn/MLRepository.html
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Dataset Xb SDb FIX SDFIX
FI − S SDFI−S

Car 94.28 1.50 92.36 2.32 96.09 1.09

Glass 90.00 4.80 84.07 4.72 90.93 3.08

Iris 95.00 2.90 96.05 2.24 96.05 2.34

Pima 76.90 2.34 78.18 1.91 77.29 2.10

Wine 97.33 2.29 97.77 2.10 97.56 1.95

Yeast 56.66 1.75 51.35 3.36 57.95 1.76

Table 2
Xb results, full combination, and selection-combination strategy

1 2 3 4 5 6 7 8 9 10
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Xb FI−X FI−O
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(a) (b)

Fig. 2. Ten experiences on Grapes data. (a) The accuracy of individual of X (box-
plot), the Xb (circle) and the selection S-FI combination accuracy (triangle); (b)
Comparison of Xb, total combination (FI-X), and selection S-FI combination (FI-O)

Fig. 2 (a) shows on each one of the ten experiment the performance di-
versity among classifiers of X, and the comparison among the best classifier
and the selection-combination strategy by Sugeno FI. Fig. 2 (b) summa-
rizes the Xb, the complete combination of X, and the selection-combination
strategy performance.

Dataset Xb SDb FIX SDFIX
S − FI SDS−FI

Grapes 72.00 5.03 74.00 2.16 76.4 2.88

Table 3
Xb results, full combination, and selection-combination strategy for grapes dataset

Tables 2 and 3 summarize the validation results. First columns are the per-
formance of Xb and its standard deviation (Xb, SDb), and last ones are the
performance with Sugeno fuzzy integral (FI-S, SDFI−S).

Let us underline the two types of improvements due to the combination: the
mean value of classification accuracy, and its concentration. As a result, the
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combination is more robust than any single classifier.

Overall, the proposed method outperform the Xb. In addition, we should note
that the generated population has classifiers which are near to the maximum
rate of classification. As expected, improvements seem to be slighted when the
best classifier is extremely good. However, when Xb is far to the maximum
accuracy, the effectiveness of collective analyze increase its chances.

4 Conclusions

Aiming the practical FI combination, an efficient selection-combination strat-
egy was proposed. We consider the problem of an efficient and effective decision
making from a given population of classifiers. The efficiency was achieved by
means of greedy algorithms which reduce the initial aggregation complexity
to a selection of an effective subset for its posterior combination. The effective
solution is attained thanks to a heuristic search that takes into account the
fuzzy integral behavior.

The effectiveness was proved on benchamark and a real dataset. Experimental
results suggest that this methodology is particular well-suited when best clas-
sifiers are far to the maximum accuracy, and so, the collective analyses have
more chances of enhancement. Particularly, the improvement on the grapes
dataset is achieved from individuals with a large proportion of errors, but its
complementary errors per classes is well profited by the FI.
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