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Abstract

Gu et al. in [Inform. Process. Lett. 134 (2018) 52–56] conjectured that

the data center network Dk,n is vertex-transitive for all k ≥ 0 and n ≥ 2. In

this paper, we show that Dk,n is vertex-transitive for k ≤ 1 and n ≥ 2, and it

is not vertex-transitive for all k ≥ 2 and n ≥ 2.
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1. Introduction

Data centers are crucial to the business of companies such as Amazon, Google

and Microsoft. Data centers with tens of thousands servers were built to offer

increasingly popular on-line applications such as web search, email, cloud storage,

on-line gaming, etc. Guo et al. [3] proposed the data center networks, briefly say

DCell, Dk,n for parallel computing systems, which has numerous favourable features

for data center networking. In DCell, a large number of servers are connected by

high-speed links and switches, providing much higher network capacity compared

the tree-based.

In many situations, as it often simplifies the computation and routing algorithms,

parallel interconnect of high symmetry is highly desirable. To deal with the sym-

metry of a graph, the aim is to obtain as much information as possible about the
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symmetric property of the graph. Gu et al. [2] showed that Dk,n (k ≥ 0, n ≥ 2) is

not edge transitive except the cases of k = 0 and k = 1, n = 2. In the same paper,

by several base cases of Dk,n, they conjectured the following:

Conjecture 1. Dk,n is vertex-transitive for all k ≥ 0 and n ≥ 2.

We solve this conjecture in this paper.

The rest of this paper is organized as follows. In Section 2, some notations and

the definitions of Dcell are presented. The main results of this paper are shown in

Section 3.

2. Preliminaries

Let G = (V (G), E(G)) be a graph, where V (G) is vertex-set of G and E(G)

is edge-set of G. The number of vertices of G is denoted by |G|. A path P =

〈x0, x1, · · · , xk〉 in G is a sequence of distinct vertices so that there is an edge joining

consecutive vertices. If a path C = 〈x0, x1, · · · , xk〉 is such that k ≥ 3, x0 = xk,

then C is said to be a cycle, and the length of C is the number of edges contained

in C. For other standard graph notations not defined here please refer to [1].

In what follows, we shall present the definition of the DCell.

Definition 1. [4] A k level DCell for each k and some global constant n, denoted

by Dk,n, is recursively defined as follows. Let D0,n be the complete graph Kn and let

tk,n be the number of vertices in Dk,n. For k ≥ 1, Dk,n is constructed from tk−1,n+1

disjoint copies of Dk−1,n, where D
i
k−1,n denotes the ith copy. Each pair of Da

k−1,n

and Db
k−1,n (a < b) is joined by a unique k level edge below.

A vertex ofDi
k−1,n is labeled by (i, ak−1, · · · , a0), where k ≥ 1 and a0 ∈ {0, 1, · · · ,

n − 1}. The suffix (aj , aj−1, · · · , a0), of a vertex v, has the unique uidj, given by

uidj(v) = a0 +
∑j

l=1(altl−1,n). The vertex uidk−1 b − 1 of Da
k−1,n is connected to

uidk−1 a of Db
k−1,n.

By definition above, it is obvious that D0,2 is an edge, D0,3 is a triangle and D1,2

is a 6-cycle. Several Dk,n with small parameters k and n are illustrated in Fig. 1.

The edge between Da
k−1,n and Db

k−1,n is said to be a level k edge. For convenience,

let Ek denote the set of all level k edges of Dk,n.
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Fig. 1. Some small DCells.

3. Main results

Since D0,n is isomorphic to the complete graph Kn, it is vertex-transitive for all

n ≥ 2. In what follows, we shall consider the vertex-transitivity of D1,n for all n ≥ 2.

Toward this end, we prove the following theorem which is clearly stronger than

the above and so implies the result. Let H be the graph containing n + 1 disjoint

copies of the complete graph Kn, n ≥ 2, for convenience, denoted by Ki
n, i ∈

{0, 1, · · · , n}. There is exact one edge between any two copies of Ki
n, which implies

that each vertex in Ki
n has exact one neighbor not in Ki

n.

Theorem 2. H is vertex-transitive for all n ≥ 2.

Proof. Our aim is to show that for any two vertices u, v ∈ V (H), there exists an

automorphism of H that maps u to v. By the definition H , we know that H consists

of n + 1 copies of Kn and each pairs of distinct Kns is connected by an edge. For

convenience, the vertices of H are labeled as (i, j), 0 ≤ i ≤ n, 0 ≤ j ≤ n− 1, where

i means vertices in Ki
n. Suppose without loss of generality that u = (i1, j1) and

v = (i2, j2). We consider the following two cases.

Case 1. i1 6= i2. Then u and v lie in Ki1
n and Ki2

n , respectively.

Case 1.1. uv ∈ E(H). We define a map f : V (Ki1
n ) → V (Ki2

n ) as follows, (1)

f(u) = v; (2) if x ∈ V (Ki1
n ) and y ∈ V (Ki2

n ) have neighbors in the same Kj
n
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(j 6= i1, i2), respectively, let f(x) = y. Thus, we can obtain a permutation ϕ that

swaps vertices ofKi1
n with that ofKi2

n under f , and fixes other vertices in H . Clearly,

ϕ preserves adjacency of H , indicating that H is an automorphism with ϕ(u) = v.

Case 1.2. uv 6∈ E(H). Let u′ (resp. v′) be a neighbor of u (resp. v) not in Ki1
n

(resp. Ki2
n ). By definition of H , there are three cases of relative positions of u′ and

v′.

Case 1.2.1. u′ ∈ V (Ki2
n ) and v′ ∈ V (Ki3

n ) (i3 6= i1, i2). There exists an edge

w′w between Ki1
n and Ki3

n , where w
′ ∈ V (Ki1

n ) and w ∈ V (Ki3
n ). Clearly, w 6= v′

and w′ 6= u. We define an automorphism ϕ such that, (1) u → v → w → u and

u′ → v′ → w′ → u′; (2) if x1 ∈ V (Ki1
n ), x2 ∈ V (Ki2

n ) and x3 ∈ V (Ki3
n ) have neighbors

y1, y2 and y3 in the same Kj
n (j 6= i1, i2, i3), respectively, then x1 → x2 → x3 → x1

and y1 → y2 → y3 → y1; (3) ϕ fixes other vertices in H . Obviously, ϕ preserves

adjacency of H such that ϕ(u) = v.

Case 1.2.2. u′, v′ ∈ V (Ki3
n ) (i3 6= i1, i2). Then there exists an edge ww′ between

Ki1
n and Ki2

n , where w ∈ V (Ki1
n ) and w′ ∈ V (Ki2

n ). Clearly, w 6= u and w′ 6= v.

There exists an automorphism ϕ such that, (1) ϕ(u) = v, ϕ(w) = w′ and ϕ(u′) = v′;

(2) if x1 ∈ V (Ki1
n ) and y1 ∈ V (Ki2

n ) have neighbors in the same Kj
n (j 6= i1, i2, i3),

respectively, then ϕ(x1) = y1; (3) ϕ fixes all other vertices. Obviously, ϕ preserves

adjacency of H such that ϕ(u) = v.

Case 1.2.3. u′ ∈ V (Ki4
n ) and v′ ∈ V (Ki3

n ). (i3, i4 6= i1, i2). Then there exists an

edge ww′ from Ki1
n to Ki2

n . Similarly, there exist an edge w′
1w1 from Ki4

n to Ki3
n ,

an edge u1u
′
1 from Ki1

n to Ki3
n , and an edge v1v

′
1 from Ki2

n to Ki4
n . There exists

an automorphism ϕ such that, (1) ϕ(u) = v, ϕ(w) = w′, ϕ(u′) = v′, ϕ(w′
1) = w1,

ϕ(u1) = v1 and ϕ(u′1) = v′1; (2) if x1 ∈ V (Ki1
n ), x2 ∈ V (Ki2

n ), x3 ∈ V (Ki3
n ) and

x4 ∈ V (Ki4
n ) have neighbors y1, y2, y3 and y4 in the same Kj

n (j 6= i1, i2, i3, i4),

respectively, then ϕ(x1) = x2, ϕ(x3) = x4, ϕ(y1) = y2 and ϕ(y3) = y4. Moreover, let

ϕ fix other vertices in H . Obviously, ϕ preserves adjacency of H such that ϕ(u) = v.

Case 2. i1 = i2. Then u and v lie in Ki1
n . We first choose a permutation P on

vertices of Ki1
n such that P swaps u with v and fixes other vertices in Ki1

n . Let

u1 = (i3, j3) and v1 = (i4, j4) be neighbors of u and v not in Ki1
n , respectively.

Clearly, i3 6= i4. We define a map f : V (Ki3
n ) → V (Ki4

n ) as follows, (1) f(u1) = v1;

(2) if x ∈ V (Ki3
n ) and y ∈ V (Ki4

n ) have neighbors in the same Kj
n (j 6= i1, i3, i4),

respectively, let f(x) = y; (3) if xy is an edge from Ki3
n to Ki4

n , let f(x) = y.

Obviously, f is a bijection. So, we then swap vertices of Ki3
n with that of Ki4

n under

f . Thus, we can obtain a permutation ψ that swaps u with v in Ki1
n , swaps vertices
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of Ki3
n with that of Ki4

n according to f , and fixes other vertices in H . Clearly, ψ

preserves adjacency of H , indicating that H is an automorphism with ψ(u) = v.

It is obvious that D1,n is a special case of H , so the following corollary is straight-

forward.

Corollary 3. D1,n is vertex-transitive for all n ≥ 2.

Gu et al. (Conclusion in [2]) pointed that D2,2 is vertex-transitive by MAGMA

software. However, this is not true. By detailed computation of MAGMA software,

D2,2 is not vertex-transitive. In fact, (0,2,0) is contained in exact one 6-cycle of

D2,2, namely D0
1,2, while (3,1,1) is contained in at least two 6-cycles, namely D3

1,2

and 〈(3, 1, 1), (3, 1, 0), (2, 1, 0), (2, 1, 1), (4, 1, 0), (4, 1, 1), (3, 1, 1)〉 (see heavy lines in

Fig. 1 (c)). Let u = (0, · · · , 0, 2, 1) be a vertex in Dk,2, based on the fact above, we

have the following lemma.

Lemma 4. u is contained in exact one 6-cycle of Dk,2 for all k ≥ 2.

Proof. We proceed by induction on k. It is known that u is contained in exact one

6-cycle of D2,2, thus, the induction basis holds. We assume that u is contained in

exact one 6-cycle of Dk−1,2 for k ≥ 3. Next we consider Dk,2. Since u ∈ V (D0
k−1,2),

by the induction hypothesis, u is contained in exact one 6-cycle of D0
k−1,2. The

following vertices ui, 0 ≤ i ≤ k, are level i neighbors of u in Dk,2.

u0 = (0, · · · , 0, 2, 0),

u1 = (0, · · · , 0, 1, 1),

u2 = (0, · · · , 0, 6, 0, 0),

u3 = (0, · · · , 6, 0, 0, 0),

· · · · · ·

uk−1 = (0, 6, · · · , 0, 0, 0),

uk = (6, 0, · · · , 0, 0, 0).

Observe that if contract each Dj

k−1,2 (0 ≤ j ≤ |Dk−1,2|) as a single vertex, then

the resulting graph is isomorphic to K|Dk−1,2|+1. To form another 6-cycle C of Dk,2

containing u, by structure of Dk,2, we have |E(C) ∩ Ek| = 3. Thus, uuk ∈ E(C).

Noting uk ∈ D6
k−1,2, then C contains exact one edge in each of D0

k−1,2, D
6
k−1,2. So

exact one of uu0, uu1, · · · , uuk−1 is contained in C. Noting also that there exists

exact one edge between any two distinct Dj

k−1,2s, then each of ui (except uk) has

exact one neighbor ui,k not in D0
k−1,2. Our aim is to verify all possible C containing

exact one of uu0, uu1, · · · , uuk−1. For brevity, we present ui,k as follows.
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u0,k = (5, 0, · · · , 0, 0, 0),

u1,k = (4, 0, · · · , 0, 0, 0),

u2,k = (37, 0, · · · , 0, 0, 0),

u3,k = (253, 0, · · · , 0, 0, 0),

· · · · · ·

uk−1,k = (6× |Dk−2,2|+ 1, 0, · · · , 0, 0, 0).

The edges e6,l between D
6
k−1,2 and D

l
k−1,2 are as follows, where l ∈ {4, 5, · · · , 6×

|Dk−2,2|+ 1}.

e6,4 = (6, 0, · · · , 0, 2, 0)(4, 0, · · · , 0, 2, 1),

e6,5 = (6, 0, · · · , 0, 2, 1)(5, 0, · · · , 0, 2, 1),

e6,37 = (6, 0, · · · , 0, 0, 6, 0, 0)(37, 0, · · · , 0, 1, 0, 0),

e6,253 = (6, 0, · · · , 0, 6, 0, 0, 0)(253, 0, · · · , 0, 1, 0, 0),

· · · · · ·

e6,6×|Dk−1,2|+1 = (6, 6, 0, · · · , 0, 0, 0)(6× |Dk−2,2|+ 1, 0, · · · , 0, 1, 0, 0).

By checking, it is not hard to see that if one of e6,l is contained in C, then C is

not a 6-cycle. Thus, the lemma holds.

Lemma 5. Dk,2 is not vertex-transitive for all k ≥ 2.

Proof. By Lemma 4, it can be known that u = (0, · · · , 0, 0, 2, 1) is contained in

exact one 6-cycle of Dk,2, while v = (0, · · · , 0, 3, 1, 1) is contained in at least two

6-cycles. Thus, the statement follows immediately.

Lemma 6. Dk,n is not vertex-transitive for all k ≥ 2 and n ≥ 3.

Proof. For convenience, we denote the number of 6-cycles containing a vertex v

in Dk,n by ckn(v). Let u = (0, · · · , 0, 0, 0) and v = (0, · · · , 0, 1, 2) be two vertices in

Dk,n. To prove this lemma, we shall show that ckn(u) 6= c1n(u) and ckn(v) = c1n(v)

for all k ≥ 2, which clearly implies that Dk,n is not vertex-transitive. For a given

n ≥ 3, we proceed the lemma by induction on k. We first consider k = 2. So,

at this time, u = (0, 0, 0) and v = (0, 1, 2) are two vertices in D0
1,n of D2,n. Since

D0
1,n

∼= D1,n, noting D1,n is vertex-transitive, we have c1n(u) = c1n(v). Clearly,

C = 〈u, (0, 0, 1), (2, 0, 0), (2, 0, 1), (1, 0, 1), (1, 0, 0), u, 〉 is a 6-cycle in D2,n such that

V (C) 6⊆ V (D0
1,n). Thus, ckn(u) > c1n(u) for all k ≥ 2. It remains to show that

ckn(v) = c1n(v) for all k ≥ 2. We need to show that there exists no 6-cycle C ′ of D2,n

containing v such that V (C ′) 6⊆ V (D0
1,n). Analogous to the proof of Lemma 4, it is

not hard to see that c2n(v) = c1n(v) holds. Thus, the induction basis holds. So we

assume that ck−1
n (v) = c1n(v) for k ≥ 3. Next we consider Dk,n.
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Let vi0, 0 ≤ i ≤ n − 1, i 6= 2, and vj, 1 ≤ j ≤ k, be 0 and j level neighbors of v

in Dk,n, respectively. For convenience, we list them below.

v00 = (0, · · · , 0, 1, 0),

v10 = (0, · · · , 0, 1, 1),

v30 = (0, · · · , 0, 1, 3),

· · · · · ·

vn−1
0 = (0, · · · , 0, 1, n− 1),

v1 = (0, · · · , 0, 3, 1),

v2 = (0, · · · , n+ 3, 0, 0),

· · · · · ·

vk−1 = (0, n+ 3, 0, · · · , 0, 0, 0),

vk = (n+ 3, 0, · · · , 0, 0, 0).

Similarly, to form a 6-cycle C ′ (not a subgraph of D0
k−1,n) of Dk,n containing v,

it is known that |E(C ′) ∩ Ek| = 3. Thus, vvk ∈ E(C ′). Noting that vk ∈ Dn+3
k−1,n,

then C ′ contains exact one edge of each of D0
k−1,n and Dn+3

k−1,n. So exact one of vvi0
and vvj is contained in C ′. Noting also that there exists exact one edge between

any two distinct Dk−1,ns in Dk,n, then each of vi0 and vj has exact one neighbor v
i
0,k

and vj,k not in D0
k−1,n, respectively. In what follows, we shall verify if there possibly

exists such a 6-cycle C ′. For brevity, we present ui0,k and vj,k as follows.

v00,k = (n+ 1, 0, · · · , 0),

v10,k = (n+ 2, 0, · · · , 0),

v30,k = (n+ 4, 0, · · · , 0),

· · · · · ·

vn−1
0,k = (2n, 0, · · · , 0),

v1,k = (3n+ 2, 0, · · · , 0),

v2,k = (n(n+ 1)(n+ 3) + 1, 0, · · · , 0),

· · · · · ·

vk−1,k = ((n + 3)|Dk−2,n|+ 1, 0, · · · , 0).

The edges en+3,l between Dn+3
k−1,n and Dl

1,n are as follows, where l ∈ {n + 1, n +

2, n+ 4, · · · , 2n} ∪ {3n+ 2, n(n+ 1)(n+ 3) + 1, · · · , (n+ 3)|Dk−2,n|+ 1}.

en+3,n+1 = (n+ 3, 0, · · · , 0, 1, 1)(n+ 1, 0, · · · , 0, 1, 2),

en+3,n+2 = (n+ 3, 0, · · · , 0, 1, 2)(n+ 2, 0, · · · , 0, 1, 2),

en+3,n+4 = (n+ 3, 0, · · · , 0, 1, 3)(n+ 4, 0, · · · , 0, 1, 3),

· · · · · ·

en+3,2n = (n + 3, 0, · · · , 0, 1, n− 1)(2n, 0, · · · , 0, 1, 3),
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en+3,3n+2 = (n + 3, 0, · · · , 0, 3, 1)(3n+ 2, 0, · · · , 0, 1, 3).

en+3,n(n+1)(n+3)+1 = (n+3, 0, · · · , 0, n+3, 0, 0)(n(n+1)(n+3)+1, 0, · · · , 0, 1, 3),

· · · · · ·

en+3,(n+3)|Dk−2,n|+1 = (n+3, n+3, 0, · · · , 0, 0, 0)((n+3)|Dk−2,n|+1, 0, · · · , 0, 1, 3).

By checking, it is not hard to see that if one of en+3,l is contained in C ′, then

C ′ is not a 6-cycle, which implies that ckn(v) = c1n(v). (Noting that when n = 3,

the last two coordinates of vertices with (∗,1,3) will degenerated to (∗,2,2), where

“∗” denotes the first coordinate. The statement is also true.) Thus, the lemma

holds.

Combining Lemmas 5 and 6, the following theorem is straightforward.

Theorem 7. Dk,n is not vertex-transitive for all k ≥ 2 and n ≥ 2.
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