
Fast Analysis of Molecular Dynamics Trajectories with Graphics
Processing Units—Radial Distribution Function Histogramming

Benjamin G. Levinea,1, John E. Stoneb,1, and Axel Kohlmeyera

a Institute for Computational Molecular Science and Department of Chemistry, Temple University,
Philadelphia, PA
b Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL

Abstract
The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is
a common and computationally expensive analysis task. The rate limiting step in the calculation of
the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here
we present an implementation of this histogramming scheme for multiple graphics processing
units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest
levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on
heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented,
utilizing the specific hardware features found on different generations of GPUs. We take
advantage of larger shared memory and atomic memory operations available on state-of-the-art
GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast,
limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase
in performance compared to the version of the algorithm without atomic operations. The ultimate
version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs
was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon
5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms
each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here
are implemented in VMD, a widely used and freely available software package for molecular
dynamics visualization and analysis.

Keywords
pair distribution function; two-point correlation function; GPGPU

1. Introduction
The increase in available computing power in recent years has been a boon for
computational chemists wishing to simulate larger systems over longer timescales, but the
ability to create massive quantities of molecular dynamics trajectory data also creates
difficulties. Without advanced data analysis software, computationally expensive analysis

© 2011 Elsevier Inc. All rights reserved.
Correspondence to: Benjamin G. Levine.
1B.G.L. and J.E.S. contributed equally to this work.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Comput Phys. Author manuscript; available in PMC 2012 May 1.

Published in final edited form as:
J Comput Phys. 2011 May 1; 230(9): 3556–3569. doi:10.1016/j.jcp.2011.01.048.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

tasks can become a bottleneck in the discovery process. One such task is the calculation of
the radial distribution function (RDF).

The RDF is an important measure of the structure of condensed matter for several reasons.
Radial distribution functions can be determined both experimentally and from simulation,
allowing direct comparison. In addition, all thermodynamic quantities can be derived from
an RDF under the assumption of a pair-wise additive potential energy function [1, 2]. The
RDF has long been applied as a descriptor of the structure of liquids such as water [3, 4, 5,
6], and though they can be very computationally expensive to calculate, RDFs derived from
large-scale molecular dynamics (MD) simulations have been useful in a wide range of
applications. For example, Kadau and coworkers investigated shock wave induced phase
transitions in metals using radial distribution functions calculated from simulations of
systems with 8 million atoms [7]. Radial distribution functions calculated from systems of
several hundred thousand to one million atoms have also been useful in studies of radiation
damage in nuclear waste [8] and long-range order in self-assembled alkanethiol monolayers
[9]. The RDF is also widely used in astrophysics, where stars replace atoms and the function
is typically known as the two-point correlation function [10].

Massive molecular dynamics simulations like those cited above were once unusual, but now
are becoming common. The extreme computational expense of data analysis of this type
requires that we bring to bear computers as powerful as those used to run production
simulations. Sometimes it is surprising which hardware offers the greatest performance to
scientists, though. The introduction of the Beowulf cluster marked an important change in
high performance computing [11]. Unlike previous high performance computers which were
based on expensive, proprietary hardware, Beowulf clusters utilized inexpensive personal
computers and commodity server hardware in large quantities to perform scientific tasks.
Beowulf clusters soon became the standard in high performance computing because
commodity hardware provided more computation per dollar spent than did the more
expensive proprietary alternatives.

Recently the computer game market has driven the development of graphics processing
units (GPUs) which provide much faster floating point performance than a typical CPU at a
comparable price. As such they have been receiving a great deal of attention from scientists
wishing to accelerate their applications [12]. Making use of massively parallel processors
and high bandwidth memory systems, GPUs have already been applied to accelerate a wide
variety of methods in computational chemistry and biomolecular simulation [13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. The first generation of
large scale heterogeneous clusters based on highly parallel commodity processors are
already online—e.g. Los Alamos National Laboratory’s Roadrunner [35], the National
Center for Supercomputer Applications’ Lincoln [36], and Texas Advanced Computing
Center’s Longhorn [37]—and three GPU-based clusters are now among the ten fastest
supercomputers in the world, with the top place currently held by a GPU-based cluster [38].
With additional large-scale GPU-based clusters planned [39], it appears that technology
developed for the gaming market will increase the capability of available scientific
computing resources dramatically.

One of the most attractive features of GPUs, however, is that they are already present in a
typical desktop workstation where they accelerate visualization software. As such, it is
natural to employ them not only to speed up large scale simulations, but also time
consuming data analysis tasks which a scientist would typically perform on their local
desktop machine. By executing such tasks on GPUs one accelerates the discovery process;
data analysis that used to require a cluster can be run on a desktop, and time consuming
tasks formerly run only in batch mode can be performed interactively.

Levine et al. Page 2

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

One example of a visualization and analysis software package for molecular dynamics (MD)
data which has begun to take advantage of GPU acceleration is VMD [40]. Specifically, a
fast implementation of electrostatic and nonbonded force calculations is used to place ions
and calculate time averaged potentials from MD trajectories [28, 41].

In this work we have implemented the calculation of the RDF from molecular dynamics
trajectory data on NVIDIA GPUs into VMD using the CUDA parallel programming
architecture [42]. The computation time of the task, inherent data parallelism, and
opportunity for data reuse make RDF calculation a perfect target for GPU acceleration.
However, the calculation of an RDF requires histogramming, which can be difficult to
parallelize. In section 2 of this paper we define the RDF histogramming problem, describe
the difficulties encountered in developing a parallel implementation, and present our GPU-
accelerated solution. In section 3 we present the results of our optimization and benchmarks
that analyze the performance of our implementation on several generations of NVIDIA GPU
hardware. In section 4 we draw conclusions from our work.

2. Methods
The radial distribution function calculation contains several component algorithm steps. All
of the steps can be formulated as data-parallel algorithms, but the histogramming operations
are more difficult to adapt to the massively parallel architecture of GPUs, and are therefore
the main focus of the discussion. Below we introduce the mathematical basis for computing
radial distribution functions and describe how this relates to a naive serial implementation.
We then describe high performance data-parallel algorithms for the histogram computation
component of RDF calculation on multi-core CPUs and GPUs and the attributes that affect
their performance.

2.1. RDF math and serial histogramming
The radial distribution function, g(r), is defined,

(1)

where r is the distance between a pair of particles, p(r) is the average number of atom pairs
found at a distance between r and r +dr, V is the total volume of the system, and Npairs is the
number of unique pairs of atoms where one atom is from each of two sets (selections), sel1
and sel2. The definition of Npair is given for two special cases by the following equations;
the cases where sel1 = sel2 and where there are no atoms shared between sel1 and sel2 are
given in 2 and 3 respectively.

(2)

(3)

where N1 and N2 are the number of atoms in sel1 and sel2 respectively. Note that the
denominator of 1 is equal to p(r) of an ideal gas.

Levine et al. Page 3

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

In general the average, p(r), is calculated over a thermodynamic ensemble. In the context of
MD simulations, a finite number of frames are chosen from one or more trajectories which
sample the thermodynamic ensemble of interest. Thus, this average takes the form

(4)

where Nframe is the number of frames, rijk is the distance between atom j and atom k for
frame i, and δ is the Dirac delta function. Given that only finite sampling is possible, the
continuous function p(r) is replaced with a histogram on a grid:

(5)

where κ indexes the bins of the histogram and

(6)

where Δr is the width of the bins and rκ is the minimum distance associated with each bin,
given by

(7)

where r0 is the lower bound of the histogram. The summation over κ in 5 can be thought of
as a coarse-grained delta function.

Note that the calculation of the distance, rijk, is complicated by the use of periodic boundary
conditions. Assuming that the upper bound of our histogram is less than or equal to half of
the width of the periodic box, the value of rijk is actually the distance between atom j and the
closest periodic image of atom k. The process of identifying this distance is simplified by re-
imaging all atoms into a single unit cell. The magnitudes of the x component of the shortest
vector connecting atom j to a periodic image atom k, |xijk| can then be identified:

(8)

Where xj and xk are x components of the coordinates of atoms j and k and a is the length of
the periodic box in the x direction. The magnitudes of the y and z components of the
minimum displacement vector are easily generalized from 8, and together these three
magnitudes allow the calculation of the minimum distance:

(9)

Levine et al. Page 4

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

The summation in 5 is the computationally expensive portion of the radial distribution
function calculation, as it requires looping over all selected pairs of atoms in all frames. A
naive, serial implementation would be based on three nested loops; at each iteration the
distance between a pair of atoms is calculated and the appropriate histogram bin is
incremented (updated).

Note that it is possible to significantly improve on the performance of a naive, serial
implementation without resorting to parallel histogramming. In the RDFSOL module
implemented in CHARMM [43], for example, a cutoff and spatial decomposition are
employed to reduce the total cost of the calculations. This approach takes advantage of the
fact that most liquids become unstructured beyond some distance, and thus there is not need
to calculate the distances between blocks of atoms that are more than a user defined cutoff
distance away from one another. Though we have not employed this strategy in the current
work, we intend to implement this strategy in conjunction with GPU-acceleration in the
future, taking advantage of spatial decomposition techniques previously developed for fast
GPU-accelerated electrostatics calculations in VMD [41].

2.2. Parallel RDF histogramming
Many of the difficulties which must be overcome in a parallel RDF implementation arise in
implementations for both multi-core CPUs and GPUs. As described above, a serial RDF
implementation involves two main calculations, the computation of atom pair distances, and
the insertion of the computed pair distances into a histogram by incrementing the
appropriate histogram bin counter for each pair distance. The pair distance computation is
inherently parallelizable since each combination of atom pairs can be considered
independently and atomic coordinates may be treated as read-only data that can be shared or
replicated among cooperating processors as needed.

The main complication in parallelizing RDF calculation arises in the histogram update step.
In a serial implementation, the histogram bins are usually updated with a simple fetch-
increment-store approach, where the counters associated with each histogram bin are
directly incremented as pair distances are processed. Although this approach is trivial to
implement for a serial implementation, the scattered memory updates present problems for
parallel implementations due to the potential for counter update conflicts. In general, such
scatter operations are often converted into either some form of data-parallel atomic
increment or scatter-add operation, or gather operations wherein histogram bins gather their
counts by reading the same input values but only incrementing their local counter as
appropriate.

Since a single histogram results from the entire RDF computation, a parallel implementation
may take one of three main approaches. The first approach consists of updating a single
histogram instance in parallel, through close coordination between processing units or by
updating histogram bin counters with special scatter-add or other atomic update hardware
instructions [44, 45, 46]. The second approach, privatization, consists of maintaining
multiple independent histogram instances, each updated by a single processing unit,
followed by a parallel reduction of independent histograms into a single resulting histogram.
A third approach uses a hybrid of the first two approaches, wherein tightly-coupled groups
of processing units update a shared histogram, with many such groups independently
updating their own histograms followed by a global parallel reduction for the final resulting
histogram. Of these variations, the specific approach or hybrid that yields the best
performance depends greatly on the number of processing units performing the parallel RDF
calculation, the availability and performance of hardware instructions for scatter-add or
atomic increment operations, and the speed and capacity of fast on-chip memory or caches
to hold histogram instances.

Levine et al. Page 5

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2.3. CPU parallel RDF histogramming
Before discussing the GPU implementation of the RDF, it is instructive to consider the
details of the reference implementation for multi-core CPUs. Most modern CPUs provide
some form of SIMD instruction set extensions for acceleration of data-parallel workloads
associated with interactive graphics and multimedia applications. For example, recent x86
CPUs support MMX and SSE instructions that operate on four-element vectors of 32-bit
integers and single-precision floating point data. Although these instructions can be
effectively employed to improve the performance of the atom pair distance portion of the
RDF computation, they currently do not provide the necessary hardware instructions needed
for parallel histogram updates [45, 46].

Given the limited applicability of the x86 CPU SIMD instructions for accelerating the
histogram update, the main remaining opportunity for parallelism then comes from the use
of multithreading on multi-core processors, and from approaches based on distributed
memory message passing on HPC clusters. Since state-of-the-art CPUs contain a modest
number of cores, an efficient multithreaded RDF implementation can be created by
maintaining independent (privatized) histogram instances associated with each CPU worker
thread and gathering the independent histogram results into a final histogram at the end of
the calculation. In such an implementation the atom coordinates can be treated as read-only
data and shared among all of the threads, promoting efficient use of CPU caches. In a
distributed memory cluster scenario, a similar strategy may be used, but with atomic
coordinate data being replicated as-needed among nodes in the cluster. Individual cluster
nodes may employ multi-core CPUs using the multithreaded approach above for intra-node
CPU cores, performing a second level parallel reduction or gather operation to compute the
final histogram from the independent histogram instances computed locally on each node.

2.4. GPU parallel RDF histogramming
There are a number of competing issues involved in achieving the best performance for
GPU-accelerated RDF calculations. Depending on the parameters of the RDF calculation,
the hardware capabilities of the target GPU devices, and the number of devices to be used,
one may employ one of a number of strategies for decomposing the problem and balancing
the workload across the available GPUs. Below we describe the trade-offs involved, and the
solutions we employ in each case.

2.4.1. GPU RDF parallel decomposition strategies—The key to achieving maximum
performance on the GPU is to decompose the problem into thousands or millions of
independent threads in such a way as to make efficient use of the GPU’s many
multiprocessors. A CUDA kernel is executed by a large number of threads. These threads
are grouped into user defined thread blocks which share a fast, on-chip memory space
known as shared memory. Though each thread in the block accesses the same shared
memory, a full block of threads does not run concurrently; instead, blocks are divided into
warps, each of which contains 32 threads that run concurrently.

The GPU is composed of several multiprocessors. Each multiprocessor can process one or
two instructions for one warp at a time. However, each multiprocessor is occupied by
several warps simultaneously. A single warp will run until it reaches a point where an access
to the slow, off-chip global device memory is required. At this point the data is requested
from device memory and the multiprocessor switches to process another warp while the data
is retrieved. The multiprocessor is idle only if all warps assigned to it are waiting for data
from device memory at the same time. Thus, reducing the number of accesses to device
memory reduces the probability that a multiprocessor is idle waiting on memory accesses,
and therefore increases performance.

Levine et al. Page 6

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

In the case of our RDF algorithm (the performance-critical portion of which is represented
in Fig. 1), this is achieved by maximizing the reuse of data in fast, on-chip memory. Our
strategy is similar in spirit to the cache- [47, 48, 49] and register-level [50] tiling schemes
employed in the optimization of other algorithms that benefit from data reuse, such as
matrix-matrix multiplication.

Before considering the algorithm itself we describe how atom coordinates and histogram bin
counters are divided into tiles, and which GPU memory system they are stored in. The
distribution of sel1, sel2, and histogram data is illustrated in Fig. 2. To calculate each
histogram point (an element of the summation in 5) we need access to the Cartesian
coordinates of one atom from sel1 and one from sel2. We use two different tiers of the GPU
memory hierarchy to minimize the cost of loading this data from device memory. We
choose to store sel1 in constant memory. Constant memory is a segment of device memory
which is associated with a fast, read-only on-chip cache. Reading from constant memory is
as fast as from registers so long as the requested data is in cache and all threads in the warp
access the same address. Constant memory is limited, so we must divide the coordinate data
of sel1 into tiles of Nconst atoms which approximately fill it (Nconst ≈ 5,000 for the standard
64 kB of constant memory) and operate on these tiles one at a time. By accessing sel1
contiguously we make optimal use of the cache and therefore must read from device
memory only once per cache line. Because constant memory is read-only from the point of
view of the compute kernel, control must be returned to the CPU to reload constant memory
after each tile is processed. The most recent Fermi generation of NVIDIA GPUs provide an
L1 cache for both read and write accesses to global memory. The Fermi L1 cache could in
principle be used in a manner similar to our use of constant memory above, but without the
need for the host to load individual tiles. This approach could be advantageous in cases
where the host CPU is otherwise occupied or constant memory is needed for another
purpose such as storage of spatial decomposition lookup tables [41].

We handle sel2 differently, but the goal is the same—to minimize accesses to slow off-chip
device memory. Before building the histograms, sel2 is loaded in its entirety into global
memory, the slow device memory space which on all but the most recent GPU devices is not
associated with a cache. Rather than relying on a cache, the atoms in sel2 are divided into
tiles which are loaded into fast on-chip shared memory. Data in a shared memory can be
accessed close to the speed of registers so long as there are no bank conflicts. Shared
memory bank conflicts are trivially avoided in our implementation. Each tile contains Nblock
atoms, where Nblock is a parameter defining the number of threads in a thread block. For
each such tile the algorithm will loop over all Nconst elements in the current tile of sel1.
Thus, NconstNblock atom pairs can be processed after only a single load operation from global
memory for sel2.

A second, higher, level of tiling is also used for sel2. This second tiling scheme is not
intended to improve performance, but instead to avoid integer overflow of histogram bins
when a large number of atoms (over 60,000 in the current implementation) are present.
These larger tiles are termed overflow tiles in Fig. 1. The size of the overflow tiles is
selected such that a bin will not overflow even if all atom pairs in the selection fall into the
same bin. It is important to note that these overflow tiles do not reflect a separate location in
memory, but are reflected in the loop structure of the code. The possibility of a histogram
bin overflow is eliminated by processing only a single overflow tile at a time.

Because histogram data is accessed at each iteration it is also advantageous to store it in fast
on-chip memory. Thus each histogram bin is stored in shared memory as a 32-bit unsigned
integer. The limited shared memory capacity and large number of processor cores make it
impossible for each thread to maintain its own instance of the histogram, as was described

Levine et al. Page 7

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

above for the parallel CPU implementation. Instead, a hybrid approach is employed where
groups of threads cooperatively operate on shared histogram instances, and the histogram
instances produced by different groups are summed at the end of the calculation to produce
the final result. In addition, it is only possible to store a segment of Nbin histogram bins in
shared memory at one time. If a histogram larger than Nbin is requested by the user, multiple
passes over all atom pairs are done to build the histogram Nbin at a time, using a gather
approach.

One must take note that each multiprocessor has only a small amount of shared memory,
and therefore the number of thread blocks occupying each multiprocessor depends inversely
on the shared memory requirement of each thread block. To achieve optimal performance, a
delicate balance must be reached between data reuse and the efficient use of limited
resources. As such, below we will describe how we empirically optimized the various
parameters defining the memory usage of our algorithm.

Having described the partitioning of the data to different levels of the GPU memory
hierarchy, it is now possible to describe how the algorithm is structured. For each tile of sel1
the RDF computation proceeds as follows (Fig. 1): The atom coordinate data for the current
tile is loaded into constant memory and a grid of Ngrid thread blocks are launched. Each
thread block loops over a set of tiles of sel2, such that each tile is assigned to one and only
one thread block. At each iteration the coordinates of the atoms in sel2 are loaded into shared
memory. Each thread is assigned its own atom from the tile in shared memory, and it then
loops over all atoms in constant memory, calculating distances and updating the histogram
as necessary. By looping over all atoms in sel1 contiguously, we minimize cache misses and
therefore must read from device memory only once per cache line.

The RDF histogramming kernel described above scales as O(N1 * N2), making it the most
computationally costly portion of the RDF calculation (See Supplementary Table 1 for
details). However, we have written GPU kernels to perform several required pre- and post-
processing tasks to ensure maximum performance. Specifically, we initialize the values of
all histogram bins to zero, re-image all atomic coordinates into a single unit cell, and sum
the many histogram instances into the final histogram in parallel on the GPU, ensuring that
these computationally inexpensive tasks do not become the performance determining step in
extreme cases.

2.4.2. Multi-GPU decomposition and load balancing—The GPU algorithm
described above can be extended to enable concurrent execution on multiple GPUs by
assigning combinations of tiles from sel1 and histogram regions to different GPUs. A
straight forward decomposition across multiple GPUs using only tiles from sel1 frequently
results in an insufficient number of independent work units to effectively utilize and load
balance multiple GPUs. By decomposing over both tiles of sel1 and histogram regions, a
much larger number of work units are available for scheduling. This is particularly helpful in
the case where the pool of available GPUs contain devices with significantly different
performance characteristics. Since each GPU independently computes its own partial
histogram, the final histogram is produced by summing the contributions from each of the
independently computed histograms at the end of the computation.

One of the challenges that arises with the use of multiple GPUs in parallel is additional
overhead associated with per-host-thread CUDA context creation and GPU device binding.
When a host CPU thread first creates a CUDA context and binds to a specific GPU device, a
small 0.1 second delay occurs when binding the host thread to the device. There is also a
potentially much more significant delay—approaching one second—that can occur when the
GPU hardware is brought fully online, particularly in the case of cluster nodes where no

Levine et al. Page 8

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

windowing system or other processes are keeping the GPU in a “ready” state. These delays
are cumulative per-GPU, and are most noticeable on multi-GPU systems that do not have a
windowing system running. In the case of a four-GPU system with no windowing system
running, the time to create a group of four new host threads and attach them to their
respective GPUs can take between 3 and 7 seconds depending on whether the GPU kernel
drivers are fully loaded and the GPUs are in a ready state or not. Subsequent calculations
launching new host threads incur less delay, but the overhead can still be as high as 2–3
seconds each time a newly created group of host threads attaches to the GPUs.

The potential for significant multi-GPU initialization delays on certain hardware
configurations has had a significant impact on the design of the multi-GPU algorithm.
Overhead can be eliminated for all multi-GPU calculations by creating a persistent pool of
host CPU worker threads that remain attached to their respective GPUs for the entire
program run. When host CPU worker threads become idle, they are put to sleep using an
efficient barrier synchronization primitive based on condition variables provided by the
POSIX threads programming interface. Waking the pool of CPU worker threads sleeping on
the barrier synchronization primitive and causing them to begin execution of a new
calculation takes less than 10 microseconds, many orders of magnitude faster than creating a
fresh group of host threads and having them attach to their respective GPUs. The CUDA
GPU management framework implemented in VMD creates a persistent pool of CPU
worker threads and attaches them to their respective GPUs when the program starts. This
pool of worker threads is retained and reused repeatedly until the program exits. Each
execution of the multi-GPU RDF algorithm wakes the thread pool and launches a new
calculation, avoiding all of the overheads associated with initializing and binding to GPU
devices. As soon as the RDF calculation is complete, the CPU worker threads sleep on the
synchronization barrier until they are awoken again, thereby minimizing idle processor load
and idle CPU and GPU power consumption.

2.4.3. GPU parallel histogram updating techniques—The histogram update (the
summation of each histogram point into the histogram) must be implemented carefully. With
hundreds of threads simultaneously calculating histogram points, there is no guarantee that
multiple threads will not attempt to increment the same histogram bin at the same time.
Precautions need to be taken to ensure that these collisions do not result in incorrect results.
In addition, the update must be implemented efficiently because it is usually performed by
every thread for every iteration.

We have implemented the histogram update in two different ways: a general implementation
that runs on any CUDA-capable GPU hardware, and an implementation that takes advantage
of atomic operations to shared memory which are available only on CUDA devices of
compute capability 1.2 (cc1.2) and above.

We will first describe the general implementation, which is based on the method for
simulating atomic updates developed by Shams and Kennedy [51]. Example histogram
codes using this algorithm are available in the CUDA SDK [42]. In this implementation,
each warp is associated with its own copy of the histogram in shared memory. By doing so
we ensure that any two threads that attempt to increment the same bin at the same time are
in the same warp, and therefore are executing the update concurrently.

Absent the availability of an atomic addition operation, we must mimic the functionality of
this hardware feature to prevent data loss. To this end, a thread incrementing a histogram bin
does so in the following steps:

1. The value of the histogram bin is loaded into a register which is local to that thread.

Levine et al. Page 9

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2. The register is incremented.

3. A tag, which is unique to each thread of the warp, is written to the most significant
bits of the register.

4. The thread writes the value of the register, including the tag, back to the histogram
bin in shared memory from which it came. If multiple threads attempt to write to
the same bin at the same time only a single thread will succeed.

5. Each thread reads the value of the histogram bin again. If the value of the histogram
bin matches the value of the register then the update was successful and the thread
is done with the update. If not, the thread returns to step 1 and tries again.

In this way the code loops until all threads have successfully updated the histogram bin.

The compute capability 1.2 implementation is much simpler. In CUDA devices of capability
1.2 and higher an atomic add instruction is available. This instruction adds directly to shared
memory in an atomic fashion, thus eliminating the need for the complicated update scheme
described above. In addition, it allows us to reduce our total shared memory usage by
creating a single copy of the histogram in shared memory per thread block, rather than per
warp as is required by the general scheme.

2.5. Performance analysis and parameter optimization
Below we present an analysis of the performance of the RDF histogramming code as a
function of the problem size (sel1, sel2, and Nhist). In all cases an equilibrated water box
containing 4,741,632 water molecules is used as the test case. Smaller test cases are created
by selecting a subset of these water molecules. These selections are chosen such that the
molecules are physically near one another to ensure that the measured performance
corresponds to that of a dense system. The reported times correspond to the entire RDF
histogramming procedure, including the initial transfer of data to the GPU from main
memory and the retrieval of the final result from the GPU to main memory.

The tiling scheme involves four parameters which can be tuned to achieve optimum
performance–Nblock, Nbin, Nconst, and Ngrid–all of which are described above. A number of
four-dimensional scans over a wide range of possible values for these parameters were
performed in order to identify optimal parameter sets for a variety of hardware
configurations and problem sizes. In addition, we have analyzed the performance of the code
as a function of these tiling parameters. The full range of these scans is described in the
supplementary information.

A number of hardware configurations were employed in our testing:

1. Two NVIDIA Tesla GPU processors (S1070) on a single node of NCSA’s Lincoln
GPU-accelerated cluster [36]. Compiled with CUDA 3.0. (Hereafter this
configuration is referred to as “2×Tesla”.)

2. A heterogeneous configuration of five NVIDIA Tesla processors (4 from a single
S1070 + 1 C1060) and a GTX 285. Compiled with CUDA 3.0. (Hereafter this
configuration is referred to as “5×Tesla + GTX 285” or “6×G200”.)

3. Four NVIDIA C2050 (Fermi) GPU processors. Compiled with CUDA 3.0.
(Hereafter this configuration is referred to as “4×C2050”.)

4. Four NVIDIA GTX480 (Fermi) GPU processors. Compiled with CUDA 3.0.
(Hereafter this configuration is referred to as “4×GTX480”.)

Levine et al. Page 10

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We will hereafter use the term Tesla to refer to a single C1060 card or a single processor of
a S1070, since their technical specifications are equivalent. All other processors will be
referred to by their model number or by the more general designations G200 for Tesla and
GTX 285 cards and G400 for the C2050 and GTX480.

3. Results and Discussion
Below we provide a discussion of performance results scanning over a wide range of tiling
parameters, and the variation in performance according to problem size and algorithm on
several GPU hardware generations. Finally, we present performance results for multiple-
GPU calculations, and analyze the effectiveness of our dynamic load balancing technique on
multiple GPU hardware generations.

3.1. Tiling parameter optimization and analysis
Four tiling parameter sets were developed to provide optimal performance under different
conditions. These conditions are presented in Tab. 1. The tiling parameter sets themselves
are presented in Tab. 2. Three sets (cc1.0_8192, cc1.2_8192_a, and cc1.2_1024_a) were
optimized on the 2×Tesla hardware configuration for use with G200 and older generations
of GPUs, while the remaining was optimized on the 4×C2050 machine for use with G400
series GPUs. The optimization of these sets were performed with different histogram sizes
(either 8,192 or 1,024 bins) and taking advantage of different hardware features (size of
shared memory, atomic operations). The abbreviations of the parameter sets indicate the
compute capability required to provide the features used in their optimization (ccx.y)
followed by the number of histogram bins for which these parameters are optimal. The _a
suffix is appended if atomic memory operations where used.

The dependence of the performance of the code on Nblock and Nbin is shown in Fig. 3. Fig.
3a and b show the performance over a range of values of Nblock (keeping all other
parameters constant at their optimized values). As described above, the size of the thread
block is defined by Nblock; in addition the amount of shared memory allocated to store
histogram and atom coordinate data is related to Nblock. Remember that for the general (non-
atomic) histogramming algorithm, which is employed in cc1.0_8192 but not the other three
sets, one instance of the histogram must be stored in shared memory for every warp in the
thread block. Thus for cc1.0_8192 the amount of shared memory required per block scales
dramatically with the increase in Nblock. In fact, there is not enough shared memory to run
with Nblock > 96. The optimum balance between data reuse and efficient use of shared
memory occurs at Nblock = 32, with Nblock = 96 providing similar performance.

The situation is different when atomic operations are used, as in cc1.2_8192_a, because only
a single instance of the histogram need be stored in shared memory for the entire thread
block. Thus, the scaling of the required shared memory with Nblock is much less severe. As
such, the best performance is achieved at a much larger value of Nblock, 320, above which
there is not enough shared memory to accommodate both the histogram and a tile of
coordinate data. Notice that the each block requires 15.75 kB of shared memory in this case,
which is nearly the full 16 kB available.

Compute capability 2.0 GPUs differ from the previous generation in a number of ways. Of
particular interest for our application is that a cc2.0 GPU has three times more shared
memory available per multiprocessor than does a cc1.2 GPU. Given the the monotonic
increase in performance with Nblock seen above for cc1.2_8192_a, it is not surprising to see
that the cc2.0 optimized parameter sets make use of more shared memory than their cc1.2
counterparts. In fact, optimum performance is reached at Nblock = 896, a number too large to
be used with the limited shared memory of cc1.2 hardware. This improves performance on

Levine et al. Page 11

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

cc2.0 hardware by 31 percent compared to Nblock = 320, the optimum value on cc1.2
hardware. It should be noted that Nblock is limited to 1,024 not by the size of shared memory
but instead by the hard limit of 1,024 threads per block enforced by the CUDA cc2.0
standard.

Plots of the performance as a function of Nbin are shown in Fig. 3c and d. The size of the
histogram segment stored in shared memory is defined by Nbin. If Nbin is less than Nhist then
multiple passes through the atom pairs are required to calculate the full histogram, and the
cost of the calculation increases proportional to the number of passes. However, a large
value of Nbin results in a greater shared memory requirement, which can in turn decrease
occupation and degrade performance. In the case without atomic operations (cc1.0_8192)
the optimal balance is achieved at a relatively low value of 1,024, though performance does
not decrease dramatically at larger values. For cc1.2_8192_a, where atomic operations are
used, a larger value of 3,072 is optimal. This is the largest value for which the there is
enough shared memory to store the histogram. A much larger value of 8,192 is found to be
optimal for cc2.0 hardware. This yields a factor of 2.35 improvement in performance
compared to the cc1.2 optimized value (3,072) run on cc2.0 hardware.

Values of Nconst and Ngrid which give optimum performance are given in Tab. 2, but in all
cases the performance is relatively insensitive to the choice of these parameters in the range
we investigated (see supplementary information). Unlike Nblock and Nbin, the amount of
shared memory required per block does not depend on the choice of Nconst and Ngrid, nor
does the number of accesses to global memory. As such, it is not surprising that their effect
on the performance is small compared to Nblock and Nbin.

The analysis presented here underlines the importance of the efficient use of shared memory
in achieving good performance on the GPU, and that reoptimization of shared memory
usage is a key strategy for porting applications to the new G400 series GPUs.

3.2. Performance benchmarks
The performance of the RDF histogramming code as a function of the number of atoms in
sel1 and sel2 on a variety of hardware configurations is shown in Fig. 4. When not otherwise
noted the optimal parameter sets for the 8,192 bin histogram were used (cc1.2_8192_a on
G200 or cc2.0_8192_a on G400). For comparison we also present the performance of the
multithreaded CPU implementation of RDF histogramming from VMD. The CPU data was
collect on a single Intel X5550 quadcore CPU running at 2.67 GHz. Eight threads were
launched to take advantage of the CPU’s hyperthreading feature.

Five GPU results are presented. The four hardware configurations described above with
their optimal parameter set (cc1.2_8192_a in the case of the G200 hardware and
cc2.0_8192_a for the G400) are presented, as are results for the 2×Tesla hardware
configuration without the benefit of atomic operations (using parameter set cc1.0_8192).

All four GPU configurations are significantly faster than the CPU. Eighty percent of peak
performance is achieved on all four configurations for selections of 200,000 or more atoms.
Note that many of the plotted system sizes were chosen to not be multiples of Nblock or
Nconst to demonstrate that the this implementation handles the edges of the problem
gracefully. The fastest Tesla configuration (6×G200) produces RDFs at a rate of 16.34
billion atom pairs per second (hereafter abbreviated bapps) for the largest test problem
(4,741,632 atoms). This is a factor of 39 faster than the fastest performance recorded on the
CPU (0.42 bapps). The 2×Tesla configuration runs at 5.91 bapps, a factor of fourteen faster
than the fastest CPU performance.

Levine et al. Page 12

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

As discussed above, the absence of atomic operations results in the inefficient use of shared
memory which in turn leads to relatively poor performance. Still, when the 2×Tesla
configuration is run without atomic operations the maximum performance is 1.04 bapps,
twofold better performance than the CPU. However, this is a factor of 5.7 slower than the
same hardware configuration when atomic operations are used.

At 38.47 bapps, the 4×GTX480 hardware configuration provided the fastest results we
observed, with the 4×C2050 hardware just slightly slower at 29.62 bapps. The peak
performance result for the GTX480 hardware is 92 times faster than the CPU result and
more than double the speed of the 6×G200 configuration.

The performance of the various hardware configurations as a function of Nhist (the length of
the desired histogram) is shown in Fig. 5. Note that the performance degrades most slowly
for the 4×C2050 configuration where the largest amount of shared memory is allocated to
histogram storage, and therefore the smallest number of passes over all coordinate data are
required. In fact the performance degrades by only a factor of 7.5 over the range 1000–
50000 bins compared to 17.6 for the 2×Tesla configuration with the use of atomic memory
operations. The performance decreases by a factor of 48.7 over this range in the case where
the least shared memory is applied to store histogram data: the 2×Tesla case where no
atomic operation are used.

The cc1.2_1024_a parameter set, which was optimized for smaller histograms, was also
tested in this context. As seen in Fig. 5, the performance is comparable to cc1.2_8192_a for
the small histograms for which it was optimized. However the performance degrades very
quickly with an increasing number of histogram bins. Despite the fact that a 8192-bin
histogram is larger than is needed for most applications (histograms with hundreds of bins
are typical), there seems to be little benefit to optimizing the tiling parameters for a smaller
number of bins. As cc1.2_1024_a produces performance which is effectively equivalent to
cc1.2_8192_a in the best case and much worse in other cases, we concluded that the
parameter sets optimized for longer histograms are suitable for all histogram lengths.

The scaling of performance with respect to the number of GPUs employed is shown in Fig.
6. Fig. 6a shows the scaling on the 6×G200 machine, measured for the full 4,741,632 atom
system. Nearly perfect linear scaling with the number of processors is observed when
between 1 and 5 Tesla processors are employed.

To test the dynamic load balancing feature of our code we used a set of heterogeneous GPU
configurations incorporating a single GTX 285 GPU with between zero and five Tesla
processors. Note that a single GTX 285 outperforms a single Tesla processor by 37 bapps.
This increase in performance is maintained as additional Tesla processors are employed in
parallel with the GTX 285. In fact, for up to 5 GPUs total, performance is increased by
between 37 and 38 bapps when a single Tesla is replaced by the GTX 285.

The parallel scaling on the 4×C2050 machine operating on the full 4,741,632 atom system is
shown in Fig. 6b. Again, nearly perfect linear scaling is observed.

The parallel efficiency as a function of system size can be seen in Fig. 6c. Three cases are
shown: running on all five Tesla GPUs of the 6×G200 machine, running on only two Tesla
GPUs of the same machine, and running on the entire 4×C2050 machine. When only two
Teslas are employed, greater than 90 percent parallel efficiency is achieved down to the
16,000 atom system. In the 5×Tesla and 4×C2050 cases peak performance is approached
more slowly, with 90 percent parallel efficiency surpassed at approximately 100,000 and
130,000 atoms, respectively.

Levine et al. Page 13

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

4. Conclusions
The large quantity of molecular dynamics data which can be produced on today’s
supercomputers demands that data analysis be performed using optimized software on high-
performance machines as well. In this paper we have presented an implementation of radial
distribution function histogramming for multiple NVIDIA GPUs. The high performance of
this code compared to existing CPU implementations will accelerate the discovery process
by allowing scientists to perform previously cumbersome data analysis tasks in seconds.

This implementation runs on multiple GPUs via a threading scheme with dynamic load
balancing. Near perfect parallel efficiency is observed for both homogeneous and
heterogeneous multi-GPU configurations.

Two different histogramming schemes were employed in our implementations: one that
takes advantage of atomic memory operations, which are available only on NVIDIA GPUs
of compute capability 1.2 or higher, and one which is compatible with all CUDA-capable
GPUs. The scheme based on atomic operations allows a more efficient distribution of shared
memory than does the more general scheme, leading to a factor of 5.7 speedup.

A tiling scheme is employed to maximize the reuse of data in the fast shared memory of the
GPU. The parameters of this tiling scheme are optimized empirically for both NVIDIA
G200 (Tesla) and G400 (Fermi) GPUs. The threefold larger shared memory space of the
G400 generation of GPUs allows for a significant performance increase when compared
with G200. When running on four GTX480 GPUs in parallel we are able to achieve
performance a factor of 92 better than can be achieved by a highly optimized multithreaded
implementation running on four cores of an Intel X5550 CPU. The comparison of the
performance of G400 to G200 and the analysis of the relationship between the tiling
parameters and performance suggest that the hardware parameter limiting the performance
of this histogramming algorithm is the size of the shared memory space.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
This work was supported by the National Institutes of Health under grant P41-RR05969 and by the National
Science Foundation under grant CHE 09-46358. Performance experiments were made possible by a generous
hardware donation by NVIDIA and by the National Science Foundation through TeraGrid resources provided by
the National Center for Supercomputer Applications under grant number TG-MCA93S020. We are very grateful to
Michael Klein and Klaus Schulten for guidance and to David LeBard for many useful discussions.

References
1. Gray, CG.; Gubbins, KE. Theory of Molecular Fluids. Oxford University Press; New York, NY:

1984.
2. McQuarrie, DA. Statistical Mechanics. University Science Books; Sausalito, CA: 2000.
3. Dang L, Rice J, Caldwell J, Kollman P. Ion solvation in polarizable water - molecular-dynamics

simulations. J Am Chem Soc. 1991; 113:2481–2486.
4. Svishchev I, Kusalik P. Structure in liquid water - a study of spatial-distribution functions. J Chem

Phys. 1993; 99:3049–3058.
5. Kohlmeyer A, Witschel W, Spohr E. Long-range structures in bulk water. a molecular dynamics

study. Z Naturforsch. 1997; 52a:432–434.
6. Mark P, Nilsson L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models. J Phys

Chem. 2001; 105A:9954–9960.

Levine et al. Page 14

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

7. Kadau K, Germann TC, Lomdahl PS, Holian BL. Microscopic view of structural phase transitions
induced by shock waves. Science. 2002; 296:1681–1684. [PubMed: 12040192]

8. Ismail AE, Greathouse JA, Crozier PS, Foiles SM. Electron-ion coupling effects on simulations of
radiation damage in pyrochlore waste forms. J Phys: Condens Matter. 2010; 22:225405. [PubMed:
21393744]

9. Vemparala S, Karki BB, Kalia RK, Nakano A, Vashishta P. Large-scale molecular dynamics
simulations of alkanethiol self-assembled monolayers. J Chem Phys. 2004; 121:4323–4330.
[PubMed: 15332982]

10. Liboff RL. Correlation functions in statistical mechanics and astrophysics. Phys Rev A. 1989;
39:4098–4102. [PubMed: 9901734]

11. Sterling, T.; Becker, DJ.; Savarese, D.; Dorband, JE.; Ranawake, UA.; Packer, CV. Beowulf: A
parallel workstation for scientific computation. Proceedings of the 24th International Conference
on Parallel Processing; Boca Raton, FL, USA: CRC Press, Inc; 1995. p. 11-14.

12. Owens JD, Houston M, Luebke D, Green S, Stone JE, Phillips JC. GPU computing. Proc IEEE.
2008; 96:879–899.

13. Anderson AG, Goddard I, WA, Schroder P. Quantum monte carlo on graphical processing units.
Comput Phys Commun. 2007; 177:298–306.

14. Anderson JA, Lorenz CD, Travesset A. General purpose molecular dynamics simulations fully
implemented on graphics processing units. J Comput Science. 2008; 227:5342–5359.

15. Asadchev A, Allada V, Felder J, Bode BM, Gordon MS, Windus TL. Uncontracted Rys quadrature
implementation of up to g functions on graphical processing units. J Chem Theory Comput. 2010;
6:696–704.

16. Bauer BA, Davis JE, Taufer M, Patel S. Molecular dynamics simulations of aqueous ions at the
liquidvapor interface accelerated using graphics processors. J Comput Chem. 2011; 32:375–385.
[PubMed: 20862755]

17. Brown P, Woods C, McIntosh-Smith S, Manby FR. Massively multicore parallelization of Kohn-
Sham theory. J Chem Theory Comput. 2008; 4:1620–1626.

18. Eastman P, Pande VS. Constant constraint matrix approximation: a robust, parallelizable constraint
method for molecular simulations. J Chem Theory Comput. 2010; 6:434–437. [PubMed:
20563234]

19. Elsen, E.; Houston, M.; Vishal, V.; Darve, E.; Hanrahan, P.; Pande, V. N-body simulations on
GPUs. Proc. of the 2006 ACM/IEEE Conference on Supercomputing; Piscataway, NJ, USA: IEEE
Press; 2006.

20. Friedricks MS, Eastman P, Vaidyanathan V, Houston M, LeGrand S, Beberg AL, Ensign DL,
Brums CM, Pande VS. Accelerating molecular dynamics simulatons on graphics processing units.
J Comput Chem. 2009; 30:864–872. [PubMed: 19191337]

21. Harvey MJ, Giupponi G, De Fabritiis G. ACEMD: Accelerating biomolecular dynamics in the
microsecond time scale. J Chem Theory Comput. 2009; 5:1632–1639.

22. Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh ewald method on gpu
hardware. J Chem Theory Comput. 2009; 5:2371–2377.

23. Narumi T, Yasuoka K, Taiji M, Hoefinger S. Current performance gains from utilizing the GPU of
the ASIC MDGRAPE-3 within an enhanced Poisson Boltzmann approach. J Comput Chem. 2009;
30:2351–2357. [PubMed: 19350574]

24. Olivares-Amaya R, Watson MA, Edgar RG, Vogt L, Shao Y, Aspuru-Guzik A. Accelerating
correlated quantum chemistry calculations using graphical processing units and a mixed precision
matrix multiplication library. J Chem Theory Comput. 2010; 6:135–144.

25. Peng, L.; Nomura, K.; Oyakawa, T.; Kalia, RK.; Nakano, A.; Vashishta, P. Parallel lattice
Boltzmann flow simulation on emerging multi-core platforms. 14th International Euro-Par
Conference; Berlin, Germany: Springer-Verlag; 2008. p. 763-777.

26. Phillips, JC.; Stone, JE.; Schulten, K. Adapting a message-driven parallel application to GPU-
accelerated clusters. Proceedings of the 2008 ACM/IEEE Conference on Supercomputing;
Piscataway, NJ, USA: IEEE Press; 2008.

27. Stone, JE.; Saam, J.; Hardy, DJ.; Vandivort, KL.; Hwu, W-MW.; Schulten, K. High performance
computation and interactive display of molecular orbitals on GPUs and multi-core CPUs.

Levine et al. Page 15

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Proceedings of the 2nd Workshop on General-Purpose Processing on Graphics Processing Units,
volume 383 of ACM International Conference Proceeding Series; Washington, DC, USA: ACM;
2009. p. 9-18.

28. Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K. Accelerating molecular
modeling application with graphics processors. J Comput Chem. 2007; 28:2618–2640. [PubMed:
17894371]

29. Sukhwani, B.; Herbordt, MC. GPU acceleration of a production molecular docking code.
Proceedings of the 2nd Workshop on General Purpose Processing on Graphics Processing Units;
Washington, DC, USA: ACM; 2009. p. 19-27.

30. Ufimtsev IS, Martinez TJ. Graphical processing units for quantum chemistry. Comput Sci Eng.
2008; 10:26–34.

31. Ufimtsev IS, Martinez TJ. Quantum chemistry on graphical processing units. 2. direct self-
consistent field implementation. J Chem Theory Comput. 2009; 5:1004–1015.

32. Vogt L, Olivares-Amaya R, Kermes S, Shao Y, Amador-Bedolla C, Aspuru-Guzik A. Accelerating
resolution-of-the-identity second-order Moller-Plesset quantum chemistry calculations with
graphical processing units. J Phys Chem. 2008; 112A:2049–2057.

33. Watson MA, Olivares-Amaya R, Edgar RG, Aspuru-Guzik A. Accelerating correlated quantum
chemistry calculations using graphical processing units. Comput Sci Eng. 2010; 12:40–51.

34. Yasuda K. Accelerating density functional calculations with graphics processing unit. J Chem
Theory Comput. 2008; 4:1230–1236.

35. Barker, KJ.; Davis, K.; Hoisie, A.; Kerbyson, DJ.; Lang, M.; Pakin, S.; Sancho, JC. Entering the
petaflop era: the architecture and performance of Roadrunner. Proceedings of the 2008 ACM/
IEEE conference on Supercomputing; Austin, TX, USA: ACM; 2008. p. 1-11.

36. Intel 64 Tesla linux cluster Lincoln. 2010.
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/

37. Texas Advanced Computing Center: Visualization. 2010.
http://www.tacc.utexas.edu/resources/visualization/

38. June 2010 TOP500 Supercomputing Sites. 2010. http://www.top500.org/lists/2010/06
39. Keeneland. 2010. http://keeneland.gatech.edu/
40. Humphrey W, Dalke A, Schulten K. VMD - Visual Molecular Dynamics. J Mol Graph. 1996;

14:33–38. [PubMed: 8744570]
41. Rodrigues, CI.; Hardy, DJ.; Stone, JE.; Schulten, K.; Hwu, W-MW. GPU acceleration of cutoff

pair potenitals for molecular modeling applications. Proceedings of the 2008 Conference on
Computing Frontiers; New York, NY, USA: ACM; 2008.

42. CUDA Zone. 2010. http://www.nvidia.com/object/cuda_home.html
43. Brooks BR, Brooks CL III, Mackerell AD Jr, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G,

Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J,
Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB,
Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M.
CHARMM: The Biomolecular Simulation Program. J Comput Chem. 2009; 30:1545–1614.
[PubMed: 19444816]

44. Ahn, JH.; Erez, M.; Dally, WJ. Scatter-add in data parallel architectures. HPCA ’05: Proceedings
of the 11th International Symposium on High-Performance Computer Architecture; Washington,
DC, USA: IEEE Computer Society; 2005. p. 132-142.

45. Shahbahrami, A.; Juurlink, BHH.; VS. Simd vectorization of histogram functions. Proceedings of
the 18th IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP07); Piscataway, NJ, USA: IEEE Press; 2007. p. 174-179.

46. Kumar, S.; Kim, D.; Smelyanskiy, M.; Chen, Y-K.; Chhugani, J.; Hughes, CJ.; Kim, C.; Lee, VW.;
Nguyen, AD. Atomic vector operations on chip multiprocessors. ISCA ’08: Proceedings of the
35th Annual International Symposium on Computer Architecture; Washington, DC, USA: IEEE
Computer Society; 2008. p. 441-452.

47. Wolfe, M. Iteration space tiling for memory hierarchies. Proceedings of the 1989 ACM/IEEE
conference on Supercomputing; New York, NY, USA: ACM; 1987. p. 655-664.

48. Boulet P, Darte A, Risset T, Robert Y. (pen)-ultimate tiling? Integration. 1994; 17:33–51.

Levine et al. Page 16

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware/Intel64TeslaCluster/
http://www.tacc.utexas.edu/resources/visualization/
http://www.top500.org/lists/2010/06
http://keeneland.gatech.edu/
http://www.nvidia.com/object/cuda_home.html

49. Coleman, S.; McKinley, KS. Tile size selection using cache organization and data layout.
Proceedings of the Conference on Programming Language Design and Implementation; La Jolla,
CA, USA: ACM Press; 1995.

50. Allan, R.; Kennedy, K. Optimizing Compilers for Modern Architectures. Morgan Kaufmann
Publishers; San Francisco, CA, USA: 2002.

51. Shams, R.; Kennedy, RA. Efficient histogram algorithms for NVIDIA CUDA compatible devices.
Proceedings of the International Conference on Signal Processing and Communications Systems;
Gold Coast, Australia: IEEE; 2007. p. 418-422.

Levine et al. Page 17

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
This pseudocode describes the performance-critical portion of the RDF code. The code of
the various GPU kernels is shaded light blue. The remaining code is executed by the CPU.
The chosen loop structure and distribution of the data to different portions of memory allows
maximum reuse of data between accesses to device memory.

Levine et al. Page 18

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
This illustration depicts the way our implementation of RDF histogramming makes use of
the memory hierarchy of the GPU to store geometric (sel1 and sel2) and histogram data.
Main memory (off-GPU) is shaded red. Constant memory and the constant cache are shaded
dark and light green respectively. Global and shared memory are shaded dark and light blue
respectively. The number of atoms or histogram bins stored at each level of memory is
marked on each piece of memory.

Levine et al. Page 19

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Performance as a function of tiling parameters. Selections of 1,000,000 atoms were
processed on the cc2.0 hardware, while a 200,000 atom test case was used in the other two
cases. All tiling parameters besides the dependent variable are kept constant at their
optimized values. Red, purple, and cyan lines represent the behavior around the
cc2.0_8192_a, cc1.2_8192_a, and cc1.0_8192 parameter sets respectively. This data was
recorded on the machine on which these parameters were optimized. a–b) The performance
as a function of Nblock. When atomic operations are used the performance benefits greatly
from increasing Nblock. c–d) The performance as a function of Nbin. In the cases where
atomic operations are used performance increases linearly with Nbin because increasing Nbin
decreases the number of passes the code must make over all atom pairs. In both scans it can
be seen that the need to store more instances of the histogram data in shared memory in the
absence of atomic operations severely limits performance.

Levine et al. Page 20

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
The performance of the RDF histogramming code as a function of the number of atoms in
sel1 and sel2. A variety of hardware was tested: Orange, red, purple, and blue lines show the
performance of the 4×GTX480, 4×C2050, 6×G200, and 2×Tesla machines, respectively,
with optimal tiling parameters. The cyan line shows the performance of the 2×Tesla
machine without the benefit of atomic memory operations. For comparison, the gray line
indicates the performance of the highly optimized multithreaded implementation of RDF
histogramming in VMD, running 8 threads on a single quadcore Intel Xeon X5550
processor at 2.67 GHz with hyperthreading enabled. In the 4×GTX480 case, the
performance is a factor of 92 faster than the CPU for large selections.

Levine et al. Page 21

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
The performance of the RDF histogramming code as a function of the number of histogram
bins requested by the user. Performance of the 4×C2050 and 2×Tesla machines with optimal
tiling parameters are shown in red and purple respectively. Performance of the 2×Tesla
machine using the cc1.2_1024_a and cc1.0_8192 tiling parameters are shown in blue and
cyan respectively. Selections of 1,000,000 atoms were processed in all cases. The
performance decreases with increasing histogram length in all cases. The rate of the
decrease is inversely proportional to the value of Nbin, with performance of the 4×C2050
machine declining the most slowly.

Levine et al. Page 22

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
a–b) The performance of the RDF histogramming code as a function of the number of GPU
processors employed. In all calculations the full 4,741,632 atom test case was run. a) The
performance of various combinations of processors on the 6×G200 machine. Homogeneous
combinations of Tesla processors are shown in cyan while those configurations containing a
single, faster GTX 285 processor are shown in purple. Note that nearly perfect linear scaling
is achieved in both cases. The GTX 285 performance is 37 bapps faster than that of a Tesla.
Dynamic load balancing allows this performance gain to persist even when the GTX 285 is
run in parallel with five Tesla processors. b) The performance on the 4×C2050 system is
shown in red. Again, nearly perfect linear scaling is observed. c) The parallel efficiency as a
function of the selection size for five Tesla GPUs of the 6×G200 machine (purple), 2×Tesla
GPUs of the same machine (cyan), and the 4×C2050 machine (red). Greater than 90 percent
efficiency is achieved for selection of 100,000 atoms in the five Tesla case, 16,000 atoms in
the 2×Tesla case, and 130,000 in the 4×C2050 case.

Levine et al. Page 23

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Levine et al. Page 24

Table 1

The conditions for which the four tiling parameter sets were optimized are shown below. One general
parameter set was optimized which is capable of running on any NVIDIA GPU hardware (cc1.0_8192). Two
sets were optimized for compute capability 1.2 hardware, taking advantage of atomic memory operations
(Atom. Op.). These parameter sets differ in that their performance was optimized for different numbers of
histogram bins (Nhist). Finally, a parameter set was optimized for compute capability 2.0 hardware, taking
advantage of both atomic memory operations and a larger shared memory (Sh. Mem.) space.

Set Nhist Atom. Op. Sh. Mem.

cc1.0_8192 8192 No 16 kB

cc1.2_8192_a 8192 Yes 16 kB

cc1.2_1024_a 1024 Yes 16 kB

cc2.0_8192_a 8192 Yes 48 kB

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Levine et al. Page 25

Ta
bl

e
2

Th
es

e
til

in
g

pa
ra

m
et

er
 se

ts
 w

er
e

fo
un

d
to

 p
ro

vi
de

 o
pt

im
um

 p
er

fo
rm

an
ce

 u
nd

er
 th

e
co

nd
iti

on
s d

es
cr

ib
ed

 in
 T

ab
. 1

. A
ls

o
pr

es
en

te
d

is
 th

e
am

ou
nt

 o
f s

ha
re

d
m

em
or

y
us

ed
 p

er
 b

lo
ck

 (M
em

./B
.)

fo
r e

ac
h

se
t.

Se
t

N
bl

oc
k

N
bi

n
N

co
ns

t
N

gr
id

M
em

./B
.

cc
1.

0_
81

92
32

10
24

54
40

25
6

4.
38

 k
B

cc
1.

2_
81

92
_a

32
0

30
72

54
40

25
6

15
.7

5
kB

cc
1.

2_
10

24
_a

25
6

10
24

54
40

51
2

7.
00

 k
B

cc
2.

0_
81

92
_a

89
6

81
92

54
40

25
6

42
.5

0
kB

J Comput Phys. Author manuscript; available in PMC 2012 May 1.

