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Abstract
With wide applications, the smoothed particle hydrodynamics method (abbreviated as SPH) has become 

an important numerical tool for solving complex flows, in particular those with a rapidly moving free 
surface. For such problems, the incompressible Smoothed Particle Hydrodynamics (ISPH) has been shown 
to yield better and more stable pressure time histories than the traditional SPH by many papers in literature. 
However, the existing ISPH method directly approximates the second order derivatives of the functions to 
be solved by using the Poisson equation. The order of accuracy of the method becomes low, especially when 
particles are distributed in a disorderly manner, which generally happens for modelling violent water waves.  
This paper introduces a new formulation using the Rankine source solution.  In the new approach to the 
ISPH, the Poisson equation is first transformed into another form that does not include any derivative of the 
functions to be solved, and as a result, does not need to numerically approximate derivatives.  The 
advantage of the new approach without need of numerical approximation of derivatives is obvious, 
potentially leading to a more robust numerical method. The newly formulated method is tested by simulating 
various water waves, and its convergent behaviours are numerically studied in this paper.  Its results are 
compared with experimental data in some cases and reasonably good agreement is achieved.  More 
importantly, numerical results clearly show that the newly developed method does need less number of 
particles and so less computational costs to achieve the similar level of accuracy, or to produce more 
accurate results with the same number of particles compared with the traditional SPH and existing ISPH 
when it is applied to modelling water waves.  
   
Keywords: Meshless method; SPH; ISPH; ISPH_R; Free surface flow; Wave impact; Violent water waves 
 
1. Introduction 
 

Smoothed Particle Hydrodynamics (SPH) is a Lagrangian meshless particle method. It was originally 
developed to simulate astrodynamics [1, 2] but has been extended to model dynamics problems with violent 
motions in many areas [3-23]. The work on the method has been continuously reviewed by many authors. We 
mainly take some of these related to water wave modelling here.  

When the SPH is applied to modelling water waves, there are largely two different formulations in 
literature. The first one is weakly compressible SPH (WCSPH, also called traditional SPH in this paper), in 
which water is considered as slightly compressible and its pressure is related to its density through an equation 
of state with artificially specified sound speed [6]. The second formulation is incompressible SPH, also called 
ISPH, in which water is considered as incompressible and having constant density with pressure found by 
solving a boundary value problem. As indicated by many researchers, e.g., Rafiee et al. [13] and Lee et al. [22], 
the WCSPH has several advantages, such as that it is easy to be programmed and does not need to solve 
pressure boundary value problem. However, it has at least two weaknesses [13, 22]: (a) requiring use of very 
small time steps and (b) resulting in significant spurious pressure fluctuations in space and time domain. The 
first one is inherent because the sound speed in the equation of state has to be large enough (even though much 
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smaller than real sound speed), and so leads to smaller time steps. This is also related to that fact that the 
traditional SPH usually needs a large number of particles; in other words, very small distance between 
particles or very high resolution to obtain sufficiently accurate results. The more the particles in a given 
computational domain, the smaller the time steps should be used. The second weakness is perhaps because the 
pressure is very sensitive to the density and so a small error in density can lead to a significant error in pressure, 
inducing spurious pressure fluctuations. The spurious pressure fluctuations do not only give wrong values of 
pressure but can also cause simulation to become unstable when the method is employed to model 
wave-structure interactions. A great amount of effort has been made to overcome the weaknesses, for example, 
use of K2_SPH [8] and SPH based on the solution for Riemann problem [9-12]. K2_SPH improves the 
accuracy of kernel approximation for partial derivatives in continuity equation and momentum equations, and 
so can give more accurate results of density and velocity. In the SPH based on the solution for a Riemann 
problem, the Riemann problem is solved for each pair of particles to calculate the associated parameters.  
Basically, this approach improves accuracy of estimating the gradient involved. Its results are much more 
accurate and smoother than these from the traditional SPH, but it is significantly more expensive (in the order 
of 5 or 6 times) than the latter [13].  

The ISPH has also been widely applied in the field of water wave dynamics [15-23]. This method projects 
the intermediate velocity field onto a divergence-free space by solving a Poisson equation for pressure.  
According to comparative studies carried out by Lee et al [22], the time step used for the ISPH can be much 
larger (50 times larger in one of cases presented by them). In addition, the results from ISPH can be much 
more accurate than these from the WCSPH for a given number of particles. In other words, the convergence 
rate of ISPH results is much higher than that of the WCSPH. The drawback of this formulation is obvious as it 
needs to solve the boundary value problem defined by the Poisson equation at each time step, which is 
recognised to consume a significant amount of computational time. Nevertheless, the total computational time 
taken by the ISPH can be shorter than that by the WCSPH, as indicated also by Lee et al. [22]. However, the 
second order derivatives of pressure need to be approximated when discretising the Poisson equation. In all 
publications found so far in literature about ISPH, the second derivatives are directly approximated using a 
scheme similar to that for finite difference method. No matter what scheme to be used, direct numerical 
approximation to second derivatives always has a difficulty with accurately modelling the functions to be 
solved, in particular when particles are distributed in a disorderly manner. Distribution of particles always 
becomes disorderly when modelling violent waves even they are regularly distributed at the start of simulation.   
Therefore, it is obviously advantageous to eliminate use of direct numerical approximation to second 
derivatives when solving the pressure Poisson equation in the ISPH formulation.  

The distinct feature of this paper, compared with other papers on ISPH lies in that the pressure Poisson 
equation is first transformed into another equation based on a Rankine source solution using the same idea 
employed in Meshless Local Petrov-Galerkin Method based on Rankine Source Solution (MLPG_R) [24-30]. 
In the new formulation of ISPH, the governing equation for pressure does not include any derivatives of the 
functions to be solved and so overcomes the problems associated with direct numerical approximation to 
second derivatives in existing ISPH formulation. This new formulated ISPH is named as ISPH_R for 
convenience in this paper.   According to our benchmark tests presented in this paper below, the ISPH_R 
method can give more accurate results and consume less computational time when modelling water waves.   
 
2. Governing equations and numerical schemes 
 
2.1. Traditional SPH method 
 

The formulation of the traditional SPH can be found in many publications but it will be outlined in this 
section for completeness. The method is generally based on the Lagrangian form of continuity equation and 
the Navier-Stokes equation for compressible flow, which may be written as 
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where � is the fluid density, u is the fluid velocity, t is the time, p is the fluid pressure, g is the 
gravitational acceleration, and � is the kinematic viscosity. In WCSPH, the pressure and density are usually 
related by the following equation of state for sound waves 
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where 7�	  is used for liquid water simulation, 0c is the artificial sound speed and usually chosen as 10 
times of maximum fluid velocity, 0� is the initial density of water. In the SPH formulation (see for example, 
Monaghan, 2005 [23]), the pressure gradient and velocity divergence may be estimated, respectively, by 
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where jiij uuu �� , jm is the mass bearded by particle j  and W is a kernel function. There are many 

forms of the kernel function. The one used in this paper is given by 
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where h is equal to 1.8s (s is the initial distance between particles) in this paper and �d is taken as 
15/(7*�*h2) in 2D cases.  Using Eq. (4), the velocity and density of each particle may be updated by the 
following equations: 
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where the artificial viscosity is given by 22 01.0
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�  and �  in Eq. (8) is constant and is problem-dependent, which are taken as 3.0��  and 0��  in this 
paper.  It is noted that the term defined in Eq. (8) is not the exact physical viscous term, instead, it is 
artificial in some sense but can lead to more stable results than the viscous force directly estimated by 
derivatives of velocity.  Other artificial viscosity models are available [31] but will not be discussed here as 
they are not focus of this paper. Although the positions of particles may be found by directly integrating 



 

 

velocity, Monaghan [6] suggested the following equation for calculating positions 
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where �  is a constant in the range of 10 �� � . In this paper, 01.0�� .  
 
2.2. ISPH method 

In the incompressible SPH method, the fluid density is considered as a constant, and as a result, the 
continuity equation can be written as  

0/ �DtD�                (10a) 
or 

0��� u                                                     (10b) 
The momentum equation remains the same as in Eq. (2). The computation in the ISPH method is composed 
of two basic steps, following the procedure in [41]. The first step is a prediction, in which the velocity field 
is computed without imposing incompressibility. The second step is a correction in which incompressibility 
is enforced, leading to the Poisson equation for solving pressure. More details can be found in, e.g., Shao et 
al. [17]. Summary will be given below. 
 
(a) Prediction step 

Assuming that velocities and positions of particles at time t  have been found, their velocities and 
positions at tt ��  are first predicted by considering gravitational term and viscous term in Eq. (2) using 
the following equations,  

    ** uuu ��� t                                               (11) 
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where tu  and tr  are the velocities and positions at time t , respectively; t�  is the time step; *r  and 

*u�  are the predicted intermediate position and velocity of particles at the new time step. 
 
(b) Correction step 

The velocity change during the correction step is estimated by 
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where ttp ��  is the pressure at tt �� . The velocities and positions of particles at tt ��  are then given by  
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Combining Eq. (10b) with Eq.(14), one obtains the following equation for pressure  
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Similarly, Shao and Lo [16] proposed a projection-based incompressible method to impose density 
invariance Eq. (10a), which leading to the equation below 
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where *�  is the density at the intermediate time step and can be estimated by 
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incompressible fluids, the intermediate density is not much different from the specified fluid density. As 
indicated by Hu and Adams [19], Eq. (17) and (18) are equivalent and both valid for incompressible fluids 
theoretically. They suggested solving the two incompressibility equations simultaneously. The solution of 
the density invariant equation (Eq. 18) was used to adjust the positions of particles while the solution of the 
velocity-divergence-free equation (Eq. 17) was used to adjust their velocity.  In contrast, Zhang et al [43] 
proposed using the mixed one given below 
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which was also used by Ma et al. [26] for the MLPG_R method, where �  is the artificial value and in the 
range of 0- 1.  According to numerical tests presented in Ma and Zhou [26] and also suggested by Zhang et 
al [43], the results for violent water waves obtained by using Eq. (19) seems to be better if �  is specified a 
proper small value than those for 0�� (velocity-divergence-free equation).  In order to achieve good 
results without need of the density term (i.e. 0�� ), the position of particles may be shifted at each time 
step in a way similar to remeshing or dynamic regridding, such as that based on the Fick’s law employed by 
Lind et al [21], or that according to the velocity calculated from pressure gradients relative to a minimum 
pressure proposed by Sriram and Ma [28]. These techniques had been found to make the distribution of 
particles significantly more regular and lead to much better results compared with these from using either Eq. 
(17) or Eq. (18) separately.  Xu et al [44] compared four methods (two of them are based on Eq. (17) and 
Eq. (18), respectively; the third one is the approach of Hu and Adams [19] and the fourth one is based on the 
approach of shifting the positions of particles they proposed).  They concluded that the approach of using 
only Eq. (17) may exhibit instability in some cases, the one with Eq. (18) may overcome the instability 
caused by ill-distributed particles but was shown giving inaccurate predictions with extremely high noise in 
results, and the particle shifting technique can help achieving accurate and stable simulations as the 
approach of Hu and Adams [19] does but needs much less computational time than the latter.  Such 
comparative studies are not the focus of this paper, though the studies may be necessary to judge if the 
approach based on Eq. (19) and the one proposed by [28] could be as good as the particle shifting technique 
and the approach of Hu and Adams [19] in the same cases.  Based on our experience in modelling violent 
water waves, we choose in this paper to use Eq. (19) which does not need extra computation related to 
shifting particles but we accept the possibility that combining the particle shifting technique with the new 
technique for solving the pressure Poisson introduced in the paper may give better results than these 
presented in the current paper. For solving the pressure Poisson equation (either Eq. 17, Eq. 18 or Eq. 19 ), 
several different discretised schemes of the Laplacian operator have been suggested previously but the often 
employed scheme (e.g., [4],[16] and [22]) is the one given below:   
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where )( jiij ppp �� , subscript � denotes the direction and corresponds to x and y in two-dimensional (2D) 

cases, �,)( ijW r is the partial derivative of the kernel function with respect to the coordinate in � direction, 

� �
�ijr is the component of the vector ijr  in � direction, � � �� ,)( ijij W rr  is )( ijij W rr �� .  These explanations 

are also applied to similar expressions below.   



 

 

    It has been well known that the discretised Laplace operator given by Eq. (20a) may produce large 
errors in particular when the particles are distributed in a disorderly manner as happen in violent water wave 
problems. To improve the accuracy of the discretised Laplace operator, Schwaiger [39] proposed several 
forms of a higher order method for Laplace operator discretisation. Two of them are based on the following 
equation 
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where �  is a tensor that is defined as 
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for 2D cases), � and#  denote different directions and correspond to x and y in 2D cases.  The difference 

between the two forms of the high order Laplace operator discretisation lies in how to estimate the gradient 

in the second term of the right hand of Eq. (20b).  In one form, the gradient in the term is estimated by  
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while in the other form, the gradient is estimated by  
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In Schwaiger [39], the method based on Eq. (20b) and Eq. (20c) was called as SPH2, while the method 
based on Eq. (20b) and Eq. (20c) is called as CSPH2�. They also suggested another method based on 
solving all the second order derivatives and named it as CSPM.  Schwaiger [39] compared the convergence 
properties of all the forms including the three methods (SPH2, CSPH2� and CSPM) by applying them to 
estimate the second order derivatives on a set of particles distributed in a disorderly manner.  They 
demonstrated that their CSPH2� and CSPM methods have similar convergence properties, but the CSPM 
method is expected to take much more CPU time. Lind et al [21] applied the CSPH2� method to study water 
wave problems, and indicated that it can give better results by combining it with a particle-shifting technique 
they suggested. Fatehi and Manzari [40] also suggested a high order method for Laplace operator 
discretisation, which is similar to the CSPM method in the sense that both need to solve all the second order 
derivatives.  

In this paper, we will compare several forms of ISPH methods with our proposed method.  The different 
forms of the methods used are defined as below: 

1) SPH: tradional SPH as discussed in Section 2.1 
2) ISPH - incompresible SPH based on Eq. (20a) 
3) CISPH1-incompresible SPH based on Eq. (20b) and Eq. (20c) 
4) CISPH2- incompresible SPH based on Eq. (20b) and Eq. (20d) 



 

 

 
Although Schwaiger [39] and Lind et al [21] had carried out patch tests by applying Eq. (20b) to estimate 
the second order derivatives of the several functions on a set of particles distributed in a disorderly manner, 
more tests will be carried out in this section to further show the behaviours of ISPH, CISPH1 and CISPH2, 
in particular when the disorderliness of particle distribution varies.  

For this purpose, we will consider the function of f(x,y)=cos(4�x+ 8�y).  The space domain is chosen 
as a square with the length of sides 1 for 2� x �3 and 2� y �3. The domain is first divided into small squared 
elements ( yx �-� with syx ���� ). The particles are then redistributed according to

)]5.0(1[ ���.��.� Rnksyx , where Rn is a random number between 0 and 1.0 and k is a constant that can 
be taken as a value between 0 and 1. Clearly, k=0 leads to regular distribution of particles. k>0 makes the 
distribution of particles become disorderly.  As k increases, the distribution is more disorderly.  The 
Laplacian of f(x,y) is calculated by directly taking mathematical derivatives, which is denoted as aif ,

2� , and 
estimated numerically by using the three methods mentioned in the previous paragraph, which is denoted as 

cif ,
2� . The accuracy of the numerical methods is quantified, in a similar way to that used in Schwaiger [39], 

by evaluating their average relative errors given as 
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2�  is the magnitude of aif ,
2� , e.g., 2
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2 80��� maif , for f(x,y)=cos(4�x+ 8�y). When 

estimating the error using the above equation, only the particles within the region of 8.22.2 �� x
8.22.2 �� y are considered.  The accuracy of the methods is also quantified by estimating their maximum 

relative errors given as 
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(a)                                                    (b) 

Fig. 1 Relative errors of different discretised Laplace operators for different values of s with the value 
of k fixed to be 0.8 (a) average error; (b) maximum error. 

 
The cases with s=0.1, 0.05, 0.0333, 0.025, 0.02, 0.01667, 0.01429, 0.0125, 0.0111 or 0.01 and k=0, 0.2, 

0.4, 0.8, 1.0, 1.2 are considered.  The results are presented in Figs. 1-3.  Fig. 1(a) presents the average 
errors for different values of s with a value of k being fixed to be 0.8.  From the figure, one can see that the 



 

 

average error of CISPH2 is consistently reduced with reduction of s while it was shown to remain to be 
constant in Schwaiger [39] for a function of x2+y2.  The averages errors of other two methods can increase 
with the reduction of s, which is a divergent behaviour. The behaviour of ISPH is similar to what was shown 
in Schwaiger [39] but the behaviour of CISPH1 is slightly different as they showed that its average error 
remained as constant.  The results of maximum error given in Fig. 1(b) demonstrate that the error of all 
three methods can increase with increasing the resolution of the particles.  In addition, the smallest value of 
the error is Log(Ermax)>-0.6, corresponding to Ermax =25%, which is considerably larger than the value of 
average error for the same case.  
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(a)                                      (b) 

Fig. 2 Relative errors of different discretised Laplace operators for different values of k with the value 
of s fixed to be 0.01 (a) average error; (b) maximum error. 
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Fig. 3.  Number of particles with a large relative error (>20%) for s=0.01 and k=1.2 

 
Fig. 2 plots the average and maximum errors for different values of k with s=0.01. One can see from the 

figures that the errors of the three methods increase with the increase of k values, i.e., with particle being 
more disorderly.  Furthermore, the maximum error can be become very large, for example, 
Log(Ermax)>-0.25, corresponding to Ermax = 56%,  at k=1.2.  It is noted that overall accuracy of numerical 
methods are controlled by the maximum error, not the average error, in water wave problems. 



 

 

In Fig. 3, the horizontal axis shows the different ranges of relative error, e.g., [10%, 20%] and [20%, 
30%], while the vertical axis shows the number of particles whose error lies in a range.  For example, in the 
range of [10%, 20%], there are about 550 particles for the CISPH1 method and about 225 particles for the 
CISPH2 method.  The relative error at each individual particle used in this figure is defined as
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� .  This figure demonstrates that the quite large relative error (>20%) 

can happen at a considerable number of particles for all the three methods even when they are applied to 
computing the Laplacian of the quite simple function, though the number for the CISPH1 and CISPH2 
method is smaller than for ISPH method.      

These results demonstrate that although a lot of effort has been made to develop the approximations to 
the Laplacian operator discretisation, it still needs to be improved in particular for modelling violent water 
waves where the particles can become severely disordered without regularisation by shifting even they are 
uniformly distributed at the start of simulation. The new approach suggested below is to overcome the 
weakness associated with discretisation of Laplacian operator in the ISPH method. 
 
2.3. ISPH_R method 

The main difference between the existing ISPH method and the new method named as ISPH_R method 
lies in the approach to discretisation of the pressure Poisson equation defined in Eq. (19). The main idea of 
the new approach comes from another meshless method called as the Meshless Local Petrov-Galerkin 
Method based on Rankine Source Solution (MLPG_R) [25][26], that is, reformulating Eq. (19) into another 
form which does not include any derivative of pressure and velocity. For this purpose, Eq. (19) is integrated 
over a small sub-domain I% (to be distinctive, notation of particles for the ISPH_R method is denoted by 
capital I or J) surrounding a particle after multiplication by the Rankine source solution / , and then it reads 
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that satisfies 02 �� / , in I%  except for the center and 0�/ , on I%0 , which is the boundary of I%  

and IR is its radius. The radius is usually smaller than the distance between two particles. After some 

mathematical manipulations,  Eq.(21) becomes the following form 
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which will be applied to each of inner particles.  More details of mathematical manipulations can be found 
in Ma and Zhou [26]. It has been noted that the increment of the density ( *�� � ) assumed to a constant 
within the sub-domain and so equal to its value at Particle I when Eq. (23) is derived. This may not cause 
unacceptable error not only because the density should not change much due to the change in the 
intermediate position of the particle as pointed above but also because the small error caused due to the 
assumption is further reduced by multiplying the coefficient �  that is normally chosen in a range of 0~0.3, 
taken as 0.1 in this paper. The term may be evaluated in the same way as that for the second term but such a 
way will not improve the accuracy significantly due to the reasons discussed here.  

 
Compared with Eq. (19), the major difference of Eq. (23) is that it does not include any derivative of the 



 

 

functions to be solved while Eq. (19) contains the second order derivative of pressure and the first-order 
derivative of velocity. Approximation to the functions in Eq. (23) does not require them to have any 
continuous derivatives, while approximation to the functions in Eq. (19) requires them to have finite, or at 
least integrable second order derivatives. Therefore, use of Eq. (23) for further discretisation has a great 
numerical advantage over use of Eq. (19) directly, and so potentially makes the ISPH_R more accurate for 
the same number of particles or require less number of particles to obtain the solution with the same order of 
accuracy than ISPH, which will be demonstrated in the later sections of this paper.   
 
2.4. Boundary conditions 
 

Generally, there are two kinds of boundary conditions for water wave problems. One is on solitary 
boundaries and one on the free surface. They are outlined separately below. 
 
2.4.1. Solid boundary conditions 
 

On solid boundaries, the following conditions (e.g. Ma and Zhou [26] or Sriram and Ma [28]) should be 
satisfied 

nUnu ���                     (24) 

and 

� �unUngnn 2��������� �� �p
                  

  (25) 

where n  is the unit normal vector of the solid boundaries, g is the vector of gravitational acceleration, 
U andU� are the velocity and acceleration of the solid boundaries, respectively. It is noted that the 
traditional SPH does not need the condition in Eq. (25) as it does not need to solve the boundary value 
problem for pressure. In the ISPH method, the condition in Eq. (25) is necessary.  

It is obvious that one must compute the term u2�  when applying this condition in Eq. (25), which 
needs to estimate the second order derivative at the rigid boundary.  To avoid the computation of the second 
order derivative in the equation, Ma and Zhou [26] combined Eqs. (11) with (25) and gave an alternative as 
follows: 
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This one is used in this paper. 
Numerical implementation of Eq. (24) is relatively straightforward, i.e., the normal velocity of fluid 

particles is imposed to be equal to the normal velocity of wall that is given in the cases of this paper.  
Numerical implementation of Eq. (26) is different for different SPH methods described above.   For the 
traditional SPH, there is no need to solve the Poisson's equation (Eq. (19)) for pressure and so it is not 
necessary to use this equation. However, in order to improve the computation of pressure gradients in Eq. 
(4a) for updating the velocity, the two-layer ghost particles are adopted as described, such as in [22].  For 
ISPH and ISPH_R methods, Eq. (26) is discretised at the points on solid boundaries, in which the normal 
gradient of pressure is estimated at the boundaries without the assistance of any ghost particles by using the 
following equations  
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where IJ1 is defined by Eq. (A6) in Appendix A.  It is noted that Eq. (26b) is based on the approximation 
to the gradient of a function as detailed in Ma (2007) and adopted by Ma and Zhu (2009).  However, the 



 

 

form used in this paper is slightly different from that given in Ma (2007), in the sense that the expression of 
IJ1  is directly given here.   

 
2.4.2. Free surface condition and Free surface particle identification 
 

The condition on the free surface is very simple, which is stated that the pressure of water on its free 
surface is equal to the atmospheric pressure which can be taken as zero, i.e., 

 0�p                                                  (27) 

In the traditional SPH method, this condition is automatically satisfied as long as the density on the free 
surface is estimated correctly, as one would see in Eq. (3). However, in the ISPH method, this condition has to 
be imposed when solving the boundary value problem defined by Eqs. (17), (18), (19) or (23). In order to 
impose this condition, one needs to know which particles are on the free surface. This is not a problem for 
non-broken water waves, where the water particles on the free surface at start always remain on the free 
surface and does not need to be identified during simulation.  However, for breaking or violent water waves, 
the particles on the free surface at start can become inner particles and inner particles can become the free 
surface particles during a simulation. Therefore, the free surface particles have to be identified at every time 
step after wave breaking occurs.  Many publications (e.g., Shao et al. [18]) on the ISPH method use the ratio 

of 
0�

�� I
I � , where I� is estimated by 


�

�
N

J
IJJI Wm

,1

� , to identify the free surface particles but often shows 

wrong identification.  A number of researchers have tried to address the inaccuracy of the approach based 

only on 
0�

�� I
I � , for example, Lee at el [22] employed the gradient of position vector,�� � �, to judge if a 

particle is on the free surface (�� � �� � �	
) or not.  However as indicated by Lind et al [21], some internal 
fluid particles may satisfy�� � �� � �	
, while some free-surface particles may �� � �� � �	
, leading to 
misjudgement.  Another method has been recently proposed for the SPH method by Zheng et al. [32]. For 
completeness, this method is summarised here and more details can be found in Zheng et al. [32]. The main 
idea of the method is to define three auxiliary functions on the influence domain around a particle, as shown in 
Fig. 4. The influence domain is determined by the kernel function, i.e., the kernel function at particle I is zero 
outside the influence domain. The influence domain is divided into four parts in two different ways, as seen in 
Fig. 4.  One way is that it is divided into four quadrants by x- and y- axes and the other is divided into four 
shaded areas.  The angle of each shaded part covers an area of 90 degrees, and is symmetrical to the x or the

y axis, respectively.  The first auxiliary function is defined as 
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where NumA  represents the number of free surface particles existing in the influence domain of Particle I in 
previous time step.  The value of NumA is equal to or larger than 1 if there is any neighbour free surface 
particle in the influence domain in Fig. 4; otherwise it is zero. The second auxiliary function is 
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where NumB  represents the number of quadrants of the influence domain occupied by the particles in a local 
coordinate system centred at Particle I. 4�NumB if all the 4 parts in Fig.4a have neighbour particles and 

3�NumB means that only three of four parts in Fig.4a have neighbour particles.  The third auxiliary 



 

 

function is given by 
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where NumC  represents the number of shaded parts of the influence domain containing at least one fluid 
particle.  If all the 4 shaded parts in Fig.4b have neighbour particles, then NumC=4.  Similarly, if 3 shaded 
parts in Fig.4b have neighbour particles, NumC=3.  At each time step, each of potential free surface particles 
is checked in the following sequence: 
  

(a) No inner particle in the influence domain except for Particle I 
(b) 90.0�I�  and 1)(_ �Iafsp  
(c) 90.0�I� , 1)(_ �Iafsp  and 0)(_ �Ibfsp  
(d) 90.0�I� , 1)(_ �Iafsp  and 0)(_ �Icfsp  
(e) 90.0�I� , 2�NumB  and 2�NumC  

 
If any of expressions is true during checking, Particle I is identified as a free surface particle.  The group of 
potential free surface particles is selected according to the free surface particles and their neighbours in 
previous two time steps.  In the sense that only the potential free surface particles, not all, are checked, the 
aspect of the method is similar to what was suggested by Marrone et al [41]. 

As tested by Zheng et al. [32], this technique can give significant improvement on identifying the particles 
on the free surface, as shown in Fig. 5. The left one shows the configuration of particles at a time instant with 
the free surface particles (blue dots) identified by only using the ratio ( 9.0�I� ) of the density while the right 
one shows that with the free surface particles (blue dots) identified by using the above method. It can be seen 
that many inner particles are identified as the free surface particles by the method based only on the density 
ratio while the method described above can correctly identify almost of them on and near the free surface. It is 
noted nevertheless that a few particles near the free surface may still be identified as free surface particles but 
such incorrect identification may not lead to significant error on pressure. That is because the pressures of 
these particles are very close to the pressure on the free surface. More details of verification and comparison is 
referred to Zheng et al. [32].  
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Fig. 4 Illustration of influence domain and its divisions 
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      (a)based on density ratio only                   (b) Method of Zheng et al. [32] 

 
Fig. 5 Comparison of free surface particle identification methods  

(blue dotes: free surface particles; red dots: inner particle)  
 
2.5. Discretisation of pressure governing equation for ISPH and ISPH_R methods 
 

As has been indicated above, the ISPH and ISPH_R methods require solving the boundary value 
problem for pressure defined by Eqs. (19) or (23), (26) and (27) at each time step.  For this purpose, they 
must be discretised by using a set of particles to form the following algebraic system.  

 
BPA ��                (31) 

 
where P  is a column vector formed by the pressure, A  and B

 
are the matrices.  The specific 

expressions of entries in A  and B  depend on the scheme for discretising the governing equations.  For 
the ISPH method, if one uses Eq. (20a) to discretise the Laplace operator at inner particles and Eq. (26b) to 
discretise the boundary condition on the solid boundaries, the expressions of entries in A  and B  are given 
by  
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Similar expressions can be written out if one employs Eq. (20b) to discretise the Laplace operator at inner 
particles but details are omitted here. 

For the ISPH_R method, the pressure in Eq. (23) is approximated by � � � �
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�� at all inner 

particles, where � �x� j
�  is the shape function which may be formulated by using the moving least square 

method (MLS) as in [24-26], or the interpolation scheme developed by Ma [29].  In this paper, the MLS is 
used. The details about formulating the shape function can be found in Ma [24], and so will not be given 
here. With the approximation to pressure and after converting Eq. (23) and (26) into Eq. (31), the entries of 
A  and B

 
are given, respectively, by 
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When forming the above equations, the pressure at the free surface particles has been imposed to be zero, 
according to Eq. (27). In Eq. (33), one needs to evaluate the integrals at each particle over its sub-domain. 
This potentially takes significant computational time but the semi-analytical technique suggested by Zhou 
and Ma [27] helps reducing the costs considerably and is adopted in this paper. 
 
3. Numerical tests, validation and discussions 
 

In this part, the method described above will be tested for the several water wave problems and also for 
lid-driven flow, and validated by comparing its results with those in literature. Its behaviours will also be 
compared with the traditional SPH and different forms of existing ISPH methods in the cases for water 
waves.    
 
3.1. Dam breaking flow 
 
 

DL

H
P1 P2

h1 h2

 
 

Fig. 6 Sketch of dam breaking flow 
 
Dam breaking is often used as a benchmark for violent free surface flow. In this numerical test, a 

rectangular water column is confined between bottom, top wall and two vertical walls, as illustrated in Fig. 6. 
The width of the water column is L  and its height is H . At the beginning of the computation, the dam is 
instantaneously removed and the water collapses and flows out along a dry horizontal bed. D  is the 
distance between two vertical walls. There are two pressure sensors 1p  and 2p  on the left and right 
vertical walls, respectively. The height of 1p  and 2p  from the bottom is 1h  and 2h  respectively. In this 
section, all variables and parameters are non-dimensionalised using H  and g , such as Hgtt /~ � unless 
mentioned otherwise.  

 
3.1.1. Dam breaking flow with non-breaking waves 
 

Although the case of non-breaking waves is not necessarily dealt with by the ISPH_R method that is 



 

 

developed for modelling the violent breaking waves, it is used here for preliminary validation of the method.  
That is because the error could be estimated precisely against the experimental data in such a case.  For this 
purpose, the parameters in Fig. 6 are taken as L =0.5m, 0.2/ �LH  and 0.4/ �LD , and the number of 
participles is chosen to be �M 800, 1250 1800, 3200, 5000, 7200, corresponding to �s 0.025, 0.02, 
0.0167, 0.0125, 0.01, 0.00833, respectively. The time step length is selected as ��t~ 0.008. The time 
histories of the water front (Xf) and the water column height (Yt) at the left vertical wall after collapsing of 
the water column corresponding to different numbers of particles obtained by using the ISPH_R are plotted 
in Fig. 7.  It can be seen that the results are very close to each other, which indicates that 800 particles can 
lead to sufficiently accurate results in this case. Fig. 8 gives the results of water front and water column 
height at the left vertical wall obtained by using the ISPH_R method, all three forms of ISPH method and 
traditional SPH described above and their comparison with published experimental results [33]. According 
to the results in Fig. 8(a), the water front results obtained by ISPH_R and two SPH methods agree quite well 
with experimental results, though there are visible differences between the computational and experimental 
results. However, the results are very close to the results obtained by using MAC [34] and VOF [35] 
methods. From Fig. 8(b), one may observe that the results of water column height at the left vertical wall 
from all the methods (ISPH_R, CISPH2 and SPH) do not have much difference with experimental results. 

The time histories of pressure recorded at Hh 1.01 �  corresponding to different particle numbers are 
presented in Fig. 9(a), which are computed by using the ISPH_R method. It can be seen that when the 
number of particles is not large enough, such as �M 800, there are some spurious fluctuations in the 
pressure time histories, while they can be suppressed with increase of particle numbers, for example, 

3200�M  in this case.  This case indicates that spurious fluctuations in the pressure results computed by 
the new developed ISPH_R method become insignificant when the particle number is large enough, similar 
to the features of the existing ISPH method as indicated by Lee et al. [22] where the results of the SPH were 
shown to have large fluctuations. Fig. 9(b) compares the results corresponding to the different values of 1h  
of Point 1p  with 7200�M , i.e., HHHHHh 25.0 and 20.0,15.0,1.0,05.01 � . One can see from this figure 
that all the pressure time histories are quite smooth. 
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                              (a)                                               (b) 

Fig. 7 Comparison of (a) water fronts represented by Xf and (b) water column heights represented by Yt 
corresponding to different particle numbers 
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(a)                                                 (b) 

Fig. 8 Comparison of water fronts (a) and water column heights (b) with experimental data [33] when 
7200�M  
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Fig. 9(a) Pressure at h1=0.1H corresponding to different number of particles 
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Fig. 9(b) Pressure at different positions using M=7200 

 
Fig. 9 Time histories of pressure computed by using ISPH_R method         

 
Another issue is also addressed by using the above case, which is about the size (RI) of the integration 
domain ( I% ) related to Eq. (23) for the ISPH_R method.  It is noted that Eq. (23) is similar to that for 
MLPG_R method [24-30] as mentioned before.  The effects of RI have been discussed, for example, by Ma et 
al [25], which showed that RI could be selected in the range of 0.3 to 0.9 dx (dx here is the minimum distance 
of two particles).  Three values (0.5 dx, 0.7 dx and 0.9 dx) of RI are tested for the case presented in Figs. 7-9.  



 

 

The corresponding results of the wave front and pressure at h1=0.1H are plotted in Fig. 10.  It can be 
observed that there is no visible difference in Fig. 10(a) while very small one in Fig. 10(b). RI = 0.5dx are 
used for the cases in this paper. 
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(a) Wave front                               (b)Pressure at h1=0.1H 

 
Fig. 10  Effects of different sizes (RI) of the integration domain in ISPH_R method ( 7200�M ) 

 
3.1.2 Dam breaking flow with breaking waves 
 

It is more important to consider the dam breaking flow with breaking waves, which will be investigated 
in this sub-section. For this purpose, a case with 5.0�L m, 0.2/ �LH ,  is also considered but 
the focus is now on the behaviour of breaking waves corresponding to longer simulation. To show how 
many particles should be used in this case, some results of free surface profiles at different time instants are 
presented in Fig.11, which are computed by using the ISPH_R method with a time step of 008.0~ ��t . It 
can be seen from this figure that when particle number is larger than 3200�M , corresponding to the 
non-dimensional initial distance between particles of s=0.0125, the difference between the free surface 
profiles corresponding to different particle numbers become acceptably small. 

In order to study how the numerical results changes with the different lengths of time steps, the ISPH_R 
method is employed to simulate the same case as in Fig. 11 by using ��t~ 0.012, 0.010, 0.008, 0.006 
(corresponding to 0.8, 0.67, 0.53 and 0.4 of the CFL (Courant–Friedrichs–Lewy) number calculated by 
using the velocity equal to ���) . The free surface profiles at different time instants are depicted in Fig. 
12. Generally speaking, the difference between profiles is insignificant, in particular when the time step 
length is less than 0.01. From the discussions about Figs. 11 and 12, one would see that with use of a time 
step length of less than 0.01 and more than 3200 particles, the ISPH_R method can yield convergent results 
in terms of the free surface profiles.  It is noted here that compared with Figs. 17 and 18 of Lind et al [21] 
where no top rigid wall was at y=2, the graphs in Fig. 11 and 12 show slight more isolated particles.  This 
may be attributed partially to the reflection by the top rigid wall after impact.  In addition, the results may 
also be improved by adopting an adaptive time-step technique and by combining the new technique for 
solving the pressure Poisson equation with other particle stabilising (e.g., particle shifting) techniques and 
with other free surface identification methods, other than these employed in this paper.           
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Fig. 11 Free surface profile comparison corresponding to different particle numbers by using the ISPH_R 

method 
 
The convergence property is now examined in terms of the pressure, which is more critical. The time 

histories of pressure at Point 2p  on the right vertical wall with the height of Hh 05.02 � are presented in 
Fig.13(a) for the cases with the different particle numbers. The average error is calculated by 
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0, )( , where 0,ip is the pressure for 7200�M  at different time step i , which 

is plotted in Fig. 13(b). The results of Fig. 13 confirm that with the particle number increasing, the results of 
pressure seem to be convergent. Other methods (traditional SPH, ISPH and CISPH2) are also applied to 
simulate this case. The results of pressure at Point 2p  from them for 7200�M  are compared in Fig. 14. 
It can be seen that the spurious oscillations in the pressure time histories produced by traditional SPH is very 
large, the fluctuations of pressure obtained by ISPH and CISPH2 methods much smaller but still visible 
while the time history from the ISPH_R method is much smoother. In addition, Table 1 compares the CPU 
times used by different methods to yield the results in Fig. 14. It can be seen that the ISPH_R method does 
not only provide smoother pressure time history but also spend much less CPU time, which is 86.7% of that 
used by the ISPH, 80% of that by CISPH2 and 40.2% of that used by the traditional SPH method for this 
case. 
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dt=0.06 dt=0.08  

Fig. 12 Free surface profile comparison corresponding to different time step lengths by using the ISPH_R 
method ( 3200�M ) 
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Fig. 13 Convergence test of pressure when Hh 05.02 �  (a) the pressure time histories; (b) the errors, 
corresponding to different number of particles 
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Fig. 14 Comparison of breaking wave impact obtained by different methods  

 
Table 1. CPU time comparison of different methods for dam breaking wave simulation 

Scheme Time step 

(� Hgt / ) 

Stepping 
number 

CPU time(s) 

SPH 0.000313 12771 4086 
ISPH 0.002 2000 1893 

CISPH2 0.002 2000 2046 
ISPH_R 0.008 500 1641 

 
In order to make further comparison between the results from the methods, another benchmark case for 

dam breaking flow is considered.  In this case, 0.2�L m, LH 5.0� , HD 3667.5� . For this case, the 
pressure time histories at 2p  obtained by the CISPH2 and ISPH_R methods with 7200�M  is compared 
with the experimental data [36] in Fig. 15. This shows that the pressure time history from the ISPH_R 
method is smoother, though both have similar agreement with the experimental data.   
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Fig. 15 Comparison of pressure time histories at 2p with experimental results [36] and different SPH 
methods 

 
3.2. Sloshing waves in a moving tank 
 

In order to further show the properties of the ISPH_R method, this section gives the results of sloshing 
waves in a moving tank. The cases for small amplitude sloshing and violent sloshing will be considered to 
compare the numerical results with analytical solution [37], and with experimental data [38], respectively. 

The geometry of the sloshing tank is illustrated in Fig.16. The tank length is L its height h , and the 
water depth is d . There is a pressure sensor mounted on the left wall. The height between the sensor and 
bottom is 1h . The sway displacement of the tank is given by )cos1(0 taX s %�� , where 0a  and %  are the 
amplitude and the frequency of the motion, respectively. In the simulation, the moving coordinate system 
fixed to the tank is employed to simplify the implementation of solid boundary conditions as in [42]. 

 
3.2.1. Small amplitude sloshing 
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Fig. 16 Sketch of sloshing tank 

  
There are two reasons to simulate this case.  One is that when the motion amplitude, i.e. gda /0% ,  of 
the tank is small, and the frequency is not close to the natural frequency of sloshing waves in the tank, the 
free surface elevation can be analytically expressed by 
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where Lnkn /�� dkgk nnn tanh�� . More details about the solution can be found in [37]. The second 
reason for considering this case is that the error of numerical methods can be precisely estimated and so their 
behaviours can be systematically investigated.  For this purpose,  5.0�d m, dL 2� , da 001.00 � are 
selected and different numbers (M) of particles are used, that is 288, 450, 800, 1250, 1800, 3200, 5000 and 
7200 with the corresponding non-dimensional particle sizes being �s 0.0417, 0.033, 0.025, 0.02, 0.0167, 
0.0125, 0.01, 0.083, respectively.  Fig. 17 gives the comparison of free surface elevations on the left tank 
wall, which are calculated by the analytical solution in Eq. (34) and by the ISPH_R method for 8.0/ 1 �% �
(only the results corresponding to 288, 800, 3200 and 7200 are plotted for clarity). This figure indicates that 
the results of the ISPH_R method for this case become very close to the analytical solution when the number 
of particles is 800 or more. The results of the ISPH_R method are also compared with those from the SPH, 
ISPH and CISPH2 in Fig. 18, which are also produced by using 800 particles but different time step length. 
Non-dimensional time stepping length ( t~� ) is 0.008 for the ISPH_R, 0.002 for ISPH and CISPH2, and 
0.000313 for SPH. From Fig. 18, it can be seen that the results of the SPH has a good agreement with 
analytical solution at first three periods, but with the simulation going longer, numerical dissipation in the 
wave amplitude become evident. In addition, in the time range (such as 35 to 40) of short and small waves, 
the traditional SPH method cannot catch the detail correctly. In contrast, the results from the ISPH, CISPH2 
and ISPH_R method do not exhibit such dissipation and can well catch the details of short and small waves. 
In order to quantitatively show the behaviours of the methods, Fig. 19 presents the errors of numerical 
results relative to the analytical solution corresponding to different numbers of particles employed. In this 

figure, the error is computed by using 
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on the left wall of analytical solution at i-th time step, i: is the numerical result at the time instant, tN  is 
total time steps in the simulation duration of 0.50~ �t . Fig. 19 clearly shows that the error of results from 
the ISPH_R method is considerably smaller than those of SPH, ISPH and CISPH2 methods. It is a little 
surprising that the two curves for ISPH and CISPH2 methods are very close to each other in this case.  In 
other words, to achieve any specified accuracy, the ISPH_R method needs much less number of particles (or 
larger particle sizes) than others. For example, corresponding to 4.3)Log( ��:Er , the particle size required 
by ISPH_R, CISPH2, ISPH and SPH methods are �)Log(s -1.62, -1.85, -1.86 and -1.96, respectively. In 
order to explore the properties of the methods in another way, Fig. 20 depicts the CPU time spent by all the 
methods corresponding to different numerical errors on the same computer.  One can see from Fig. 20 that 
the ISPH_R method needs much less CPU time to achieve the same level of accuracy. For example, 
corresponding to 35.3)Log( ��:Er , the CPU times spent by the ISPH_R, CISPH2, ISPH and traditional 
SPH methods are �)_Log( tCPU  2.76, 3.24, 3.19, and 3.70, which are CPU_t�575, 1737, 1548 and 5011 
seconds,  respectively.   
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Fig. 17 Wave elevation time histories on the left wall obtained by using different number of particles and the ISPH_R method 
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Fig. 18 Wave elevation time histories on the left wall obtained by four methods 
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Fig. 19 Error of numerical results of four numerical methods     Fig. 20 CPU times used by four numerical methods 

corresponding to different number of particles           corresponding to different errors 
 
3.2.2. Violent sloshing 
 

In this section, violent sloshing flow will be considered. The geometry of this tank is also rectangle with 
mL 6.0� , Lh 5.0� , hd 4.0� . The parameters for this case are taken as ma 05.00 �  and sT 5.10 � , which 

are the same as those in Kishev et al. [38]. The behaviours of the ISPH_R method are further examined by 
modelling this case. For this purpose, different numbers of particles are employed with �M 2880, 4500, 
6480 and 8820 corresponding to non-dimensional particle size �s 0.005, 0.004, 0.00333 and 0.00286 
respectively. Time step length is . Fig. 21 gives the free surface profiles at different time instants 
corresponding to different numbers of particles (the one for M=6480 is not shown for clarity). According to 
this figure, when the particle number is larger than 4500, the free surface profiles obtained by different 
particle numbers do not show significant differences, though there is some little difference near water jets. 
Fig.22 shows the pressure distribution at corresponding time instants for �M 8820 calculated by using 
CISPH2 and ISPH_R methods, which demonstrates that both methods yield appropriate pressure field. Fig. 
23 gives the comparison of pressure time histories at Point 1667.0/1 �Lh  on the left wall for �M 8820 
with experimental results [38]. It is noted that the experimental pressure time history given in Kishev et al. 
[38] did not show the transient period that must exist and they did not mention whether it was recorded on 
the left or on right walls. To compare our results with their experimental data, the time for the experimental 
results in the figure has been adjusted so that the 3rd pressure peak of the numerical results corresponds to 
the first peak in their paper. These figures show that the results from all the methods have similar patterns to 
the experimental one and that the time intervals between two consecutive impacts are almost the same. 
Nevertheless, there are indeed some differences. That is perhaps because of the nature of violent sloshing 
problems. As pointed out in Kishev et al. [38], “a large scattering of both experimental and numerical values 

008.0~ ��t



 

 

can be observed” for this kind of sloshing waves. Furthermore, the time history from the ISPH_R method is 
smoother than those from CISPH2 and SPH, similar to what has observed in the cases for dam breaking 
above. 
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(a) Free surface profiles at different time instants  
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(b) Pressure time histories at different heights of sensor point: 1667.0/1 �Lh  (upper), 0833.0/1 �Lh  (lower) 

  
Fig. 21 Results of the ISPH_R method obtained by using different number of particles 
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Fig. 22 Snapshots of pressure distribution of violent sloshing compared:  
CISPH2 (upper row) and ISPH_R (lower row) 
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Fig. 23 (a) 
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Fig. 23 (b) 
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Fig. 23 (c) 

Fig. 23 Comparison of pressure time histories obtained by using different methods (a)SPH, (b) CISPH2 and (c) ISPH_R  
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Fig. 24 Velocity comparison of lid-driven cavity flow with Ghia et al [45] and Leroy et al [46]  

 
 

3.3. Lid-driven cavity flow 
 

The last case considered is for modelling classical lid-driven cavity flow in a 2D square domain with the 
length of sides being 1.  The flow inside the cavity is accelerated from rest by the constant motion of the lid 
on the top of the domain.  This case is used to demonstrate that the ISPH_R method may also be employed 
to model fluid flow within a confined domain, though it is developed mainly for modelling violent water 
waves.  Although the smaller Reynolds number (Re=UL/�) corresponding to the speed (U) of the lid is 
tested, the results for the Reynolds number of 1000 are presented here. To model this case, the domain is 
discretised by 200*200 particles and non-dimensional time step is selected at 0.003 according to our 
numerical tests. The horizontal velocity on the line at x=0.5 and the vertical velocity on the line at y=0.5 are 
depicted in Fig. 24.  The results from Ghia et al [45] and Leroy et al [46] are also plotted in the figure. 



 

 

From this figure, one may see that although the results of the ISPH_R method are quite close to those from 
the cited papers, they are visibly less than others in the region near the bottom and left wall.  The pressure 
contour and pressure along the section of y=0.5 corresponding to Fig. 24 are depicted in Fig. 25, where the 
result marked as FV is the pressure from Leroy et al [46], who obtained it by using a finite volume method.  
It is noted here that there are other results in [46] for the pressure along the section but we do not re-plot all 
of them for keeping clarification.  Compared with the similar results given by Leroy et al [46] for the same 
case, the pattern of the contour is largely similar and the agreement of pressure with the FV result is at the 
similar level as those in [46].  It is noted that the flow in this case is driven mainly by the viscosity in 
particular at the earlier stage of simulation, which is quite different from water waves mainly driven by 
pressure gradient.  The focus of this paper is to improve the ISPH by using the different method for solving 
the pressure equation but without improvement on the viscous stress term.  If adopting the similar 
technique for estimating the viscous stress term to that in Leroy et al [46] which considered a 
non-homogeneous Neumann wall boundary condition on the velocity and the turbulent viscosity, the results 
may become better.           
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(a) Contour of pressure                (b) Pressure along the section of y=0.5 
 

Fig. 25 Pressure of lid-driven cavity flow  
 
 
4. Conclusion 

This paper introduced a new incompressible SPH based on Rankine source solution (abbreviated as 
ISPH_R) to simulate 2D violent waves. The method adopts the Rankine solution to decrease the order of the 
derivatives in the Poisson equation defining the boundary value problem for pressure.  The transformed 
Poisson equation does not include any derivative of the functions to be solved.  Using the new formulation, 
one just needs to approximate the functions themselves during discretisation, instead of approximating their 
second order derivatives as in the existing incompressible SPH.  In the cases of dam-breaking and sloshing 
wave problems, the results of the ISPH_R method are in good agreement with available experimental data 
and analytical solution. By comparing its results with those from traditional SPH and different forms of 
existing ISPH, the ISPH_R method presented in this paper is demonstrated to need a smaller number of 
particles and less computational costs to achieve the similar level of accuracy, or to produce more accurate 
results with the same number of particles for the water wave problems. Although the conclusion is obtained 



 

 

by using the limited cases studied in this paper, it is expected to be hold for general water wave cases where 
the pressure is more dominant than viscous stresses.  That is because the feature of no derivatives in 
governing equation for pressure adopted in this paper is applied for all the water wave cases.  This method 
can be extended to three dimensional problems, which will be presented in future.  In future, comparative 
studies may also be carried out in order to find out if combining the particle shifting technique with the new 
technique for solving the pressure Poisson introduced in the paper may give better results, and if the other 
free surface identification technique (e.g. the one based on the free surface divergence criteria, [21]) other 
than the one employed in this paper would be more accurate.  In addition, an adaptive time-step technique 
should be adopted and the viscosity caused by turbulence should be considered. 
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Appendix A:  Discretisation of pressure gradient at a particle on a solid boundary 
 
 
In Ma (2007), the gradient of a two-dimensional function, such as pressure p(x,y), at a particle I is 
approximated by the following equations 
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where N is the number of particles affecting Particle I, x1=x, x2=y, xJr ,
� is the component of the position 

vector in x ( or y) direction.  For the convenience of discretising Eq. (26), we may define  
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After simple manipulation,  Eq. (A1) and Eq. (A2) can be written as 
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Using the above two equations (A3 and A4), the gradient of pressure in the normal direction ( n� ) of a solid 
boundary can be discretised as  
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