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ABSTRACT

Uncertainty quantification (UQ) tasks, such as model calibration, uncertainty propagation, and optimization
under uncertainty, typically require several thousand evaluations of the underlying computer codes. To cope with
the cost of simulations, one replaces the real response surface with a cheap surrogate based, e.g., on polynomial
chaos expansions, neural networks, support vector machines, or Gaussian processes (GP). However, the number of
simulations required to learn a generic multivariate response grows exponentially as the input dimension increases.
This curse of dimensionality can only be addressed, if the response exhibits some special structure that can be
discovered and exploited. A wide range of physical responses exhibit a special structure known as an active subspace
(AS). An AS is a linear manifold of the stochastic space characterized by maximal response variation. The idea is
that one should first identify this low dimensional manifold, project the high-dimensional input onto it, and then
link the projection to the output. If the dimensionality of the AS is low enough, then learning the link function is
a much easier problem than the original problem of learning a high-dimensional function. The classic approach to
discovering the AS requires gradient information, a fact that severely limits its applicability. Furthermore, and partly
because of its reliance to gradients, it is not able to handle noisy observations. The latter is an essential trait if one
wants to be able to propagate uncertainty through stochastic simulators, e.g., through molecular dynamics codes. In
this work, we develop a probabilistic version of AS which is gradient-free and robust to observational noise. Our
approach relies on a novel Gaussian process regression with built-in dimensionality reduction. In particular, the AS
is represented as an orthogonal projection matrix that serves as yet another covariance function hyper-parameter to
be estimated from the data. To train the model, we design a two-step maximum likelihood optimization procedure
that ensures the orthogonality of the projection matrix by exploiting recent results on the Stiefel manifold, i.e., the
manifold of matrices with orthogonal columns. The additional benefit of our probabilistic formulation, is that it
allows us to select the dimensionality of the AS via the Bayesian information criterion. We validate our approach
by showing that it can discover the right AS in synthetic examples without gradient information using both noiseless
and noisy observations. We demonstrate that our method is able to discover the same AS as the classical approach
in a challenging one-hundred-dimensional problem involving an elliptic stochastic partial differential equation with
random conductivity. Finally, we use our approach to study the effect of geometric and material uncertainties in the
propagation of solitary waves in a one dimensional granular system.
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1 Introduction
Despite the indisputable successes of modern computational science and engineering, the increase in the predictive abil-

ities of physics-based models has not been on a par with the advances in computer hardware. On one hand, we can now solve
harder problems faster. On the other hand, however, the more realistic we make our models, the more parameters we have
to worry about, in order to be able to describe boundary and initial conditions, material properties, geometric imperfections,
constitutive laws, etc. Since it is typically impossible, or impractical, to accurately measure every single parameter of a com-
plex computer code, we have to treat them as uncertain and model them using probability theory. Unfortunately, the field of
uncertainty quantification (UQ) [1,2,3,4], which seeks to rigorously and objectively assess the impact of these uncertainties
on model predictions, is not yet mature enough to deal with high-dimensional stochastic spaces.

The most straightforward UQ approaches are powered by Monte Carlo (MC) sampling [5, 6]. In fact, standard MC, as
well as advanced variations, are routinely applied to the uncertainty propagation (UP) problem [7, 8, 9], model calibration
[10, 11], stochastic optimization [12, 13, 14], involving complex physical models. Despite the remarkable fact that MC
methods convergence rate is independent of the number of stochastic dimensions, realistic problems typically require tens or
hundreds of thousands of simulations. As stated by A. O’Hagan, this slow convergence is due to the fact that “Monte Carlo
is fundamentally unsound” [15], in the sense that it fails to learn exploitable patterns from the collected data. Thus, MC is
rarely ever useful in UQ tasks involving expensive computer codes.

To deal with expensive computer codes, one typically resorts to surrogates of the response surface. Specifically, one
evaluates the computer code on a potentially adaptively selected, design of input points, uses the result to build a cheap-to-
evaluate version of the response surface, i.e., a surrogate. Then, he/she replaces all the occurrences of the true computer code
in the UQ problem formulation with the constructed surrogate. The surrogate may be based on a generalized polynomial
chaos expansion [16, 17, 18, 19, 20], radial basis functions [21, 22], relevance vector machines [23], adaptive sparse grid
collocation [24], Gaussian processes (GP) [25,26,27,23,28,29,30,31], etc. For relatively low-dimensional stochastic inputs,
all these methods outperform MC, in the sense that they need considerably fewer evaluations of the expensive computer code
in order to yield satisfactorily convergent results.

In this work, we focus on Bayesian methods and, in particular, on GP regression [32]. The rationale behind this choice
is due to the special ability of the Bayesian formalism to quantify the epistemic uncertainty induced by the limited number
of simulations. In other words, it makes it possible to produce error bars for the results of the UQ analysis, see [33,34,35,36,
28,23,30,31,37] and [38] for a recent review focusing on the uncertainty propagation problem. This epistemic uncertainty is
the key to developing adaptive sampling methodologies, since it can be used to rigorously quantify the expected information
content of future simulations. For example, see [39,40] for adaptive sampling targeted to overall surrogate improvement, [41]
and [42] for single- and multi-objective global optimization, respectively, and [28] for the uncertainty propagation problem.

Unfortunately, standard GP regression, as well as practically any generic UQ technique, is not able to deal with high
stochastic dimensions. This is due to the fact that it relies on the Euclidean distance to define input-space correlations.
Since the Euclidean distance becomes uninformative as the dimensionality of the input space increases [43], the number of
simulations required to learn the response surface grows exponentially. This is known as the curse of dimensionality, a term
coined by R. Bellman [44]. In other words, blindly attempting to learn generic high-dimensional functions is a futile task.
Instead, research efforts are focused on methodologies that can identify and exploit some special structure of the response
surface, which can be discovered from data.

The simplest way to address the curse of dimensionality is to use a variable reduction method, e.g., sensitivity analysis
[45, 46] or automatic relevance determination [39, 47, 48]. Such methods rank the input features in order of their ability to
influence the quantity of interest, and, then, eliminate the ones that are unimportant. Of course, variable reduction methods
are effective only when the dimensionality of the input is not very high and when the input variables are, more or less,
uncorrelated. The common case of functional inputs, e.g., flow through porous media requires the specification of the
permeability and the porosity as functions of space, cannot be teated directly with variable reduction methods. In such
problems one has to start with a dimensionality reduction of the functional input. For example, if the input uncertainty is
described via a Gaussian random field, dimensionality reduction can be achieved via a truncated Karhunen-Loève expansion
(KLE) [49]. If the stochastic input model is to be built from data, one may use principal component analysis (PCA) [50],
also known as empirical KLE, or even non-linear dimensionality reduction maps such as kernel PCA [51]. The end goal of
dimensionality reduction techniques is the construction of a low dimensional set of uncorrelated features on which variable
reduction methods, or alternative methods, may be applied. Note that even though the new features are lower dimensional
than the original functional inputs, they are still high-dimensional for the purpose of learning the response surface.

A popular example of an exploitable feature of response surfaces that can be discovered from data is additivity. Additive
response surfaces can be expressed as the sum of one-variable terms, two-variable terms, and so on, interpreted as interactions
between combinations of input variables. Such representations are inspired from physics, e.g., the Coulomb potential of
multiple charges, the Ising model of statistical mechanics. Naturally, this idea has been successfully applied to the problem
of learning the energy of materials as a function of the atomic configuration. For example, in [14] the authors use this idea to
learn the quantum mechanical energy of binary alloys on a fixed lattice by expressing it as the sum of interactions between
clusters of atoms, a response surface with thousands of input variables. The approach has also been widely used by the



computational chemistry community, where it is known as high-dimensional model representation (HDMR) [52, 53, 54, 55].
The UQ community has been embracing and extending HDMR [56, 57], sometimes referring to it by the name functional
analysis of variance (ANOVA) [58, 59]. It is possible to model additive response surfaces with a GP by choosing a suitable
covariance function. The first such effort can be traced to [60] and has been recently revisited by [61, 62, 63, 64, 65]. By
exploiting the additive structure of response surfaces one can potentially deal with a few hundred to a few thousand input
dimensions. This is valid, of course, only under the assumption that the response surface does have an additive structure with
a sufficiently low number of important terms.

Another example of an exploitable response surface feature is active subspaces (AS) [66]. An AS is a low-dimensional
linear manifold of the input space characterized by maximal response variation. It aims at discovering orthogonal directions
in the input space over which the response varies maximally, ranking them in terms of importance, and keeping only the
most significant ones. Mathematically, an AS is described by an orthogonal matrix that projects the original inputs to this
low-dimensional manifold. The classic framework for discovering the AS was laid down by Constantine [67,68,69,70]. One
builds a positive-definite matrix that depends upon the gradients of the response surface. The most important eigenvectors
of this matrix form the aforementioned projection matrix. The dimensionality of the AS is identified by looking for sharp
changes in the eigenvalue spectrum, and retaining only the eigenvectors corresponding to the highest eigenvalues. Once the
AS is established, one proceeds by: 1) Projecting all the inputs to the AS; 2) Learning the map between the projections and
the quantity of interest. The latter is known as the link function. The framework has been successfully applied to a variety of
engineering problems [71, 72, 73, 74, 75].

One of the major drawbacks of classic AS methodology is that it relies on gradient information. Even though, in
principle, it is possible to compute the gradients either by deriving the adjoint equations [76] or by using automatic dif-
ferentiation [77], in many cases of interest this is not practical, since implementing any of these two approaches requires
a significant amount of time for software development, validation and verification. This is an undesirable scenario when
one deals with existing complex computer codes with decades of development history. The natural alternative of employing
numerical differentiation is also not practical for high-dimensional input, especially when the underlying computer code is
expensive to evaluate and/or when one has to perform the analysis using a restricted computational budget. The second
major drawback of the classic AS methodology is its difficulty in dealing with relatively large observational noise, since that
would require a unifying probabilistic framework. This drawback significantly limits the applicability of AS to important
problems that include noise. For example, it cannot be used in conjunction with high-dimensional experimental data, or
response surfaces that depend on stochastic models e.g., molecular dynamics.

The ideas of AS methodologies are reminiscent of the partial least squares (PSL) [78] regression scheme, albeit it is
obvious that the two have been developed independently stemming from different applications. AS applications focus on
computer experiments [67,68,69,70], while PSL has been extensively used to model real experiments with high-dimensional
inputs/outputs in the field of chemometrics [79, 80, 81]. PSL not only projects the input to a lower dimensional space using
an orthogonal projection matrix, but, if required, it can do the same to a high-dimensional output. It connects the reduced
input to the reduced output using a linear link function. All model parameters are identified by minimizing the sum of
square errors. PSL does not require gradient information and, thus, addresses the first drawback of AS. Furthermore, it
also addresses, to a certain extent, the second drawback, namely the inability of AS to cope with observational noise, albeit
only if the noise level is known a priori or fitted to the data using cross validation. As all non-Bayesian techniques, PSL
may suffer from overfitting and from the inability to produce robust predictive error bars. Another disadvantage of PSL
is the assumption that the link map is linear, a fact that severely limits its applicability to the study of realistic computer
experiments. The latter has been addressed by the locally weighted PSL [82], but at the expense of introducing an excessive
amount of parameters.

In this work, we develop a probabilistic version of AS that addresses both its major drawbacks. That is, our framework is
gradient-free (even though it can certainly make use of gradient information if this is available), and it can seamlessly work
with noisy observations. It relies on a novel Gaussian process (GP) regression methodology with built-in dimensionality
reduction. In particular, we treat the orthogonal projection matrix of AS as yet another hyper-parameter of the GP covariance
function. That is, our proposed covariance function internally projects the high-dimensional inputs to the AS, and then
models the similarity of the projected inputs. We determine all the hyper-parameters of our model, including the orthogonal
projection matrix, by maximizing the likelihood of the observed data. To achieve this, we devise a two-step optimization
algorithm guaranteed to converge to a local maximum of the likelihood. The algorithm iterates between the optimization of
the projection matrix (keeping all other hyper-parameter fixed) and the optimization of all other hyper-parameters (keeping
the projection matrix fixed), until a convergence criterion is met. To enforce the orthogonality constraint on the projection
matrix, we exploit recent results on the description of the Stiefel manifold, i.e., the set of matrices with orthogonal columns.
The optimization of the other hyper-parameters is carried out using BFGS [83]. The addendum of our probabilistic approach
is that it allows us to select the dimensionality of the AS using the Bayesian information criterion (BIC) [84].

This paper is organized as follows. In Sec. 2.1, we briefly introduce GP regression, followed by a discussion of the
classic, gradient-based, AS approach (Sec. 2.2) and the proposed gradient-free approach in (Sec. 2.3). Sec. 3.1 verifies our
approach in a series of synthetic examples with known AS as well as the robustness of our methodology to observational



noise. In Sec. 3.2, we use a one-hundred-dimensional stochastic elliptic partial differential equation (PDE) to demonstrate
that the proposed approach discovers the same AS as the classic approach - even without gradient information. In Sec. 3.3,
we use our approach to study the effect of geometric and material uncertainties in the propagation of solitary waves through
a one dimensional granular system. We present our conclusions in Sec. 4.

2 Methodology
Let f : RD→ R be a multivariate response surface with D� 1. Intuitively, f (·) accepts an input, x ∈ RD, and responds

with an output (or quantity of interest (QoI)), f (x). We can measure f (x) by querying an information source, which can be
either a computer code or a physical experiment. Furthermore, we allow for noisy information sources. That is, we assume
that instead of measuring f (x) directly, we measure a noisy version of it y = f (x)+ ε, where ε is a random variable. In
physical experiments, measurement noise may rise from our inability to control all influential factors or from irreducible
(aleatory) uncertainties. In computer simulations, measurement uncertainty may rise from quasi-random stochasticity, or
chaotic behavior.

The ultimate goal of this work, is to efficiently propagate uncertainty through f (·). That is, given a probability density
function (PDF) on the inputs:

x∼ p(x), (1)

we would like to compute the statistics of the output. Statistics of interest are the mean

µ f =
∫

f (x)p(x)dx, (2)

the variance,

σ
2
f =

∫
( f (x)−µ f )

2 p(x)dx, (3)

and the PDF of the output, which can be formally written as

f ∼ p( f ) =
∫

δ( f − f (x)) p(x)dx, (4)

where δ(·) is Dirac’s δ-function. We refer to this problem as the uncertainty propagation (UP) problem.
The UP problem is particularly hard when obtaining information about f (·) is expensive. In such cases, we are neces-

sarily restricted to a limited set of observations. Specifically, assume that we have queried the information source at N input
points,

X =
{

x(1), . . . ,x(N)
}
, (5)

and that we have measured

y =
{

y(1), . . . ,y(N)
}
. (6)

We consider the following pragmatic interpretation of the UP problem: What is the best we can say about the statistics of
the QoI, given the limited data in D? The core idea behind our approach, and also behind most popular approaches in the
current literature, is to replace the expensive response surface, f (·), with a cheap to evaluate surrogate learned from X and y.

As discussed in Sec. 1, the fact that we are working in a high-dimensional regime, D� 1, causes insurmountable
difficulties unless f (·) has some special structure that we can discover and exploit. In this work, we assume that the response
surface has, or can be well-approximated with the following form:

f (x)≈ g
(
WT x

)
, (7)



where the matrix W∈RD×d projects the high-dimensional input space, RD, to the low-dimensional active subspace, Rd ,d�
D, and g : Rd → R is a d-dimensional function known as the link function. Without loss of generality, we may assume that
the columns of W are orthogonal. Mathematically, we write W ∈Vd

(
RD
)
, where Vd

(
RD
)

is the set of D×d matrices with
orthogonal columns,

Vd
(
RD) :=

{
A ∈ RD×d : AT A = Id

}
, (8)

with Id the d×d unit matrix. Vd
(
RD
)

is also known as the Stiefel manifold. Note that the representation of Eq. (7) is arbitrary
up to rotations and relabeling of the active subspace coordinate system. Intuitively, we expect that there is a d-dimensional
subspace of RD over which f (·) exhibits most of its variation. If d is indeed much smaller than D, then the learning problem
is significantly simplified.

The goal of this paper is to construct a framework for the determination of the dimensionality of the active subspace d,
the orthogonal projection matrix W, and of the low dimensional map g(·) using only the observations {X,y}. Once these
elements are identified, then one may use the constructed surrogate in any uncertainty quantification task, and, in particular,
in the UP problem. We achieve our goal by following a probabilistic approach, in which f (·) is represented as a GP with W
built into its covariance function and determined by maximizing the likelihood of the model.

2.1 Gaussian process regression
In this section we provide a brief, but complete, description of GP regression. Since, in later subsections, we use the

concept in two different settings, here we attempt to be as generic as possible so that what we say is applicable to both
settings. Towards this end, we consider the problem of learning an arbitrary response surface h(·) which takes inputs q ∈Rl ,
assuming that we have made the, potentially noisy, observations:

t =
{

t(1), . . . , t(N)
}
, (9)

at the input points:

Q =
{

q(1), . . . ,q(N)
}
. (10)

The philosophy behind GP regression is as follows. A GP defines a probability measure on a function space, i.e., a
random field. This probability measure corresponds to our prior beliefs about the response surface. GP regression uses Bayes
rule to combine these prior beliefs with observations. The result of this process is a posterior GP which is simultaneously
compatible with our beliefs and the data. We call this posterior GP a Bayesian surrogate. If a point-wise surrogate is required,
one may use the median of the posterior GP. Predictive error bars, corresponding to the epistemic uncertainty induced by
limited data, can be derived using the variance of the posterior GP. To materialize the GP regression program we need three
ingredients: 1) A description of our prior state of knowledge about the response surface (Sec. 2.1.1); 2) A model of the
measurement process (Sec. 2.1.2); and 3) A characterization of our posterior state of knowledge (Sec. 2.1.3). In Sec. 2.1.4
we discuss how the posterior of the model can be approximated via maximum likelihood.

2.1.1 Prior state of knowledge
Prior to seeing any data, we model our state of knowledge about h(·) by assigning to it a GP prior. We say that h(·) is a

GP with mean function m(·;θθθ) and covariance function k(·, ·;θθθ), and write:

h(·)|θθθ∼ GP(h(·)|m(·;θθθ),k(·, ·;θθθ)). (11)

The parameters of the mean and the covariance function, θθθ ∈ΘΘΘ, are known as the hyper-parameters of the model.
Our prior beliefs about the response are encoded in our choice of the mean and covariance functions, as well as in the

prior we pick for their hyper-parameters:

θθθ∼ p(θθθ). (12)



The mean function is used to model any generic trends of the response surface, and it can have any functional form. If
one does not have any knowledge about the trends of the response, then a reasonable choice is a zero mean function. The
covariance function, also known as the covariance kernel, is the most important part of a GP. Intuitively, it defines a nearness
or similarity measure on the input space. That is, given two input points, their covariance models how close we expect the
corresponding outputs to be. A valid covariance function must be positive semi-definite and symmetric. Throughout the
present work we use the Matern-32 covariance kernel:

kmat(q,q′;θθθ) = s2

(
1+
√

3
l

∑
i=1

(qi−q′i)
2

`2
i

)
exp

(
−
√

3
l

∑
i=1

(qi−q′i)
2

`2
i

)
(13)

where θθθ = {s, `1, . . . , `l}, with s > 0 being the signal strength and `i > 0 the length scale of the i-th input. The Matern-32
covariance function corresponds to the a priori belief that the response surface is both continuous and differentiable. For
more on covariance functions see Ch. 4 of Rasmussen [32].

Given an arbitrary set of inputs Q, see Eq. (10), Eq. (11) induces by definition a Gaussian prior on the corresponding
response outputs:

h =
{

h
(

q(1)
)
, . . . ,h

(
q(N)

)}
. (14)

Specifically, h is a priori distributed according to:

h|Q,θθθ∼N (h|m,K) , (15)

where N (·|µµµ,ΣΣΣ) is the PDF of a multivariate Gaussian random variable with mean vector µµµ and covariance matrix ΣΣΣ,
m := m(Q;θθθ) ∈ RN is the mean function evaluated at all points in Q,

m = m(Q;θθθ) =


m
(

q(1);θθθ

)
...

m
(

q(N);θθθ

)
 , (16)

and K :=K(Q,Q;θθθ)∈RN×N is the covariance matrix, a special case of the more general cross-covariance matrix K(Q,Q̂;θθθ)∈
RN×N̂ ,

K(Q,Q̂;θθθ) =


k
(

q(1), q̂(1);θθθ

)
. . . k

(
q(1), q̂(N̂);θθθ

)
...

. . .
...

k
(

q(N), q̂(1);θθθ

)
. . . k

(
q(N), q̂(N̂);θθθ

)
 , (17)

defined between Q, Eq. (10), and an arbitrary set of N̂ inputs Q̂ =
{

q̂(1), . . . , q̂(N̂)
}

.

2.1.2 Measurement process
The Bayesian formalism requires that we explicitly model the measurement process that gives rise to the observations

t of Eq. (9). The simplest such model is to assume that measurements are independent of each other, and that they are
distributed normally about h(·) variance s2

n. That is,

t(i)|h
(

q(i)
)
,sn ∼N

(
t(i)
∣∣∣h(q(i)

)
,s2

n

)
. (18)

Note that sn > 0 is one more hyper-parameter to be determined from the data, and that we must also assign a prior to it:

sn ∼ p(sn). (19)



The assumptions in Eq. (18) can be relaxed to allow for heteroscedastic (input dependent) noise [85, 86], but this is beyond
the scope of this work. Using the independence assumption, we get:

t|h,sn ∼N
(
t
∣∣h,s2

nIN
)
. (20)

Using the sum rule of probability theory and standard properties of Gaussian integrals, we can derive the likelihood of the
observations given the inputs:

t|Q,θθθ,sn ∼N
(
t
∣∣m,K+ s2

nIN
)
. (21)

2.1.3 Posterior state of knowledge
Using Bayes rule to combine the prior GP, Eq. (11), with the likelihood, Eq. (21), yields the posterior GP:

h(·)|Q, t,θθθ,sn ∼ GP
(
h(·)
∣∣m̃(·), k̃(·, ·)

)
, (22)

where the posterior mean and covariance functions are

m̃(q) := m̃(q;θθθ) = m(q;θθθ)+K(q,Q;θθθ)
(
K+ s2

nIN
)−1

(t−m) , (23)

and

k̃(q,q′) := k̃(q,q′;θθθ,sn) = k(q,q′;θθθ)−K(q,Q;θθθ)
(
K+ s2

nIN
)−1 K(Q,q;θθθ), (24)

respectively. The posterior of the hyper-parameters is obtained by combining Eqn.’s (12) and (19) with Eq. (20) using Bayes
rule, i.e.,

θθθ,sn|Q, t∼ p(t|Q,θθθ,sn)p(θθθ)p(sn). (25)

Eqn.’s (22) and (25) fully quantify our state of knowledge about the response surface after seeing the data. However,
in practice it is more convenient to work with the predictive probability density at a single input q conditional on the hyper-
parameters θθθ and sn, namely:

h(q)|Q, t,θθθ,sn ∼N (h(q)|m̃(q), σ̃(q)) , (26)

where m̃(q) = m̃(q;θθθ) is the predictive mean given in Eq. (23), and

σ̃
2(q) := k̃(q,q;θθθ,sn), (27)

is the predictive variance. Note that the predictive mean can be used as a point-wise surrogate of the response surface, while
the predictive variance can be used to derive point-wise predictive error bars.

2.1.4 Fitting the hyper-parameters
Ideally, one would like to characterize the posterior of the hyper-parameters, see Eq. (25) using sampling techniques, e.g.,

a Markov chain Monte Carlo (MCMC) algorithm [87, 88, 89]. Here, we opt for a much simpler approach by approximating
Eq. (25) with a δ-Dirac function centered at the hyper-parameters that maximize the likelihood Eq. (21). For issues of
numerical stability, we prefer to work with the logarithm of the likelihood:

L(θθθ,sn;Q, t) := log p(t|Q,θθθ,sn). (28)



and determine the hyper-parameters by solving the following optimization problem:

θθθ
∗,s∗n = argmax

θθθ,sn
L(θθθ,sn;Q, t), (29)

subject to any constraints imposed on the hyper-parameters(see Ch. 5 of [32]). According to Eq. (21), the log-likelihood is

log p(t|Q,θθθ,sn) =−
1
2
(t−m)T (K+ s2

nIN
)−1

(t−m)− 1
2

log |K+ s2
nIN |−

N
2

log2π. (30)

The derivative of the log-likelihood with respect to any arbitrary parameter φ, where ψ = sn or θi, is:

∂

∂ψ
L(θθθ,sn;Q, t) =

1
2

tr

[((
K+ s2

nIN
)−1

(t−m)
((

K+ s2
nIN
)−1

(t−m)
)T
−
(
K+ s2

nIN
)−1
)

∂
(
K+ s2

nIN
)

∂ψ

]
. (31)

This point estimate of the hyper-parameters is known as the maximum likelihood estimate (MLE). The approach is
justified if the prior is relatively flat and the likelihood is sharply picked. Unless otherwise stated, in this work we solve
the optimization problem of Eq. (29) via the BFGS optimization algorithm [83] increasing the chances of finding the global
maximum by restarting the algorithm multiple times from random initial points.

2.2 Gradient-based approach to active subspace regression
In this section, we discuss the classic approach to discovering the active subspace using gradient information [69, 67,

68, 73, 70, 74, 75, 90, 91]. Recall that we are dealing with a high-dimensional response surface, and that we would like to
approximate it as in Eq. (7). The classic approach does this in two steps. First, it identifies the projection matrix W∈Vd

(
RD
)

using gradient information (Sec. 2.2.1). Second, it projects all inputs to the AS, and then uses GP regression to learn the map
between the projected inputs and the output (Sec. 2.2.2).

Note that the classic approach is not able to deal with noisy measurments. Therefore, in this subsection, we assume that
our measurements of f (x) are exact. That is, we work under the assumption that each y(i) in Eq. (6) is

y(i) = f
(

x(i)
)
, (32)

for i = 1, . . . ,N. Also, since it requires gradient information, we assume that we have observations of the gradient of f (·) at
each one of the input points, i.e., in addition to x and y of Eq. (5) and Eq. (6) respectively, we have access to:

G =
{

g(1), . . . ,g(N)
}
, (33)

where

g(i) = ∇ f
(

x(i)
)
∈ RD, (34)

and ∇ f (·) is the gradient of f (·),

∇ f (·) =
(

∂ f (·)
∂x1

, . . . ,
∂ f (·)
∂xD

)
. (35)

2.2.1 Finding the active subspace using gradient information
Let ρ(x) be a PDF on the input space, which can be different from the PDF of the UP problem given in Eq. (1), and

define the matrix

C :=
∫
(∇ f (x))(∇ f (x))T

ρ(x)dx. (36)



Since C is symmetric positive definite, it admits the form

C = VΛΛΛVT , (37)

where ΛΛΛ = diag(λ1, · · · ,λD) is a diagonal matrix containing the eigenvalues of C in decreasing order, λ1 ≥ ·· · ≥ λD ≥ 0,
and V ∈RD×D is an orthonormal matrix whose columns correspond to the eigenvectors of C. The classic approach suggests
separating the d largest eigenvalues from the rest,

ΛΛΛ =

[
ΛΛΛ1 000
000 ΛΛΛ2

]
, V =

[
V1 V2

]
,

(here ΛΛΛ1 = diag(λ1, . . . ,λd),V1 = [v11 . . .v1d ], and ΛΛΛ2,V2 are defined analogously), and setting the projection matrix to

W = V1. (38)

Intuitively, V rotates the input space so that the directions associated with the largest eigenvalues correspond to directions of
maximal function variability. See [67] for the theoretical justification.

It is impossible to evaluate Eq. (36) exactly. Instead, the usual practice is to approximate the integral via Monte Carlo.
That is, assuming that the observed inputs are drawn from ρ(x), one approximates C using the observed gradients, see
Eq. (33), by:

CN =
1
N

N

∑
i=1

g(i)
(

g(i)
)T

. (39)

In practice, the eigenvalues and eigenvectors of CN are found using the singular value decomposition (SVD) [92] of CN . The
dimensionality d is determined by looking for sharp drops in the spectrum of CN .

2.2.2 Finding the map between the active subspace and the response
Using the classically found projection matrix, see Eq. (38), we obtain the projected observed inputs Z ∈ RN×d :

Z =
{

z(1), . . . ,z(N)
}
, (40)

where

z(i) = WT x(i). (41)

The link function g(·) that connects the AS to the output, see Eq. (7), is identified using GP regression, see Sec. 2.1, with
response h(·)≡ g(·), input points q≡ z, observed inputs Q≡ Z, and observed outputs t≡ y.

2.3 Gaussian processes regression with built-in dimensionality reduction
As mentioned in Sec. 1 the classic approach to AS-based GP regression, see Sec. 2.2, suffers from two major drawbacks:

1) It relies on gradient information; and 2) It cannot deal seamlessly with measurement noise. In this section, we propose a
probabilistic, unifying view of AS that is able to overcome these difficulties.

Our approach is based on novel covariance function on the high-dimensional input space:

kAS : RD×RD×Vd
(
RD)×ΦΦΦ→ R, (42)

with form:

kAS(x,x
′;W,φφφ) = kd(WT x,WT x′;φφφ), (43)



Algorithm 1 Two-step optimization algorithm for the log-likelihood.

Require: Observed inputs X, observed outputs y, maximum number of iterations Ml , convergence tolerance εl > 0, initial
parameter estimates W0,φφφ0 and sn,0.

1: L0← L(W0,φφφ0,sn,0;X,y).
2: for i = 1, . . . ,Ml do
3: Perform 1 iteration towards the solution of the following optimization problem:

Wi← argmax
W∈Vd(RD)

L(W,φφφi−1,sn,i−1;X,y) {using Alg. 3}

4: Perform 1 iteration towards the solution of the following optimization problem:
φφφi,sn,i← argmin

φφφ,sn

L(Wi,φφφ,sn;X,y){using BFGS [83]}

5: Li← L(Wi,φφφi,sn,i;X,y)
6: if Li−Li−1

Li−1
< εl then

7: break
8: end if
9: end for

10: L0← Li
11: for i = 1, . . . ,Ml do
12: Solve the optimization problem stated in step 3 until convergence.
13: Solve the optimization problem stated in step 4 until convergence.
14: Li← L(Wi,φφφi,sn,i;X,y)
15: if Li−Li−1

Li−1
< εl then

16: break
17: end if
18: end for
19: return Wi,φφφi,sn,i

where kd : Rd ×Rd × φφφ→ R is a standard covariance function on the low-dimensional space parameterized by φφφ ∈ ΦΦΦ. In
words, the high-dimensional covariance function, Eq. (43), first projects the inputs to the AS and, then, assesses the similarity
of the projected inputs using the low-dimensional covariance function kd(·, ·;φφφ). Note that he high-dimensional covariance
function is parameterized by both the orthonormal projection matrix W and the hyper-parameters φφφ of the low-dimensional
covariance function.

To appreciate the unifying character of our approach note that the way to proceed is verbatim the generic GP regression
approach of Sec. 2.1 with response f (·)≡ h(·), input points q≡ x, observed inputs Q≡X, observed ouputs t≡ y, covariance
hyper-parameters θθθ = {W,φφφ} taking values in ΘΘΘ ≡ Vd

(
RD
)
×ΦΦΦ, and covariance function k(·, ·;θθθ) ≡ kAS(·, ·;W,φφφ). The

only difficulty that we face, albeit non-trivial, is that the likelihood maximization of Eq. (29) must take into account the
constraint that the projection matrix is orthonormal, W ∈ Vd

(
RD
)
. The rest of this methodology is concerned with this

optimization problem. In particular, Sec. 2.3.1 discusses the overall optimization algorithm, Sec. 2.3.2 the optimization over
the Stiefel manifold, and Sec. 2.3.3 the selection of the AS dimensionality.

2.3.1 Iterative two-step likelihood maximization

As mentioned earlier, the optimization problem that we have to solve for the determination of the covariance hyper-
parameters θθθ = {W,φφφ} and the noise variance s2

n, is given by Eq. (29) subject to the constrain that W ∈ Vd
(
RD
)
. To solve

this problem we devise an iterative two-step optimization algorithm guaranteed to converge to a local optimum. The fist step
keeps φφφ and sn fixed, and performs 1 iteration towards the optimization of the log-likelihood over W∈Vd

(
RD
)

(see Sec. 2.3.2
for the details). The second step, keeps W fixed, and performs 1 iteration towards the optimization of the log-likelihood over
φφφ and sn using the BFGS algorithm [83]. We iterate between these two steps until the relative change in log-likelihood falls
below a threshold εl > 0. Finally, we repeat the two step iteration process again, this time without constraining the number of
iterations of each optimization process to 1. We observe that this additional step forces the objective function to find a better
local minimum. The procedure is outlined in Algorithm 1. In order avoid getting trapped in a local optimum, we restart
the algorithm from multiple random initial points, θθθ0 = {W0,φφφ0,sn,0} in Algorithm 1, and select the overall optimum. To
initialize W0 we sample uniformly the Stiefel manifold Vd

(
RD
)

using Algorithm 2.



Algorithm 2 Uniform sampling of Vd
(
RD
)

(for justification, see Bartlett decomposition theorem [93]).

Require: Number of rows D and number of columns d.
1: Sample a random matrix A ∈ RD×d with independent normally distributed entries:

ai j ∼N (ai j|0,1), for i = 1, . . . ,D, j = 1, . . . ,d.

2: Compute the QR-factorization of A:

A = QR.

3: return Q

2.3.2 Maximizing the likelihood with respect to the projection matrix
In this subsection, we consider the problem of maximizing the log-likelihood with respect to W ∈ Vd

(
RD
)

keeping
the covariance hyper-parameters φφφ and the noise variance s2

n fixed. This is one of the steps required by Algorithm 1. For
notational convenience, define the function:

F (W) := L(W,φφφ,sn;X,y), (44)

where φφφ and sn are supposed to be fixed. The optimization problem we wish to solve is:

W∗ = argmax
W∈Vd(RD)

F (W). (45)

What follows requires the gradient of F (·) with respect to W. This can be found from Eq. (31) by setting ψ ≡ wi j, where
wi j is the (i, j) element of W, and noticing that:

∂

∂wi j
kAS

(
x,x′;W,φφφ

)
=

∂

∂z j

[
kd(WT x,WT x′;φφφ)

]
xi +

∂

∂z′j

[
kd(WT x,WT x′;φφφ)

]
x′i, (46)

for the covariance function kAS(·, ·;W,φφφ) introduced in Eq. (43), where ∂

∂z j
denotes the partial derivative with respect to the

j-coordinate of the low-dimensional covariance function kd(·, ·;φφφ).
Eq. (45) is a hard problem because of non-convexity as well as the difficulty of preserving the orthogonality constraints.

We approach it using the procedure described in [94], a gradient ascent scheme on the Stiefel manifold in which orthogonality
is ensured via a Crank-Nicholson-like update involving the Cayley transform. To introduce the scheme, let W∈Vd

(
RD
)

and
define the curve

γγγ(τ;W) =
(

ID−
τ

2
A(W)

)−1(
ID +

τ

2
A(W)

)
W, (47)

where

A(W) := ∇WF (W)W−W(∇WF (W))T . (48)

As shown in [94], the curve lives in the Stiefel manifold, i.e., γγγ(τ) ∈Vd
(
RD
)
, and it defines an ascent direction, i.e.,

∂

∂τ
F (γγγ(τ = 0;W))≥ 0. (49)



Fortunately, γ(τ;W) does not require the inversion of a D×D matrix, but can be computed in O(d3) flops (see [94] for
the details). These results, suggest an optimization algorithm that iteratively maximizes F (·) over the curve γγγ(·;W) until
the relative change in F (·) becomes smaller than a threshold εs > 0. To solver the inner curve search problem, we use the
efficient global optimization (EGO) scheme [95] which, typically, takes 2-5 evaluations of F to converge. Other curve search
algorithms could have been used (see [94]). See Algorithm 3.

Algorithm 3 Stiefel manifold optimization

Require: Initial parameter W0, maximum step size τmax > 0, maximum number of iterations Ms, tolerance εs > 0, all the
fixed parameters required to evaluate F (·) of Eq. (44).

1: F0← F (W0).
2: for i = 1, . . . ,Ms do
3: τi← argmax

τ∈[0,τmax]

F (γγγ(τ;Wi−1)) {Using EGO [95]}

4: Wi← γγγ(τi;Wi−1)
5: Fi = F (Wi)

6: if Fi−Fi−1
Fi−1

< εs then
7: break
8: end if
9: end for

10: return Wi

2.3.3 Identification of active subspace dimension
Bayesian model selection involves assigning a prior on models and deriving the posterior probability of each model

conditioned on observable data [96]. This process requires the computation of the normalization constant of the posterior
of the hyper-parameters of each model being considered (see Eq. (25)). The logarithm of this normalization constant is
known as the model evidence, the equivalent of the partition function of statistical mechanics, is notoriously difficult to
calculate [97,98]. The Bayesian information criterion (BIC) [99, Ch. 4.4.1] is a crude, but cheap, approximation to the model
evidence (up to an additive constant). To define it, let θθθ

∗
d = {W∗

d ,φφφ
∗
d ,s
∗
n,d} be the MAP estimate of the hyper-parameters found

by Algorithm 1. The BIC score of the d-dimensional AS model is:

BICd = L(θθθ∗d ;X,y)− 1
2

#(θθθ∗d) logN, (50)

where N is the number of observations, and #(θθθ∗d) is the number of estimated parameters θθθ
∗
d :

#(θθθ∗d) = #(W∗
d)+#(φφφ∗d)+#(s∗n,d) = dD+#(φφφ∗d)+1. (51)

That is, the BIC is equal to the maximum log-likelihood minus a term that penalizes model complexity. Typically, BICd
increases as a function of d. The sharper the increase of the BIC from d to d + 1, the stronger the evidence that the most
complex model is closest to the truth. Motivated by this, we propose an algorithm that sequentially increases d until the
relative change in BIC becomes smaller than a threshold εb > 0. This is summarized in Algorithm 4.

3 Examples
We have implemented both the classic approach, Sec. 2.2, and the proposed gradient-free approach, Sec. 2.3, in Python.

Our code extends the GPy module [100] and is publicly available at [101]. All the numerical results we present here can be
replicated by following the instructions on the aforementioned website. In all cases, we used the same parameters for our
optimization algorithms. Specifically, we used 1,000 restarts of log-likelihood optimization, Algorithm 1, with parameters
Ml = 10000, εl = 10−16, m = 1 and n = 1. For the Stiefel manifold optimization, Algorithm 3, we used τmax = 0.1,
Ms = 10000, and εs = 10−16. Finally, we used εd = 10−3 in Algorithm 4.



Algorithm 4 Identification of active subspace dimension

Require: Maximum allowed AS dimensionality dmax, tolerance εb, all the data and parameters required to run Algorithm 1.

1: BIC0←−∞

2: for d = 1, . . . ,dmax do
3: Find θθθ

∗
d by running Algorithm 1 for a d-dimensional AS

4: if BICd−BICd−1
BICd−1

≤ εb then
5: break
6: end if
7: end for

Sec. 3.1 uses a series of synthetic examples (known projection matrix and known non-linear link function) to verify that
the proposed approach, Sec. 2.3, finds the same AS as the classic approach, Sec. 2.2. Our goal is to address the first identified
drawback of classic AS, namely the reliance on gradient information. Furthermore, this section validates our claim that the
proposed methodology is robust to measurement noise. In Sec. 3.2, we apply our technique to a standard UQ benchmark
with one hundred input dimensions, a stochastic elliptic partial differential equation with random conductivity. The results
are again compared to the classic AS, thereby verifying the agreement between the two in a more challenging, truly high-
dimensional setting. We conclude this section with an exhaustive uncertainty analysis of a one-dimensional granular crystal
with geometric and material imperfections, see Sec. 3.3. The latter is not amenable to the classic AS approach due to lack
of gradient information. Note that, to the best of our knowledge, this is the first time an uncertainty analysis of this scale has
been performed to a granular crystal.

3.1 Synthetic response surface with known structure
Let f : RD→ R be a response surface of the form:

f (x) = g
(
WT x

)
, (52)

with W ∈Vd
(
RD
)
, and quadratic link function g : Rd → R,

g(z) = α+βββ
T z+ zT

ΓΓΓz, (53)

with α ∈ R,βββ ∈ Rd and ΓΓΓ ∈ Rd×d . The gradient of Eq. (52) with respect to x is:

∇ f (x) =
(
βββ+2xT WΓΓΓ

)
WT . (54)

In all the cases considered in this subsection, the number of input dimensions is ten, D = 10. The parameters W,ααα,βββ and
ΓΓΓ were randomly generated. Reproducibility is ensured by fixing the random seed. Due to lack of space, we only give the
values of these parameters when the dimension of the active subspace, d, is lower than or equal to two. For all other cases,
we refer the reader to the accompanying website of this paper [101]. Given a frozen set of α,βββ and ΓΓΓ, we query the response
f (·) at N normally distributed input points and contaminate the measurements with synthetic zero mean Gaussian noise with
standard deviation sn > 0. This results in a collection of inputs, X as in Eq. (5), and outputs, y as in Eq. (6). When needed,
we also collect gradient data, G as in Eq. (33), but we do not contaminate them with noise.

In Sec. 3.1.1 and Sec. 3.1.2, we verify that the gradient-free approach discovers the underlying 1D and 2D AS structure,
respectively. Sec. 3.1.3 demonstrates the efficacy of the BIC as an automatic method dimensionality detection method.
Finally, in Sec. 3.1.4 we study the robustness of the gradient-free approach to measurment noise.

3.1.1 Synthetic response with 1D active subspace
In this example the underlying AS is 1D, d = 1. The projection matrix is:

W =
(
−0.0091, −0.0579, −0.1877, 0.4774, 0.4559, −0.6714, −0.1264, −0.0082, 0.0724, −0.2308

)T
, (55)
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Fig. 1: Synthetic example d = 1. The left and the right columns correspond to results obtained with the classic and the
gradient-free approach respectively. The first and second rows depict the predictions of each method for the link function
assuming a 1D and 2D underlying AS, respectively, along with a scatter plot of the projections of 60 validation inputs vs the
validation outputs. The third row visualizes the projection matrix that each method discovers.



and the parameters of the link function of Eq. (53) are:

α =−0.16113,βββ = (−0.97483 ), and ΓΓΓ = (−1.66526 ). (56)

We make N = 140 observations with noise variance s2
n = 0.1. In this first example, we do not make use of the automatic

method for the detection of the dimensionality of the AS. Rather, we use the plain vanilla version of both the classic and the
gradient-free approaches assuming a 1D or a 2D AS. For validation 60 random input/output pairs, not used in the training
process, were generated. Fig. 1 compares the results obtained with both methodologies. The left column corresponds
to the classic approach and the right one to the gradient-free approach. The first row, Fig.1(a) and (b), shows the link
function learned by each approach assuming d = 1, along with a 95% prediction interval, and a scatter plot of the validation
input/output pairs. The quantitative agreement between the two approaches becomes obvious once one recalls that the
representation of Eq. (7) is arbitrary up to permutations and reflections of the reduced dimensions. This is confirmed by
looking at the projection matrices discovered by each method, shown in Fig. 1(e) and (f), respectively. It is clearly seen that
one is the negative image of the other. In Fig. 1(c) and (d), we depict the link function learned by assuming that d = 2. Note
that, both methods correctly discovered one completely flat direction.

3.1.2 Synthetic response with 2D active subspace
In this example the underlying AS is 2D, d = 2. The projection matrix is:

W =

(
0.00840 −0.18426 0.34300 −0.05347 0.08108 0.06556 −0.41219 0.65424 0.48483 0.03966
0.0672 −0.4148 0.4821 0.0755 0.2101 0.5375 0.0781 −0.2002 −0.2912 0.3480

)T

, (57)

and the parameters of the link function of Eq. (53) are:

α =−0.06976,βββ =

(
0.43759

0.98696041

)
, and ΓΓΓ =

(
−0.92567723 −0.38399783
−0.41740642 −0.67655046

)
. (58)

As in Sec. 3.1.1, we make N = 140 observations with noise variance s2
n = 0.1, We do not make use of Algorithm 4 for

the automatic detection of the dimensionality, but rather set d = 2. Fig. 2 depicts the results. As before, the left column
corresponds to the classic approach and the right column to the gradient-free approach. The first row,Fig. 2(a) and (b), shows
the learned link function along with a scatter plot of 20 randomly generated input/output pairs. The second row,Fig. 2(c) and
(d), shows the learned projection matrices. The quantitative agreement between the two approaches up to permutations and
reflections of the AS is also obvious.

3.1.3 Validation of BIC for the identification of the active subspace dimension
Here, we verify the effectiveness of the BIC, Sec. 2.3.3, to automatically determine the dimensionality of the AS for both

the classic and the gradient-free approach. The hypothesis is that the BICd becomes flat as a function of d after d exceeds
the true AS dimensionality. This is confirmed numerically in Fig. 3 for the cases of a 1D, 2D, and 3D true AS. Note that for
the 1D and 2D examples, the observations we used to train the models were the same as in Sec. 3.1.1 and Sec. 3.1.2. For the
3D true AS case also has an underlying response surfaces with randomly generated α,βββ,ΓΓΓ, and W. The values used can be
found in the accompanying website. As before, we used N = 140 observations.

3.1.4 Validation of robustness to measurement noise
We conclude this subsection with a study of the robustness of the proposed scheme to measurement noise. To avoid the

non-uniqueness issues mentioned earlier, we work with the 10D-input-1D-AS response surface of Sec. 3.1.1. In this case,
the arbitrariness can be removed by making sure that the signs of the estimated and the true projection matrix match. We
want to quantify the ability of the model to discover the true AS and how this is affected by changes in the measurement
noise, sn, as well as in the number of available observations N. A good measure of this ability is the relative error in the
estimation of the projection matrix:

εrel(sn,N) =
‖W(sn,N)−W‖F

‖W‖F
, (59)
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Fig. 2: Synthetic example d = 2. The left and the right columns correspond to results obtained with the classic and the
gradient-free approach respectively. The first row depicts the predictions of each method for the link function assuming a 2D
underlying AS, along with a scatter plot of the projections of the 60 validation inputs vs the validation outputs. The second
row visualizes the projection matrix that each method discovers.

where ‖ · ‖F is the Frobenius norm, W(sn,N) is the estimated projection matrix when N measurements contaminated with
zero mean Gaussian noise of variance s2

n are used, and W is the true projection matrix given in Eq. (55). The results of our
analysis are presented in Fig. 4. Fig. 4(a) plots the relative error, εrel, as a function of s2

n for N = 30,100,200, and 500.
As expected, we observe that εrel increases as a function of s2

n and that a larger N is required to maintain a given accuracy.
Fig. 4(b) plots the relative error, εrel, as a function of N for sn = 0.01,0.05,0.1 and 0.2. We note that the method converges
to the right answer as N increases, albeit the rate of convergence decreases for higher noise.

3.2 Stochastic elliptic partial differential equation
Consider the elliptic partial differential equation [67]:

∇ · (c(s)∇u(s)) = 1, s ∈Ω = [0,1]2, (60)
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Fig. 3: Synthetic example. BIC score as a function of the hypothesized active dimension for classic model (a) and the
gradient-free model (b). The different lines correspond to cases with a 1D (blue, true response as in Sec. 3.1.1), 2D (green,
true response as in Sec. 3.1.2, and 3D (red, true response as in details on the accompanying website) true AS.
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Fig. 4: Synthetic example. Robustness of the proposed approach to measurement noise. The figure shows the evolution of
the relative error in the determination of the true active subspace as a function of the measurement noise variance (keeping
the number of observations constant) (a) and as a function of the number of observations (keeping the measurement noise
variance constant (b)).

with boundary conditions

u(s) = 0, s ∈ Γ1, (61)
∇u(s) ·n = 0, s ∈ Γ2, (62)

where Γ1 contains the top, bottom and left boundaries, Γ2 denotes the right boundary of Ω, while nnn is the unit normal vector
to the boundary. We assume that the conductivity field is unknown and model its logarithm as a Gaussian random field with
an exponential correlation function:

C(s,s′;`) = exp
{
−|s1− s′1|+ |s2− s′2|

`

}
, (63)
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Fig. 5: Elliptic PDE, long correlation length (`= 1). The left and the right columns correspond to results obtained with the
classic and the gradient-free approach respectively. The first and second rows depict the predictions of each method for the
link function assuming a 1D and 2D underlying AS, respectively, along with a scatter plot of the projections of 30 validation
inputs vs the validation outputs. The third row visualizes the projection matrix that each method discovers.
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Fig. 6: Elliptic PDE, long correlation length (` = 0.01). The left and the right columns correspond to results obtained with
the classic and the gradient-free approach respectively. The first and second rows depict the predictions of each method
for the link function assuming a 1D and 2D underlying AS, respectively, along with a scatter plot of the projections of 30
validation inputs vs the validation outputs. The third row visualizes the projection matrix that each method discovers.
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Fig. 7: Elliptic PDE. The dots correspond to true observed responses vs predicted ones for 30 validation inputs for the long
(`= 1, left) and short (`= 0.01, right) correlation cases. Perfect predictions would fall on the green 45◦ line of each subplot.
The top row corresponds to the gradient-free approach while the bottom row corresponds to the classic approach.

with correlation length ` > 0. Using a truncated Karhunen-Loève expansion (KLE) [49], the logarithm of the conductivity
can be expressed as:

logc(s;x) :=
100

∑
i=1

xi
√

λiφi(s), (64)

where λi and φi(s) are the eigenvalues and eigenfunctions of the correlation function, Eq. (63), and x is a random vector
modeled as uniformly distributed on [−1,1]100, i.e., x∼U

(
[−1,1]100

)
. The latter violates the theoretical form of the KLE,

but guarantees the existence of a solution to the boundary value problem defined by Eqn.’s (60)-(62) for all x. Given any
value for x, the solution of the boundary value problem is u(·;x).



In our analysis, we attempt to learn the following scalar quantity of interest:

f (x) := f [u(·;x)] :=
1
|Γ2|

∫
Γ2

u(s;x)ds, (65)

using both the classic, Sec. 2.2, and the gradient-free approach, Sec. 2.3. We examine two cases exhibiting two different
correlation lengths. The first case uses a long correlation length, `= 1, and the second case a short correlation length `= 0.01.
In both cases, we use N = 270 noiseless observations of input-output pairs for training purposes, while setting 30 aside for
validation. The data along with the MATLAB code that generates them, developed by Paul Constantine, can be obtained from
https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice/src.

Fig. 5 shows the results we obtain using the long correlation length. The first and second rows of this figure depict the
discovered link function under the assumption that d = 1 and d = 2, respectively. Note that both methodologies agree on the
most important AS dimension, but slightly disagree on the second, albeit relatively flat, dimension. A close examination of
the discovered projection matrices, third line of the figure, reveals the following. The most important column of the classic
projection matrix, w1, matches with the corresponding column discovered by the gradient free approach. The latter, however,
looks like a “noisy” version of the former. This is reasonable if one takes into account that the gradient-free approach uses
significantly less information than the classic approach. Finally, we notice that the columns of secondary importance do not
match. This discrepancy is unimportant given that the BIC score eventually selects a 1D AS.

Fig. 6 shows the results for the more challenging case of the short correlation length. We present the 1D representation
of the link function, as discovered by the classic and the gradient-free approach, in the first row and show the components
of the projection matrix estimated by each methodology in the second row. We note that both methodologies show similar
1D active subspace representation of the surrogate. Indeed, this is the most important dimension as the response should be
flat along the 2nd dimension. We find that the components of projection matrix estimated by both methods are in qualitative
agreement for the 1D surrogate. As expected, the BIC score selects the model corresponding to the 1D active subspace as
the right model.

Fig. 7 shows the comparison between the prediction on the test inputs and the actual response. The closer the points lie
to the green 45◦ line, the more accurate the prediction. We make these comparisons for the 1D representation of the link
function for both the short and long correlation length cases. It appears that the predictive capabilities of the classic approach
are slightly better than the gradient-free approach. A comparison of the RMS error for the predictions by each methodology
confirms this although the difference is essentially negligible given its order of magnitude. We tabulate this data in Table 1.

`= 1 `= 0.01

Classic approach 1.87×10−5 3.2×10−6

Gradient-free approach 2.66×10−5 3.57×10−6

Table 1: Predictive RMS errors for `= 1,0.01 corresponding to classic and gradient-free methodologies

3.3 Granular Crystals
Granular crystals, or tightly packed lattices of solid particles that deform on contact with each other [102], are strongly

nonlinear systems that have attracted significant attention due to their unique dynamics (see, e.g., [103] and references
therein). In particular, a one-dimensional uncompressed chain of elastic spherical particles supports the formation and prop-
agation of solitary waves [104], i.e., elastic waves that remain highly localized and coherent while traveling along the chain.
This behavior is due to the interplay between nonlinearity and discreteness of the unilateral Herztian contact interaction be-
tween the particles in the system. Over the last two decades, extensive experimental, computational and theoretical research
has been conducted to advance the understanding of theses systems. For example, experimental techniques have been devel-
oped to measured the temporal evolution of the solitary wave [105, 106, 107], and dissipative [108, 109, 110], plastic [111]
and nonlocal [112] deformation effects between particles have been included in simulations. However, a systematic and
thorough uncertainty analysis of theses systems remains elusive, mainly due to the curse of dimensionality. It is worth noting
that the high localization of this elastic waves suggests the use of an AS approach, specifically a gradient-free approach due
to the lack of gradient information. We present the mathematics of the problem next.

Consider a one-dimensional chain of np (= 47) spherical particles whose displacements from the initial equilibrium
positions are described by the position matrix q =

(
q1,q2, · · · ,qnp

)
with qi ∈ R3. The equilibrium position is such that

https://bitbucket.org/paulcon/active-subspace-methods-in-theory-and-practice/src


particles are in contact with a horizontal flat rigid surface under the action of gravity. In addition, a positive gap gi may exist
between i-th and i−1-th particles—g1 corresponds to the gap between the first particle and a rigid back wall. A gap equal
to zero corresponds to point contact. Each bead has a radius Ri and Young’s modulus Ei. The density of the particles is a
constant ρ = 7,900kg/m3 and the mass of each particle is mi = ρ

4
3 πR3

i . A solitary wave forms and propagates through the
one-dimensional granular crystal after the np-th particle strikes the chain with velocity vs. Therefore, all the parameters of
the system are:

x =
(
R1,R2, . . . ,Rnp ,E1,E2, . . . ,Enp ,g1,g2, . . . ,gnp ,vs

)
∈ R3np+1. (66)

In the present effort, we consider the two cases where: a) the particles are in point contact with each other and thus, the
system is completely parameterized by the particle radii, the Young’s moduli and the striker velocity:

x =
(
R1,R2, . . . ,Rnp ,E1,E2, . . . ,Enp ,vs

)
∈ R2np+1, (67)

and b) where the particles are separated by small gaps and thus, the system is parameterized by x as defined in Eq. (66). The
displacement vector satisfies Newton’s law of motion:

mi(x)q̈i = FH
i−1,i (q;x)+FH

i+1,i (q;x) , (68)

where FH
k,i (q;x) is the unilateral Hertzian contact force between particle k and i [102, 106, 110]. The initial conditions are:

qi(0) = (0,0,0),
q̇i(0) = (0,0,0), ∀ i = {1,2,3, · · · ,np−1},

q̇np(0) = (−vs,0,0).

Let q(t;x) be the solution to this initial value problem. We are interested in characterizing the properties of the solitary
wave propagated through the granular crystal. To this end, we will be observing an average of the absolute value of the
horizontal component of the two unilateral Hertzian contact forces acting on each particle as a function of time for a given
set of parameters x [105],

F̃i (t;x)≡ 1
2
[
FH

i−1,i (q(t;x) ;x)+FH
i,i+1 (q(t;x) ;x)

]
· (1,0,0). (69)

That is, for each x, we obtain, by integrating the equations of motion, the force at a finite number of timesteps, 0 = t1 < · · ·<
tnt , nt = 6252. The output, for each x, forms a matrix F̃(x) := {F̃i(t j;x) : i = 1, . . . ,np, j = 1, . . . ,nt}. The dimensionality of
the F̃(x) is np×nt . The time step at which the maximum force is observed as the solitary wave passes over particle i:

j∗i (x) = argmax
j

F̃i j(x). (70)

(a) (b) 

Fig. 8: One-dimensional granular crystal. (a) Initial equilibrium position of spherical particles in contact with a horizontal
flat rigid surface under the action of gravity. Particles are separated from point contact by horizontal positive gaps gi.
(b) Traveling solitary wave with amplitud A(t) and width ws(t) as defined by averaged compressive forces F̃i(t) acting on
particles i.



In order to characterize the behavior of the soliton as it propagates over the particle chain, we look at three properties of the
soliton as it stands over any given particle - the amplitude (Ai), the time of flight (tflight) and full width at half maximum
( fh). The amplitude of the soliton as it passes over the particle is obtained as follows:

Ai(x) = F̃i j∗i (x)(x). (71)

Then we extract the width, fh, as follows:

fh,i(x) = 0.364 ws( j∗i (x)), (72)

where ws(t) is the width of the soliton at any given instance of time t. Finally, we extract the time of flight of the soliton as
it passes over particle i:

tflight,i(x) = t j∗i (x). (73)

We study these properties of the soliton as it travels over the 20th and 30th particles. Let us denote these quantities as
y1 = tflight,20,y2 = A20,y3 = fh,20,y4 = tflight,30,y5 = A20,y6 = fh,20. We repeat this entire process for 1000 samples of

x and construct the output vectors y1,y2,y3,y4,y5 and y6 which we define as yi = {y(1)i , . . . ,y(1000)
i } such that yi ∈ R1000.

The input in each simulation is the vector of parameters shown in Eq. (66) and Eq. (67) for cases with and without inter
particle gaps respectively. Thus with 1000 of these input vectors we contruct the input design matrices X1 ∈ R1000×2np+1

and X2 ∈ R1000×3np+1 for the cases with and without point contacts, respectively.
We now proceed to apply our proposed gradient-free AS approach to build a cheap-to-evaluate surrogate for prop-

agating uncertainty through this system. We train the model on 1000 observations with inputs sampled using a Latin
Hypercube design within the range (180GPa,220GPa) for Young’s moduli input, (8.57mm,10.47mm) for radii input,
(1.125m/s,1.375m/s) for impact velocities input and gaps gi such that 90% of the time gi = 0 (i.e. there is no gap be-
tween the i−1th and ith particles) and the remaining 10% of the time there gi = 0.001Ri. Note that we construct a different
AS for each one of the cases. We use 100 out-of-sample data to test the predictive accuracy of the surrogate. We consider all
possible combinations of data-sets D j = {Xi,y j}, ∀i ∈ {1,2}, ∀ j ∈ {1,2,3,4}, and build the corresponding surrogates.

3.3.1 Results
The GP surrogate was trained using 1,000 data samples and validated using a further 100 samples. It is observed that

most of the stochasticity of this high dimensional problem is exhibited on a one dimensional active subspace. We present
plots of the AS representation of the link function, projection matrix and predictions vs observations plots for the cases
noted above. Note that the underlying response surfaces obtained are approximately linear. There is very good agreement
between the training data-set output predictions as compared to the actual training set outputs. In all the cases that we just
demonstrated, we observe the localized nature of the soliton.

We first discuss the case when the particles are in point contact i.e. the input design matrix is X1. From plots correspond-
ing to the soliton amplitude over particles 20 and 30 , shown in Fig. 9 and 11 we observe that the projection matrix has zero
entries for most components except those corresponding to the radius and Young’s modulus of the respective particle under
observation and the particle at the striker end. Likewise, from plots corresponding to the case of the time of flight outputs
over the respective particles, in Fig. 10 and Fig. 12, we observe that the entries of the projection matrix are approximately
zero for components corresponding to the radii and Young’s moduli of the particles before the particle under observation.
We also note that the time of flight depends more on the particle radii than the particle Young’s moduli, as evidenced by the
larger weights assigned to the radii terms in the projection matrix. Finally, we present the plots corresponding to the full
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Fig. 9: One-dimensional granular crystal without gaps - amplitude of the soliton over the 20th particle. The first plot shows
the response surface in the active subspace. the second plot depicts the test observations vs model prediction plot. The final
plot depicts the components of the projection matrix.

width of the soliton as it stands over particle 30 in Fig. 13. The change in the BIC score from the 1st active dimension to the
2nd active dimension is insignificant and as such, suggests that we should be looking at a one dimensional active subspace.
We note that the link function shows slight non-linearity. The large non-zero weights are associated with the radii terms in
and around the 30th particle. We believe that the remaining components of the projection matrix should have been closer to
zero and the likely cause of this not being case would be that the optimization routine gets stuck in a local minima despite
several restarts of the algorithm from random initial points.

We now discuss the more challenging case when the particles are separated by gaps i.e. when the input design matrix
is X2. In Fig. 14, we show the plots corresponding to the case of soliton amplitude over the 20th particle. Looking at the
projection matrix, we observe that it shows a similar trend to the corresponding matrix when we considered point contact
inputs, i.e., the magnitude of most of the components of the projection matrix are approximately zero and significantly
large weights are associated with the radius of the 20th particle and the striker velocity. From Fig. 15 we observe that the
components of the projection matrix, when looking at the time of flight of the soliton over the 20th particle. We note that
there are non-zero components of the projection matrix on a few terms corresponding to the radii and Young’s moduli in and
around the 20th particle, with the weights being higher on the radii as opposed to the Young’s moduli terms. Our method
was unable to converge to an active subspace for the case of the full width output and as such we don’t present it here. In
Fig. 16, we present the histogram of the observed full width output for the 30th particle and find that it is bimodal. This
suggests the presence of a discontinuity in the response which can be resolved, given sufficient data and clustering of the
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Fig. 10: One-dimensional granular crystal without gaps - time of flight of the soliton over the 20th particle. The first plot
shows the response surface in the active subspace. the second plot depicts the test observations vs model prediction plot. The
final plot depicts the components of the projection matrix.

data into appropriate batches. Overall, we observe that the trends in the link function and the projection matrix for different
outputs corresponding to the two different input cases are similar. It is not surprising that the results look significantly better
when we consider the case of point contact between the particles as opposed to the case where we consider the case where
gaps exist between the particles. This is because in the former case, the GP surrogate has to learn fewer parameters from
the same limited quantity of data. Given the very dimensional nature of the associated optimization problem in the case of
the gaps inputs, it is also likely that the optimization algorithm gets stuck in a local minima despite several restarts of the
algorithm from random initial starting points. We do not present plots for the link function and projection matrices for the
soliton properties corresponding to the 30th particle in the gaps input case since they follow trends similar to what has been
discussed so far.

3.3.2 Uncertainty Quantification
Having built a cheap-to-evaluate response surface, we can tackle the uncertainty propagation problem in an efficient

manner. We assign a uniform distribution to the inputs. Then, we sample 10,000 observations of the input from this
distribution and use the surrogate to generate predictions for the time of flight and amplitude of the soliton as it passes
over the respective particles. Finally, we plot the marginal and joint distributions of some of the outputs as shown in Fig. 17,
18, 19 and 20. For each of the marginal distribution plots, we also show the associated epistemic uncertainty. We observe
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Fig. 11: One-dimensional granular crystal without gaps - amplitude of the soliton over the 30th particle. The first plot shows
the response surface in the active subspace. the second plot depicts the test observations vs model prediction plot. The final
plot depicts the components of the projection matrix.

that for a uniform distribution over the inputs, the outputs look approximately normal.

4 Conclusions
We have developed a gradient-free approach to active subspace (AS) discovery and exploitation suitable for dealing with

noisy outputs. We did so by developing a novel Gaussian process regression model with built-in dimensionality reduction.
Specifically we represented the AS as an orthogonal projection matrix that constitutes a hyper-parameter of the covariance
function to be estimated from the data by maximizing the likelihood. Towards this end, we devised a two-step optimization
procedure that ensures the orthogonality of the projection matrix by exploiting recent results on the description of the Stiefel
manifolds. An addendum of the probabilistic approach is the ability to use the Bayesian information criterion (BIC) to
automatically select the dimensionality of the AS. We validated our method using both synthetic examples with known AS
and by comparing directly to the classic gradient-based AS approach. Finally, we used our method to study the effect of
geometric and material uncertainties in force waves propagated through granular crystals.

This work is a first step towards a fully Bayesian AS-based surrogate, a persistent theme of our current research plans. As
argued in [38], Bayesian surrogates should be capable of quantifying all the epistemic uncertainty induced by limited data,
since quantification of this epistemic uncertainty is the key to deriving problem-specific information acquisition policies,
i.e., rules for deciding where to sample the model next in order to obtain the maximum amount of information towards a
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Fig. 12: One-dimensional granular crystal without gaps - time of flight of the soliton over the 30th particle. The first plot
shows the response surface in the active subspace. the second plot depicts the test observations vs model prediction plot. The
final plot depicts the components of the projection matrix.

specific task. A fully Bayesian treatment requires the specification of priors for all the hyper-parameters of the covariance
function and the derivation of Markov Chain Monte Carlo (MCMC) schemes to sample from the posterior of the model. The
big challenge is the construction of proposals that force W to remain on the Stiefel manifold, which could be achieved, for
example, by modifying the Riemann manifold Hamiltonian MC of [113]. Such approaches would open the way for more
robust AS dimensionality selection, e.g., by reversible-jump MC [114] or by directly computing the model evidence.

Many physical models do not have an AS. They may have, however, a non-linear low-dimensional manifold exhibiting
maximal response variability. Assuming that this low-dimensional manifold is a Riemann manifold, i.e., locally isomorphic
to a Eucledian space, a potential approach would be to consider mixtures of the model proposed in this work. To this end,
the results of [37] on infinite mixtures of GP’s could be leveraged. The latter is also a subject of on-going research.
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Fig. 13: One-dimensional granular crystal without gaps - full width at half maximum of the soliton over the 30th particle. The
first plot shows the response surface in the active subspace. the second plot depicts the test observations vs model prediction
plot. The final plot depicts the components of the projection matrix.
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Fig. 14: One-dimensional granular crystal with gaps - amplitude of the soliton over the 20th particle. The first plot shows the
response surface in the active subspace. the second plot depicts the test observations vs model prediction plot. The final plot
depicts the components of the projection matrix.
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Fig. 15: One-dimensional granular crystal with gaps - time of flight of the soliton over the 20th particle. The first plot shows
the response surface in the active subspace. the second plot depicts the test observations vs model prediction plot. The final
plot depicts the components of the projection matrix.
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Fig. 16: One-dimensional granular crystal with gaps - histogram of the observed full width outputs for the 30th particle
corresponding to the gaps input case.
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Fig. 17: One-dimensional granular crystal without gaps - propagating the uncertainty by assigning a uniform distribution to
the inputs. (a) Marginal distribution of the amplitude of the soliton over the 20th particle; (b) Marginal distribution of the
time of flight of the soliton over the 20th particle; (c) Joint distribution of the amplitude and time of flight of the soliton over
the 20th particle. For the plots corresponding to the marginal distributions the blue histogram and curve represents the mean
predictions of the surrogate while the green histogram and curve represents the mean predictions added with Gaussian noise
of variance equal to the variance of the GP surrogate. The difference between the blue and green curves is a measure of the
associated epistemic uncertainty in the output QoI.
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Fig. 18: One-dimensional granular crystal without gaps - propagating the uncertainty by assigning a uniform distribution to
the inputs. (a) Marginal distribution of the amplitude of the soliton over the 30th particle; (b) Marginal distribution of the
time of flight of the soliton over the 30th particle; (c) Joint distribution of the amplitude and time of flight of the soliton over
the 30th particle. For the plots corresponding to the marginal distributions the blue histogram and curve represents the mean
predictions of the surrogate while the green histogram and curve represents the mean predictions added with Gaussian noise
of variance equal to the variance of the GP surrogate. The difference between the blue and green curves is a measure of the
associated epistemic uncertainty in the output QoI.
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Fig. 19: One-dimensional granular crystal with gaps - propagating the uncertainty by assigning a uniform distribution to the
inputs. (a) Marginal distribution of the amplitude of the soliton over the 20th particle; (b) Marginal distribution of the time
of flight of the soliton over the 20th particle; (c) Joint distribution of the amplitude and time of flight of the soliton over the
20th particle. For the plots corresponding to the marginal distributions the blue histogram and curve represents the mean
predictions of the surrogate while the green histogram and curve represents the mean predictions added with Gaussian noise
of variance equal to the variance of the GP surrogate. The difference between the blue and green curves is a measure of the
associated epistemic uncertainty in the output QoI.
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Fig. 20: One-dimensional granular crystal with gaps - propagating the uncertainty by assigning a uniform distribution to the
inputs.. (a) Marginal distribution of the amplitude of the soliton over the 30th particle; (b) Marginal distribution of the time
of flight of the soliton over the 30th particle; (c) Joint distribution of the amplitude of the soliton over the 30th particle and
the time of flight of the soliton over the 30th particles. For the plots corresponding to the marginal distributions the blue
histogram and curve represents the mean predictions of the surrogate while the green histogram and curve represents the
mean predictions added with Gaussian noise of variance equal to the variance of the GP surrogate. The difference between
the blue and green curves is a measure of the associated epistemic uncertainty in the output QoI.
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