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Abstract

In this paper, an efficient high-order gas-kinetic scheme (EHGKS) is proposed to solve the
Euler equations for compressible flows. We re-investigate the underlying mechanism of the
high-order gas-kinetic scheme (HGKS) and find a new strategy to improve its efficiency.
The main idea of the new scheme contains two parts. Firstly, inspired by the state-of-art
simplifications on the third-order HGKS, we extend the HGKS to the case of arbitrary high-
order accuracy and eliminate its unnecessary high-order dissipation terms. Secondly, instead
of computing the derivatives of particle distribution function and their complex moments, we
introduce a Lax-Wendroff procedure to compute the high-order derivatives of macroscopic
quantities directly. The new scheme takes advantage of both HGKS and the Lax-Wendroff
procedure, so that it can be easily extended to the case of arbitrary high-order accuracy with
practical significance. Typical numerical tests are carried out by EHGKS, with the third,
fifth and seventh-order accuracy. The presence of good resolution on the discontinuities and
flow details, together with the optimal CFL numbers, validates the high accuracy and strong
robustness of EHGKS. To compare the efficiency, we present the results computed by the
EHGKS, the original HGKS and Runge-Kutta-WENO-GKS. This further demonstrates the
advantages of EHGKS.

Keywords: Gas-kinetic scheme, Euler equations, high-order accuracy, efficiency

1. Introduction

In the past decades, a multitude of high-order schemes have been well developed and
become very popular in solving the Euler equations for compressible flows, because high-
order schemes generally use much less CPU time than low-order schemes to approach the
solutions. There are a series of successful numerical schemes, such as ENO, WENO [10, 20],
DG [4], RD [1], SV [26], SD [15], which can achieve arbitrary high-order accuracy in space.
Meanwhile, they often need to employ a multi-stage Runge-Kutta method in time to preserve
the stability of these schemes. In practice, the third-order TVD Runge-Kutta method [10]
has been most widely utilized for its simplicity. However, there exist two drawbacks in the
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multi-stage schemes. Firstly, as pointed out by Toro et. al. [24, 21], the accuracy of these
schemes can not exceed the time accuracy, which is called ”accuracy barrier”. To obtain
the designed accuracy as in space, the CFL condition number should be reduced, which will
increase the computational cost. Secondly, the high-order reconstruction techniques, which
are required to be implemented for several times in a single time step in the multi-stage
schemes, are often expensive.

To overcome these two drawbacks, it has attracted much attention to develop the one-step
schemes with consistent high-order accuracy in both space and time [2, 12, 24, 22, 13, 18, 3].
GRP, which solves the generalized Riemann problem with initial piecewise smooth data [2],
is one of the earliest in this category. Limited by the sophisticated wave structures from the
high-order piecewise polynomials, it becomes tedious to construct a higher than third-order
GRP unless introducing the idea of the multi-stage method [12]. By introducing a lineariza-
tion technique, the ADER (arbitrary derivative in space and time) scheme [24] simplifies the
computation process of the original GRP scheme. ADER is a one-step and fully discrete
Godunov approach with arbitrary high-order accuracy in both space and time. There are
two types of ADER: the state-expansion version and the flux-expansion version [25]. The
previous one is easier to be implemented although not all Riemann solvers are applicable,
while the latter is suitable for any Riemann solver but introduces more complexities.

Among the ways of constructing high-order schemes, the high-order gas-kinetic scheme
(HGKS) has been developed systematically in the recent years [13, 16, 14, 18, 8]. Different
from solving the hydrodynamic wave structures in the traditional Riemann problem [23],
HGKS utilizes the time integral solution of the Bhatnagar-Gross-Krook (BGK) equation as
its the evolution model [19, 28]. The integral solution describes the particle free transport
and collisions [19]. It builds up a multi-scale scheme applicable in the whole flow regimes
[29, 30]. When simulating the hydrodynamic flows, in accordance with the Euler and Navier-
Stokes (NS) equations, the hydrodynamic part in the evolution model is dominant in the
smooth regions. Meanwhile, the kinetic part provides the significant shock-capturing ca-
pability [17, 33]. This underlying mechanism ensures HGKS as an accurate and robust
scheme for various unsteady compressible flows [13, 14, 18, 9]. The straightforward way to
construct a high-order HGKS is based on the high-order Taylor extension of the integral
solution in both space and time. The third and fourth-order HGKS have been developed
adherently [13, 16, 14]. However, because of the time-consuming computation process of the
sophisticated extension, the state-of-art fourth and fifth-order HGKS is compromised to the
multi-stage framework in practice [18, 9].

Considering the convenience of the straightforward high-order extensions in HGKS, ef-
forts have been paid to make the existing third-order HGKS simpler and more efficient
[36, 17, 8, 33]. HGKS is originally developed to solve the NS equations [28, 29]. Luo
distinguished the physical and numerical dissipation parts in the third-order HGKS and
eliminated the physical dissipation part to solve the Euler equations [17]. Zhou simplified
appropriately the numerical dissipation part and kept its primary terms to provide necessary
numerical dissipation [36]. The validity of this simplification to preserve the high accuracy
and strong robustness as the original third-order HGKS has been illustrated theoretically
and numerically in typical compressible flows [36]. The existing simplifications are also
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inspiring to extend HGKS for the Euler equations with arbitrary high-order accuracy. It
is further expected the high-order terms after these simplifications contain only the time
derivatives of the particle distribution function [36, 17]. Meanwhile, the procedure to ob-
tain the corresponding high-order terms in flux evaluation is consistent with the traditional
Lax-Wendroff procedure [22]. The Lax-Wendroff procedure is more efficient than computing
the derivatives of the particle distribution function. Consequently, it can be utilized as an
alternative way in the simplified HGKS flux evaluation to solve the Euler equations with
more practical significance.

In this paper, taking advantage of both HGKS and the Lax-Wendroff procedure, a more
efficient one-step EHGKS will be proposed to solve the Euler equations with arbitrary high-
order accuracy in both space and time. The new scheme is based on the extensions and
modifications on the original HGKS and the introduction of an alternative Lax-Wendroff
procedure. This paper is organized as follows. In Section 2, the construction of HGKS and
the existing simplifications are reviewed firstly. Sections 3 and 4 illustrate the construction
of EHGKS, including the extension of HGKS to arbitrary high-order accuracy and its sim-
plifications and modifications, together with the introduction of Lax-Wendroff procedure in
flux evaluation. In Section 5, the new scheme is tested in several typical examples, demon-
strating its high accuracy, robustness and efficiency. The conclusion is made in the last
section.

2. Review

2.1. Gas-kinetic theory

2.1.1. BGK model

The evolution model in GKS is based on the BGK equation and its time integral solution
[28, 29, 13]. The BGK equation is a widely used simplified model of the Boltzmann equation
[28]. In the one-dimensional (1D) case, the BGK equation can be written as [28]

∂f

∂t
+ u

∂f

∂x
=
g − f
τ

. (1)

Here f = f(x, t, u, ξ) is the particle distribution function at space x, time t, particle velocity
u and the internal variables ξ [19]. g is the Maxwellian equilibrium state

g = g (W) = ρ

(
λ

π

)K+1
2

e−λ((u−U)2+ξ2), (2)

which can be determined by the macroscopic conservative variables W = (ρ, ρU, ρE)T. ρ is
the local density, U is the velocity, the total energy ρE = 1

2
ρU2 + p/(γ − 1). The pressure

p = ρRT . R is the gas constant. The temperature T = 1/(2Rλ). K is the degree of freedom
in ξ, such as the particle motion in the y, z direction, molecular rotation or vibration [19, 28].
In the 1D case, K = (3− γ)/(γ− 1), where γ is the specific heat ratio. τ = µ/p is the mean
collision time [19]. µ is the dynamical viscosity.
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The time integral solution of the BGK equation is given as [29]

f(x, t, u, ξ) =
1

τ

∫ t

0

g(x′, t′, u, ξ)e−(t−t′)/τdt′ + e−t/τf(x− ut, 0, u, ξ), (3)

where x′ = x− u(t− t′). In this integral solution, the terms related to the equilibrium state
and the initial distribution function are weighted roughly through e−t/τ . Under different
situations of t/τ , the integral solution recurs to different mechanisms inherently [29]. When
t� τ ,

f(x, t, u, ξ) ≈ f(x− ut, 0, u, ξ), (4)

where the particle collisions are seldom encountered. It corresponds to the free molecular
flow. In practical simulations, this situation also corresponds to the unresolved numerical
discontinuities [32]. On the other side, when t� τ ,

f(x, t, u, ξ) ≈ g(x, t, u, ξ). (5)

It corresponds to the situation with adequate relaxation to the local equilibrium state.
The BGK equation and its integral solution present the mesoscopic description of the gas

dynamics [19]. The statistics over the particle distribution function provides the macroscopic
description of flow structures.

2.1.2. Relationship between mesoscopic and macroscopic descriptions

The relationship between f and W is (see [19] for example)

W =

∫
fΨdΞ, (6)

where the moment vector Ψ = (1, u, (u2 + ξ2)/2)T and dΞ = dudξ. The macroscopic
conservative equations can be obtained by taking the moments of the BGK equation on Ψ,
i.e.

∂W

∂t
+
∂F

∂x
= 0, (7)

where the relationship between f and the macroscopic flux F is

F =

∫
fuΨdΞ. (8)

This derivation is based on the conservative constraint [28, 13]∫
(g − f) ΨdΞ = 0. (9)

More specific macroscopic equations, such as the Euler equations or NS equations, can be
derived from the BGK equation according to the Chapman-Enskog expansion on τ [28]. The
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Euler equations correspond to the zeroth-order Chapman-Enskog expansion with adequate
relaxation to the local Maxwellian equilibrium state

f = g. (10)

According to the moments of the Maxwellian equilibrium state [28], the macroscopic equa-
tions can be derived as [19]

∂

∂t

 ρ

ρU

ρE

+
∂

∂x

 ρU

ρU2 + p

ρEU + pU

 = 0. (11)

The flux F can be determined by W as

F =

∫
guΨdΞ = FEu(W) =

 ρU

ρU2 + p

ρEU + pU

 . (12)

The first-order Chapman-Enskog expansion

f = fNS = g − τ(
∂g

∂t
+ u

∂g

∂x
), (13)

yields the NS equations:

∂

∂t

 ρ

ρU

ρE

+
∂

∂x

 ρU

ρU2 + p

ρEU + pU

 =
∂

∂x

 0
2K
K+1

µ∂U
∂x

K+3
4
µ ∂
∂x

(
1
λ

)
+ 2K

K+1
µU ∂U

∂x

 . (14)

The relationship between the partial derivative ∂g
∂x

and ∂W
∂x

is

∂W

∂x
=

∫
∂g

∂x
ΨdΞ. (15)

Because of the typical form of the Maxwellian equilibrium state, ∂g
∂x

can be written as

∂g

∂x
= g

(
ΨT · a

)
, (16)

where a = (a1, a2, a2)T is independent of u and ξ. Define

M1(m1,m2) =

∫
gum1ξm2ΨTΨdΞ.
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The moments in M1(m1,m2) can be determined completely by W. According to the mo-
ments of the Maxwellian distribution function [28],

M1(0, 0) =

∫
gu0ξ0ΨTΨdΞ

= ρ


1 U 1

2

(
U2 + K+1

2λ

)
U U2 + 1

2λ
1
2

(
U3 + K+3

2λ
U
)

1
2

(
U2 + K+1

2λ

)
1
2

(
U3 + K+3

2λ
U
)

1
4

(
U4 + K+3

λ
U2 + K2+4K+3

4λ2

)
 .

Combining Eq.(15) with Eq.(16) yields

M1(0, 0) · a =
∂W

∂x
. (17)

Consequently, a and ∂g
∂x

can be determined completely by W and ∂W
∂x

.

Furthermore, the second-order derivative ∂2g
∂x2

can be determined by ∂2W
∂x2

from more
complex derivations. Considering the cross terms between the lower-order derivatives,

∂2g

∂x2
= g

(
ΨT · a

) (
ΨT · a

)
+ g

(
ΨT · b

)
, (18)

where b = (b1, b2, b2)T is also independent of u and ξ. Define

M2 (m1,m2, a)

=

∫
g
(
ΨT · a

)
um1ξm2ΨTΨdΞ

=

[
M1 (m1,m2) · a,M1 (m1 + 1,m2) · a, M

1 (m1 + 2,m2) + M1 (m1,m2 + 2)

2
· a
]
.

b can be determined by taking the moments of Eq.(18),

M1(0, 0) · b =
∂2W

∂x2
−M2 (0, 0, a) · a. (19)

See [28] for more specific expressions of the complex moments. To obtain the higher-order
derivatives, more complex moments are required.

Remark 1. It occupies large amounts of floating point operations to determine the high-order
partial derivative of g from W and its derivatives [18, 14]. The moments from M1(m1,m2)
to M2 (m1,m2, a) indicate these floating point operations grow up nearly exponentially as
the order increases.
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2.2. HGKS

2.2.1. Finite volume framework

HGKS is based on the finite volume framework. The space domain is discretized into
N computational cells, indexed as i. The cell size is ∆x. The time domain is discretized
into 0,∆t0, ..., tn, tn+1 = tn + ∆tn, .... The cell-averaged conservative variables at time tn

are recorded as W
n

i . In the following discussions, ∆tn is abbreviate as ∆t in the absence of
ambiguity. tn = 0 is adopted without loss of generality. Under the one-step fully discrete
finite volume framework, the cell-averaged conservative variables are updated by

W
n+1

i = W
n

i −
1

∆x

(∫ ∆t

0

Fi+ 1
2

(t) dt−
∫ ∆t

0

Fi− 1
2

(t) dt

)
. (20)

In HGKS, the integral solution Eq.(3) is utilized as its evolution model in flux evaluation

Fi+ 1
2
(t) =

∫
f(xi+ 1

2
, t, u, ξ)uΨdΞ. (21)

HGKS is originally developed to solve the NS equations from the Taylor expansion and first-
order Chapman-Enskog expansion on the integral solution [29]. Through the modifications
on τ to replace the physical dissipation by the numerical dissipation, HGKS is also applicable
to the Euler equations [17]. Because the original HGKS provides the basis for higher-order
extensions and simplifications, the state-of-art third-order HGKS [16, 13] is reviewed firstly,
followed by the existing simplifications [36] for a more efficient NS solver and an Euler solver
[16, 17] ultimately.

2.2.2. Third-order HGKS

To simplify the presentation, f(x, t) = f(x, t, u, ξ) is adopted in the following discussions.
At the cell interface, xi+ 1

2
= 0 without loss of generality. To construct the third-order HGKS,

the second-order Taylor expansion is implemented on the integral solution Eq.(3), specifically
on f(x− ut, 0) and g(x′, t′) respectively.

Firstly, the second-order Taylor expansion on f(xi+ 1
2
− ut, 0) is given as

f(xi+ 1
2
− ut, 0) =

2∑
l=0

(−ut)l

l!

∂lf 0

∂xl
, (22)

where f 0 = f(xi+ 1
2
, 0). Originally devoted for the NS equations, f 0 is given the first-order

Chapman-Enskog expansion [29]

f 0 = f 0
NS = g0 − τ(

∂g0

∂t
+ u

∂g0

∂x
). (23)

g0 is constructed as

g0 =

{
gL = g

(
WL

)
, u ≥ 0,

gR = g
(
WR

)
, u < 0,

(24)
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where gL and gR are determined by the point-wise values WL and WR respectively. After
the third-order reconstruction at the cell interface xi+ 1

2
,

WL = lim
x→x

i+1
2

−
Wi(x, 0), (25)

WR = lim
x→x

i+1
2

+
Wi+1(x, 0),

where Wi(x, 0) is the reconstructed quadratic polynomials over the i-th cell. A typical
choice of reconstruction is given in Appendix A. After the replacement by f 0 = f 0

NS, the
expansion yields [17]

f(xi+ 1
2
− ut, 0) =

2∑
l=0

(−ut)l

l!

∂lf 0
NS

∂xl
(26)

= g0 − (t+ τ)u
∂g0

∂x
− τ ∂g

0

∂t
+

(
τtu2 +

1

2
u2t2

)
∂2g0

∂x2
+ τtu

∂2g0

∂x∂t
− τ 0∗,

where τ 0∗ = τt2 u
2∂2

2∂x2

(
∂g0

∂t
+ u∂g

0

∂x

)
are the third-order partial derivatives and should be

eliminated in the third-order evolution model. To build up a simpler expression of the
expansion, a more intensive summation formula is introduced into Eq.(27). The expansion
is then re-written as

f(xi+ 1
2
− ut, 0) =

2∑
l=0

(−ut)l

l!

∂lf 0
NS

∂xl
+ τ 0 ∗ . (27)

The extra term τ 0∗ is present for the establishment of the intensive summation formula in
Eq.(27).

Secondly, the same-order Taylor expansion on g(x′, t′) in both space and time yields

g(x′, t′) =
2∑
l=0

1

l!

(
−u (t− t′) ∂

∂x
+ t′

∂

∂t

)l
ge, (28)

where ge can be determined by

ge = g (We) . (29)

We is obtained according to the conservation constraint [29]

We =

∫
u≥0

gLΨdΞ +

∫
u<0

gRΨdΞ. (30)

After the integration on t′, the high-order terms related to τ , such as τ 2 and τ 3, are intro-
duced. To be consistent with the first-order Chapman-Enskog expansion on τ , the high-order
terms related to τ 2, τ 3 and so on, should be eliminated [16], which yields

1

τ

∫ t

0

g(x′, t′, u, ξ)e−(t−t′)/τdt′ =
2∑
l=0

tl

l!

∂lf eNS

∂tl
− e−t/τ

2∑
l=0

(−ut)l

l!

∂lf eNS

∂xl
+ τ e∗, (31)
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where

f eNS = ge − τ(
∂ge

∂t
+ u

∂ge

∂x
),

τ e∗ = τ
t2

2

∂2

∂t2

(
∂ge

∂t
+ u

∂ge

∂x

)
− τe−t/τ

u2t2

2

∂2

∂x2

(
∂ge

∂t
+ u

∂ge

∂x

)
.

Combining Eq.(27) and Eq.(31), the evolution model for the third-order HGKS can be
written as

f(xi+ 1
2
, t) =

2∑
l=0

tl

l!

∂lf eNS

∂tl
+ e−t/τ

2∑
l=0

(−ut)l

l!

∂l (f 0
NS − f eNS)

∂xl
+ τ ∗, (32)

where

τ ∗ = τ
t2

2

∂2

∂t2

(
∂ge

∂t
+ u

∂ge

∂x

)
+ τe−t/τ

u2t2

2

∂2

∂x2

(
∂

∂t
+ u

∂

∂x

)(
g0 − ge

)
.

Remark 2. The evolution model Eq.(32) for the third-order HGKS is written in a different
way from the existing work [16, 17]. With a more intensive summation formula, we find it
more convenient for higher-order extensions based on this way.

To construct the space derivatives of ge, g0 = gL or gR in Eq.(32), the third-order
reconstruction is utilized firstly to obtain the quadratic polynomials of the conservative
variables. A typical choice is given in Appendix A. Based on the point-wise derivatives of
We, WL and WR, the derivatives of ge, gL and gR can be solved from Eq.(17) and Eq.(19)
respectively.

For the time derivatives, we denote a in Eq.(17) as gx and b in Eq.(19) as gxx. Similar
definition can be given to introduce gt,gxt and gtt. The time derivative ∂g

∂t
for g = gL, gR or

ge is determined from the compatibility conditions [13, 16]∫ (
∂g

∂t
+ u

∂g

∂x

)
ΨdΞ = 0. (33)

Specifically, gt is obtained from gx by solving

M(0, 0) · gt = −M(1, 0) · gx. (34)

To obtain the second-order time derivative, the compatibility condition [16, 14] is further
derived to solve gxt firstly from∫

∂

∂x

(
∂g

∂t
+ u

∂g

∂x

)
ΨdΞ = 0, (35)

and followed by ∫
∂

∂t

(
∂g

∂t
+ u

∂g

∂x

)
ΨdΞ = 0. (36)
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to solve gtt.
Finally, Fi+ 1

2
(t) can be obtained by taking the moments on gL, gR, ge and their space

and time derivatives[28]. For a better illustration, the procedure for the flux evaluation in
the state-of-art third-order HGKS is plotted as follows

WL →

WR →

gL →

↓

We → ge →

↑

gR →


∂WL

∂x
→ ∂gL

∂x
→ ∂gL

∂t

∂2WL

∂x2
→ ∂2gL

∂x2
→ ∂2gL

∂x∂t
∂We

∂x
→ ∂ge

∂x
→ ∂ge

∂t

∂2We

∂x2
→ ∂2ge

∂x2
→ ∂2ge

∂x∂t
→ ∂2ge

∂t2
∂WR

∂x
→ ∂gR

∂x
→ ∂gR

∂t

∂2WR

∂x2
→ ∂2gR

∂x2
→ ∂2gR

∂x∂t



→ Fi+ 1
2
(t)

The quantities in the box are obtained from the reconstructions.

Remark 3. A number of second-order derivatives and their moments are required to be
computed in the third-order HGKS. They occupy high proportion of the total computation
cost [33, 14].

2.2.3. Simplifications on HGKS

The original HGKS possesses the high accuracy and strong robustness to solve the NS
and Euler equations for compressible flows [29, 13, 17]. But the process to compute a number
of high-order derivatives of particle distribution function holds back HGKS to higher-order
extensions and their practical simulations. In the meantime, researches on the simplifications
of the third-order HGKS have been carried out for better efficiency [36, 17]. The existing
simplifications mainly include two types. One is implemented on the numerical dissipation
part to solve NS equations more efficiently [36]. The other is implemented on the physical
dissipation part to solve the Euler equations [17].

Zhou introduced two simplifications on the third-order HGKS [36]. One is the lineariza-

tion on the high-order derivatives, as ∂2g
∂x2

= g (b ·Ψ) for example [36]. Its validation is
still doubtable in non-linear cases. The other simplification is to eliminate all the high-order
terms in the numerical dissipation part in the evolution model [36]. Based on the mechanism
analysis [36], in the smooth regions where gL = gR = ge, only the physical dissipation part
works [36]. The evolution model remains as

f(xi+ 1
2
, t) =

2∑
l=0

tl

l!

∂lf eNS

∂tl
+ τ

t2

2

∂2

∂t2

(
∂ge

∂t
+ u

∂ge

∂x

)
. (37)
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The extra term

e−t/τ
2∑
l=0

(−ut)l

l!

∂l (f 0
NS − f eNS)

∂xl
+ τe−t/τ

u2t2

2

∂2

∂x2

(
∂

∂t
+ u

∂

∂x

)(
g0 − ge

)
, (38)

is the numerical dissipation part. According to the analysis by Zhou, only the primary terms
related to t in the 1D cases are required to provide necessary numerical dissipation [36]. The
numerical dissipation part remains as

e−t/τ
1∑
l=0

(−ut)l

l!

∂l (g0 − ge)
∂xl

. (39)

As a summary, from the mechanism analysis on the evolution model [36], the third-order
HGKS evolution model is simplified as

f(xi+ 1
2
, t) =

2∑
l=0

tl

l!

∂lf eNS

∂tl
+ e−t/τ

1∑
l=0

(−ut)l

l!

∂l (g0 − ge)
∂xl

(40)

+τ
t2

2

∂2

∂t2

(
∂ge

∂t
+ u

∂ge

∂x

)
.

The high-order derivatives ∂2gL

∂x2
, ∂

2gL

∂x∂t
, ∂2gR

∂x2
, ∂

2gR

∂x∂t
are eliminated. Consequently, the computa-

tion cost to solve these derivatives and take their moments in flux evaluation is saved. This
simplification is also inspiring to extend HGKS to achieve arbitrary high-order accuracy.

What is more, since the original HGKS is devoted to solve the NS equations, there
still exists the physical dissipation in the evolution model. To solve the Euler equations,
the physical dissipation should be eliminated by approaching τ to 0 [16], with the numerical
dissipation terms ruled out. Based on the original third-order HGKS, the simplified evolution
model to solve the Euler equations is given as [16]

f(xi+ 1
2
, t) =

2∑
l=0

tl

l!

∂lge

∂tl
+ e−t/τ

2∑
l=0

(−ut)l

l!

∂l (f 0
NS − f eNS)

∂xl
(41)

+τe−t/τ
u2t2

2

∂2

∂x2

(
∂

∂t
+ u

∂

∂x

)(
g0 − ge

)
,

where the moments on ∂2ge

∂x∂t
are no longer included in the flux evaluation.

Remark 4. The existing simplifications on the third-order HGKS are mostly from the reduc-
tion of the derivatives of particle distribution functions and their moments to be computed.
However, no more than half of them are able to be reduced. Consequently, the improved ef-
ficiency is limited. The difficulty still exists in extending the state-of-art HGKS to arbitrary
high-order accuracy with practical significance even to solve the Euler equations. Not to
mention the multi-dimensional cases where much more and complex derivatives are included
[36].
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3. HGKS with arbitrary high-order accuracy: Euler equations

3.1. HGKS with arbitrary high-order accuracy
In this section, the state-of-art HGKS is extended mandatorily to arbitrary high-order

accuracy, to provide the basis of the following simplifications and modifications for a more
efficient Euler solver.

From the arbitrary r-th-order Taylor expansion on the integral solution, the evolution
model to build up HGKS with (r + 1)th-order accuracy is given as

f(xi+ 1
2
, t) =

r∑
l=0

tl

l!

∂lf eNS

∂tl
+ e−t/τ

r∑
l=0

(−ut)l

l!

∂l (f 0
NS − f eNS)

∂xl
+ τ ∗, (42)

where

τ ∗ = τ
tr

r!

∂r

∂tr

(
∂ge

∂t
+ u

∂ge

∂x

)
+ τe−t/τ

urtr

r!

∂r

∂xr

(
∂

∂t
+ u

∂

∂x

)(
g0 − ge

)
.

Compared with the third-order HGKS Eq.(32), the higher-order derivatives of g0 = gL

or gR and ge are required to be computed for r > 2. The corresponding (r + 1)th-order
reconstructions are implemented to obtain the polynomials of Wi(x, 0) and We firstly. By
further taking derivations on Eqs.(17) and (19), the higher-order space derivatives of g =
gL, gR or ge can be solved from the point-wise derivatives of WL,WR or We respectively.
Meanwhile, the high-order time related derivatives ∂m+q+1g

∂xmtq+1 are obtained according to the
compatibility conditions [16, 14]

∂m+q

∂xmtq

∫ (
∂g

∂t
+ u

∂g

∂x

)
ΨdΞ = 0. (43)

In the fifth-order HGKS, computations for the derivatives of ge follow from this sequence:

∂ge

∂x
→ ∂ge

∂t
;

∂2ge

∂x2
→ ∂2ge

∂x∂t
→ ∂2ge

∂t2
;

∂3ge

∂x3
→ ∂3ge

∂x2∂t
→ ∂3ge

∂x∂t2
→ ∂3ge

∂t3
;

∂4ge

∂x4
→ ∂4ge

∂x3∂t
→ ∂4ge

∂x2∂t2
→ ∂4ge

∂x∂t3
→ ∂4ge

∂t4
.

Remark 5. The sequence to translate the space and time derivatives of ge in HGKS is in
accord with the traditional Lax-Wendroff procedure [22], except that the space-time trans-
lations in the Lax-Wendroff procedure are based on the macroscopic variables [28, 17, 22].
The requirement to solve the space and time derivatives of particle distribution functions in
HGKS makes it more complicated. It brings in much rapider increase of computation cost
as the order of accuracy increases [18, 16, 9, 14]. It even occupies most of the computation
cost in the fourth-order HGKS [14] to calculate the third-order derivatives of particle distri-
bution functions and take their moments. Consequently, the state-of-art HGKS with higher
than third-order accuracy is compromised to the multi-stage framework where only low-order
HGKS evolution model is utilized[18, 9, 8].
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3.2. Simplification and modification on HGKS

In this section, the existing simplifications in [36, 17] are extended and modified to
develop a relatively more applicable HGKS with arbitrary high-order accuracy to solve the
Euler equations.

Similar to the notation by Zhou [36], the evolution model of the (r + 1)th-order HGKS
Eq.(42) is again written as

f(xi+ 1
2
, t) = Prf

e
NS + e−t/τNr

(
f 0

NS − f eNS

)
+ τ∗, (44)

where

Pr =
r∑
l=0

tl

l!

∂l

∂tl
,Nr =

r∑
l=0

(−ut)l

l!

∂l

∂xl
.

From the previous discussions in Section 2.2.3, it is able to get rid of the high-order terms
τ∗ in the analysis of Zhou [36] to simplify the evolution model. Based on the analysis
[36], the numerical dissipation terms in Eq.(44) are e−t/τNr(f

0
NS − f eNS). Since only the

primary terms related to t are required to provide necessary numerical dissipation [36], the
numerical dissipation part remains as e−t/τN1(g0−ge). Only the first and second derivatives
of distribution functions are reserved in the numerical dissipation part. After eliminating the
physical dissipation [16], the HGKS evolution model to solve the Euler equations remains
as

f(xi+ 1
2
, t) = Prg

e + e−t/τN1

(
g0 − ge

)
. (45)

Remark 6. There exist drawbacks in the straightforward extension Eq.(45). It is inevitable
to encounter serious instability problem if without elaborate reconstructions on We. While
in fact, considering the dominant role of Prg

e in the smooth regions, the derivatives of
We are uniformly obtained based on the continuous flow distribution hypothesis, by linear
reconstruction for example [33, 13, 14, 18, 9], wherever a discontinuity exists. Near the
discontinuity, the numerical oscillations generated by the high-order terms in Prg

e cannot
be balanced sufficiently by the low-order numerical dissipation part. This problem becomes
more serious theoretically as r increases.

To overcome the above-mentioned problem without elaborate reconstructions, the evolu-
tion model Eq.(45) is further modified. Firstly, e−t/τN1g

e in the numerical dissipation part is
replaced by e−t/τPrg

e. Since all the terms related to ge are vanished near the discontinuity
where τ � t, no elaborate reconstruction on We is required. At the same time, the weight
e−t/τ is replaced by e−∆t/τ . This modification preserves the evolution model the underlying
idea of HGKS. And it also makes the following flux evaluation much simpler. Under these
modifications, the evolution model Eq.(45) yields

f(xi+ 1
2
, t) =

(
1− e−∆t/τ

)
Prg

e + e−∆t/τN1g
0, (46)
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for arbitrary time in the interval 0 ≤ t ≤ ∆t and τ is given by [29]

τ = ε1∆t+ ε2

∣∣pL − pR
∣∣

pL + pR
∆t, (47)

where ε1 and ε2 are two constant parameters. Prg
e and N1g

0 are weighted by a factor
related to pL and pR. In the smooth regions where τ is small, the modified evolution model
Eq.(46) recurs to f(xi+ 1

2
, t) = Prg

e. While near the discontinuity, it also approaches to

f(xi+ 1
2
, t) = N1g

0 which builds up the second-order KFVS flux [28], the typical Euler solver

with strong robustness [6]. Consequently, the modified evolution model still preserves the
high-order accuracy in the smooth regions and the strong robustness near the discontinuity.
In fact, a similar weighting has already been implemented in a simplified version of low-order
GKS evolution model [28, 31].

After taking the moments of the evolution model Eq.(46) on uΨ, the flux is evaluated
as

Fi+ 1
2
(t) =

(
1− e−∆t/τ

)
PrF

e + e−∆t/τFk, (48)

where

Fe =

∫
geuΨdΞ,

Fk =

∫
u≥0

(
gL − ut∂g

L

∂x

)
uΨdΞ +

∫
u>0

(
gR − ut∂g

R

∂x

)
uΨdΞ. (49)

Remark 7. To solve the compressible Euler equations, the evolution model Eq.(46) and flux
evaluation Eq.(48) build up a more practical HGKS than the version based on Eq.(45). If
one has to solve the compressible Euler equations based on HGKS with arbitrary high-order
accuracy, Eq.(46) and Eq.(48) are recommended. To provide a fair comparison to solve the
Euler equations, the scheme version based on Eq.(46) and Eq.(48) is utilized as a reference
in the following numerical tests, which is called the original HGKS briefly. Since the higher
than first-order derivatives of gL and gR are eliminated in this version, its computation cost
is less than the complete version of HGKS for the NS equations.

4. Efficient HGKS with arbitrary high-order accuracy: Euler equations

Although HGKS based on Eq.(46) and Eq.(48) gets rid of all the high-order space and
time derivatives of gL and gR, those of ge still exist and are required to be solved following the
whole space-time translation sequence. In this section, a much more efficient flux evaluation
based on the same evolution model Eq.(46) is introduced. Since computing the high-order
terms PrF

e in Eq.(48) occupies most of the computation cost for r > 2, our focus for a
more efficient HGKS flux evaluation is on PrF

e.
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4.1. Efficient HGKS flux evaluation: Lax-Wendroff procedure

In the complete version of HGKS [29, 13, 16, 14], it is relatively more convenient to
solve the derivatives of particle distribution functions firstly and take the moments of them
afterwards for flux evaluation. However, based on the simplified evolution model Eq. (46),
it is able to bypass the computations of the derivatives of ge in PrF

e evaluations. In fact,
after taking the moments in Fe, Fe has the same form of flux as in the Euler equations

Fe = FEu(W
e) =

 ρeU e

ρeU e2 + pe

ρeEeU e + peU e

 , (50)

and consequently,

PrF
e = PrFEu(W

e). (51)

Meanwhile, taking the moments of the compatibility conditions in Eq.(43) for g = ge yields

∂m+q

∂xmtq

(
∂We

∂t
+
∂FEu(W

e)

∂x

)
= 0. (52)

Since FEu(W
e) can be determined completely by We, ∂m+q+1

∂xmtq+1 W
e can be translated from

∂m+q+1

∂xm+1tq
We. Following the space-time translation sequence, the time related derivatives of

We can be obtained from the corresponding space derivatives of We step by step. No
derivatives of ge are included in the space-time translation and in the final flux evaluation
of PrFEu(W

e). It is consequently more convenient to compute PrFEu(W
e) directly from

the space-time translation sequence based on Eq.(52). The computation cost to solve the
high-order derivatives of ge which occupies mostly in the original HGKS flux evaluation
Eq.(48) for r > 2 can be saved contemporarily.

In fact, the space-time translation based on the macroscopic variables is what the tradi-
tional Lax-Wendroff procedure always means to do [22]. The Lax-Wendroff procedure has
been widely used in ADER [24, 22]. The flexible applications of the Lax-Wendroff proce-
dure in ADER [7, 25] are also available here. Compared with the flux-expansion version,
the state-expansion is computationally cheaper [24, 25]. The introduction the Lax-Wendroff
procedure into the HGKS flux evaluation is given as follows.

Define the time integrated PrFEu(W
e) by

Fei+ 1
2
(∆t) =

∫ ∆t

0

PrFEu(W
e)dt. (53)

The Gaussian rule is adopted in the integration [25]:

Fe
i+ 1

2
(∆t) =

K∑
α=0

FEu (Qe (κα∆t))ωα, (54)

Qe (t) =
r∑
l=0

tl

l!

∂lQe

∂tl
,
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where Q = (ρ, U, p), κα is the scaled node, ωα is the weight, K + 1 is the number of the
Gauss nodes. The order of accuracy of the Gauss rule satisfies 2K ≥ r. The space-time
translation Eq.(52) is replaced equivalently by [7]

∂m+q

∂xmtq

(
∂Qe

∂t
+ Ae · ∂Qe

∂x

)
= 0, A =

 U ρ 0
0 U 1/ρ
0 γp U

 , (55)

for a simple A and thus better efficiency.
As a summary, the procedure for the time integrated flux evaluation Fi+ 1

2
(∆t) =

∫ ∆t

0
Fi+ 1

2
(t)dt

is plotted as follows.

WL →

WR →

gL →

↓

We → ge →

↑

gR →

{
∂WL

∂x
→ ∂gL

∂x
→ ∂gL

∂t

∂We

∂x
→ ∂Qe

∂t

∂2We

∂x2
→ ∂2Qe

∂x∂t
→ ∂2Qe

∂t2

...

∂rWe

∂xr
→ ∂rQe

∂xr−1∂t
→ ...→ ∂rQe

∂tr{
∂WR

∂x
→ ∂gR

∂x
→ ∂gR

∂t



→ Fi+ 1
2
(∆t)

4.2. Multi-dimensional extensions

Both 1D evolution model and flux evaluation introduced in the former sections can be
extended straightforward to the multi-dimensional cases. The existing simplifications and
modifications are also applicable for the multi-dimensional cases [36].

In the two-dimensional (2D) case, further considering the Taylor expansion in the tangen-
tial direction, the evolution model with (r + 1)th-order accuracy is expanded and modified
as

f(x, t,u, ξ) =
(
1− e−∆t/τ

)
Prg

e + e−∆t/τN1g
0, (56)

where

Pr =
r∑
l=0

1

l!

(
t
∂

∂t
+ x · ∇

)l
,Nr =

r∑
l=0

1

l!
[(x− ut) · ∇]l,
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and x = (x, y), u = (u, v) and ∇ = ( ∂
∂x
, ∂
∂y

).

Under the finite volume framework, the discretized cell is indexed as (i, j). Assuming
the space domain is discretized uniformly, the time integrated flux along the cell interface
(i+ 1

2
, j) is evaluated as

Fi+ 1
2
,j(∆t) =

∫ ∆y/2

−∆y/2

∫ ∆t

0

∫
f(x, t,u, ξ)uΨdΞdydt (57)

=
(
1− e−∆t/τ

)
Fe
i+ 1

2
,j

(∆t) + e−∆t/τFk
i+ 1

2
,j

(∆t),

where the high-order terms exist in

Fe
i+ 1

2
,j

(∆t) =

∫ ∆y/2

−∆y/2

∫ ∆t

0

PrFEu(W
e)dydt, (58)

and Fk
i+ 1

2
,j

(∆t) is the second-order KFVS flux.

The high-order terms Fe
i+ 1

2
,j

(∆t) are approximated by the Gaussian rule

Fe
i+ 1

2
,j

(∆t) =
K∑
α=0

K∑
β=0

FEu (Qe (κα∆y, κβ∆t))ωαωβ, (59)

Qe (y, t) =
r∑
l=0

1

l!

(
t
∂

∂t
+ y

∂

∂y

)l
Qe.

The time related derivatives of Qe are obtained based on [7]

∂m+n+q

∂xmyntq

(
∂Qe

∂t
+ Ae · ∂Qe

∂x
+ Be · ∂Qe

∂y

)
= 0, (60)

where

A =


U ρ 0 0
0 U 0 1/ρ
0 0 U 0
0 γp 0 U

 ,B =


V 0 ρ 0
0 V 0 0
0 0 V 1/ρ
0 0 γp V

 .
In the 2D case, the reconstruction is implemented direction by direction [10]. The linear

reconstruction is utilized in the tangential direction on We. It is worthy of mention that
Qe (y, t) has already taken the tangential derivatives into consideration. The reconstruction
is implemented only once at the central point of the cell interface. No more reconstructions
are required at each of the gauss points in the tangential direction. This implement initiates
from the multi-dimensional effect of the HGKS evolution model, which has been widely used
under many other frameworks [33].

It’s easy to further extend the current scheme to the three-dimensional case by the
similar way. According to the traditional three-dimensional Lax-Wendroff procedure, the
derivatives in the z direction should also be included in the space-time translation [22].
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4.3. Efficient HGKS with arbitrary high-order accuracy: Euler equations

As a summary, the time integrated flux along the cell interface is evaluated as

Fi+ 1
2
(∆t) =

(
1− e−∆t/τ

)
Fe
i+ 1

2
(∆t) + e−∆t/τFk

i+ 1
2
(∆t), (61)

where Fe
i+ 1

2

(∆t) is given by Eqs. (54) and (59). Fk
i+ 1

2

(∆t) is the time integrated KFVS

flux Eq. (49) along the cell interface. The time related derivatives of Qe are obtained from
the space derivatives according to the Lax-Wendroff procedure Eqs.(55) and (60). The
scheme based on Eq.(61) has the same evolution model as the original HGKS Eq.(48). But
the computation cost is much less with the same-order magnitude as the traditional Lax-
Wendroff procedure. We call the currently constructed scheme in this paper EHGKS.

The high efficiency of EHGKS initiates from two aspects. The first and basic is the
simplification on the numerical dissipation part. It brings in the feasibility of the second
aspect that the remaining high-order derivatives of particle distribution function and their
moments in flux evaluation are replaced by the more efficient Lax-Wendroff procedure.
Taking the advantage of both HGKS and Lax-Wendroff procedure, EHGKS preserves not
only the high-order accuracy and strong robustness, but also the high efficiency.

In practical simulations, τ is given as

τ = ε1∆t+ ε2
pmax − pmin
pmax + pmin

∆t, (62)

where pmax and pmin are the maximum and minimum pressure respectively among pL, pR

and those in the nearest-layer stencils in the tangential direction of the 2D case. Instead of
only introducing pL and pR [29, 13, 14, 3], those in the tangential direction are included with
consideration of the multi-directional effect. We shall take ε1 = 0.02, ε2 = 2 in the following
numerical tests.

5. Numerical test

In order to validate the accuracy, efficiency and robustness of the newly developed
EHGKS in this paper, numerical test results for the Euler equations of compressible flows are
presented in this section. The direct comparisons of the r-th-order EHGKS (EHGKS-r), the
original HGKS (HGKS-r) based on Eq.(48) and the third-order TVD Runge-Kutta-WENO-
GKS scheme (RK3-WENOr-GKS) are also performed in the 1D cases. In all comparisons,
the HGKS models (only the first-order GKS is required in RK3-WENOr-GKS), the WENO
reconstruction techniques and the CFL number are the same.

The time step ∆t is determined by the CFL condition

∆t = CFL×min

{
∆x∣∣U ∣∣+ cs

,
∆y∣∣V ∣∣+ cs

}
, (63)

where cs is the speed of sound. The CFL condition number CFL = 0.95 in the 1D cases
and CFL = 0.45 in the 2D cases if without specification.

The validation of EHGKS is based on a series of 1D and 2D benchmark test cases,
namely:
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(1) 1D linear advection of the density perturbation [18]– the Euler equations are reduced to
the linear advection equation problem with smooth solution. This case is to assess the
accuracy and efficiency of the numerical schemes.

(2) 1D Shu-Osher shock acoustic wave interaction [21, 3]– the solution includes the small-
scale smooth features while the low-order schemes often introduce over diffusion [5].

(3) 1D Woodward-Colella blast wave [20]– the solution contains complex interactions of the
shock waves and contact discontinuities. We use this test to demonstrate the robustness
of EHGKS.

(4) 2D linear advection of the density perturbation [35]– the 2D Euler equations are reduced
to the linear advection equation problem with smooth solution. This case is to assess
the accuracy and efficiency of EHGKS in the 2D case.

(5) 2D isotropic vortex propagation [12]–the exact solution of 2D Euler equations is smooth
to assess the high-order accuracy of the numerical schemes.

(6) 2D Riemann problems [18, 3]–we use two of these problems to demonstrate the ability
of the high-order schemes to solve 2D Riemann problems genuinely.

(7) Double Mach reflection problem [3, 13]–we use this classical test problem to investigate
the ability of the high-order schemes to capture the details of complex flows produced
by the interaction of shock waves.

5.1. 1D linear advection of the density perturbation

Here we assess the accuracy and the efficiency of EHGKS when the solution is linear
and smooth in the 1D case. And the comparisons of EHGKS-r, the original HGKS-r and
RK3-WENOr-GKS schemes are presented.

The initial condition is given by

(ρ, U, p) = (1 + 0.2 sin(x), 1, 1) .

Under the periodic boundary condition, the analytic solution is

(ρ, U, p) = (1 + 0.2 sin(x− t), 1, 1) .

The computational domain is [0, 2π] divided by N uniform cells. The output time is 400
periods. CFL = 0.95 is adopted.

The results of the errors and the accuracy order computed by EHGKS-3, EHGKS-5 and
EHGKS-7 are shown in Table 1. All the EHGKS-r schemes can achieve the designed order
of accuracy in both space and time.

We further investigate the efficiency of EHGKS-r. The comparison of the CPU time
averaged in one single time step under 80 uniform grids are presented in Table 2. The errors
and the corresponding CPU times of EHGKS-r are shown in Fig. 1. The results show that
the higher-order schemes use more CPU time than the lower-order schemes in a single time
step. However, given the computational errors which are small enough, the higher-order
schemes use less CPU time than the lower-order schemes.

Under the same computational conditions, the results of the errors and the accuracy
order of HGKS-r are shown in Table 3. We only display the results of HGKS-3 and HGKS-5
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EHGKS-3
N L1 error Order L2 error Order L∞ error Order
20 1.20E-01 1.33E-01 1.86E-01
40 3.90E-02 1.62 4.33E-02 1.62 6.17E-02 1.59
80 5.74E-03 2.76 6.38E-03 2.76 9.45E-03 2.71
160 7.35E-04 2.97 8.15E-04 2.97 1.23E-03 2.95

EHGKS-5
N L1 error Order L2 error Order L∞ error Order
20 7.67E-03 8.51E-03 1.21E-02
40 2.50E-04 4.94 2.77E-04 4.94 4.13E-04 4.88
80 7.84E-06 4.99 8.69E-06 5.00 1.30E-05 4.99
160 2.45E-07 5.00 2.72E-07 5.00 4.07E-07 5.00

EHGKS-7
N L1 error Order L2 error Order L∞ error Order
20 1.72E-04 1.91E-04 2.80E-04
40 1.37E-06 6.98 1.52E-06 6.98 2.26E-06 6.96
80 1.07E-08 6.99 1.19E-08 6.99 1.78E-08 6.99
160 9.71E-11 6.79 1.08E-10 6.78 1.57E-10 6.82

Table 1: Accuracy test for EHGKS in the 1D advection of the density perturbation.

CPU time per step
EHGKS-3 1.64E-04
EHGKS-5 2.70E-04
EHGKS-7 1.03E-03

Table 2: CPU time(seconds) per time step for EHGKS in the 1D advection of the density perturbation.

since it is really complex to implement HGKS-7. It is clear that HGKS-r can achieve the
designed order of accuracy in both space and time. The CPU times averaged in one single
time step under 80 uniform grids are presented in Table 4. Comparisons on the errors and
the corresponding CPU times between EHGKS-r and HGKS-r are shown in Fig. 2. The
results demonstrate that EHGKS-r is more efficient than the original HGKS-r.

The results of the errors and the accuracy order of RK3-WENOr-GKS are also shown
in Table 5. Limited by the accuracy in time, all these schemes can only achieve third-
order accuracy. To improve the accuracy in time, more complex Runge-Kutta methods are
required. Obviously, it is unfair to compare the accuracy between EHGKS-r and RK3-
WENOr-GKS since the designed accuracy order in time is different. To investigate the
difference in efficiency between EHGKS-r and RK3-WENOr-GKS, we give the errors and
the corresponding CPU times in Fig. 3. The numerical results show that EHGKS-r can
significantly reduce the computation cost of RK3-WENOr-GKS. Consequently, the necessity
to preserve the high-order accuracy in both space and time is further confirmed.
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Figure 1: The CPU time vs L2 error for EHGKS. The test case is the 1D advection of the density
perturbation.

HGKS-3
N L1 error Order L2 error Order L∞ error Order
20 1.20E-01 1.33E-01 1.86E-01
40 3.90E-02 1.62 4.33E-02 1.62 6.17E-02 1.59
80 5.74E-03 2.76 6.38E-03 2.76 9.45E-03 2.71
160 7.35E-04 2.97 8.15E-04 2.97 1.23E-03 2.95

HGKS-5
N L1 error Order L2 error Order L∞ error Order
20 7.67E-03 8.51E-03 1.21E-02
40 2.50E-04 4.94 2.77E-04 4.94 4.13E-04 4.88
80 7.84E-06 4.99 8.69E-06 5.00 1.30E-05 4.99
160 2.45E-07 5.00 2.72E-07 5.00 4.07E-07 5.00

Table 3: Accuracy test for HGKS in the 1D advection of the density perturbation.

CPU time per step HGKS-r/EHGKS-r
HGKS-3 2.85E-04 1.74
HGKS-5 4.61E-03 17.1

Table 4: CPU time(seconds) per time step for HGKS in the 1D advection of the density perturbation.

5.2. Shu-Osher shock acoustic wave interaction

This is a well-known 1D shock tube problem which contains small-scale perturbations
and shock waves[5]. This case is to assess whether the high-order schemes can capture the
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Figure 2: The CPU time vs L2 error for HGKS. The test case is the 1D advection of the density perturbation.

RK3-WENO3-GKS
N L1 error Order L2 error Order L∞ error Order
20 1.27E-01 1.40E-01 1.96E-11
40 6.05E-02 1.07 6.72E-02 1.06 9.52E-02 1.04
80 9.85E-03 2.62 1.09E-02 2.62 1.59E-02 2.59
160 1.28E-03 2.95 1.42E-03 2.95 2.09E-03 2.93

RK3-WENO5-GKS
N L1 error Order L2 error Order L∞ error Order
20 3.51E-02 3.89E-02 5.45E-02
40 3.87E-03 3.18 4.29E-03 3.18 6.09E-03 3.16
80 4.53E-04 3.09 5.03E-04 3.09 7.13E-04 3.10
160 5.56E-05 3.03 6.18E-05 3.03 8.74E-05 3.03

RK3-WENO7-GKS
N L1 error Order L2 error Order L∞ error Order
20 2.60E-02 2.89E-02 4.07E-02
40 3.50E-03 2.89 3.88E-03 2.89 5.49E-03 2.89
80 4.41E-04 2.99 4.90E-04 2.99 6.93E-04 2.99
160 5.52E-05 3.00 6.13E-05 3.00 8.67E-05 3.00

Table 5: Accuracy test for RK3-WENO-GKS in the 1D advection of the density perturbation.

small-scale information of the flows exactly. The flow field is initialized as [21, 3]

(ρ, U, p) =

{
(3.857134, 2.629369, 10.33333) , x ≤ −0.8,
(1 + 0.2 sin(5πx), 0, 1) , x > −0.8.

The computational domain is [−1, 1] divided by 200 uniform cells. The output time t = 0.47.
CFL = 0.9 is adopted in this case. The exact solution is calculated from the refined grids.
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CPU time per step
RK3-WENO3-GKS 3.71E-04
RK3-WENO5-GKS 4.43E-04
RK3-WENO7-GKS 5.39E-04

Table 6: CPU time(seconds) per time step for RK3-WENO-GKS in the 1D advection of the density
perturbation.
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Figure 3: The CPU time vs L2 error for RK3-WENO-GKS. The test case is the 1D advection of the density
perturbation.

The density distribution and its local enlargement are shown in Fig. 4. As expected,
all the three EHGKS-r schemes can capture the solution well, and higher-order EHGKS-r
schemes present better results with sharper shock discontinuity and more details of small-
scale perturbations. This also demonstrates the necessity to use higher-order EHGKS. Com-
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parisons are also made between EHGKS and HGKS. The good agreement between EHGKS-r
and HGKS-r demonstrates the validity of the Lax-Wendroff procedure introduced into the
flux evaluation. The comparisons between EHGKS and RK3-WENO-GKS illustrate the
necessity for the scheme with high-order accuracy in both space and time.
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Figure 4: The density distribution of the Shu-Osher shock acoustic interaction with (a) 150 and (b) 300
uniform cells at t = 0.47.

5.3. Woodward-Colella blast wave

This case contains the interactions between strong shock waves and contact discontinu-
ities, which is a very challenging problem to assess the robustness of a numerical scheme
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Figure 5: The density distribution of the Shu-Osher shock acoustic interaction with 150 uniform cells at
t = 0.47.

[20]. The initial conditions are given by

(ρ, U, p) =


(1, 0, 1000) , 0 ≤ x ≤ 0.1,
(1, 0, 0.01) , 0.1 < x ≤ 0.9,
(1, 0, 100) , 0.9 < x ≤ 1,

with reflective boundary conditions on both sides of the computational domain [0, 1]. 400
uniform cells are used in the simulation, while the output time t = 0.038 and CFL = 0.9 are
taken in this case to preserve the stability. It should be mentioned that CFL = 0.9 is still
very delighted to be accepted in this case with very strong shocks, contact discontinuities,
rarefaction waves and their interactions. Fig. 6 shows the density distributions given by
EHGKS-3, EHGKS-5 and EHGKS-7, which demonstrates the robustness of EHGKS-r.
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The results computed by EHGKS are comparable to the existing high-order schemes in
other work [13, 3]. It illustrates the good resolution of EHGKS. Similar to the previous
tests, higher-order EHGKS-r behaves better on the results with sharper discontinuities and
resolved local extrema. Specifically, the improvement from EHGKS-5 to EHGKS-7 is less
significant compared with that from EHGKS-3 to EHGKS-5. It’s worthy of mention that the
similar phenomenon has also been observed where the space accuracy is improved from the
fourth to eighth order [34], or the time accuracy from the fourth to fifth order [9]. It seems
less significant improvement has been made in this case by increasing the very high-order
accuracy, which still needs further studies.
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Figure 6: The density distribution of the blast wave problem with 400 uniform cells at t = 0.038.

5.4. 2D linear advection of the density perturbation
Here we assess the accuracy and efficiency of EHGKS when the solution is linear and

smooth in the 2D advection of the density perturbation.
In this case, the initial condition is given by

(ρ, U, V, p) = (1 + 0.2 sin(x), 0.7, 0.3, 1) ,

and the analytic solution is

(ρ, U, V, p) = (1 + 0.2 sin(x− t), 0.7, 0.3, 1) .

The computational domain is [0, 2π]× [0, 2π] divided by N ×N uniform cells. The output
time t = 2π.

The results of the errors and the accuracy order given by EHGKS-3, EHGKS-5 and
EHGKS-7 are shown in Table 7. It is observed that all the EHGKS-r schemes can achieve
the designed order of accuracy in both space and time in the 2D cases. The errors and the
corresponding CPU times of EHGKS-r are shown in Fig. 7. The same conclusion can be
drawn that given the computational errors, the higher-order EHGKS uses less CPU time
than the lower-order scheme.
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EHGKS-3
N L1 error Order L2 error Order L∞ error Order
10 6.59E-03 7.43E-03 1.02E-02
20 7.75E-04 3.09 8.63E-04 3.11 1.25E-03 3.03
40 9.35E-05 3.05 1.04E-04 3.06 1.51E-04 3.05
80 1.15E-05 3.02 1.27E-05 3.02 1.87E-05 3.02

EHGKS-5
N L1 error Order L2 error Order L∞ error Order
10 5.04E-04 5.78E-04 8.04E-04
20 1.49E-05 5.08 1.65E-05 5.13 2.39E-05 5.07
40 4.44E-07 5.06 4.92E-07 5.07 7.18E-07 5.05
80 1.36E-08 5.03 1.51E-08 5.03 2.22E-08 5.02

EHGKS-7
N L1 error Order L2 error Order L∞ error Order
10 4.28E-05 4.92E-05 6.81E-05
20 3.24E-07 7.04 3.60E-07 7.09 5.21E-07 7.03
40 2.45E-09 7.05 2.71E-09 7.05 3.95E-09 7.04
80 1.95E-11 6.97 2.16E-11 6.97 3.17E-11 6.96

Table 7: Accuracy test for EHGKS in the 2D advection of the density perturbation.
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Figure 7: The CPU time vs L2 error for EHGKS. The test case is the 2D advection of the density
perturbation.

5.5. 2D isotropic vortex propagation problem

This problem for the 2D compressible Euler equations is to test the accuracy of numerical
methods, since the exact solution is smooth and has a simple analytical expression. Some
schemes with attested high-order accuracy in the previous test cases may fail in this test
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case. The mean flow is

(ρ, U, V, p) = (1, 1, 1, 1) .

An isotropic vortex is added to the mean flow with the perturbations in velocities, temper-
ature and no perturbation in entropy S = p/ργ [12], which gives

(δU, δV ) =
10ε

2π
e

1−η2
2 (−y, x) , δT = −(γ − 1) ε2

8γπ2
e1−η2 , δS = 0,

where ε = 5 and η2 = 100(x2 + y2). The periodic boundary condition is adopted. The exact
solution is the perturbation propagating with (U, V ) = (1, 1) [12, 18]. The computational
domain is [−0.5, 0.5]× [−0.5, 0.5] divided by N ×N uniform cells. The output time t = 2.

The test results based on the density are shown in Table 8. It further illustrates that
all the EHGKS-3, EHGKS-5 and EHGKS-7 schemes can achieve their designed order of
accuracy in the 2D case.

EHGKS-3
N L1 error Order L2 error Order L∞ error Order
25 8.59E-03 2.29E-02 1.87E-01
50 1.86E-03 2.21 4.57E-03 2.32 3.16E-02 2.56
100 2.87E-04 2.69 7.24E-04 2.66 4.62E-03 2.78
200 3.76E-05 2.93 9.66E-05 2.91 6.05E-04 2.93

EHGKS-5
N L1 error Order L2 error Order L∞ error Order
25 2.22E-03 5.23E-03 3.85E-02
50 1.82E-04 3.61 4.09E-04 3.67 2.56E-03 3.91
100 6.90E-06 4.72 1.83E-05 4.49 1.55E-04 4.04
200 2.21E-07 4.97 6.35E-07 4.85 3.91E-06 5.31

EHGKS-7
N L1 error Order L2 error Order L∞ error Order
25 1.26E-03 2.97E-03 2.18E-02
50 8.06E-05 3.96 3.14E-04 3.24 4.57E-03 2.25
100 2.22E-06 5.18 1.06E-05 4.88 1.46E-04 4.97
200 1.27E-08 7.45 5.99E-08 7.47 7.80E-07 7.55

Table 8: Accuracy test for EHGKS in the 2D isotropic vortex propagation.

5.6. 2D Riemann problems

Two cases of the 2D Riemann problems are tested to assess the ability of EHGKS to
solve the multi-dimensional problems genuinely.
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The first case is the interaction of the rarefaction waves and the vortex sheets [18, 11].
The initial conditions are

(ρ, U, V, p) =


(1, 0.1, 0.1, 1) , x ≥ 0.5, y ≥ 0.5,
(0.5197,−0.6259, 0.1, 0.4) , x < 0.5, y ≥ 0.5,
(0.8, 0.1, 0.1, 0.4) , x < 0.5, y < 0.5,
(0.5197, 0.1,−0.6259, 0.4) , x ≥ 0.5, y < 0.5.

The computational domain is [0, 1]× [0, 1], and the non-reflecting boundary conditions are
used at all boundaries. The computational domain is divided by 400 × 400 uniform cells.
The output time t = 0.3. The density distributions in Fig. 8 show the roll-up is well captured
by the current high-order scheme and confirms its high accuracy. The same conclusion can
be drawn as in the previous tests that the higher-order accuracy of EHGKS, the better
resolution on the flow details.

In the second case [3], the initial conditions are

(ρ, U, V, p) =

{
(1, 0, 0, 1) ,

√
(x− 0.5)2 + (y − 0.5)2 ≤ 0.3,

(0.125, 0, 0, 0.1) , else.

The computational domain is [0, 1]× [0, 1] divided by 800×800 uniform cells. The boundary
conditions are all reflective conditions. The output time t = 1 when the shock waves have
already hit the boundaries and interacted with the reflected waves [3]. Fig. 9 shows more
complex structures are captured by the higher-order EHGKS.

5.7. Double Mach reflection problem

This case has been extensively adopted to test the performance of numerical schemes in
the compressible flows with strong shocks [27]. A right-moving shock of Ma = 10 is initially
positioned at (x, y) = (1/6, 0) with 60◦ to the wall. The pre-shock conditions are

(ρ, U, V, p) =
(

8, 4.125
√

3,−4.125, 116.5
)
,

and post-shock conditions are

(ρ, U, V, p) = (1.4, 0, 0, 1) .

The computational domain is [0, 3] × [0, 0.75] divided by uniform cells with cell size ∆x =
∆y = 1/240 and 1/480. The reflective boundary condition is used at the wall. The pre-shock
and post-shock conditions are imposed at the rest boundaries to describe the exact motion
of the shock. CFL = 0.4 is used in this case to preserve the stability of EHGKS. The output
time t = 0.2.

The density distributions and the local enlargement are shown from Fig. 10 to Fig. 13.
It is clearly observed the instability of the contact line from the triple Mach stem is better
resolved by the higher-order EHGKS than the lower-order schemes. It also demonstrates
the advantage of high-order schemes in the simulations of complex flows.
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6. Conclusions

Based on the extensions, simplifications and modifications on the original HGKS evolu-
tion model and the flux evaluation, a more efficient gas-kinetic scheme EHGKS is proposed
for the Euler equations of compressible flows. The new EHGKS takes advantage of both the
original HGKS to achieve arbitrary high-order accuracy and strong robustness, and the tra-
ditional Lax-Wendroff procedure to significantly reduce the complexity and computational
costs of the original HGKS. The main idea to improve the efficiency contains two parts.
Firstly, we simplify the original HGKS evolution model for the Euler equations. Inspired by
Zhou’s simplification on the third-order HGKS, we extend the original HGKS to the case
with arbitrary high-order accuracy by eliminating the unnecessary high-order dissipation
terms. Secondly, to avoid computing the complex moments of the derivatives of particle
distribution functions, we introduce a Lax-Wendroff procedure to compute the high order
derivatives of macroscopic quantities directly. From the mechanism analysis, EHGKS pre-
serves the high-order accuracy of the original HGKS in the smooth regions and its strong
robustness with relaxation to the low-order KFVS solver near the discontinuities.

A sequence of classical test cases are carried out to validate the robustness, accuracy
and efficiency of EHGKS. The results computed by EHGKS-3, EHGKS-5 and EHGKS-7
are present, illustrating the advantage in improving the accuracy. Comparisons between
the third-order TVD Runge-Kutta-WENO-GKS demonstrate the high time accuracy of
EHGKS. In the typical applications, EHGKS gives a good resolution on the discontinuities
and complex flow details. The efficiency of EHGKS is compared with the original HGKS to
solve the Euler equations and the third-order TVD Runge-Kutta-WENO-GKS. In the case
of the third-order accuracy, nearly half the computation cost can be saved by EHGKS-3. In
the case of the fifth-order accuracy, the improvement in efficiency by EHGKS-5 is more than
one order of magnitude. As a summary, the high accuracy, efficiency and strong robustness
of EHGKS are consequently confirmed.

In the future, we wish to further construct a compact EHGKS by using the techniques
of HWENO or DG, and also plan to extend EHGKS to solve the NS equations.
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Appendix A. Reconstruction

Firstly, the initial polynomials Wi(x, 0) over the i-th cell is reconstructed to obtain

the point-wise values Wi(xi± 1
2
, 0) and space derivatives

∂mWi(xi± 1
2
,0)

∂xm
for m ≥ 1. The

characteristic-wise WENO reconstruction technique [10] is applied to obtain the point-wise
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values Wi± 1
2
:

Wi(xi+ 1
2
, 0) = Wi+ 1

2
,

Wi(xi− 1
2
, 0) = Wi− 1

2
.

if without specifications. To evaluate the point-wise space derivatives, the same smooth
function for Wi(x, 0) as in [3] is supposed over the i-th cell. The linear reconstruction

is implemented to obtain
∂mWi(xi± 1

2
,0)

∂xm
based on the two point-wise values Wi± 1

2
after the

WENO reconstruction and the centremost cell averages Wi,Wi−1,Wi+1..., which gives
Third order:

∂Wi(xi+ 1
2
, 0)

∂x
=

2Wi− 1
2
− 6Wi + 4Wi+ 1

2

∆x
,

∂2Wi(xi+ 1
2
, 0)

∂x2
=

6Wi− 1
2
− 12Wi + 6Wi+ 1

2

∆x2
.

Fifth order:

∂Wi(xi+ 1
2
, 0)

∂x
=

12Wi− 1
2
−Wi−1 − 31Wi + 2Wi+1 + 18Wi+ 1

2

6∆x
,

∂2Wi(xi+ 1
2
, 0)

∂x2
=

6Wi− 1
2
−Wi−1 − 4Wi + 5Wi+1 − 6Wi+ 1

2

2∆x2
,

∂3Wi(xi+ 1
2
, 0)

∂x3
=
−24Wi− 1

2
+ 2Wi−1 + 50Wi + 8Wi+1 − 36Wi+ 1

2

∆x3
,

∂4Wi(xi+ 1
2
, 0)

∂x4
=
−60Wi− 1

2
+ 10Wi−1 + 100Wi + 10Wi+1 − 60Wi+ 1

2

∆x4
.

Seventh order:

∂Wi(xi+ 1
2
, 0)

∂x
= −

87Wi−1 − 3Wi−2 − 883Wi − 43Wi+1 + 2Wi+2 + 480Wi− 1
2

+ 360Wi+ 1
2

180∆x
,

∂2Wi(xi+ 1
2
, 0)

∂x2
=

409Wi−1 − 11Wi−2 + 89Wi − 71Wi+1 + 4Wi+2 − 660Wi− 1
2

+ 240Wi+ 1
2

120∆x2
,

∂3Wi(xi+ 1
2
, 0)

∂x3
= −

51Wi−1 + 347Wi + 23Wi+1 −Wi+2 − 240Wi− 1
2
− 180Wi+ 1

2

6∆x3
,

∂4Wi(xi+ 1
2
, 0)

∂x4
= −

5
(

7Wi−1 − 2Wi−2 − 73Wi − 17Wi+1 + Wi+2 + 24Wi− 1
2

+ 60Wi+ 1
2

)
6∆x4

,

∂5Wi(xi+ 1
2
, 0)

∂x5
= −

6Wi−2 − 69Wi−1 − 329Wi − 29Wi+1 + Wi+2 + 240Wi− 1
2

+ 180Wi+ 1
2

∆x5
,

∂6Wi(xi+ 1
2
, 0)

∂x6
=

7
(
Wi−2 − 14Wi−1 − 94Wi − 14Wi+1 + Wi+2 + 60Wi− 1

2
+ 60Wi+ 1

2

)
∆x6

.
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The reconstruction to
∂mWi(xi− 1

2
,0)

∂xm
is mirror symmetric of the above expressions. After the

reconstruction, the cell interface values WL, WR and their space derivatives at xi+ 1
2

are
given as

WL = Wi(xi+ 1
2
, 0),

∂mWL

∂xm
=
∂mWi(xi+ 1

2
, 0)

∂xm
,

WR = Wi+1(xi+ 1
2
, 0),

∂mWR

∂xm
=
∂mWi+1(xi+ 1

2
, 0)

∂xm
.

Then, to obtain the space derivatives of We, the continuous flow distribution hypothesis
is adopted [18, 9, 13, 16]. In this work, considering the small variations between WL, WR

and We in the smooth regions, a simple weighting is implemented based on the reconstructed
space derivatives of WL and WR. The weight ωe =erfc(−

√
λeU e)/2 is adopted with both

the central and upwind character [6]

∂mWe

∂xm
= ωe

∂mWL

∂xm
+ (1− ωe) ∂

mWR

∂xm
,

where erfc is th complementary error function.
Other reconstruction techniques are also available, such as the limiters for WL and WR,

the linear reconstruction on We [13, 14]. But it is not the focus of this work. For simplicity,
all the reconstructions are reduced to the zeroth order when WL or WR is non-physical with
negative density or pressure, and if the pressure difference is with one-order of magnitude
among the nearest-layer stencils in the first two steps of all the simulations. Specifically
in the accuracy tests, the linear reconstruction is implemented for WL, WR and We. No
smoothness indicators are included in the reconstructions for WL and WR there.
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Figure 8: The density distribution of the first 2D Riemann problem at t = 0.3 with 400×400 uniform cells.
30 contours are drawn from 0.3 to 1.
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Figure 9: The density distribution of the second 2D Riemann problem at t = 1 with 800 × 800 uniform
cells. 30 contours are drawn from 0.1 to 0.6.
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Figure 10: The density distribution of the double Mach reflection problem at t = 0.2 with ∆x = ∆y = 1/240.
30 contours are drawn from 1.731 to 20.92.
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Figure 11: The enlarged density distribution of the double Mach reflection problem at t = 0.2 with
∆x = ∆y = 1/240. 30 contours are drawn from 1.731 to 20.92.
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Figure 12: The density distribution of the double Mach reflection problem at t = 0.2 with ∆x = ∆y = 1/480.
30 contours are drawn from 1.731 to 20.92.
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Figure 13: The enlarged density distribution of the double Mach reflection problem at t = 0.2 with
∆x = ∆y = 1/480. 30 contours are drawn from 1.731 to 20.92.
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