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Abstract

We combine general equilibrium theory and théorie générale of stochastic processes to
derive structural results about equilibrium state prices.
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processes, Asset Pricing, State Prices

Introduction

Rational asset prices are the expected present value of future cash flows, properly discounted

with a state price, also known as stochastic discount factor, or Arrow price. In economic terms,

the state price ψt(ω) is the price of one unit of the numéraire consumption good (or money)

delivered at time t when state ω prevails. With complete markets, the price of a financial asset

is obtained by valuing the asset’s payment stream with the state price. State-prices determine

asset prices, interest rates, and the pricing or equivalent martingale measure.

It is thus important to understand what economic theory can say about the properties of

such state prices. One might fear that the answer is: Not much, in general. When we take a

classical setup where consumption plans come from some Lp–space, and preferences are norm–

or Mackey–continuous on the commodity space, the famous existence theorems of general

equilibrium theory return state prices in the dual space.1 In this generality, a state price is

just a nonnegative, measurable, adapted process that satisfies some degree of integrability. In

particular, from general equilibrium theory, we do not get continuous sample paths, or state

prices that are diffusions (as one would like to have to justify a Samuelson–Black–Scholes–

type model of asset markets). One can then impose additional assumptions on preferences

and endowments, of course. Duffie and Zame (1989), e.g., assume that endowments are

Itô processes, and that agents have time–additive smooth expected utility functions. From

∗Graduate School of Economics, Getulio Vargas Foundation, Praia de Botafogo 190, 22.250-900 Rio de Janeiro,

Brazil. Email: victor.rocha@fgv.br
†Institute of Mathematical Economics, Bielefeld University, Postfach 100131 33501 Bielefeld, Germany. Email:

friedel@wiwi.uni-bielefeld.de
1See the overview by Mas-Colell and Zame (1991) for an account of infinite–dimensional general equilibrium

theory. A classic in this regard is the first part of the existence proof in Duffie and Zame (1989).
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the first–order conditions of utility maximization, a representative agent argument, and Itô’s

lemma, Duffie and Zame obtain equilibrium state-prices that are diffusions.

One wonders if the structure of time and uncertainty does not allow to derive more struc-

ture for state prices in complete generality. Hindy, Huang and Kreps (1992) (HHK) try to

develop such an approach. They challenge the implicit assumption that preferences are norm–

or Mackey–continuous asking when a rational agent should consider contingent consumption

plans as close. A rational agent should treat small up or downward shifts as close, of course;

but she should also react smoothly to small shifts of (lifetime) consumption plans over time.

After all, most agents do not care much about getting their retirement payments in twenty five

years from now or twenty –five years plus one day. Technically, one uses the weak topology

for distribution functions on the time axis and some kind of Lp–topology for uncertainty. HHK

characterize the dual space (where prices come from). Elements of the dual are given by state

prices that are the sum of a martingale and some absolutely continuous process. HHK’s work

thus shows that a suitable notion of continuity and the structure of time and uncertainty allow

to derive results for state prices. Unfortunately, there are no equilibria with prices from the

HHK dual in general as these spaces are not lattices. Bank and Riedel (2001) and Martins-

da-Rocha and Riedel (2006) establish existence of equilibria in bigger price spaces where the

equilibrium price functional is not necessarily continuous on the whole commodity space, but

only on the consumption set (the positive cone of the commodity space).

In the present paper we take the latter result as a starting point and ask: what are the

positive, linear functionals that are also continuous on the consumption set? We fully charac-

terize the corresponding state prices, and show that under minimal continuity requirements on

preferences and a suitable properness condition,2 equilibria with such state prices exist.

The method to derive the characterization of state prices relies on the théorie générale of

stochastic processes as developed in Dellacherie and Meyer (1975). It turns out that much in

the same way as Itô’s theory of stochastic integration is taylor–made for the Samuelson–Black–

Scholes theory of asset markets, the théorie générale suits our general theory for equilibrium

state prices. This is the first connection of general equilibrium theory and théorie générale, and

we hope that more interesting results can spring from this relation in the future.

For the connoisseurs, we sketch parts of our representation theorem here. Details concern-

ing notation, if not obvious, are explained in Section 1 below. We take a nonnegative, linear

price functional on the space of all optional random measures with total variation in Lp. Fixing

a stopping time τ , we consider only the restriction on payment streams that pay off at time τ .

This gives us a family (πτ )τ stopping time
of linear mappings from Lp (Fτ ) to the real numbers. With

a fixed maturity, there are no issues of shifting etc., so that this mapping is norm–continuous;

Riesz’ theorem gives us a random variable zτ ∈ Lq (Fτ ) that represents this mapping. So we

obtain a family of random variables (zτ )τ stopping time
where every zτ is Fτ–measurable. We show

that this large family is consistent in the sense that we have

zτ = zσ

on the event {τ = σ} for two stopping times σ and τ . Such families are called T –systems in

the théorie générale. The question is if we can find an adapted stochastic process (ψt) such

2Such properness is necessary in infinite–dimensional models, see Mas-Colell and Zame (1991) for a discussion.
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that ψτ = zτ for all stopping times τ . In this case, one says that (ψt) recollects the family

(zτ )τ stopping time
. It has been shown by Dellacherie and Lenglart (1981) that a T –system can

be recollected if it is left–continuous in expectation3(and this kind of continuity is necessary,

in general). Fortunately, the intertemporal topology we use here gives us even continuity in

expectation. Note that we use here the shifting property of the intertemporal topology proposed

by HHK: as small shifts over time are considered as close in that topology, the price of a unit of

the consumption good delivered at τn has to approach the price of one unit of the consumption

good at τ if τn → τ . The recollecting process (ψt) is our desired state price. From continuity

in expectation, it is even cadlag:4 it has right–continuous sample paths with left hand limits.

It can thus jump. This might seem puzzling because the dual space for measures on the time

axis consists of continuous functions. And here comes the final clue: the cadlag process (ψt)
is the optional projection of a continuous, but not necessarily adapted stochastic process (ξt);
this is a result by Bismut (1978) and Emery (1978). Possible jumps in the state price density

thus come from the gradual release of information under uncertainty. To give an example, one

might have ξt = Z for an FT –measurable random variable so that the process ξt is constant in

time, but not adapted. The optional projection is then the martingale ψt = E [Z| Ft]. It is well

known that in general, martingales jump when information surprises occur.

The paper is organized as follows. The next section sets up the intertemporal model. Sec-

tion 2 contains our main theorem characterizing the state prices. Section 3 establishes existence

of equilibria with such prices and contains examples.

1 Model and Notation

We consider a stochastic pure exchange economy where a finite set I of agents live in a world

of uncertainty from time 0 to time T . Uncertainty is modeled by a complete probability space

(Ω,F ,P). Each ω ∈ Ω is a state of nature which is a complete description of one possible

realization of all exogenous sources of uncertainty from time 0 to time T . The sigma-field F
is the collection of events which are distinguishable at time T and P is a probability measure

on (Ω,F). The probability space (Ω,F ,P) is endowed with a filtration F = {F(t) : t ∈ [0, T ]}
which represents the time evolution of the agents’ knowledge about the states of nature. We

assume that F(0) is P-almost surely trivial and that F satisfies the usual conditions of right-

continuity and completeness. A process is said optional if it is O-measurable where O is the

sigma-field on Ω× [0, T ] generated by right-continuous F-adapted processes with left-limits.

1.1 Consumption space

There is a single consumption good available for consumption at any time t ∈ [0, T ]. The set of

positive, nondecreasing and right-continuous functions from [0, T ] to R+ is denoted by M+. We

represent the consumption bundle of an agent by a process x : (ω, t) 7→ x(ω, t), where x(ω, t)

3This is not sample–path left–continuity. A T –system (wτ )
τ stopping time is left–continuous in expectation if

Ewτn → Ewτ whenever τn ↑ τ a.s.
4This is again a classic result from the théorie générale, see Dellacherie and Meyer (1975), Theorem 48.
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(sometimes denoted by xt(ω)) represents the cumulative consumption from time 0 to time T
and satisfies

(a) for each ω ∈ Ω, the function x(ω) belongs to M+,

(b) for each t ∈ [0, T ], the random variable xt is F(t)-measurable and xT belongs to Lp(P)

where 1 6 p < +∞.

The set of (P-equivalent classes of) mappings x : Ω → M+ such that the process (ω, t) 7→
x(ω, t) satisfies (a) and (b) is denoted by E+ and the linear span of E+ will be denoted by E.

The space E+ is called the consumption space and E is called the commodity space. Observe

that any consumption bundle x in E+ is an F-adapted process having right-continuous and

bounded variation sample paths and therefore can be assimilated with an optional random

measure denoted by dx. If z belongs to E then there exist x, y in E+ such that z = x − y. We

can endow E with the linear order > defined by the cone E+ in the sense that y > x if y − x
belongs to E+. If y belongs to E+ then the order interval [0, y] is defined by [0, y] := {x ∈
E : x ∈ E+ and y − x ∈ E+}. The space E endowed with the partial order defined by E+ is

a linear vector lattice (see Martins-da-Rocha and Riedel (2006, Proposition 1)).

Remark 1.1. Observe that if x, y are vectors in E such that y > x then there exists Ω∗ ∈ F with

PΩ∗ = 1 and such that for each ω ∈ Ω∗, the function t 7−→ y(ω, t) − x(ω, t) is nondecreasing

with y(ω, 0) − x(ω, 0) > 0. In particular we have for each ω ∈ Ω∗,

y(ω, t) > x(ω, t) ∀t ∈ [0, T ].

1.2 Topologies

Since 0 6 xt 6 xT and xT ∈ L1(P) for every x ∈ E+, the space E is a subspace of L1(O,P⊗ κ)
where κ = λ + δT with λ the Lebesgue measure on B the Borelian sigma-algebra on [0, T ]
and δT the Dirac measure on T . Following Hindy and Huang (1992) we consider on E the

restriction of the Lp(O, P ⊗ κ)-norm, i.e., we consider the norm ‖·‖ defined by

∀x ∈ E, ‖x‖ =

[
E

∫

[0,T ]
|x(t)|pκ(dt)

] 1

p

=

[
E

∫

[0,T ]
|x(t)|pdt+ E|x(T )|p

] 1

p

.

It is argued in Hindy and Huang (1992) that this norm, called intertemporal norm, induces

a topology on the set of consumption bundles that exhibits intuitive economic properties, in

particular it captures the notion that consumption at adjacent dates are almost perfect substi-

tutes except possibly at information surprises. Usually, we refer to the topology generated by

the intertemporal norm when we speak about continuity, open sets, etc. Occasionally, we will

use other topologies as well, though. For z ∈ E and fixed ω ∈ Ω, the function z(ω) can be

assimilated with a signed measure d[z(ω)] on the time interval [0, T ]. We denote by ‖z(ω)‖tot
the total variation of the measure d[z(ω)] (and we will drop the ω frequently, as usual). The

expectation of the total variation of z leads to the strong topology on E as given by the norm

‖z‖s := E ‖z‖tot .
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Note that convergence in the strong topology entails convergence in the intertemporal topology.

Moreover, E is a topological vector lattice when endowed with the order generated by E+ and

the strong topology.

If h is a random variable and τ a stopping time in T , we denote by δτh the simple random

measure that delivers h(ω) units of the consumption good at time τ(ω) and nothing elsewhere.

In particular δτ is the Dirac measure on τ .

1.3 Prices

The weakest notion of a price is that of a nonnegative linear functional on E. The algebraic

dual (the space of linear functional from E to R) is denoted by E⋆ and E⋆
+ denotes the cone

of nonnegative linear functionals, i.e., π ∈ E⋆ is nonnegative if π(x) > 0 for every x ∈ E+. If

B(T ) denotes the space of bounded functions defined on [0, T ] then we let Lq(P, B(T )) denote

the space (up to P-indistinguishability) of all F ⊗ B-measurable processes ψ : Ω × [0, T ] → R

such that the function

ω → sup
t∈[0,T ]

|ψ(ω, t)|

belongs to Lq(P) where q ∈ (1,+∞] is the conjugate of p. There is a natural duality 〈·, ·〉 on

Lp(P, B(T ))× E defined by

〈ψ, z〉 = E

∫

[0,T ]
ψ(t)dz(t).

The space of processes in Lq(P, B(T )) that are optional is denoted by F and we denote by F+

the order dual cone, i.e.,

F+ := {ψ ∈ F : 〈ψ, x〉 > 0, ∀x ∈ E+}.

The pair 〈F,E〉 is a Riesz dual pair (see Martins-da-Rocha and Riedel (2006, Proposition 1))

and a process ψ ∈ F belongs to F+ if and only if ψ(t) > 0 for every t ∈ [0, T ]. To each

nonnegative process ψ ∈ F+ we can consider the nonnegative linear functional 〈ψ, ·〉 in E⋆
+

defined by

∀z ∈ E, 〈ψ, z〉 = E

∫
ψdz.

By abuse of notations, we still denote F+ (and F ) the space of linear functionals associated to

processes in F+ (resp. F ). If a price π ∈ E⋆
+ is represented by an optional process ψ ∈ F+

in the sense that π = 〈ψ, ·〉, then the process ψ is called a state price. In that case the duality

product 〈ψ, x〉 is the value of the consumption bundle x ∈ E+ under the price ψ where ψ(ω, t)
is interpreted to be the time 0 price of one unit of consumption at time t in state ω, per unit of

probability.

2 Compatible Prices

In general, prices in F+ will not be compatible with the notion of intertemporal substitution as

they might assign very different prices to consumption plans that are close in the intertemporal

5



topology. One might therefore aim to find prices in the topological dual (E, ‖·‖)′ of E. As

shown by Hindy and Huang (1992), every linear functional π ∈ (E, ‖·‖)′ continuous for the

intertemporal norm can be represented5 by a semimartingale ψ satisfying

ψt = At +Mt

where A is an adapted process with absolutely continuous sample path satisfying

A′ ∈ Lq(O,P ⊗ κ) and A′
T ∈ Lq(P)

and M is the martingale defined by

Mt = E[−A′
T −AT |Ft], ∀t ∈ [0, T ].

We denote byK the space of processes ψ representing linear functionals in (E, ‖·‖)′.6 However,

there is in general no hope to obtain equilibrium prices in K as it is a not a lattice. On the other

hand, all that counts for equilibrium theory are linear functionals restricted to the consumption

set E+, the positive cone of the commodity space. So we relax the requirement of continuity

on the whole space and aim only for continuity on the consumption set E+. A price is called

compatible if if is continuous with respect to the intertemporal topology on E+. Denote the set

of compatible prices by H+.

This leads to two questions:

• What is the structure of compatible prices?

• Under which conditions do equilibria with compatible prices exist?

Let us answer the first question.

Theorem 2.1. A nonnegative linear functional π ∈ E⋆
+ is a compatible price if and only if it

can be written as

π(x) = E

∫
ψdx, ∀x ∈ E+

for a nonnegative, rightcontinuous processes ψ with left limits that satisfies the following con-

ditions:

• The process ψ is the optional projection7 of a (not necessarily adapted) continuous pro-

cess ξ with

E sup
t∈[0,T ]

|ξt| <∞.

• The process

ψ∗ = sup
t∈[0,T ]

ψt

belongs to Lq(F ,P).

5In the sense that π = 〈ψ, ·〉.
6Observe that K is a subset of F .
7That is ψτ = E[ξτ |Fτ ] for every stopping time τ 6 T .
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We denote by H the space the rightcontinuous processes with left limits that are bounded

in Lq and are the optional projection of a continuous process bounded in L1. Observe that the

space H is a subspace of F containing K. If we let H+ = H ∩ F+ then a nonnegative linear

functional π is compatible if only if it can be represented by a process ψ in H+, i.e., π = 〈ψ, ·〉.
We give the proof of Theorem 2.1 for the case p = 1. Later, we indicate how to obtain the result

for p > 1.

2.1 Sufficiency

First, we show that every element that satisfies the conditions of the theorem induces a com-

patible price.

Lemma 2.1. Let ψ be a cadlag process that satisfies the assumptions in Theorem 2.1. Then the

mapping π = 〈ψ, ·〉 is a compatible price.

Proof. Let M > 0 be an upper bound for ψ, i.e., M > supt ψt almost surely. As processes z ∈ E
have integrable variation, 〈ψ, ·〉 is well defined on E:

∀z ∈ E,

∣∣∣∣E
∫
ψdz

∣∣∣∣ 6M ‖z‖s <∞.

Since 〈ψ, ·〉 is obviously linear and nonnegative, it belongs to E⋆
+.

Let ξ be a continuous process which optional projection oξ coincides with ψ. We first estab-

lish continuity of the functional 〈ψ, ·〉 on the space

Ek
+ := {x ∈ E+ : xT 6 k a.s.}

for arbitrary k > 0. Let (xn) ⊂ Ek
+ be a sequence converging to some x ∈ Ek

+ for the intertem-

poral norm. As we have

E

∫
ψdz = E

∫
ξdz

for all z ∈ E, it is enough to prove that

lim
n

E

∫
ξdxn = E

∫
ξdx.

Suppose this is not true. Then there is a subsequence (yn) of (xn) such that

lim
n
dn := E

∫
ξdyn = d 6= c := E

∫
ξdx.

Without loss of generality, we can assume that on a set of probability 1, the sequence (yn)
converges weakly in the sense of measures on the time axis to x (see Lemma 1 in Martins-da-

Rocha and Riedel (2006) or Hindy et al. (1992, Proposition 5)). Then we have limn

∫
ξdyn =∫

ξdx almost surely because ξ is continuous. From

∣∣∣∣
∫
ξdyn

∣∣∣∣ 6 k sup
t∈[0,T ]

|ξt|

7



and the assumption on ξ, we get by dominated convergence that limn d
n = c: a contradiction.

Now let (xn) be an arbitrary sequence in E+ that converges to x. For each k ∈ N, we let xnk
and xk the optional random measures defined by

dxnk = dxn ∧ [δ0k] and dxk = dx ∧ [δ0k].

Observe that for every t ∈ [0, T ] we have xnk(t) = min{xn(t), k} and xk(t) = min{C(t), k}. It

follows immediately from dominated convergence that

lim
k

‖xk − x‖s = 0 (2.1)

and

∀k ∈ N, lim
n

‖xnk − xk‖ = 0. (2.2)

Observe that for every (k, n) we have

|〈ψ, xnk − xn〉| 6M ‖xnk − xn‖s =ME[xn − k]+ 6M ‖xn − x‖+ME[xk − k]+. (2.3)

For ǫ > 0, relation (2.1) allow us to find k0 such that

|〈ψ, x − xk〉| 6M ‖x− xk‖s < ǫ and ME[xk − k]+ 6 ε. (2.4)

Now fix k = k0, it follows from (2.3) and (2.4) that for all n ∈ N

|〈ψ, x − xn〉| 6 |〈ψ, x − xk〉|+ |〈ψ, xk − xnk〉|+ |〈ψ, xnk − xn〉| (2.5)

6 2ǫ+ |〈ψ, xk − xnk〉|+M ‖xn − x‖ . (2.6)

By the fact that π is continuous on Ek
+ and (2.2), we can choose n0 such that for all n > n0

|〈ψ, xk − xnk〉| < ε and M ‖xn − x‖ 6 ε

and we finally obtain

|〈ψ, x − xn〉| < 4ǫ

for n > n0. This shows that π is continuous on E+.

2.2 Necessity

The converse is the much more demanding part. Given a compatible price π ∈ H+, we have to

find a density ψ that represents π. We will frequently use the following continuity lemma that

yields suitable upper bounds.

Lemma 2.2. Compatible prices are continuous with respect to the strong topology.

Proof. As the strong topology is stronger than the intertemporal topology, a compatible price

π is ‖·‖s–continuous on E+. But the space E is a topological vector lattice with respect to

the strong topology. Hence, the lattice operations are continuous with respect to the strong

topology. It follows that π is ‖·‖s–continuous on the whole space E.
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As the space (E, ‖·‖s) is a Banach space, the preceding lemma yields a constant K > 0 such

that

∀z ∈ E, |π(z)| 6 K ‖z‖s . (2.7)

Denote by T the set of all stopping times τ 6 T . A T –system is a family (zτ )τ∈T of random

variables that satisfy (see Dellacherie and Lenglart (1981))

1. consistency: for σ, τ stopping times zτ = zσ on the set {τ = σ},

2. measurability: every random variable zτ is Fτ–measurable.

Fix a random variable τ ∈ T . Define a linear mapping Qτ from L1(Fτ ,P) into R by setting

∀Z ∈ L1(Fτ ,P), Qτ (Z) = π (δτZ) .

Being a continuous linear mapping, it can be represented by a random variable zτ ∈ L∞(Fτ ,P)
such that

∀Z ∈ L1(Fτ ,P), Qτ (Z) = E(Zzτ ).

As π is nonnegative we actually have zτ > 0 a.s.

Claim 2.1. The family (zτ )τ∈T forms a T –system.

Proof. It is sufficient to show that zσ1{σ=τ} = zτ1{σ=τ} almost surely. As both zσ1{σ=τ} and

zτ1{σ=τ} are Fσ∧τ–measurable, it is enough to show

∀Z ∈ L1(Fσ∧τ ,P), Ezσ1{σ=τ}Z = Ezτ1{σ=τ}Z.

Take such a Z in L1(Fσ∧τ ,P). Then

Ezσ1{σ=τ}Z = Qσ
(
1{σ=τ}Z

)

= π
(
δσ1{σ=τ}Z

)

= π
(
δτ1{σ=τ}Z

)

= Qτ
(
1{σ=τ}Z

)

= Ezτ1{σ=τ}Z .

This concludes the proof.

The question is: can we find a process (ψt)t∈[0,T ] such that ψτ = zτ almost surely for all

stopping times τ ∈ T ? Such a question is called a problem of aggregation in the théorie générale

of stochastic processes. In general, aggregation is not possible without some continuity require-

ment (see Dellacherie and Lenglart (1981)). Therefore, we establish the following lemma.

Claim 2.2. The T –system (zτ )τ∈T is continuous in expectation in the sense that

lim
n

Ezτn = Ezτ

for all sequences of stopping times (τn) with limn τn = τ .

9



Proof. Let (τn) be a sequence of stopping times satisfying lim τn = τ . Then, the sequence of

optional random measures (δτn) converge to δτ in the intertemporal topology. Continuity of

the price functional π implies

lim
n

Ezτn = lim
n
π (δτn) = π (δτ ) = Ezτ .

Claim 2.3. There exists a nonnegative, adapted and cadlag process ψ ∈ L∞(P,B) that aggre-

gates (or recollects) (zτ )τ∈T in the sense that ψτ = zτ almost surely for every stopping time

τ ∈ T .

Proof. By Dellacherie and Lenglart (1981, Theorem 6), every nonnegative T –system can be

aggregated by an optional process ψ. The process ψ is nonnegative because so are every zτ .

From Claim 2.2 the process ψ is continuous in expectation. If we prove that ψ is uniformly

integrable, then we can apply Dellacherie and Meyer (1978, Theorem 48)8 to conclude that ψ
is cadlag. We first prove that ψ is bounded in L1. Let τ be a stopping time and observe that

0 6 Eψτ = Ezτ = π(δτ ).

The process δτ belongs to E and (2.7) yields π(δτ ) 6 K implying that Eψτ < ∞. To establish

uniform integrability, we have to show that for all ε > 0 there exists δ > 0 such that for all sets

A ∈ F with P(A) 6 δ one has E1Aψτ 6 ε for every stopping time τ . For A ∈ F and a stopping

time τ , let c = δτE[1A|Fτ ]. Since the process c belongs to E we have

E1Aψτ = E(E[1A|Fτ ]ψτ ) = π(c) 6 K ‖c‖tot = KP(A).

Setting δ = ε/K, we obtain uniform integrability.

Claim 2.4. The process ψ is bounded.

Proof. Fix α > 0 and let τ be the stopping time

τ =





inf {t ≥ 0 : ψt ≥ n} if sup0≤t≤T ψt > α

∞ elsewhere

Recall that the random variable ψτ is given by ψτ (ω) = ψτ(ω)(ω)1{τ<∞}. Consider the optional

random measure c = δτ1{τ<∞}. We have

π(c) = Ezτ1{τ<∞} = Eψτ1{τ<∞}.

Since ψ is cadlag, we get π(c) = Eψτ1{τ<∞} > αP{τ <∞}. On the other hand, (2.7) yields

π(c) 6 K ‖c‖s = KE
∥∥δτ1{τ<∞}

∥∥
tot

= KP{τ <∞}.

Choosing α > K then shows that P{τ < ∞} = 0. Hence the process ψ is bounded, i.e.,

ψ ∈ L∞(P, B(T )).

8The theorem is formulated for bounded processes only. The comment 50(f) in Dellacherie and Meyer (1978)

shows that it is enough to have uniform integrability.
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In general, ψ is not going to be continuous. However, we have the following result that

goes back to Bismut (1978) and Emery (1978).

Claim 2.5. There exists a not necessarily adapted continuous process ξ with

E sup
t∈[0,T ]

|ξt| <∞

whose optional projection is ψ, that is

ψτ = E [ξτ | Fτ ]

for all stopping times τ ∈ T .

Proof. This is the main theorem in Bismut (1978) and Emery (1978). According to the nota-

tions in Bismut (1978) and Emery (1978), we have to check the conditions that ψ is regular

and of class (D). As ψ is bounded, it is of class (D). A process is regular if and only if the

predictable projection of ψ is equal to ψ−. This is equivalent to continuity in expectation from

below (see Dellacherie and Meyer (1978, 50(d))). As ψ is even continuous in expectation, it is

regular.

Claim 2.6. For every bounded consumption plan x ∈ E+ with xT ∈ L∞(P) we have π(x) =
〈ψ, x〉, i.e.,

π(x) = E

∫
ψdx.

Proof. By construction, we have for every stopping time τ and Fτ–measurable random vari-

able h
π(δτh) = Ezτh = Eψτh = Eξτh.

Via linearity, we obtain π(z) = 〈ψ, z〉 for every simple random measure z. As simple random

measures are dense with respect to the intertemporal norm in E+ and ξ is continuous, we get

the result for optional random measures with bounded variation in L∞(P) (observe that Bismut

(1978) obtains this in his proof).

Since ψ belongs to L∞(P, B(T )), the random variable ψ⋆ defined by

ψ⋆ = sup
t∈[0,T ]

ψt

belongs to L∞(P). It follows that for every consumption plan x ∈ E+ the quantity 〈ψ, x〉 is well

defined as

〈ψ, x〉 = E

∫
ψdx 6 Eψ∗xT <∞.

We can now prove that π(x) = 〈ψ, x〉 for every x ∈ E+. From Claim 2.6, we know that

π(x) = 〈ψ, x〉 for all bounded x in L∞(P, B(T )). Now let x ∈ E+ be given. Set dxn = dx∧ nδ0,

i.e., xn(t) = min{xt, n} for every t ∈ [0, T ] . For each n the optional random measure xn is
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bounded and the sequence (xn(ω)) converges for the total variation norm ‖.‖tot to x(ω) from

below for all ω. Consequently, for all nonnegative measurable functions f we have

lim
n

∫
fdxn =

∫
fdx.

In particular, we have limn

∫
ψdxn =

∫
ψdx almost surely. By monotone convergence, we

obtain

lim
n
π(xn) = lim

n
E

∫
ψdxn = E

∫
ψdx = 〈ψ, x〉

and as π is continuous with respect to the strong topology, π(x) = 〈ψ, x〉 follows. This concludes

the proof of the theorem.

2.3 The proof for p > 1

For p > 1, the proof follows almost verbatim the above proof for p = 1. However, one cannot

use the argument given above that establishes boundedness of the process ψ. Instead, one has

to use a different argument to prove that the supremum of ψ is in Lq. This argument is given

next.

Claim 2.7. The supremum

ψ∗ := sup
t∈[0,T ]

ψt

satisfies

∀H ∈ Lp(P), Eψ∗|H| 6 (K + 1) ‖H‖Lp .

In particular the random variable ψ∗ belongs to Lq.

Proof. Let S be a random time (not necessarily a stopping time) and h ∈ Lp
+(P). Denote by

z = δSh and by x = (z)o its optional dual projection. Then x is an optional random measure

and

EψSh = E

∫
ψdz = E

∫
ψdx = π(x) 6 K ‖x‖s .

The process x is nondecreasing and F = FT , hence

‖x‖s = E ‖x‖tot = ExT = Eh 6 ‖h‖Lp .

Let S be a cross–section of the set

{(ω, t) : ψt(ω) > ψ⋆(ω)− 1} .

Then we have

Eψ∗h 6 E(ψS + 1)h 6 (K + 1) ‖h‖Lp .

12



3 Equilibria with Compatible Prices

Each agent i is characterized by a utility function V i : E+ −→ R which represents his preference

relation on the space E+ of consumption patterns and by a vector ei ∈ E+ which represents

the cumulative income stream (initial endowment). An economy is a pair

E = (V ,e)

where V = (V i)i∈I and e = (ei)i∈I . We let e =
∑

i∈I e
i denote the aggregate endowment and

if x ∈ E+ the set {y ∈ E+ : V i(y) > V i(x)} is denoted by P i(x). An allocation is a vector

x = (xi)i∈I where xi ∈ E+. It is said feasible or attainable if
∑

i∈I x
i = e. The set of attainable

allocations is denoted by A.

3.1 Equilibrium concepts

We define hereafter the standard notion of Arrow–Debreu equilibrium.

Definition 3.1. The pair (ψ,x) of a price process ψ and an allocation x is called an Arrow–

Debreu equilibrium if

(a) the price process ψ belongs to F+ and 〈ψ, e〉 > 0;

(b) the allocation x is attainable, i.e., x ∈ A; and

(c) for each agent i, the consumption plan xi maximizes agent i’s utility over all consumption

plans y satisfying the budget constraint 〈ψ, y〉 6 〈ψ, ei〉, i.e.,

xi ∈ argmax{V i(y) : y ∈ E+ and 〈ψ, y〉 6 〈ψ, ei〉}.

A possible interpretation is that a complete set of markets open at the initial date t = 0
for consumption good delivery at any date in any state of nature. Markets are assumed to be

competitive in the sense that agents take the price functional 〈ψ, ·〉 as given. Each agent can

sell his initial endowment ei and buy a consumption plan x ∈ E+ as far as he can afford it,

i.e., 〈ψ, x〉 6 〈ψ, ei〉. The real number 〈ψ, x〉 is interpreted as the price at time t = 0 of the

consumption claim x, and therefore the real number ψ(ω, t) is interpreted as the time t = 0
price (per unit of probability) of the contract that promises to deliver one unit of the unique

good at time t in state ω.

Remark 3.1. Observe that if (ψ,x) is an equilibrium then the budget constraints are binding,

i.e., for each i, we have 〈ψ, xi〉 = 〈ψ, ei〉.

As usual in general equilibrium literature, we consider the following list of standard as-

sumptions.

Assumption (C). For each agent i,

(C.1) the initial endowment ei belongs to E+ and is not zero, i.e., ei > 0,

(C.2) the utility function V i is concave,
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(C.3) the utility function V i is norm continuous.9

We recall a well-known property of optimality for allocations.

Definition 3.2. An attainable allocation x ∈ A is said to be an Edgeworth equilibrium if there

is no 0 6= λ ∈ (Q ∩ [0, 1])I and some allocation y such that V i(yi) > V i(xi) for each i with

λi > 0 and satisfying
∑

i∈I λ
iyi =

∑
i∈I λ

iei.

The reader should observe that this concept is “price free” in the sense that it is an intrinsic

property of the commodity space. It is proved in Martins-da-Rocha and Riedel (2006) that every

economy satisfying Assumption C admits an Edgeworth equilibrium. It is straightforward to

check that every Arrow–Debreu equilibrium is an Edgeworth equilibrium. The main difficulty

consists in proving the converse.

3.2 Properness of preferences

We propose to follow the classical literature10 dealing with infinite dimensional commodity-

price spaces by introducing the concept of proper economies. It is a well-known fact that

without some properness hypotheses on preferences, equilibrium existence may fail when the

positive cone of the commodity space has empty interior.

Definition 3.3 (τ -properness). Let τ be a Hausdorff locally convex linear topology on E. An

economy (V ,e) is τ -proper if for every Edgeworth equilibrium x, for each i, there is a set

P̂ i(xi) such that

(i) the vector xi + e is a τ -interior point of P̂ i(xi),

(ii) the set P̂ i(xi) is convex and satisfies the following additional convexity property

∀z ∈ P̂ i(xi) ∩ E+, ∀t ∈ (0, 1), tz + (1− t)xi ∈ P̂ i(xi) ∩ E+

(iii) we can extend preferences in the following way

P̂ i(xi) ∩ E+ ∩Axi ⊂ P i(xi) ⊂ P̂ i(xi) ∩ E+

where Axi ⊂ E is a radial set at xi.11

9Actually, it is sufficient to assume that V i is upper semi-continuous on the order interval [0, e]. That is, if

(xn)n∈N is a sequence in [0, e] which norm-converges to x in [0, e], then

lim sup
n→∞

V
i(xn) 6 V

i(x).

10We refer, among others, to Mas-Colell (1986), Richard and Zame (1986), Yannelis and Zame (1986), Aliprantis,

Brown and Burkinshaw (1987a), Aliprantis, Brown and Burkinshaw (1987b), Zame (1987), Richard (1989), Araujo

and Monteiro (1989), Mas-Colell and Richard (1991), Mas-Colell and Zame (1991), Podczeck (1996), Anderson

and Zame (1997), Anderson and Zame (1998), Tourky (1998), Deghdak and Florenzano (1999), Tourky (1999),

Aliprantis, Tourky and Yannelis (2001), Shannon and Zame (2002), Florenzano (2003), Aliprantis, Monteiro and

Tourky (2004), Aliprantis, Florenzano and Tourky (2004) and Aliprantis, Florenzano and Tourky (2005).
11A subset A of E is radial at x ∈ A if for each y ∈ E, there exists ᾱ ∈ (0, 1] such that (1− α)x+ αy belongs to

A for every α ∈ [0, ᾱ].
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We say that an economy is strongly τ -proper if condition (iii) in Definition 3.3 is replaced

by the following condition (iii’):

(iii’) we can extend preferences in the following way

P̂ i(xi) ∩ E+ = P i(xi).

Strong τ -properness was introduced by Tourky (1999) and is used, among others, by Aliprantis

et al. (2001), Aliprantis, Florenzano and Tourky (2004) and Aliprantis et al. (2005). We refer to

Aliprantis, Tourky and Yannelis (2000) for a comparison of the different notions of properness

used in the literature. Observe that if E = (V ,e) is an economy (satisfying the following

monotonicity Assumption M) such that for each i, it is possible to extend V i to a τ -continuous

and concave function V̂ i : E −→ R, then the economy is τ -proper.12 In other words, τ -

properness can be seen as a strengthening of τ -continuity. Moreover, τ -properness is slightly

weaker than strong τ -properness. However this slight difference is crucial in order to compare

properness with the existence of smooth sub-gradients.13 We borrow the following definition

of smooth sub-gradients from Bank and Riedel (2001) (see also Martins-da-Rocha and Riedel

(2006)). Recall that K is the space of processes in F that represent linear functionals on E
that are norm continuous.

Definition 3.4. An economy (V ,e) has smooth sub-gradients in K if for each i, for every

x ∈ E+, there exists a nonnegative optional process ∇V i(x) ∈ K+ = K ∩ F+ with

(U.1) for each j ∈ I, we have 〈∇V i(x), ej〉 > 0,

(U.2) the vector ∇V i(x) satisfies the subgradient property

∀y ∈ E+, V i(y)− V i(x) 6 〈∇V i(x), y − x〉

(U.3) this subgradient is continuous in the sense that,

∀y ∈ E+, lim
ε↓0

〈∇V i(εy + (1− ε)x), y − x〉 = 〈∇V i(x), y − x〉.

Remark 3.2. Let E = (V ,e) be an economy. Preferences of agent i are said increasing if

V i(x+ y) > V i(x) for every x, y in E+; strictly increasing if V i(x+ y) > V i(x) for every x, y in

E+ with y 6= 0. Note that if E satisfies Assumption U, then preferences of agent i are increasing;

they are strictly increasing if and only if ∇V i(x) is strictly positive for every x ∈ E+.

Remark 3.3. Let (V ,e) be an economy satisfying Assumption U, then for each i, j in I, the

initial endowment ej is strongly desirable for agent i in the sense that

∀x ∈ E+, ∀t > 0, V i(x+ tej) > V i(x).

Remark 3.4. Assume that Assumption U.2 is satisfied,

12Take bP i(x) := {y ∈ E : bV i(y) > bV i(x)}.
13See also Assumption A.7 in Shannon and Zame (2002).
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(a) if preferences of agent i are strictly increasing and ej > 0 for each j ∈ J , then Assump-

tion U.1 is satisfied,

(b) if preferences of agent i are increasing and for each j ∈ I, there exists a strictly positive

integrable adapted process ξj such that dej(t) = ξj(t)dt, then Assumption U.1 is satisfied.

In order to compare norm properness and the existence of smooth sub-gradients in K, we

consider the following monotonicity assumption.

Assumption (M). For every Edgeworth equilibrium x, for each agent i, the following property

is satisfied:

∀j ∈ I, ∀t > 0, xi + tej + E+ ⊂ P i(xi).

Remark 3.5. From Remarks 3.2-3.3, Assumptions C and Conditions U.1 and U.2 imply Assump-

tion M.

It is proved in Martins-da-Rocha and Riedel (2006) that under Assumption C.2, the exis-

tence of smooth sub-gradients in K implies that the economy is weakly proper,14 in particular

it is norm proper.

It was left as open question in Hindy and Huang (1992) whether a norm proper economy

admits a continuous equilibrium price. The existence results available in the literature are

not general enough to be applied directly to our framework. The topology derived from the

intertemporal norm does not give rise to the mathematical properties known to be sufficient

for the existence of an Arrow–Debreu equilibrium.15 The main contribution of this section

is to prove that if an economy is proper with respect to the intertemporal norm it admits a

compatible equilibrium, i.e., a price functional that is continuous on the positive cone E+.

Theorem 3.1. Under Assumptions C and M, if an economy is norm proper then it admits a

compatible price.

Proof. Consider an economy satisfying Assumptions C and M and assume that it is norm proper.

From the norm properness of utility functions, there exists a family (ψi)i∈I where ψi belongs to

K and supports agent i’s preferences. In order to apply Proposition 2 and Theorem 2 in Martins-

da-Rocha and Riedel (2006), it is sufficient to prove that the maximum of two processes in K
is a process in H. Actually this is a consequence of the fact that H is stable by taking the max.

Indeed, let φ and ψ be two processes in H, i.e., φ and ψ are nonnegative, rightcontinuous with

left limits, bounded in Lq, and the projection of a raw continuous process bounded in L1. We

denote by θ the process defined by θt = max{φt, ψt}. We have to show that θ belongs to H+.

It is nonnegative, rightcontinuous with left limits and bounded in Lq. It remains to show that

θ is the optional projection of a raw continuous process in L1. For this we can again check

the conditions of the main result in Bismut (1978). To this end we have to show that θ is of

class (D) and continuous in expectations. As θ is bounded in Lq, it is of class (D). Continuity in

expectation is preserved by taking the max, and the proof is done.

14I.e., proper for the weak topology σ(E,K).
15The topological dual space (E, ‖·‖)′ endowed with dual order defined by the cone E⋆

+ is not a vector lattice.
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Remark 3.6. Actually, Theorem 3.1 is still valid if the norm properness of each utility function

V i is replaced by the τ -properness for any linear topology τ onE such that any linear functional

τ -continuous on E is represented by a vector in H.

Remark 3.7. Observe that contrary to Bank and Riedel (2001) and Martins-da-Rocha and Riedel

(2006), we don’t need to assume that the filtration F is quasi left-continuous. This is an as-

sumption on the way new information is revealed to the agents. Economically, an information

flow corresponds to a quasi left-continuous filtration16 if information surprises (in the sense of

Hindy and Huang (1992)) occur only at times which cannot be predicted. The announcement

of a policy change of the Federal reserve is an example for an information surprise which occurs

at a time known in advance.

3.3 Example

We consider Hindy–Huang–Kreps preferences, i.e. preferences given by utility functionals of the

form

V i(x) = E

∫

[0,T ]
ui(t, Y (x)(t))κ(dt)

where ui : [0, T ]× R+ → R denotes a felicity function for agent i, and the quantity

Y (x)(t) =

∫

[0,t]
βe−β(t−s)dx(s)

describes the investor’s level of satisfaction obtained from his consumption up to time t ∈ [0, T ].
The constant β > 0 measures how fast satisfaction decays.

We consider the linear mapping φ : E → E defined by

∀t ∈ [0, T ], φ(x)(t) =

∫

[0,t]
exp{βs}dx(s).

For each x ∈ E, the vector φ(x) is defined by the optional random measure d[φ(x)](t) =
exp{βt}dx(t). The linear mapping φ is bijective and the inverse mapping φ−1 is given by

∀t ∈ [0, T ], φ−1(x)(t) =

∫

[0,t]
exp{−βs}dx(s).

We introduce on E the following norm ρ:

∀x ∈ E, ρ(x) := ‖φ(x)‖ = E

∫

[0,T ]
|φ(x)(t)|κ(dt).

It is proved in Martins-da-Rocha and Riedel (2006, Lemma 2) that the norm-topology and

the ρ-topology coincide on E+, and that the ρ-topological dual (E, ρ)′ coincides with the norm-

topological dual (E, ‖.‖)′. In order to apply Theorem 3.1 it is sufficient to prove that V i is

ρ-proper. From Martins-da-Rocha and Riedel (2006, Theorem) this is a consequence of the

following conditions: for each i ∈ I,

16See Hindy and Huang (1992) for a precise definition. An information flow generated by a Brownian motion or

a Poisson process is quasi left-continuous.
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(V.1) for each t ∈ [0, T ], the function ui(t, .) : R+ → R is continuous, strictly increasing and

concave,

(V.2) for each y ∈ R+, the function ui(., y) : [0, T ] → R is B-measurable and the function

ui(., 0) belongs to L1(B, κ),

(V.3) for each t ∈ [0, T ] the right-derivative ∂yu
i(t, 0+) exists and the function ∂yu

i(., 0+)
belongs to L∞

+ (B, κ).

4 Conclusion

We show how the economically sensible intertemporal topology introduced by Hindy and

Huang (1992) allows to derive general structural results about equilibrium state prices. Using

the théorie générale of stochastic processes, we show that price functionals that are continuous

on the consumption set can be represented by state prices with right-continuous sample paths

that admit left limits. Moreover, the state price is the optional projection of a process with

continuous sample paths that is not necessarily adapted.
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