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Abstract. We study the behavioral definition of complementary goods: if the

price of one good increases, demand for a complementary good must decrease.

We obtain its full implications for observable demand behavior (its testable im-

plications), and for the consumer’s underlying preferences. We characterize those

data sets which can be generated by rational preferences exhibiting complemen-

tarities. The class of preferences that generate demand complements has Leontief

and Cobb-Douglas as its as extreme members.
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1. Introduction

We study the behavioral notion of complementarity in demand (which we refer

to throughout simply as complementarity): when the price of one good decreases,

demand for a complementary good increases.

We obtain the full implications of complementarity both for observable demand

behavior (its testable implications) and for the underlying preferences. In the former

exercise, we characterize all finite sets of price-demand pairs consistent with com-

plementarity. The latter exercise characterizes the class of preferences generating

complementarity.

We study complementarity as a property of two goods; as such it is natural

and widely used. There are difficulties in the analysis of complementarities with

more than two goods: Samuelson [26] gives the example of coffee, tea, and sugar.

It is reasonable to suspect that either pair of goods, coffee and sugar, or tea and

sugar, will behave as complements when considered independently of the third good.

Suppose consumers make decisions involving all three goods. It is possible that,

informally speaking, sugar may be “more complementary” with coffee than tea.

Hence, a reduction in the price of tea may lead to a decrease in the consumption

of sugar, and a corresponding decrease in the consumption of coffee. In the face of

these difficulties, we restrict attention to pairs of goods.

Despite the restriction to two goods, our results are useful in a multi-good world.

One can some times assume that the utility over bundles (x1, . . . , xn) of n goods

takes the form

U(x1, . . . , xn) = V (u(x1, x2), x3, . . . , xn);

meaning that the utility is weakly separable. Under weakly separable preferences,

one may consider a “reduced” demand for goods 1 and 2 alone simply by fixing

prices of those two goods and looking at the total income spent on them. There

are empirical tests for when observed demands satisfy weak separability (see Varian

[29]). In this case, it is without loss of generality to consider the reduced “two-good”

demand function.
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Hicksian aggregation is the other natural method of reducing a collection of many

goods to a two-good problem. Thus, if we want to test whether or not meat is

complementary to wine, we can consider “meat” and “wine” as composite goods.

This is done by fixing relative prices between different meats and between different

wines, and letting the relative price of meat and wine vary.1

Separability and aggregation are strong assumptions, but they are inevitable in

empirical applications of consumer demand theory. Deaton and Muellbauer [5] argue

that actual consumer problems involve many tradeoffs: intertemporal allocation of

consumption; decisions on risky prospects; choices among durable and non-durable

goods; and choices between leisure and work in the present and in the future. Deaton

and Muellbauer argue that these tradeoffs may interact, and that the resulting

problem will typically be intractable for the economists who attempt to describe

consumer behavior. They write: “it is important to find ways in which the problem

can be simplified, either by aggregation so that whole categories can be dealt with as

single units, or by separation, so that the problem can be dealt with in smaller, more

manageable units.” As a consequence, all of Part II of Deaton and Muellbauer’s

book deals with separability and aggregation. An example of this problem is in

Deaton’s [1974] classical study of consumer demand in the UK, where he works with

9 goods; there are many other studies of consumer demand with similar numbers of

commodities.

Specifically, with respect to the study of complementarity, the standard practice

is to aggregate into a small set of goods and estimate cross-elasticities in a linear

demand function specification. The test for complementarities is then a test for the

sign of the cross-elasticities: this is a two-good exercise in the same sense that ours

is, but with the additional complication that the additive demand and parametric

assumptions are hard to justify.

1See Varian [31] for an exposition of the relevant theory of Hicks composite goods, and Epstein [7]

for general results in this line. Additional assumptions guaranteeing that some type of commodity

aggregation of the two described are quite standard in applied demand analysis (see, e.g. Lewbel

[14] for a discussion).
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The complementarity property, which we call “behavioral” to emphasize that de-

mand, not preference, is primitive, is a classical notion. It is the notion taught in

Principles of Economics textbooks (e.g. McAfee [17], Stiglitz and Walsh [27] and

Krugman and Wells [13]) and Intermediate Microeconomics textbooks (e.g. Nichol-

son and Snyder [19], Jehle and Reny [12], and Varian [32]). It is a crucial property

in applied work: marketing researchers test for complementarities among products

they plan to market; managers’ pricing strategy takes a special form when they

market complementary goods; regulatory agencies are interested in complements for

their potential impact on competitive practices; complementarity is relevant for de-

cisions on environmental policies; complementary goods receive a special treatment

in the construction of price indexes; complementary export goods are important in

standard models of international trade, etc. etc. The literature on applications of

complementarity is too large to review here.

Yet, the notion discussed here has received surprisingly little theoretical atten-

tion. The general testable implications of complementarity were, until now, un-

known. In many applications, one needs to decide empirically whether two goods

are complements. Hence, a test which can falsify complementarity is both useful and

important. Empirical researchers’ tests typically estimate cross-partial elasticities

in highly parametric models. However, such an exercise actually jointly tests several

hypotheses. In contrast, we elicit the complete testable implications of complemen-

tarity in a general framework.

Our model is one in which consumers are endowed with a nominal income. We

provide a necessary and sufficient condition for expenditure data to be consistent

with the rational maximization of a preference which exhibits complementarity in

demand.

We also characterize the class of preferences that generate complementarity. Com-

plementarity effectively requires that demand be monotonic with respect to set in-

clusion of budgets (and hence normal). In addition, complementarity in this model

automatically implies rationalizability by an upper semicontinuous, quasi-concave
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Figure 1. When is observed demand consistent with complementarity?.

utility function–a consequence of the continuity of demand (which is itself an im-

plication of complementarity). Within the class of smooth rationalizations, com-

plementarity is characterized by a bound on the percentage change in the marginal

rate of substitution with respect to a change in either commodity. Cobb-Douglas

preferences are exactly those preferences meeting this bound.

Finally, we would like to mention the relationship between complementarity and

price elasticity. It is easy to see (see Proposition 1 below) that complementarity is

equivalent–when demand is smooth–to price elasticities being smaller than 1. Thus,

one can read our paper as a study of price-inelastic demand (in the context of two

goods).2

1.1. Illustration of results. We illustrate and discuss graphically some of our

results. See Section 2 for the formal statements.

Consider Figure 1(a), which depicts a hypothetical observation of demand x =

(x1, x2) at prices p = (p1, p2). Figure 1(a) illustrates the notion of complementarity:

goods 1 and 2 are complements if, when we decrease the price of one good, demand

for the other good increases. In the figure, complementarity requires that demand

2We thank an anonymous referee for pointing out this relationship.
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at the dotted budget line involves more of both goods. Note that we are assuming

no Giffen goods, which is implied by normal demand. Symmetrically, a decrease in

the price of good 2 would also imply a larger demanded bundle.

Given Figure 1(a), one may think that the testable implications of complemen-

tarity amount to verifying that, whenever one finds two budgets like the ones in

the figure, one demand is always higher than the other. Consider then Figure 1(b),

where one budget is not larger than another. Are the observed demands of x at

prices p, and x′ at p′, consistent with demand complementarity? The answer is neg-

ative, as can be seen from Figure 2(a): the larger budget drawn with a dotted line is

obtained from either of the p or p′ budgets by making exactly one good cheaper. So

it would need to generate a demand larger than both x and x′, which is not possible.

Figure 2(b) shows a condition on x and x′ which is necessary for complementarity:

the pointwise maximum of demands, x ∨ x′, must be affordable for any budget

larger than the p and p′ budgets. Since there is a smallest larger budget, the least

upper bound on the space of budgets (the dotted-line budget), we need x∨ x′ to be

affordable at the least upper bound of the p and p′ budgets.

Since demand is homogeneous of degree zero, we can normalize prices and incomes

so that income is 1. Then the least upper bound of the p and p′ budgets is the budget

obtained with income 1 and prices p ∧ p′, the component-wise minimum price. The

necessary condition in Figure 2(b) is that (x ∨ x′) · (p ∧ p′) ≤ 1.

There is a second necessary condition. Consider the observed demands in Fig-

ure 2(c). This a situation where, when we go from p to p′, demand for the good

that gets cheaper decreases while demand for the good that gets more expensive

increases. This is not in itself a violation of either complementarity or the absence

of Giffen goods. However, consider Figure 2(d): were we to increase the budget

from p to the dotted prices, complementarity would imply a demand at the dotted

prices that is larger than x. But no point in the dotted budget line is both larger

than x and satisfies the weak axiom of revealed preference (WARP) with respect to

the choice of x′.
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Figure 2. Observed demands.

So a simultaneous increase in one price and decrease in another cannot yield

opposite changes in demand. This property is a strengthening of WARP: Fix p, p′

and x as in Figure 2(c). Then WARP requires that x′ not lie below the point where

the p and p′ budget lines cross. Our property requires that x′ not lie below the point

on the p′-budget line with the same quantity of good 2 as x. In fact, this property

is implied by either of the two following sets of conditions: i) rationalizability and

the absence of Giffen goods or ii) rationalizability and normal demand.



BEHAVIORAL COMPLEMENTARITY 9

We show (Theorem 1 of Section 2) that the two necessary properties, the (x∨x′) ·

(p ∧ p′) property in Figure 2(b) and the strengthening of WARP, are also sufficient

for a complementary demand. That is: given a finite collection of observed demands

x at prices p, these could come from a demand function for complementary goods

if and only if any pair of observations satisfies the two properties. Thus, the two

properties constitute a non-parametric test for complementary goods, in the spirit

of the revealed-preference tests of Samuelson [25] and Afriat [1].3

1.2. Historical Notes. Before proceeding, we discuss briefly the history of the

theory of complementary goods. Much of this discussion is borrowed from Samuelson

[26], which serves as an excellent introduction to the topic.

The first notion of complementary goods is that formulated by Edgeworth and

Pareto on introspective grounds [26]. They believed that if two goods were com-

plementary, then the marginal utility of the consumption of either good should be

increasing in the consumption of the other good. This is an intuitively appealing

definition based on preferences, not behavior; however, it clearly depends on cardinal

utility comparisons. Hicks and Allen [10], Hicks [9] and Samuelson [25] recognized

this, and suggested that as a local measure of complementarity, it was useless. Mil-

grom and Shannon [18] established that, despite not being an ordinal notion, the

Edgeworth Pareto definition does in fact have ordinal implications.

Chambers and Echenique [3] on the other hand, showed that this notion has

no implications for observed demand behavior, when the observations are finite:

Any finite data set is either non-rationalizable (and violates the strong axiom of

revealed preference) or it is rationalizable by a utility function satisfying the Edge-

worth/Pareto notion of complementarity.

The primary criticism of our definition of complementarities (some times called

“gross complementarities”) is that it can be “asymmetric” in a sense. It is possible

that raising the price of good one leads to an increase in consumption of good two,

3See Varian [28] for an exposition and further results. Matzkin [16] and Forges and Minelli [8]

discuss more general sets of data. Brown and Calsamiglia [2] present a test for quasilinear utility.
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while raising the price of good two leads to a decrease in consumption of good one.

This asymmetry led Hicks [9] and other early researchers to take interest in other

notions. Hicks and Allen [10] developed a theory of complementarity of demand

based on compensated price changes. The type of price change considered by Hicks

is the following. The price of good one is increased and the income of the agent is

simultaneously increased just enough to leave the consumer on the same indifference

curve. Good one is complementary to good two if a compensated increase in the

price of good two leads to a lower consumption of good one. It is well-known that

with such a definition, good one is complementary to good two if and only if good

two is complementary to good one. Samuelson suggests that Hicks’ notion best

defense is the fact that it can be defined for any number of goods, and is symmetric

[26, p. 1284].

Our definition has an appealing feature that the Hicks definition does not have.

With the Hicks definition, for two good environments, all goods are economic sub-

stitutes by necessity. This is a consequence of downward sloping indifference curves–

requiring both goods to be complements essentially results in generalized Leontief

preferences. Thus, the definition does not allow for a meaningful study of comple-

mentarity in what is arguably a very natural framework for discussing the concept.

In contrast, with our definition (in the nominal income model), goods are both

complements and substitutes if and only if preferences are Cobb-Douglas. Finally,

compensated price changes present a challenge from the empirical perspective we

adopt in this paper: compensated demand changes are unlikely to be observed in

real data. In other words, it is unclear what observable phenomena in the real world

correspond to compensated price changes. The notion of complementarity we adopt

is the only purely behavioral notion.

To sum up, we study the standard textbook-notion of complementarity of demand.

We avoid the criticism of asymmetry simply by specifying from the outset that two

goods are complementary if a change in price in either good leads to consumption

changing in the same direction for both goods.
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2. Statement of Results

2.1. Preliminaries. Let R2
+ be the domain of consumption bundles, and R2

++ the

domain of possible prices. Note that we assume two goods, see the Introduction and

Section 2.4 for how one applies our results in many-goods environments.

We use standard notational conventions: x ≤ y if xi ≤ yi in R, for i = 1, 2; x < y

if x ≤ y and x 6= y; and x ≪ y if xi < yi in R, for i = 1, 2. We write x · y for the

inner product x1y1 + x2y2. We write x∧ y for (min {x1, y1} , min {x2, y2}) and x∨ y

for (max {x1, y1} , max {x2, y2}). Say that a set P ⊆ R2
+ is comprehensive if p ∈ P

and p′ ≤ p implies that p′ ∈ P.

A function u : R2
+ ⇒ R is monotone increasing if x ≤ y implies u(x) ≤ u(y).

It is monotone decreasing if (−u) is monotone increasing. It is strongly monotone

increasing if x ≪ y implies u(x) < u(y) and it is monotone increasing.

A function D : R2
++ × R+ → R2

+ is a demand function if it is homogeneous of

degree 0 and satisfies p · D(p, I) = I, for all p ∈ R2
++ and I ∈ R+ .

Say that a demand function satisfies complementarities if, for fixed p2 and I,

p1 7→ Di((p1, p2), I) is monotone decreasing for i = 1, 2, and for fixed p1 and I, p2 7→

Di((p1, p2), I) is monotone decreasing for i = 1, 2. Fix a closed and comprehensive

subset P ⊆ R2
++.

For all (p, I) ∈ R2
++×R+, define the budget B (p, I) by B (p, I) =

{

x ∈ R2
+ : p · x ≤ I

}

.

Note that B (p, I) is compact, by the assumption that prices are strictly positive.

A demand function D is rational if there is a monotone increasing function u :

R2
+ → R such that

(1) D (p, I) = argmaxx∈B(p,I)u(x).

In that case, we say that u is a rationalization of (or that it rationalizes) D. Note

that D(p, I) is the unique maximizer of u in B(p, I).
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A demand function satisfies the weak axiom of revealed preference if p·D(p′, I ′) > I

whenever p′ ·D(p, I) < I ′ (with two goods, the weak axiom is equivalent to the strong

axiom of revealed preference).4

Proposition 1. Let D : R2
++ → R2

+ be a demand function. If D satisfies the weak

axiom of revealed preference, then the following statements are equivalent:

(1) D satisfies complementarities.

(2) For fixed p2 and I, the function p1 7→ D2(p1, p2, I) is monotone decreasing;

and for fixed p1 and I, the function p2 7→ D1(p1, p2, I) is monotone decreas-

ing.

If, in addition, D is smooth, then D satisfies complementarities if and only if

−
pi

Di(p, I)

∂Di(p, I)

∂pi

≤ 1,

for i = 1, 2.

Remark. The proposition shows that our definition of complementarity is equivalent

to the property that the demand for each good is decreasing in the price of the other

good. When demand is smooth, it is also equivalent to the own-elasticity of demand

being smaller than one.

2.2. Results. We shall use homogeneity to regard demand as only a function of

prices: D(p, I) = D((1/I)p, 1), so we can normalize income to 1. In this case, we

regard demand as a function D : R2
++ → R2

+ with p · D(p) = 1 for all p ∈ R2
++.

A partial demand function is a function D : P → R2
+ where P ⊆ R2

++ and

p ·D(p) = 1 for every p ∈ P ; P is called the domain of D. So a demand function is a

partial demand function whose domain is R2
++. The concept of the partial demand

function allows us to study finite demand observations. We imagine that we have

observed demand at all prices in P (see e.g. Afriat [1], Diewert and Parkan [6] or

Varian [28]).

4Our version of the weak axiom is equivalent to the more standard definition: p · D(p′, I ′) ≤ I

and D(p, I) 6= D(p′, I ′) implies that p′ · D(p, I) > I. The equivalence of the strong and weak

axioms was first shown by Rose [24].



BEHAVIORAL COMPLEMENTARITY 13

Theorem 1 (Observable Demand). Let P be a finite subset of R2
++ and let D :

P → R2
+ be a partial demand function. Then D is the restriction to P of a rational

demand that satisfies complementarity if and only if for every p, p′ ∈ P the following

conditions are satisfied

(1) (p ∧ p′) · (D(p) ∨ D(p′)) ≤ 1.

(2) If p′ · D(p) ≤ 1 and p′i > pi for some product i ∈ {1, 2} then D(p′)j ≥ D(p)j

for j 6= i.

The following theorem gives several topological implications of rational demand

satisfying complementarity.

Theorem 2 (Continuity). Let D : R2
++ → R2

+ be a rational demand function which

satisfies complementarity. Then D is continuous. Furthermore, D is rationalized by

an upper semicontinuous, quasiconcave, strongly monotone increasing utility func-

tion.

Theorem 3 requires demand to be rationalized by a twice continuously differen-

tiable (C2) function u. We write

m(x) =
∂u(x)/∂x1

∂u(x)/∂x2

to denote the marginal rate of substitution of u at an interior point x.

Theorem 3 (Smooth Utility). Let D be a rational demand function with interior

range and a monotone increasing, C2, and strictly quasiconvex rationalization u.

Then D satisfies complementarity if and only if the marginal rate of substitution m

associated to u satisfies

x1

m(x)

∂m(x)

∂x1

≤ −1 and
x2

m(x)

∂m(x)

∂x2

≥ 1.

2.3. Discussion and remarks. The following observations are of interest:

(1) Theorem 1 derives the testable implications of complementarity. With ex-

penditure data (as in, e.g., Afriat [1]), it should be straightforward to verify

Conditions 1 and 2 in the theorem.
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(2) An interesting property implied by condition (1) is the following. Suppose

that p′i < pi and p′j ≥ pj. Then piDi (p) ≥ p′iDi (p
′). Thus, if the price

of good i falls and the price of good j weakly increases, then expenditure

on good j weakly decreases. To see why this is true, note that by (1),

p′iDi (p
′) + pjDj (p) ≤ 1, and by assumption, piDi (p) + pjDj (p) = 1.

(3) Property 2 of Theorem 1 follows from the weak axiom of revealed prefer-

ence and the monotonicity in own price (absence of Giffen goods, see the

discussion in the introduction).

(4) The conditions in Theorem 3 are statements about the elasticities of the

marginal rate of substitution; for example, x1

m(x)
∂m(x)
∂x1

is the elasticity of the

marginal rate of substitution with respect to x1. The elasticities are a mea-

sure of the curvature of the consumer’s utility. For the case when utility is

Cobb-Douglas, x1

m(x)
∂m(x)
∂x1

= −1 and x2

m(x)
∂m(x)
∂x2

= 1. So the conditions in the

theorem hold with equality when utility is Cobb-Douglas; thus the result is a

statement about how the curvature of indifference curves compare with the

Cobb-Douglas utility.

Theorem 1 implies that a partial demand satisfying (1) and (2) is rationalizable by

a monotone increasing, upper semicontinuous, utility. One may want the rationaliz-

ing utility to be in addition continuous, Example 1 shows that complementarity does

not imply rationalization by a continuous utility. It is interesting to note here that

Richter [22] and Hurwicz and Richter [11] present results on the existence of mono-

tone increasing and continuous rationalizations, but require the range of demand to

be convex. Demand in Example 1 has non-convex range.

Example 1. Consider the following utility

u(x1, x2) =











min{x1, x2}, if min{x1, x2} < 1

x1 · x2, if x1, x2 ≥ 1.

So u behaves like a Leontief preference when min{x, y} < 1 and Cobb-Douglas oth-

erwise. In other words, if the consumer cannot afford to buy at least 1 from both
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products then she buys the same amount from each product. Otherwise, she spends

half of her money on each product, making sure to buy at least 1 from each. The

demand generated by this preference relation is given by

D(px, py) =







































(

1/(px + py), 1/(px + py)
)

, if px + py ≥ 1

(

1/(2px), 1/(2py)
)

, if px, py ≤ 1/2

(

1, (1 − px)/py

)

, if py ≤ 1/2 and 1/2 ≤ px ≤ 1 − py

(

(1 − py)/px, 1
)

, if px ≤ 1/2 and 1/2 ≤ py ≤ 1 − px

and let D be the corresponding demand function. It is easy to verify that D satisfies

complementarities. So D is continuous by Theorem 2.

However D cannot be rationalized by a continuous utility function. Indeed, assume

that v is a utility that rationalizes D. Then for every ε > 0 we have v(1 − ε, 3) <

v(1, 1), Since (1, 1) is revealed prefer to (1− ε, 3): If p = (1− η, η) for small enough

η then D(p) = (1, 1) and (1 − ε, 3) ∈ L(p). On the other hand v(1, 3) > v(1, 1)

since (1, 3) is revealed preferred to (1, 1): If p = (1/2, 1/6) then D(p) = (1, 3) and

(1, 1) ∈ L(p). Therefore v cannot be continuous.

Finally, we consider the case of additive separability.

Corollary 1. Suppose the hypotheses of Theorem 3 are satisfied,and in addition,

suppose that u (x, y) = f (x)+ g (y). Then complementarities is satisfied if and only

if
f ′′ (x)

f ′ (x)
≤ −

1

x
,
g′′ (x)

g′ (x)
≤ −

1

x
.

Therefore, an additively separable utility satisfies complementarity if and only if

each of its components are more concave than the natural logarithm. This result is

essentially in Wald [33], for the case of gross substitutes (Varian [30] clarifies this

issue and presents a different proof; the appendix to Quah [21] has a proof for the

non-differentiable case). For a function f : R+ −→ R, the number

−
f ′′ (x)

f ′ (x)
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is often understood as a local measure of curvature at the point x. In particular,

one can demonstrate that for subjective expected utility, when u (x, y) = π1U (x) +

π2U (y), complementarity is satisfied if and only if the rate of relative risk aversion

is greater than one. It may be of interest to compare this with Quah’s [2003] result

that the “law of demand” is, in this case, equivalent to the rate of risk aversion

never varying by more than four.

2.4. Many-good environments. We work with a two-good model, but out results

are applicable in an environment with n goods by using standard results on aggre-

gation and/or assuming functional (or weak) separability. See also the discussion in

the Introduction.

Aggregation requires assuming constant relative prices. Imagine testing if wine

and meat are complements; one could use a data set where the relative prices of,

say, beef and pork, and Bordeaux and Burgundy, have not changed. Then, changes

in the consumption and prices of meat and wine aggregates can be used to test for

complementarities using our results.

Independence is the assumption that preferences over x1 and x2, for example, are

independent of the consumption of goods (x3, . . . , xn). In this case, the demand for

goods (x1, x2) given prices (p1, . . . , pn) and income I depends only on prices (p1, p2)

and the share I −
∑n

j=3 pjxj left for spending on (x1, x2). With data on prices

and consumption of goods 1 and 2 (as in Section 2.2), our results provide a test

for complementarities between 1 and 2 using the expenditure on goods 1 and 2 as

income (as it equals I −
∑n

j=3 pjxj).

See Chapter 9.3 in Varian [31] for an exposition of independence and aggregation.

3. A geometric intuition for Theorem 1.

The proof of Theorem 1 assumes that we have observed a finite set P , and a

function D, defined on P . The question is then one of extension. That is, does there

exist a demand function D∗ on all of R2
++, satisfying several intuitive properties,

for which the restriction of D∗ to P is equal to D? A major difficulty in the
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proof of this statement is the requirement that D be a demand function, and not a

correspondence. This is required as the definition of complementarity presupposes

that demand is single-valued.

Suppose then, we have given P . The way the proof works is fairly simple. We

consider some countable (and ordered) dense subset Q of R2
++, which contains P . We

can extend D to elements of this dense subset sequentially. Note that the conditions

1 and 2, when P = R2
++, are equivalent to rationalizability and complementarities.

Therefore, our first step is to show that D can be extended to Q while preserving

Conditions 1 and 2. The trick here is relatively simple: given a finite list Q′ of

prices on which D is defined and satisfies 1 and 2, imagine a new p ∈ R2
++ on

which we would like to define demand. We simply need to show that there is a

possible value D (p) which is consistent with 1 and 2. What is useful about these

conditions is that each of them are pairwise conditions. So, we need to verify that

there exists D (p) such that for any p and any q ∈ Q′, the conditions are satisfied.

Importantly, for any q ∈ Q′, there is a compact interval of possible values of D (p)

which are consistent with Conditions 1 and 2. The trick is then to show that any

pair of these intervals has nonempty intersection. It follows from a classical result

in convex analysis (Helly’s theorem), that the set of all such intervals has nonempty

intersection. After extending demand to all prices in Q, the result will follow from

a continuity argument (importantly, a monotonic demand function is continuous).

This proof necessarily requires checking many cases: we are given p, p′′ and demand

defined for these two prices; Conditions 1 and 2 hold for this pair of demands. We

want to verify that we can add demand for a third price p′ and remain consistent

with Conditions 1 and 2. There can be many relations between p, p′, and p′′. Here

we present a geometric version of the argument, for one of the special cases we need

to cover in the proof.

Fix two prices, p and p′′. We suppose that demands x = D(p) and x′′ = D(p′′)

are given. Let p′ be a third price. We want to show that we can extend D to p′

while respecting properties 1 and 2 with respect to p and p′′. Figure 3(a) displays x.
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p
p′

p ∧ p′

B

B

A A

x

(a) Budget p: between A–A and B–B.

p′′

x

C C

p ∧ p′′

(b) Budget p′′: below C–C.

Figure 3. Implications of (x, p).

In Figure 3(a) we present the implications of x for demand x′ = D(p′), if x′ is to

satisfy the conditions in the theorem. Compliance with Property 1 requires demand

to be below the line A–A, as the intersection of A–A with the p′-budget line gives

equality in Property 1. Compliance with Property 2 requires demand to be to the

left of B–B. Hence, the possible x′ are in the bold interval on the p′ budget line.

Consider Figure 3(b), where we introduce prices p′′. Since x′′ and x satisfy prop-

erties 1 and 2, x′′ must lie below the line C–C on the p′′ budget line. We choose

x′′ to be on the C–C line; this is the worst case from the viewpoint of finding a

x′ = D(p′) that satisfies the conditions.

In Figure 4, we represent the implications of x on x′′, and its indirect implications

on the demand at p′. To make the figure clearer, we do not represent the p′′ budget,

but we keep the C–C line. Note that our choice of x′′ determines a point on the

p′ ∧ p′′-budget line: the point where C–C intersects the p′ ∧ p′′-budget line. This

point, in turn, determines a point on the p′-budget line, the point where the D–D

line intersects the p′ budget line; note that, were x′ to lie to the right of D–D, it

would violate Properties 1 with respect to x′′.

To sum up, Property 1 applied to (x, p) and (x′′, p′′) requires that x′′ lies below

the intersection of C–C with the p′′-budget line. We chose x′′ to lie on C–C, the
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x

C C
D

p′
∧ p′′ p ∧ p′

AA
D

Figure 4. Compliance with x and a “worst case” x′′.

worst case. This implies that the position of demand on the p′-budget line must lie

to the left of the intersection with D–D. Hence x′′ determines one possible interval

for x′, namely the interval on the p′ budget line to the left of D-D. Recall that x

determines the interval below the intersection with A-A.

Now, the points to the left of D-D and to the right of A-A have exactly one point

in common, as the D-D and A-A lines intersect at the same point on the p′ budget

line.

It is now easy to see why our choice of x′′ was the worst case. Any other choice

below the C-C line would shift the D-D line to the right, and the intersection of the

two intervals would be larger. So, if x′′ lies strictly below C-C, it will require that

x′ lies above the projection of x′′ on the p′-line. It is always possible to find such an

x′ on the bold segment because in the worst case, when x′′ is on the C-C line, the

point on the D-D line is also on the bold segment.

That D–D and A–A should coincide on the p′-budget line may seem curious at

this stage, but it is a result of the special case we are considering. Here, the budget

set of p′ is the meet of the budget sets corresponding to prices p ∧ p′ and p′ ∧ p′′;

that is p′ = (p ∧ p′) ∨ (p′ ∧ p′′). Let y and z be, respectively, the intersection of

B–B with the p ∧ p′ budget line, and of C–C with the p′ ∧ p′′ line. Then, in the

case we show in Figure 4, y ∨ z coincides with y in the good that is cheaper for p′,
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and with z in the good that is cheaper in p′′. As a result, (p′ ∧ p′′) · (y ∨ z) = 1

says that expenditure on the two cheapest goods adds to 1. But at the same time

y ∧ z coincides with y in the good that is more expensive for p, and similarly for z

and p′′. So (p ∧ p′′) · (y ∨ z) = 1 also says also that the sum of expenditures on the

two most expensive goods, when evaluated at prices p ∨ p′′, must equal 1. Hence

(p ∨ p′′) · (y ∧ z) = 1.

4. Proof of Proposition 1

That Statement (1) implies (2) is trivial. Suppose then that (2) holds; we shall

prove that Di is monotone decreasing in pi, i = 1, 2. To that effect, fix p = (p1, p2)

and p′ = (p′1, p
′
2) with p′1 < p1 and p′2 = p2.

By the homogeneity of demand, we assume that I = 1. Let x = D(p, 1) and

x′ = D(p′, 1). Suppose, by way of contradiction, that x′
1 < x1. Note that p · x′ ≥ 1,

as p′ < p.

Let p′′ = (p′′1, p
′′
2) be such that p′′1 = p1 and p′′ · x′ = 1. Now, p · x′ ≥ 1 and

p′′ · x′ = 1 implies that p′′2 ≤ p2.

Let x′′ = D(p′′, 1). Then Statement(2) implies that x′′
1 ≥ x1. So we have

(2) x′′
1 ≥ x1 > x′

1.

On the other hand, p′′1x
′
1 + p′′2x

′
2 = p′′1x

′′
1 + p′′2x

′′
2 and x′′

1 > x′
1 implies that

(3) x′′
2 < x′

2.

Finally, by definition of p′′,

0 = p′′ · x′ − 1 = p′′1(x
′
1 − x′′

1) + p′′2(x
′
2 − x′′

2).

By (2) the term multiplying p′′1 is negative, and by by (3) the term multiplying p′′2

is positive. Hence, p′1 < p′′2 and p′2 > p′′2 imply that

0 < p′1(x
′
1 − x′′

1) + p′2(x
′
2 − x′′

2) = 1 − p′ · x′′.

Then we have p′′ ·x′ ≤ 1 and p′ ·x′′ < 1, a violation of the weak axiom of revealed

preference.
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Finally, we suppose that D is smooth and prove the equivalence between comple-

mentarities and the elasticities being smaller than 1.

Let p = (p1, p2) and p′ = (p′1, p
′
2) be price vectors with p′1 < p1 and p′2 = p2.

Complementarities implies that p2D2(p
′, I) ≥ p2D2(p, I). So p1D1(p, I)+p2(p, I) = 1

implies that p′1D1(p
′, I) ≤ p1D1(p, I), so the expenditure share of good 1 is smaller

under p′ than p. In fact, this reasoning shows that D satisfies complementarities if

and only if the expenditure share of each good is increasing in the good’s price.

Now, when D is smooth, the function pi 7→ piDi(p, I) is increasing iff

0 ≤
∂piDi(p, I)

∂pi

= Di(p, I) + pi

∂Di(p, I)

∂pi

;

which is equivalent to

−pi

∂Di(p, I)

∂pi

1

Di(p, I)
≤ 1.

5. Proof of Theorem 3

Fix x̂ in the interior of consumption space. Denote by ∇u (x) =
(

∂u(x)
∂x1

, ∂u(x)
∂x2

)

.

Note that

x̂ = D (∇u (x̂) ,∇u (x̂) · x̂) .

Let p = ∇u (x̂). We calculate p′1 such that (x̂1 + ε, x̂2) lies on the budget line for

(p′1, p2) with income p · x̂. So p′1(x̂1 + ε) + p2x̂2 = p1x̂1 + p2x̂2. Conclude

p′1
p2

=
x̂1

x̂1 + ε
m(x̂).

The rest of the argument is illustrated in Figure 5. Since p′1 < p1, complementarity

implies that D(p′1p2, I) lies weakly to the northwest of (x̂1 + ε, x̂2) on the budget

line. By the strict convexity of u, u(y) > u(x̂1 + ε, x̂2) for any y that lies between

D(p′1, p2, I) and (x̂1 + ε, x̂2) on the budget line. Hence, if u does not achieve its

maximum on the budget line at (x̂1 + ε, x̂2), it is increasing as we move northwest

on the budget line. So the product ∇u · v, of the gradient of u with any vector

pointing northwest, is nonnegative. This gives m(x̂1 + ε, x̂2) ≤
p′
1

p2

, so

m(x̂1 + ε, x̂2) ≤
x̂1

x̂1 + ε
m(x̂).
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x1

x2

x̂1 x̂1 + ε

x̂2

Figure 5. Illustration for the proof of Theorem 3.

Since ε > 0 was arbitrary, and since the two sides of the inequality are equal at

ε = 0, we can differentiate with respect to ε and evaluate at ε = 0 to obtain

∂m(x̂)

∂x̂1

1

m(x̂)
≤

−1

x̂1

The proof of the second inequality is analogous.

6. Proof of Theorem 1

6.1. Preliminaries. For p ∈ R2
++ let L(p) = {x ∈ R2

+|p · x = 1}.

For x ∈ R let sgn(x) =























1, if x > 0

−1, if x < 0

0, if x = 0

.

The following lemmas are obvious.

Lemma 6.1. Let a, b, b′ ∈ R2
+ such that a · b = a · b′ = 1. Then

(1) sgn(b1 − b′1) · sgn(b2 − b′2) ≤ 0.

(2) If a ≫ 0 and b 6= b′ then sgn(b1 − b′1) · sgn(b2 − b′2) = −1.

Lemma 6.2. Let a, b ∈ R2 such that a ≫ 0 and b > 0. Then a · b > 0.
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Lemma 6.3. Let a, b, c ∈ R2 such that a ≫ 0. If a·b ≤ a·c and bi ≥ ci for i ∈ {1, 2}

then bj ≤ cj for j = 3 − i.

For p ∈ R2
++ and x ∈ R+ such that pjx ≤ 1 let Xi(p, x) = (1 − pjx)/pi where

j = 3 − i. Then Xi(p, x) is the i-th coordinate of the element of L(p) whose j-th

coordinate is x. Note that, when p, p′ ∈ R2
++ and p · (xi, xj) = 1, Xi(p ∧ p′, xj) is

well defined; this will be a recurrent use of Xi in the sequel.

Lemma 6.4. Let p, p′ ∈ R2
++ and x, x′ ∈ R+ and i ∈ {1, 2} such that pjx, p′jx

′ ≤ 1,

and let j = 3 − i. Then

(1) piXi(p, x) ≤ 1 and x = Xj(p,Xi(p, x))

(2) If p ≤ p′ then Xi(p, x
′) ≥ Xi(p

′, x′).

(3) If x′ < x then Xi(p, x
′) > Xi(p, x)

Lemma 6.5. If p ∈ R2
++ and x ∈ R2

+, i ∈ {1, 2} and j = 3 − i. Assume that

pjxj ≤ 1. Then

(1) p · x ≤ 1 iff xi ≤ Xi(p, xj).

(2) p · x ≥ 1 iff xi ≥ Xi(p, xj)

Note that Statements 1 and 2 in Lemma 6.5 are not equivalent.

Lemma 6.6. Let p, q ∈ R2
++ such that qi ≥ pi for some product i ∈ {1, 2}, and let

x, y ∈ L(p). If q · y ≥ 1 and xi ≥ yi then q · x ≥ 1.

Proof. Since xi ≥ yi and xi ≤ 1/pi (as xipi ≤ x · p = 1) it follows that xi =

λyi + (1 − λ)1/pi for some 0 ≤ λ ≤ 1. Since y ∈ L(p), λy + (1 − λ)ei ∈ L(p), where

ei ∈ R2
++ is given by ei

i = 1/pi and ei
j = 0 for j = 3 − i. Then, x = λy + (1 − λ)ei,

as there is only one element of L(p) with i-th component xi. Therefore

q · x ≥ min{q · y, q · ei} = min{q · y, qi/pi} ≥ 1,

as desired. �

Lemma 6.7. Let p, q ∈ R2
++ such that qi > pi for some product i ∈ {1, 2} and

assume that q · x ≤ 1 for some x ∈ L(p). Then pj ≥ qj for j = 3 − i.
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Proof. If pj < qj then q − p ≫ 0 and therefore

q · x − p · x = (q − p) · x > 0

By Lemma 6.2, but this is a contradiction since q · x ≤ p · x = 1. �

6.2. The conditions are necessary. We now prove that the conditions in The-

orem 1 are necessary. Let D : R2
++ → R2

+ be a decreasing demand function that

satisfies the weak axiom of revealed preference. Let p, p′ ∈ R2
++.

To prove that D satisfies Condition 1 note first that from the monotonicity of D

it follows that

(4) D(p) ∨ D(p′) ≤ D(p ∧ p′).

Therefore

(p ∧ p′) · (D(p) ∨ D(p′)) ≤ (p ∧ p′) · D(p ∧ p′) = 1,

where the inequality follows from (4) and monotonicity of the scalar product in the

second argument.

To prove that D satisfies Condition 2 assume that p′ · D(p) ≤ 1 and, say, that

p′1 > p1. We want to show that D(p′)2 ≥ D(p)2. Let p′′ = 1
p′·D(p)

p′. Then p′ ≤ p′′

and p′′ ·D(p) = 1. In particular, it follows from the last equality and the weak axiom

of revealed preference that p · D(p′′) ≥ 1. Let x = D(p) and x′′ = D(p′′). Then

p · x = p′′ · x′′ = p′′ · x = 1 and p · x′′ ≥ 1. Therefore

(5) 0 ≥ p · x + p′′ · x′′ − p · x′′ − p′′ · x = (p − p′′) · (x − x′′) =

(p1 − p′′1) · (x1 − x′′
1) + (p2 − p′′2) · (x2 − x′′

2).

Since p′′1 ≥ p′1 > p1 and p′′ · x = p · x we get from Lemma 6.1 that p′′2 ≤ p2. Assume,

by way of contradiction, that x′′
2 < x2. Then, since p′′ · x′′ = p′′ · x and p′′ ≫ 0 it

follows from Lemma 6.1 that x1 < x′′
1, in which case the sum in the right hand side

of (5) is strictly positive (since p′′2 ≤ p2, p′′1 > p1,x
′′
2 < x2 and x1 < x′′

1), which leads
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to a contradiction. It follows that x′′
2 ≥ x2, i.e. D(p′′)2 ≥ D(p)2. By monotonicity

of D it follows that D(p′) ≥ D(p′′). Hence

D(p′)2 ≥ D(p′′)2 > D(p)2,

as desired.

6.3. The conditions are sufficient. A data point is given by a pair (p, x) ∈

R2
++ × R2

+ such that p · x = 1.

Definition 1. A pair (p, x), (p′, x′) ∈ R2
++ ×R2

+ of data points is permissible if the

following conditions are satisfied:

(1) (p ∧ p′) · (x ∨ x′) ≤ 1.

(2) If p′ ·x ≤ 1 and p′i > pi for some product i ∈ {1, 2} then x′
j ≥ xj for j = 3−i.

(3) If p ·x′ ≤ 1 and pi > p′i for some product i ∈ {1, 2} then xj ≥ x′
j for j = 3−i.

Let us say that a partial demand function P : D → R2
++ is permissible if

(p,D(p)), (p′, D(p′)) is a permissible pair for every p, p′ ∈ P Using this terminol-

ogy, a partial demand function D : P → R2
++ satisfies the conditions of Theorem 1

iff it is permissible

Monotonicity is a consequence of permissibility:

Lemma 6.8. If (p, x), (p′, x′) ∈ R2
++ × R2

+ is a permissible pair of data points and

p ≤ p′ then x′ ≤ x.

Proof. If p ≤ p′ then p ∧ p′ = p and therefore it follows from Condition 1 of Defini-

tion 1 that p · (x ∨ x′) ≤ 1. But p · x = 1 and therefore

p · (x ∨ x′ − x) = p · (x ∨ x′) − p · x ≤ 0.

Since x∨x′−x ≥ 0 it follows from the last inequality and Lemma 6.2 that x∨x′−x =

0, i.e. x′ ≤ x, as desired. �

The weak axiom of revealed preference is a consequence of permissibility:



26 CHAMBERS, ECHENIQUE, AND SHMAYA

Lemma 6.9. If (p, x), (p′, x′) ∈ R2
++ × R2

+ is a permissible pair of data points and

p′ · x < 1 then p · x′ > 1.

Proof. We show that p · x′ ≤ 1 implies p′ · x ≥ 1. Assume that p · x′ ≤ 1. If p′ ≥ p

then p′ ·x ≥ p ·x = 1 and we are done. Let p′ � p. Assume without loss of generality

that p1 > p′1. By Condition 3 of Definition 1 it follows that x2 ≥ x′
2. Also, since

(p − p′) · x′ = p · x′ − p′ · x′ ≤ 0

and since x′ > 0 it follows from Lemma 6.2 that it cannot be the case that p−p′ ≫ 0.

Therefore p2 ≤ p′2. Let x′′ ∈ R2
++ be such that x′′

2 = x′
2 and p · x′′

2 = 1; that is

x′′ = (X1(p, x
′
2), x

′
2); note that X1(p, x

′
2) is well defined because p2x

′
2 ≤ p′2x

′
2 ≤ 1.

Since p · x′ ≤ 1 = p · x′′ and x′′
2 = x′

2 it follows from Lemma 6.3 that x′′
1 ≥ x′

1.

Therefore x′′ ≥ x′, and, in particular, p′ · x′′ ≥ p′ · x′ ≥ 1. Since x2 ≥ x′
2 = x′′

2 and

p2 ≤ p′2 it follows from Lemma 6.6 that p′ · x ≥ 1 as desired. �

The following lemma provides an equivalent characterization of permissible pairs.

Unlike the previous characterization, here the roles of p and p′ are not symmetric.

For fixed p and p′, the lemma states the restrictions on x′ (the demand at p′) such

that the pair (p, x), (p′, x′) is permissible assuming that x is already given. Recall

Figure 3(a). From the lemma we see that every good induces one restriction on x′.

If the good is cheaper for p′ (as is the good that corresponds to the vertical axis in

Figure 3(a)) then it induces an inequality of type 1 – an upper bound on the demand

for that good. This is the line A–A in the figure. If the good is more expensive for p′

(as is the good that corresponds to the horizontal axis in Figure 3(a)) then it induces

an inequality of type 2 or 3, depending on whether x is a possible consumption at

the new price p′. In the figure, since x is not possible in the new price, we get an

inequality of type 3 – an upper bound on the demand for that product. This is the

line B–B in the figure.

Lemma 6.10. A pair (p, x), (p′, x′) is permissible iff the following conditions are

satisfied for every product i ∈ {1, 2} and j = 3 − i.
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(1) If p′i ≤ pi then x′
i ≤ Xi(p ∧ p′, xj).

(2) If p′i > pi and p′ · x ≤ 1 then x′
j ≥ xj.

(3) If p′i > pi and p′ · x > 1 then x′
i ≤ xi.

The proof of Lemma 6.10 requires some auxiliary results, presented here as

Claims 6.12, 6.11, and 6.13.

Claim 6.11. If (p, x), (p′, x′) is a pair of data points and (p∧ p′) · (x∨ x′) ≤ 1 then

x′
i ≤ Xi(p ∧ p′, xj)

Proof. Let i ∈ {1, 2} and j = 3 − i. Let y ∈ R2
++ be such that yj = xj and yi = x′

i.

Then

(p ∧ p′) · y ≤ (p ∧ p′) · (x′ ∨ x) ≤ 1,

where the first inequality follows from the fact that y ≤ x′ ∨ x. In particular, it

follows from the last inequality and Lemma 6.5 that

x′
i = yi ≤ Xi(p ∧ p′, yj) = Xi(p ∧ p′, xj),

as desired. �

Claim 6.12. For every p, p′ ∈ R2
++ and x ∈ L(p) the set of all x′ ∈ L(p′) such that

(p ∧ p′) · (x ∨ x′) ≤ 1 is a subinterval of L(p′)

Proof. The function x′ 7→ (p ∧ p′) · (x ∨ x′) is convex since the inner product is

monotone and linear and since

x ∨
(

λα + (1 − λ)β
)

≤ λ(x ∨ α) + (1 − λ)(x ∨ β)

for every α, β ∈ R2
++ and every 0 ≤ λ ≤ 1. �

Claim 6.13. If (p, x), (p′, x′) is a permissible pair such that x1 < x′
1 and x2 > x′

2

then p1 > p′1 and p2 < p′2.

Proof. We show that any other possibility leads to a contradiction. Note first that

Lemma 6.8 implies x ≥ x′ if p ≤ p′, and x ≤ x′ if p ≥ p′. Both cases contradict the

hypotheses on x and x′.
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Second, suppose that p1 < p′1 and p2 > p′2. Consider the following three cases.

• If p′ · x ≤ 1, then x′
2 ≥ x2 by Condition 2 of Definition 1.

• If p · x′ ≤ 1, then x1 ≥ x′
1 by Condition 3 of Definition 1.

• If p′ · x > 1 and p · x′ > 1 then

0 < p · x′ + p′ · x − p · x − p′ · x′ = (p − p′) · (x′ − x) =

(p1 − p′1) · (x
′
1 − x1) + (p2 − p′2) · (x

′
2 − x2) < 0

The first inequality follows from the fact that p·x = p′ ·x′ = 1 and p·x′, p′ ·x >

1. The last inequality follows because, in each product, one multiplier is

negative and one is positive.

All three cases contradict the hypotheses on x and x′. The only possibility left is

p1 > p′1 and p2 < p′2, as desired. �

We now prove Lemma 6.10

Proof. We consider separately the possible positions of p, p′, x, up to symmetry

between the products.

Case 1: p ≪ p′. We show first that the conditions in the lemma imply permissibility.

Since p ≪ p′ then p′ ·x = p·x+(p′−p)·x > 1 (the inequality follows from Lemma 6.2)

and, by Condition 3 in the lemma x′ ≤ x.

Since p ≤ p′, x′ ≤ x implies that (p∧p′) ·(x∨x′) = p ·x = 1. So Condition 1 in the

definition of permissibility is satisfied. In addition, x′ ≤ x implies that Condition 3

is satisfied. We show Condition 2: If p′ · x ≤ 1 and p′i > pi, then p · x = 1 implies

that x′
i = xi = 0 and that p′j = pj for j = 3 − i. Then x′

j = 1/p′j = 1/pj = xj. So

Condition 2 is satisfied.

Now we show that permissibility implies the conditions in the lemma. Condi-

tion 1 in the lemma follows from Claim 6.11. Condition 3 holds because Lemma 6.8

implies x′ ≤ x. Finally, Condition 2 follows from Condition 2 in the definition of

permissibility.
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Case 2: p′ ≤ p. For each i, p′i ≤ pi. So x′
i ≤ Xi(p

′, xj) by Condition 1 of the lemma,

as p′ = p′ ∧ p′. But x′
i = Xi(p

′, x′
j), so Xi(p

′, x′
j) ≤ Xi(p

′, xj). Since Xi is monotone

decreasing in xj (item 3 of Lemma 6.4), xj ≤ x′
j. This shows that x ≤ x′. The rest

of the argument is analogous to the previous case.

Case 3: p1 < p′1, p2 > p′2 and p′ · x ≤ 1. Let

A = {x′ ∈ L(p′)|x′
2 ≥ x2, (p ∧ p′) · (x ∨ x′) ≤ 1}.

Note that A is the set of all x′ such that the pair (p, x), (p′, x′) is permissible. Let

B = {x′ ∈ L(p′)|x′
2 ≥ x2, x

′
2 ≤ X2(p ∧ p′, x1)}

be the set of all x′ such that the pair (p, x), (p′, x′) satisfies the conditions of

Lemma 6.10. We have to prove that A = B. From Claim 6.11 we get that A ⊆ B.

For the other direction, note that the set B is the closed interval whose endpoints

are the unique points y, z in L(p′) such that y2 = x2 and z2 = X2(p ∧ p′, x1). Since,

by Claim 6.12, A is an interval, it is sufficient to prove that y, z ∈ A.

Since p′ · x ≤ 1 it follows that x1 ≤ y1 and therefore x ≤ y and x ∨ y = y and

therefore

(p ∧ p′) · (x ∨ y) = (p ∧ p′) · y ≤ p′ · y = 1,

and thus y ∈ A.

Now,

z2 = X2(p ∧ p′, x1) ≥ X2(p, x1) = x2 and

z1 = X1(p
′, z2) ≤ X1(p

′ ∧ p, z2) = X1(p
′ ∧ p,X2(p

′ ∧ p, x1)) = x1,

where the inequalities follow from item 2 of Lemma 6.4. It follows that x ∨ z =

(x1, z2). Since z2 = X2(p ∧ p′, x1) it follows that (p ∧ p′) · (x ∨ z) = 1 and therefore

z ∈ A.

Case 4: p1 < p′1, p2 > p′2 and p′ · x > 1. Note that, in this case, the conditions in

the lemma are equivalent to x′
1 ≤ x1 and x′

2 ≤ X2(p ∧ p′, x1).
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We show first that permissibility implies the latter conditions. We need to show

that x′
1 ≤ x1, as Claim 6.11 gives x′

2 ≤ X2(p ∧ p′, x1). First, if p · x′ ≤ 1 then by

Condition 3 of the definition of permissibility x′
1 ≤ x1. Second, let p · x′ > 1. Then

p′ · x > 1 and p · x′ > 1 imply x′ � x and x � x′. Now, x′
1 > x1 and x′

2 < x2 imply,

by Claim 6.13 that p′1 < p1 and p′2 > p2. So it must be that x′
1 < x1 and x′

2 > x2.

Thus, either way we get that x′
1 ≤ x1.

We now show that the conditions imply permissibility. Let y = (x1, X2(p∧p′, x1));

so (p∧p′)·y = 1. Note that x2 = X2(p, x1) ≤ X2(p∧p′, x1), so x ≤ y. The conditions

are equivalent to x′ ≤ y. So we obtain

(p ∧ p′) · (x ∨ x′) ≤ (p ∧ p′) · (x ∨ y) ≤ (p ∧ p′) · y = 1.

Thus Condition 1 of the definition of permissibility is satisfied. Condition 2 in

the definition follows from Condition 2 in the lemma. Finally, Condition 3 in the

definition is satisfied since x′
1 ≤ x1. �

The proof of Theorem 1 is based on the following lemma:

Lemma 6.14. Let P be a finite subset of R2
++ and let D : P → R2

+ be a permissible

partial demand function. Let p′ ∈ R2
++. Then D can be extended to a permissible

partial demand function over P ∪ {p′}.

Proof. For p ∈ P and x = D(p) let A(p) be the set of all x′ ∈ L(p′) such that the

pair (p, x), (p′, x′) is permissible. We have to prove that
⋂

p∈P A(p) is nonempty.

From Lemma 6.10, A(p) is a sub-interval of L(p′). It is then sufficient to show that

for any pa and pb in P , A(pa)∩A(pb) 6= ∅, as any collection of pairwise-intersecting

intervals has nonempty intersection (an easy consequence of Helly’s Theorem, for

example see Rockafellar [23], Corollary 21.3.2).

Thus we fix pa and pb in P . From Lemma 6.10, A(pa) and A(pb) are each defined

by a set of inequalities, one inequality for each product i. This inequality gives

an upper bound on the consumption level x′
i of product i (or, equivalently, a lower

bound on the consumption level of the other product). We have to show that

the intersection of the solution sets for these inequalities is nonempty. Note that



BEHAVIORAL COMPLEMENTARITY 31

two inequalities that correspond to the same products are always simultaneously

satisfiable.

Case 1: p′1 ≤ pa
1 and p′2 ≤ pb

2. Let y ∈ R2
++ be given by y1 = X1(p

a ∧ p′, xa
2) and

y2 = X2(p
b ∧ p′, xb

1). We have to prove that L(p′) ∩ {x′|x′ ≤ y} is nonempty, or

equivalently that p′ · y ≥ 1. Indeed,

p′ · y = p′1 · y1 + p′2 · y2

= (p′1 ∧ pa
1) · y1 + (p′2 ∧ pb

2) · y2

= 2 −
∑

(i,j)∈{(a,2),(b,1)}

(p′j ∧ pi
j) · x

i
j

≥ 2 − (pa
1 ∧ pb

1) · (x
a
1 ∨ xb

1) − (pa
2 ∧ pb

2) · (x
a
2 ∨ xb

2)

= 2 − (pa ∧ pb) · (xa ∨ xb)

≥ 1.

The second equality above follows from the fact that p′1 ≤ pa
1 and p′2 ≤ pb

2. The

third equality follows from the fact that (y1, x
a
2) ∈ L(p′ ∧ pa), so (p′1 ∧ pa

1) · y1 =

1 − (p′2 ∧ pa
2) · x

a
2, and similarly for (xb

1, y2). The first inequality is because p′1 ≤ pa
1

and p′2 ≤ pb
2. The last inequality is because (pa, xa), (pb, xb) is permissible.

Case 2: p′1 > pa
1 and p′ · xa ≤ 1, while p′2 > pb

2 and p′ · xb ≤ 1. Let y = (xb
1, x

a
2). We

have to prove that L(p′)∩ {x′|x′ ≥ y} is nonempty. Or, equivalently, that p′ · y ≤ 1.

If y ≤ xa or y ≤ xb then we are done. Suppose then that y � xa and y � xb; hence

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13 that pa
1 > pb

1 and

pa
2 < pb

2. Since we assumed that p′2 > pb
2 it follows that p′2 > pa

2. Since we assumed

that p′1 > pa
1 it follows that p′ ≫ pa, which contradicts p′ · xa ≤ 1 (since pa · xa = 1).

Case 3: p′1 > pa
1 and p′ · xa > 1, while p′2 > pb

2 and p′ · xb > 1. Let y = (xa
1, x

b
2).

We prove that L(p′) ∩ {x′|x′ ≤ y} is nonempty. Or, equivalently, that p′ · y ≥ 1.

If y ≥ xa or y ≥ xb then we are done. Suppose then that y � xa and y � xb, so

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13 that pa
1 > pb

1 and
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pa
2 < pb

2. Therefore pa ∧ pb = (pb
1, p

a
2) and xa ∨ xb = (xb

1, x
a
2). It follows that

p′ · y = p′1 · y1 + p′2 · y2 ≥ pa
1 · x

a
1 + pb

2 · x
b
2 =

2 − pb
1 · x

b
1 − pa

2 · x
a
2 = 2 − (pa ∧ pb) · (xa ∨ xb) ≥ 1,

The first inequality follows from the assumption that p′1 > pa
1 and p′2 > pb

2. The

second equality follows from pi · xi = 1, i = a, b. The last inequality follows from

permissibility (Condition 1 in Definition 1).

Case 4: p′1 ≤ pa
1 and p′2 > pb

2 and p′ · xb ≤ 1. Note first that Lemma 6.7 implies

p′1 ≤ pb
1. We need there to exist x′ ∈ L(p′) with x′

1 ≤ X1(p
a ∧ p′, xa

2) and x′
1 ≥ xb

1.

That is, we need xb
1 ≤ X1(p

a ∧ p′, xa
2). Or, equivalently, that (pa ∧ p′) · y ≤ 1

where y = (xb
1, x

a
2). If y ≤ xa then (pa ∧ p′) · y ≤ pa · xa = 1. If y ≤ xb then

(pa ∧ p′) · y ≤ p′ · xb ≤ 1. The only other possibility is that y > xa and y > xb, so

that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows in particular from Claim 6.13 that

pa
2 < pb

2. Now, p′1 ≤ pb
1 implies that pa ∧ p′ ≤ pb and therefore pa ∧ p′ ≤ pa ∧ pb. In

addition, in this case, y = xa ∨ xb. Therefore

(pa ∧ p′) · y ≤ (pa ∧ pb) · (xa ∨ xb) ≤ 1

the last inequality follows from Condition 1 in Definition 1

Case 5: p′1 ≤ pa
1 and p′2 > pb

2 and p′ · xb > 1. Let y1 = X1(p
a ∧ p′, xa

2) and y2 = xb
2.

We have to prove that the set L(p′) ∩ {x′|x′ ≤ y} is nonempty, or equivalently that

p′ · y ≥ 1. If xa
1 ≥ xb

1 then y ≥ xb (since y1 = X1(p
a ∧ p′, xa

2) ≥ X1(p
a, xa

2) = xa
1)

and, in particular, p′ · y ≥ p′ · xb ≥ 1. If xb
2 ≥ xa

2 then y2 ≥ X2(p
a ∧ p′, y1) (Since, by

Lemma 6.4, X2(p
a ∧ p′, y1) = xa

2) and therefore p′ · y ≥ (pa ∧ p′) · y ≥ 1. The only

other possibility is that xa
2 > xb

2 and xb
1 > xa

1. In this case it follows from Claim 6.13

that pa
2 < pb

2 and pa
1 > pb

1. So pa ∧ pb = (pb
1, p

a
2), and, since p′2 > pb

2, p′2 > pa
2. Now,

p′ · y ≥ (p′1, p
b
2) · (y1, y2) =

(pb
1, p

b
2) · (x

b
1, y2) + (p′1, p

a
2) · (y1, x

a
2) − (pb

1, p
a
2) · (x

b
1, x

a
2) ≥ 1.



BEHAVIORAL COMPLEMENTARITY 33

Where the last inequality follows from the following observations:

(pb
1, p

b
2) · (x

b
1, y2) = pb · xb = 1.

(p′1, p
a
2) · (y1, x

a
2) = (pa ∧ p′) · (y1, x

a
2) = 1 since y1 = X1(p

a ∧ p′, xa
2).

(pb
1, p

a
2) · (x

b
1, x

a
2) = (pa ∧ pb) · (xa ∨ xb) ≤ 1

The last equality follows from (pb
1, p

a
2) = (pa ∧ pb), as we established above. The

inequality follows from permissibility.

Case 6: p′1 > pa
1 and p′ · xa ≤ 1 and p′2 > pb

2 and p′ · xb > 1. We have to prove

that xa
2 ≤ xb

2. Indeed, from Lemma 6.7 it follows that p′2 ≤ pa
2. Thus pa

2 > pb
2. If

pa · xb > 1 then by Condition 3 of Lemma 6.10 xa
2 ≤ xb

2, as desired. If pa · xb < 1

then, since pa
2 > pb

2, it follows from Condition 2 of Definition 1 that xa
1 ≥ xb

1. Since

p′ · xa ≤ 1 < p′ · xb it follows from Lemma 6.3 that xa
2 ≤ xb

2, as desired. �

Finally, we complete the proof of Theorem 1. Let P be a finite subset of R2
++ and

let D : P → R2
+ be a partial demand function that satisfies the conditions of the

theorem, i.e. such that the pair (p,D(p)), (p′, D(p′)) is permissible for every p, p′ ∈

P . Let Q be a countable dense subset of R2
++ that contains P . By Lemma 6.14, D

can be extended to a function D : Q → R2
+ such that for every p, p′ ∈ Q the pair

(p,D(p)), (p′, D(p′)) is permissible.

In particular, by Lemma 6.8, D is monotone on Q. Extend D to R2
++ by defining

D̃(p) =
∧

q∈Q,q≤p D(q) for every p ∈ R2
++. Since D is monotone, it follows that

D̃(p) = D(p) for p ∈ Q and that D̃ is monotone. Since p · D(p) = 1 for p ∈ Q it

follows that p · D̃(p) = 1 for p ∈ R2
++. That is, for all q ∈ Q, q ≤ p, q · D̃(p) ≤

q · D (q) = 1, so that in the limit, p · D̃(p) ≤ 1. If, in fact, p · D̃(p) < 1, then

there exists q ∈ Q, q ≤ p such that p · D (q) < 1; from which we conclude that

q · D (q) ≤ q · D (p) < 1, a contradiction. Therefore, p · D̃(p) = 1.

The following lemma is useful here and in Section 6.4

Lemma 6.15. If a demand function satisfies complementarity, then it is continuous.

Proof. Let p∗ ∈ R2
++ and {pn}∞n=1 ⊆ R2

++ such that pn → p∗. First consider the

case in which for all n, pn ≤ p∗. In particular, for all n, D (pn) ≥ D (p∗). Let ε > 0;
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we wish to show that there exists some N such that for all i = 1, 2, n ≥ N implies

Di (p
n) < Di (p

∗) + ε. Suppose that there exists no such N and without loss of

generality suppose that D1 (pnk) > D1 (p∗) + ε for some subsequence. The equality

pnk

1 D1 (pnk) + pnk

2 D2 (pnk) = 1 implies that

D2(p
∗) ≤ D2 (pnk) =

1 − pnk

1 D1 (pnk)

pnk

2

<
1 − pnk

1 (D1 (p∗) + ε)

pnk

2

.

Hence, in the limit we have

D2 (p∗) ≤
1 − p∗1 (D1 (p∗) + ε)

p∗2
.

But then

p∗1D1(p
∗) + p∗2D2(p

∗) ≤ 1 − p∗1ε < 1,

contradicting that D is a demand function.

A similar argument holds for pn ≥ p∗.

Now suppose that pn is arbitrary. By monotonicity, we have

D (p∗ ∨ pn) ≤ D (pn) ≤ D (p∗ ∧ pn) ,

and as p∗ ∨ pn → p∗ and p∗ ∧ pn → p∗, we conclude that D (pn) → D (p∗). �

It remains to show that D̃ is rationalizable by a monotone increasing utility. We

establish that D̃ satisfies the weak axiom so it is rationalizable. Then the results in

Section 6.4 imply the result (and more).

First note that, by Lemma 6.15, D̃ is continuous. We show that D̃ satisfies the

weak axiom. Suppose by means of contradiction that there exists p, p′ such that

p · D̃ (p′) < 1 and p′ · D̃ (p) ≤ 1. By monotonicity and continuity of D̃, we may

therefore find q ∈ Q, q ≪ p′ such that p · D̃ (q) < 1 and q · D̃ (p) < 1. By continuity,

there exists q′ ∈ Q such that q′ · D̃ (q) < 1 and q · D̃ (q′) < 1. However, Lemma 6.9

implies that D̃ satisfies the axiom on Q, a contradiction.
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6.4. Proof of Theorem 2. The proof of the theorem follows from Mas-Colell [15],

Theorem 1, using the fact that D is continuous (Lemma 6.15) and rational (Since

D is rational, it certainly satisfies the weak axiom of revealed preference; and hence

the strong axiom, by Rose [24]). Note that, while Mas Colell assumes throughout

that demand is strictly positive (that is, for all p ∈ R2
++, D (p) ∈ R2

++), this is not

necessary for the proof of Theorem 1 and only plays a role in his characterization

of Lipschitzian demands and preferences.5
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