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Abstract

A mechanism implements a social choice correspondence f in mixed Nash equi-

librium if at any preference profile, the set of all pure and mixed Nash equilibrium

outcomes coincides with the set of f -optimal alternatives at that preference pro-

file. This definition generalizes Maskin’s definition of Nash implementation in

that it does not require each optimal alternative to be the outcome of a pure Nash

equilibrium. We show that the condition of weak set-monotonicity, a weakening of

Maskin’s monotonicity, is necessary for implementation. We provide sufficient con-

ditions for implementation and show that important social choice correspondences

that are not Maskin monotonic can be implemented in mixed Nash equilibrium.
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1 Introduction

This paper studies the problem of implementation in mixed Nash equilibrium. According

to our definition, a mechanism implements a social choice correspondence f in mixed

Nash equilibrium if the set of all pure and mixed equilibrium outcomes corresponds to

the set of f -optimal alternatives at each preference profile. Crucially, and unlike the

classical definition of implementation, this definition of implementation does not give

a predominant role to pure equilibria: an optimal alternative does not have to be the

outcome of a pure Nash equilibrium. This sharply contrasts with most of the literature

on Nash implementation, which does not consider equilibria in mixed strategies. Two

notable exceptions are Maskin (1999) for Nash implementation and Serrano and Vohra

(2007) for Bayesian implementation. These authors do consider mixed equilibria, but

still require each f -optimal alternative to be the outcome of a pure equilibrium. Pure

equilibria are yet again given a special status.

Perhaps, the emphasis on pure equilibria expresses a discomfort with the classical

view of mixing as deliberate randomizations on the part of the players. However, it is

now accepted that even if players do not randomize but choose definite actions, a mixed

strategy may be viewed as a representation of the other players’ uncertainty about a

player’s choice (e.g., see Aumann and Brandenburger, 1995). Additionally, almost all

mixed equilibria can be viewed as pure Bayesian equilibria of nearby games of incom-

plete information, in which every player is uncertain about the exact preferences of the

other players, as first suggested in the seminal work of Harsanyi (1973). This view ac-

knowledges that games with commonly known preferences are an idealization, a limit

of near-complete information games. This interpretation is particularly important for

the theory of implementation in Nash equilibrium, whereby the assumption of common

knowledge of preferences, especially on large domains, is at best a simplifying assump-

tion.1 Furthermore, recent evidence in the experimental literature suggest that equilibria

1The point that the assumption of common knowledge of preferences might be problematic is not

new. For instance, Chung and Ely (2003) study the problem of full implementation of social choice

functions under “near-complete information” and show that Maskin monotonicity is a necessary con-

dition for implementation in undominated (pure) Nash equilibria. Their result sharply contrasts with

Palfrey and Srivastava (1991), who have shown that almost all social choice functions are implementable

in undominated (pure) Nash equilibria. Oury and Tercieux (2007) consider the problem of partial im-

plementation of social choice functions under “almost complete” information and show that Maskin
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in mixed strategies are good predictors of behavior in some classes of games e.g., coor-

dination games and chicken games (see chapters 3 and 7 of Camerer, 2003). Since, for

some preference profiles, a mechanism can induce one of those games, paying attention

to mixed equilibria is important if we want to describe or predict players’ behavior. In

sum, we believe that there are no compelling reasons to give pure Nash equilibria a

special status and modify the definition of implementation accordingly.

Our definition of mixed Nash implementation yields surprising results. We demon-

strate that the condition of Maskin monotonicity is not necessary for full implementation

in mixed Nash equilibrium. Intuitively, consider a profile of preferences and an alter-

native, say a, that is f -optimal at that profile of preferences. According to Maskin’s

definition of implementation, there must exist a pure Nash equilibrium with equilibrium

outcome a. This implies that any alternative a player can trigger by unilateral devia-

tions is less preferred than a. Thus, if we move to another profile of preferences where

a does not fall down in the players’ ranking, then a remains an equilibrium outcome

and must be optimal at that new profile of preferences. Unlike Maskin’s definition of

implementation, our definition does not require a to be a pure equilibrium outcome. So,

suppose that there exists a mixed equilibrium with a as an equilibrium outcome.2 The

key observation to make is that the mixed equilibrium induces a lottery over optimal

alternatives. Thus, when we move to another profile of preferences where a does not

fall down in the players’ ranking, the original profile of strategies does not have to be

an equilibrium at the new state. In fact, we show that a much weaker condition, weak

set-monotonicity, is necessary for implementation in mixed Nash equilibrium. Weak

set-monotonicity states that the set of optimal alternatives f(θ) at state θ is included

in the set of optimal alternatives f(θ′) at state θ′, whenever the weak and strict lower

contour sets at state θ of all alternatives in f(θ) are included in their respective weak

and strict lower contour sets at state θ′, for all players.

Weak set-monotonicity is a substantially weaker requirement than Maskin mono-

tonicity. For instance, on the unrestricted domain of preferences, the strong Pareto

and the strong core correspondences are weak set-monotonic, while they are not Maskin

monotonic. Similarly, on the domain of strict preferences, the top-cycle and the uncov-

monotonicity is necessary for implementation in pure Nash equilibrium.
2More precisely, let σ∗ be the mixed Nash equilibrium and Pσ∗,g the distribution over alternatives

induced by the strategy profile σ∗ and the allocation rule g. Then a belongs to the support of Pσ∗,g.
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ered set correspondences are weak set-monotonic, but not Maskin monotonic.

Furthermore, we show that weak set-monotonicity and no-veto power are sufficient

for implementation on the domain of strict preferences. However, and somewhat sur-

prisingly, the condition of weak set-monotonicity even coupled with the no-veto power

condition is not sufficient for implementation in mixed Nash equilibrium in general. A

mild strengthening of weak set-monotonicity that we call weak* set-monotonicity is re-

quired. Since no-veto power is not satisfied by important social choice correspondences

like the strong Pareto and the strong core, we also present sufficient conditions that

dispense with the no-veto power condition. (See Benôıt and Ok, 2008, and Bochet,

2007.)

An important feature of our sufficiency proofs is the use of randomized mechanisms.

Since we consider implementation in mixed Nash equilibrium, the use of randomized

mechanisms seems natural. As for the players, the designer’s randomization can be

interpreted as the players’ beliefs about the choice of alternatives. In the literature on

(exact) Nash implementation, randomized mechanisms have been studied by Benôıt and

Ok (2008) and Bochet (2007). These authors restrict attention to mechanisms in which

randomization by the designer can only occur out of equilibrium, and do not attempt

to rule out mixed strategy equilibria with undesirable outcomes. On the contrary, we

allow randomization among f -optimal alternatives at equilibrium and rule out mixed

equilibria with outcomes that are not f -optimal. Our approach also differs from the

use of randomized mechanisms in the literature on virtual implementation (e.g., see

Matsushima, 1998, and Abreu and Sen, 1991), which heavily exploits the possibility of

selecting undesirable alternatives with positive probability in equilibrium.

The paper is organized as follows. Section 2 presents a simple example illustrating

our ideas. Section 3 introduces preliminary definitions and defines mixed Nash imple-

mentation. Section 4 presents the necessary condition of weak set-monotonicity, while

sections 5 and 6 provides several sets of sufficient conditions. Section 7 applies our

results to some well known social choice correspondences and section 8 concludes.
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2 A Simple Example

This section illustrates our notion of mixed Nash implementation with the help of a

simple example.

Example 1 There are two players, 1 and 2, two states of the world, θ and θ′, and four

alternatives, a, b, c, and d. Players have state-dependent preferences represented in the

table below. Preferences are strict. For instance, player 1 ranks b first and a second in

state θ, while a is ranked first and b last in state θ′.

θ θ′

1 2 1 2

b c a c

a a d d

c b c a

d d b b

The designer aims to implement the social choice correspondence f with f(θ) = {a} and

f(θ′) = {a, b, c, d}. We say that an alternative x is f -optimal at state θ if x ∈ f(θ).

We first argue that the social choice correspondence f is not implementable in the

sense of Maskin (1999). Maskin’s definition of Nash implementation requires that for

each f -optimal alternative at a given state, there exists a pure Nash equilibrium (of the

game induced by the mechanism) corresponding to that alternative. So, for instance,

at state θ′, there must exist a pure Nash equilibrium with b as equilibrium outcome.

Maskin requires furthermore that no such equilibrium must exist at state θ. However,

if there exists a pure equilibrium with b as equilibrium outcome at state θ′, then b will

also be an equilibrium outcome at state θ, since b moves up in every players’ ranking

when going from state θ′ to state θ. The correspondence f is thus not implementable in

the sense of Maskin. In other words, the social choice correspondence f violates Maskin

monotonicity, a necessary condition for implementation in the sense of Maskin.

In contrast with Maskin, we do not require that for each f -optimal alternative at

a given state, there exists a pure Nash equilibrium corresponding to that alternative.

We require instead that the set of f -optimal alternatives coincides with the set of mixed

Nash equilibrium outcomes. So, at state θ′, there must exist a mixed Nash equilibrium

with b corresponding to an action profile in the support of the equilibrium.
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We now argue that with our definition of implementation, the correspondence f is

implementable. To see this, consider the mechanism where each player has two messages

m1 and m2, and the allocation rule is represented in the table below.

m1 m2

m1 a b

m2 d c

For example, if both players announce m1, the chosen alternative is a. Now, at state θ,

(m1, m1) is the unique Nash equilibrium, with outcome a. At state θ′, both (m1, m1)

and (m2, m2) are pure Nash equilibria, with outcomes a and c. Moreover, there exists

a mixed Nash equilibrium that puts strictly positive probability on each action profile

(since preferences are strict), hence on each outcome. Therefore, f is implementable in

mixed Nash equilibrium, although it is not implementable in the sense of Maskin.

We conclude this section with two important observations. First, our notion of im-

plementation in mixed Nash equilibrium is ordinal : the social choice correspondence f is

implementable regardless of the cardinal representations chosen for the two players. Sec-

ond, alternative d is f -optimal at state θ′, and it moves down in player 1’s ranking when

moving from θ′ to θ. This preference reversal guarantees the weak set-monotonicity of

the correspondence f , which, as we shall see, is a necessary condition for implementation

in mixed Nash equilibrium.

3 Preliminaries

An environment is a triplet 〈N, X, Θ〉 where N := {1, . . . , n} is a set of n players, X

a finite set of alternatives, and Θ a finite set of states of the world. Associated with

each state θ is a preference profile <θ:= (<θ
1, . . . , <

θ
n), where <θ

i is player i’s preference

relation over X at state θ. The asymmetric and symmetric parts of <θ
i are denoted ≻θ

i

and ∼θ
i , respectively.

We denote with Li(x, θ) := {y ∈ X : x <θ
i y} player i’s lower contour set of x at

state θ, and SLi(x, θ) := {y ∈ X : x ≻θ
i y} the strict lower contour set. For any (i, θ) in

N × Θ and Y ⊆ X, define maxθ
i Y as {x ∈ Y : x <θ

i y for all y ∈ Y }.

We assume that any preference relation <θ
i is representable by a utility function

ui(·, θ) : X → R, and that each player is an expected utility maximizer. We denote
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with Uθ
i the set of all possible cardinal representations ui(·, θ) of <θ

i at state θ, and let

Uθ := ×i∈NU
θ
i .

A social choice correspondence f : Θ → 2X \ {∅} associates with each state of the

world θ, a non-empty subset of alternatives f(θ) ⊆ X. Two classic conditions for Nash

implementation are Maskin monotonicity and no-veto power. A social choice correspon-

dence f is Maskin monotonic if for all (x, θ, θ′) in X × Θ × Θ with x ∈ f(θ), we have

x ∈ f(θ′) whenever Li(x, θ) ⊆ Li(x, θ′) for all i ∈ N . Maskin monotonicity is a neces-

sary condition for Nash implementation (à la Maskin). A social choice correspondence

f satisfies no-veto power if for all θ ∈ Θ, we have x ∈ f(θ) whenever x ∈ maxθ
i X for

all but at most one player i ∈ N . Maskin monotonicity and no-veto power are sufficient

conditions for Nash implemetation (in the sense of Maskin).

Let ∆(X) be the set of all probability measures over X. A mechanism (or game form)

is a pair 〈(Mi)i∈N , g〉 with Mi the set of messages of player i, and g : ×i∈NMi → ∆(X)

the allocation rule. Let M := ×j∈NMj and M−i := ×j∈N\{i}Mj, with m and m−i generic

elements.

A mechanism 〈(Mi)i∈N , g〉, a state θ and a profile of cardinal representations (ui(·, θ))i∈N

of (<θ
i )i∈N induce a strategic-form game as follows. There is a set N of n players. The

set of pure actions of player i is Mi, and player i’s expected payoff when he plays mi

and his opponents play m−i is

Ui(g(mi, m−i), θ) :=
∑

x∈X

g(mi, m−i)(x)ui(x, θ),

where g(mi, m−i)(x) is the probability that x is chosen by the mechanism when the

profile of messages (mi, m−i) is announced. The induced strategic-form game is thus

G(θ, u) := 〈N, (Mi, Ui(g(·), θ))i∈N〉. Let σ be a profile of mixed strategies. We denote

with Pσ,g the probability distribution over alternatives in X induced by the allocation

rule g and the profile of mixed strategies σ.3

Definition 1 The mechanism 〈(Mi)i∈N , g〉 implements the social choice correspondence

f in mixed Nash equilibrium if for all θ ∈ Θ, for all cardinal representations u(·, θ) ∈ Uθ

of <θ, the following two conditions hold:

(i) For each x ∈ f(θ), there exists a Nash equilibrium σ∗ of G(θ, u) such that x is in

the support of Pσ∗,g, and

3Formally, the probability Pσ,g(x) of x ∈ X is
∑

m∈M σ(m)g(m)(x) if M is countable.
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(ii) if σ is a Nash equilibrium of G(θ, u), then the support of Pσ,g is included in f(θ).

Before proceeding, it is important to contrast our definition of implementation in

mixed Nash equilibrium with Maskin (1999) definition of Nash implementation.

First, part (i) of Maskin’s definition requires that for each x ∈ f(θ), there is a

pure Nash equilibrium m∗ of G(θ, u) with equilibrium outcome x, while part (ii) of his

definition is identical to ours. In contrast with Maskin, we allow for mixed strategy

Nash equilibria in part (i) and, thus, restore a natural symmetry between parts (i) and

(ii). Yet, our definition respects the spirit of full implementation in that only optimal

outcomes can be observed by the designer as equilibrium outcomes.

Second, as in Maskin, our concept of implementation is ordinal as all equilibrium

outcomes have to be optimal, regardless of the cardinal representation chosen.

Third, we allow the designer to use randomized mechanisms. This is a natural as-

sumption given that players can use mixed strategies. Indeed, although a randomized

mechanism introduces some uncertainty about the alternative to be chosen, the concept

of a mixed Nash equilibrium already encapsulates the idea that players are uncertain

about the messages sent to the designer and, consequently, about the alternative to be

chosen. We also stress that the randomization can only be among optimal alternatives in

equilibrium. In the context of (exact) Nash implementation, Benôıt and Ok (2008) and

Bochet (2007) have already considered randomized mechanisms.4 There are two impor-

tant differences with our work. First, these authors restrict attention to mechanisms in

which randomization only occurs out of equilibrium, while randomization can occur in

equilibrium in our work, albeit only among optimal alternatives. Second, unlike us, they

do not attempt to rule out mixed strategy equilibria with undesirable outcomes. Also,

our work contrasts with the literature on virtual implementation (e.g., see Matsushima,

1998, and Abreu and Sen, 1991), which heavily exploits randomized mechanisms that

select undesirable alternatives with positive probability in equilibrium. Unlike this liter-

ature, we focus on exact implementation: only f -optimal alternatives can be equilibrium

outcomes.

Finally, from our definition of mixed Nash implementation, it is immediate to see

that if a social choice correspondence is Nash implementable (i.e., à la Maskin), then

4Vartiainen (2007) also considers randomized mechanisms, but for the implementation of social

choice correspondences in (pure) subgame perfect equilibrium on the domain of strict preferences.
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it is implementable in mixed Nash equilibrium. The converse is false, as shown by

Example 1 in Section 2. The goal of this paper is to characterize the social choice

correspondences implementable in mixed Nash equilibrium. The next section provides

a necessary condition.

4 A Necessary Condition

This section introduces a new condition, called weak set-monotonicity, which we show

to be necessary for the implementation of social choice correspondences in mixed Nash

equilibrium.

Definition 2 A social choice correspondence f is weak set-monotonic if for all pairs

(θ, θ′) ∈ Θ × Θ, we have f(θ) ⊆ f(θ′) whenever for all x ∈ f(θ), for all i ∈ N : (i)

Li(x, θ) ⊆ Li(x, θ′) and (ii) SLi(x, θ) ⊆ SLi(x, θ′).5

Weak set-monotonicity is a weakening of Maskin monotonicity. It requires that if

for all players, the lower and strict lower contour sets of all alternatives in f (θ) do

not shrink in moving from θ to θ′, then the set of optimal alternatives f (θ′) at θ′ must

be a superset of the set of optimal alternatives f(θ) at θ. As we shall see in Section

7, important correspondences, like the strong Pareto correspondence, the strong core

correspondence, the top-cycle set and the uncovered set, are weak-set monotonic, while

they fail to be Maskin monotonic.

Theorem 1 If the social choice correspondence f is implementable in mixed Nash equi-

librium, then it satisfies the weak set-monotonicity condition.

Proof The proof is by contradiction on the contrapositive. Assume that the social

choice correspondence f does not satisfy weak set-monotonicity and yet it is imple-

mentable in mixed Nash equilibrium by the mechanism 〈M, g〉.

Since f does not satisfy weak set-monotonicity, there exist x∗, θ, and θ′ such that

x∗ ∈ f(θ) \ f(θ′), while Li(x, θ) ⊆ Li(x, θ′) and SLi(x, θ) ⊆ SLi(x, θ′) for all x ∈ f(θ),

for all i ∈ N .

5Alternatively, a social choice correspondence f is weak set-monotonic if x∗ ∈ f(θ) \ f(θ′) implies

that there exists a pair (x, y) in f(θ) × X and a player i ∈ N such that either (1) x <θ
i y and y ≻θ′

i x,

or (2) x ≻θ
i y and y <θ′

i x.
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Claim. For each player i ∈ N , fix a cardinal representation ui(·, θ) of <θ
i . We claim

that there exists a cardinal representation ui(·, θ
′) of <θ′

i such that ui(x, θ′) ≤ ui(x, θ)

for all x ∈ X, ui(x, θ′) = ui(x, θ) for all x ∈ f(θ).

To prove our claim, consider any pair (x, x′) ∈ f(θ) × f(θ) with x <θ
i x′. Since

Li(x, θ) ⊆ Li(x, θ′) for all x ∈ f(θ), we have that x <θ′

i x′. Hence, we can associate with

each alternative in f(θ) the same utility at θ′ as at θ. Now, fix an x ∈ f(θ) and consider

y ∈ Li(x, θ). Since Li(x, θ) ⊆ Li(x, θ′), we must have ui(y, θ′) ≤ ui(x, θ′) = ui(x, θ). If

x ∼θ
i y, then we can choose ui(y, θ′) ≤ ui(y, θ) = ui(x, θ). If x ≻θ

i y, then we must have

x ≻θ′

i y since SLi(x, θ) ⊆ SLi(x, θ′); we can therefore choose ui(y, θ′) in the open set

(−∞, ui(y, θ)) and still represent <θ′

i by ui(·, θ
′). Finally, if y /∈ ∪x∈f(θ)Li(x, θ), we have

that ui(y, θ) > ui(x, θ) for all x ∈ f(θ). If y ∈ Li(x, θ′) for some x ∈ f(θ), then we can

set ui(y, θ′) ≤ ui(x, θ′) = ui(x, θ) ≤ maxx∈f(θ) ui(x, θ) < ui(y, θ). If y /∈ ∪x∈f(θ)Li(x, θ′),

then we can choose ui(y, θ′) in the open set (maxx∈f(θ) ui(x, θ), ui(y, θ)). This concludes

the proof of our claim.

Before proceeding, we should stress the importance of the nestedness of the strict

lower-contour sets in part (ii) of the definition of weak set-monotonicity. Let x ∈ f(θ)

and assume that x ∼θ
i y ≻θ

i z at state θ and x ∼θ′

i z ≻θ′

i y at state θ′. Both alternatives

z and y are in the lower contour set of x at θ and θ′, but the strict lower-contour sets

are not nested. Clearly, we cannot assign the same utility to x at θ and θ′ and weakly

decrease the utility of both y and z when moving from θ to θ′; the claim does not hold.

Since f is implementable and x∗ ∈ f(θ), for any cardinal representation u(·, θ) of

<θ, there exists an equilibrium σ∗ of the game G(θ, u) with x∗ in the support of Pσ∗,g.

Furthermore, since x∗ /∈ f(θ′), for all cardinal representations u(·, θ′) of <θ′ , for all

equilibria σ of G(θ′, u), x∗ does not belong to the support of Pσ,g. In particular, this

implies that σ∗ is not an equilibrium at θ′ for all cardinal representation u(·, θ′). Thus,

there exist a player i, a message m∗
i in the support of σ∗

i , and a message m′
i such that

∑

m−i

[Ui(g(m∗
i , m−i), θ) − Ui(g(m′

i, m−i), θ)] σ
∗
−i(m−i) ≥ 0

and

0 >
∑

m−i

[Ui(g(m∗
i , m−i), θ

′) − Ui(g(m′
i, m−i), θ

′)]σ∗
−i(m−i).
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It follows that

∑

m−i

[Ui(g(m∗
i , m−i), θ) − Ui(g(m∗

i , m−i), θ
′)] σ∗

−i(m−i) (1)

>
∑

m−i

[Ui(g(m′
i, m−i), θ) − Ui(g(m′

i, m−i), θ
′)]σ∗

−i(m−i)

Let us now consider the cardinal representations presented in the proof of the claim

above; that is, where for all i ∈ N , ui(x, θ′) ≤ ui(x, θ) for all x ∈ X and ui(x, θ) =

ui(x, θ′) for all x ∈ f(θ). Since f is implementable, we have that the support of Pσ∗,g

is included in f(θ). Therefore, Ui(g(m∗
i , m−i), θ) = Ui(g(m∗

i , m−i), θ
′) for all m−i in the

support of σ∗
−i. Hence, the left-hand side of the inequality (1) is zero. Furthermore, we

have that Ui(g(m′
i, m−i), θ) ≥ Ui(g(m′

i, m−i), θ
′) for all m−i. Hence, the right-hand side

of (1) is non-negative, a contradiction. This completes the proof. �

Several remarks are worth making. First, Theorem 1 remains valid if we restrict

ourself to deterministic mechanisms, so that weak-set monotonicity is a necessary con-

dition for implementation in mixed Nash equilibrium, regardless of whether we consider

deterministic or randomized mechanisms. Second, it is easy to verify that weak-set

monotonicity is also a necessary condition for implementation in Nash equilibrium (à

la Maskin) with randomized mechanisms. Third, while we have restricted attention to

von Neumann-Morgenstern preferences, the condition of weak set-monotonicity remains

necessary if we consider larger classes of preferences that include the von Neumann-

Morgenstern preferences. Furthermore, if players have non-additive beliefs about the

play of their opponents (modelled as simple capacities) and their preferences are rep-

resented as Choquet integral of Bernoulli utilities over capacities (as in the concept of

equilibrium under uncertainty introduced by Eichberger and Kelsey, 2000), then our re-

sult also remains valid.6 This suggests that our necessary condition does not critically

depend on the restriction to von Neumann-Morgenstern preferences.

As customary in the large literature on implementation (see Jackson, 2001, and

Maskin and Sjöström, 2002, for excellent surveys), it is natural to ask whether the con-

dition of weak set-monotonicity is “almost” sufficient for implementation. The following

example shows that this is not the case.

6This follows from Lemma 3.3 of Eichberger and Kelsey (2000) and the fact that the Choquet integral

of (σ∗
i , σ∗

−i) over ui(·, θ) is greater than over ui(·, θ
′) whenever ui(x, θ) ≥ ui(x, θ′) for all x ∈ X .
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Example 2 There are three players, 1, 2 and 3, two states of the world, θ and θ′, and

three alternatives a, b and c. Preferences are represented in the table below.

θ θ′

1 2 3 1 2 3

b a c b a ∼ b c

c b a c a

a c b a c b

The social choice correspondence is f(θ) = {a} and f(θ′) = {b}. It is weak

set-monotonic since SL2(a, θ) 6⊆ SL2(a, θ′) and L2(b, θ
′) 6⊆ L2(b, θ). However, it is

not implementable in mixed Nash equilibrium. If it were implementable, then for

any cardinal representation of <θ, there would exist an equilibrium σ∗ at θ such that

the support of Pσ∗,g is {a}. Then, σ∗ would also be an equilibrium at θ′ for some

cardinal representation of <θ′, a contradiction. For instance, fix a cardinal repre-

sentation u(·, θ) at θ. Since players 1 and 3’s preferences do not change from θ to

θ′, we can use the same cardinal representations at θ′. As for player 2, we can use

u2(a, θ′) = u2(a, θ) = u2(b, θ
′) > u2(b, θ) > u2(c, θ) = u2(c, θ

′). The intuition is clear.

Since players 1 and 3’s preferences do not change from θ to θ′ and a is top-ranked for

player 2 at both states, any equilibrium at θ with outcome a remains an equilibrium at

θ′. At state θ′, there is no alternative that can be used to generate a profitable deviation

for player 2.

Note, furthermore, that the social choice correspondence f in Example 2 satisfies the

no-veto power condition. Hence, no-veto power together with weak set-monotonicity are

not sufficient for Nash implementation. The next section provide sufficient conditions:

a strengthening of weak-set monotonicity will be needed.

5 Sufficient Conditions

Before stating the main result of this section, we need to introduce two additional

definitions. The first definition strengthens the notion of weak set-monotonicity.

Definition 3 A social choice correspondence f is weak* set-monotonic if for all pairs

(θ, θ′) ∈ Θ × Θ, we have f(θ) ⊆ f(θ′) whenever for all x ∈ f(θ), for all i ∈ N : (i)

Li(x, θ) ⊆ Li(x, θ′) and (ii) either SLi(x, θ) ⊆ SLi(x, θ′) or x ∈ maxθ′

i X.
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In Example 2, the social choice correspondence f is not weak* set-monotonic since

L2(a, θ) ⊆ L2(a, θ′), a ∈ maxθ′

2 {a, b, c}, and yet a /∈ f(θ′).

Clearly, if a social choice correspondence is Maskin monotonic, then it is weak* set-

monotonic, and if it is weak* set-monotonic, then it is weak set-monotonic. Moreover,

weak* set-monotonicity coincides with weak set-monotonicity if maxθ
i X is a singleton

for each i ∈ N , for each θ ∈ Θ. We refer to this domain of preferences as the single-top

preferences. This mild domain restriction will prove useful in applications (see Section

7). Furthermore, on the domain of strict preferences (a subset of single-top preferences)

SLi(x, θ) = Li(x, θ) \ {x} for all x and θ, and weak* set-monotonicity is then equivalent

to weak set-monotonicity.

The second condition we need is a restriction on the set of cardinal representations

at each state. We assume that for each player i ∈ N , for each state θ ∈ Θ, the set of

admissible cardinal representations is a compact subset U
θ

i of Uθ
i . It follows that there

exists ε > 0 such that for all i ∈ N , for all θ, for each pair (x, y) ∈ X×X with x ≻θ
i y, and

for all ui(·, θ) ∈ U
θ

i : ui(x, θ) ≥ (1 − ε)ui(y, θ) + ε maxz∈X ui(z, θ). Accordingly, we have

to modify Definition 1 of mixed Nash implementation so as to include this restriction on

the set of cardinal representations. We call this new notion of implementation, mixed

Nash C-implementation.

Naturally, with C-implementation, the condition of weak set-monotonicity might fail

to be necessary. For instance, consider the following example.

Example 3 There are two players, 1 and 2, two states of the world, θ and θ′, and a

unique cardinal representation at each state, indicated below:

θ θ′

1 2 1 2

d : 2

c : 1.5

a : 1

b : −1

d : 5

c : 2

a : 1

b : 0

d : 5

a : 1

c : 0.5

b : −1

c ∼ d : 2

a : 1

b : 0

For instance, at state θ, player 1’s utility of d is 2, while player 2’s utility is 5. The social

choice correspondence is f(θ) = {a} and f(θ′) = {c}. It is not weak set-monotonic and

13



yet it is implementable by the following mechanism, where (1/2)a + (1/2)b denotes a

50-50 lottery on a and b.

m1 m2

m1 a (1/2)a + (1/2)b

m2 (1/2)d + (1/2)b c

For “large” enough compact sets of cardinal representations, however, the condition

of weak-set monotonicity remains necessary. For instance, fix δ > 0, and let U
θ

i :=

{ui(x, θ) ∈ [−K, K] for all x ∈ X : x ≻θ
i y ⇔ ui(x, θ) ≥ ui(y, θ) + δ} with K large

enough but finite. The set U
θ

i of cardinal representations is clearly compact, and the

proof of Theorem 1 carries over if δ < 2K/(|X|2).7

We are now ready to present the main result of this section, which states that in

any environment with at least three players, weak* set-monotonicity and no veto-power

are sufficient conditions for implementation in mixed Nash equilibrium. The mechanism

constructed in the proof is partly inspired by the mechanism in the appendix of Maskin

(1999).8

Theorem 2 Let 〈N, X, Θ〉 be an environment with n ≥ 3. If the social choice correspon-

dence f is weak* set-monotonic and satisfies no-veto power, then it is C-implementable

in mixed Nash equilibrium.

Proof Consider the following mechanism 〈M, g〉. For each player i ∈ N , the message

space Mi is Θ × {αi : αi : X × Θ2 → X} × X × Z++. In words, each player announces

a state of the world, a function from alternatives and pairs of states into alternatives,

an alternative, and a strictly positive integer. A typical message mi for player i is

7To see this, fix the following cardinal representation of <θ
i : ui(x, θ) = K for all x ∈ maxθ

i X ,

ui(x, θ) = K−δ|X | for all x ∈ maxθ
i (X \maxθ

i X), etc. This cardinal representation is clearly admissible

and the difference in utilities between any two alternatives that are not indifferent is at least δ|X |. It

is then easy to see that, as required by the claim in the proof of Theorem 1, if we move to a state θ′

where Li(x, θ) ⊆ Li(x, θ′) and SLi(x, θ) ⊆ SLi(x, θ′) for all x ∈ f(θ), for all i ∈ N , then there exists

a cardinal representation ui(·, θ′) with ui(x, θ′) ≤ ui(x, θ) for all x ∈ X , and ui(x, θ′) = ui(x, θ) for all

x ∈ f(θ). That is all we need for the proof of Theorem 1 to go through.
8The mechanism in the main body of Maskin (1999) does not deal with the issue of ruling out

unwanted mixed Nash equilibria.
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(θi, αi, xi, zi). (Note that we denote any integer z in bold.) Let M := ×i∈NMi with

typical element m.

Let {f1(θ), . . . , fKθ(θ)} = f(θ) be the set of f -optimal alternatives at state θ ; note

that Kθ = |f(θ)|. Let 1 > ε > 0 be such that for all i ∈ N , for all θ ∈ Θ, for

each pair (x, y) ∈ X × X with x ≻θ
i y, and for all ui(·, θ) ∈ U

θ

i , we have ui(x, θ) ≥

(1− ε)ui(y, θ)+ ε maxw∈X ui(w, θ). Since U
θ

i is a compact subset of Uθ
i , such an ε exists.

The allocation rule g is defined as follows.

Rule 1: If mi = (θ, α, x, 1) for all i ∈ N (i.e., all agents make the same announcement

mi) and α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , then g(m) is the “uniform” lottery

over alternatives in f(θ); that is,

g(m) =
1

Kθ

Kθ

∑

k=1

fk(θ).

Rule 2: If there exists j ∈ N such that mi = (θ, α, x, 1) for all i ∈ N \ {j}, with

α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , and mj = (θj, αj, xj , zj) 6= mi, then g(m) is

the lottery:

1

Kθ

Kθ

∑

k=1

{

δk(m)
[

(1 − εk(m))αj(fk(θ), θ, θ
j) + εk(m)xj

]

+ (1 − δk(m)) fk(θ)
}

,

with

δk(m) =







δ if αj(fk(θ), θ, θ
j) ∈ Lj(fk(θ), θ)

0 if αj(fk(θ), θ, θ
j) 6∈ Lj(fk(θ), θ)

for 1 > δ > 0, and

εk(m) =







ε if αj(fk(θ), θ, θ
j) ∈ SLj(fk(θ), θ)

0 if αj(fk(θ), θ, θ
j) 6∈ SLj(fk(θ), θ)

.

That is, suppose all players but player j send the same message (θ, α, x, 1) with α(fk(θ), θ, θ)

= fk(θ) for all k ∈ {1, . . . , Kθ}. Let mj = (θj, αj, xj , zj) be the message sent by player

j. If αj(fk(θ), θ, θ
j) selects an alternative x in the strict lower-contour set SLj(fk(θ), θ)

of player j at state θ, then the designer replaces the outcome fk (θ) from the uniform

lottery with the lottery δ [(1 − ε)x + εxj ] + (1 − δ)fk(θ). If αj(fk(θ), θ, θ
j) selects an

alternative x in Lj(fk(θ), θ) \ SLj(fk(θ), θ) (i.e., player j is indifferent between x and
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fk(θ) at state θ), then the designer replaces the outcome fk (θ) from the uniform lottery

with the lottery δx+(1− δ)fk(θ). Otherwise, the designer does not replace the outcome

fk (θ) from the uniform lottery.

Rule 3: If neither rule 1 nor rule 2 applies, then g
(

(θi, αi, xi, zi)i∈N

)

= xi∗ , with i∗ a

player announcing the highest integer zi∗ . (If more than one player i selects the highest

integer, then g randomizes uniformly among their selected xi).

Fix a state θ∗, and a cardinal representation ui ∈ U
θ∗

i of <θ∗

i for each player i. Let u

be the vector of cardinal representations.

We first show that for any x ∈ f(θ∗), there exists a Nash equilibrium σ∗ of G(θ∗, u)

such that x belongs to the support of Pσ∗,g. Consider a profile of strategies σ∗ such that

σ∗
i = (θ∗, α, x, 1) for all i ∈ N , so that rule 1 applies. The (pure strategy) profile σ∗ is

clearly a Nash equilibrium at state θ∗. By deviating, each player i can trigger rule 2,

but none of these possible deviations are profitable. Any deviation can either induce a

probability shift in the uniform lottery from fk(θ
∗) to a lottery with mass (1− ε) on an

alternative in SLi(fk(θ
∗), θ∗) and mass ε on xj , or shift δ probability mass from fk(θ

∗) to

an alternative indifferent to fk(θ
∗) (i.e., an alternative in Li(fk(θ

∗), θ∗)\SLi(fk(θ
∗), θ∗)).

By definition of ε, the former type of deviation is not profitable. Moreover, under σ∗,

the support of Pσ∗,g is f(θ∗). Hence, for any x ∈ f(θ∗), there exists an equilibrium that

implements x.

Conversely, we need to show that if σ∗ is a mixed Nash equilibrium of G(θ∗, u), then

the the support of Pσ∗,g is included in f(θ∗). Let m be a message profile and denote

with gO(m) the set of alternatives that occur with strictly positive probability when m

is played: gO(m) = {x ∈ X : g(m)(x) > 0}. Let us partition the set of messages M

into three subsets corresponding to the three allocation rules. First, let R1 be the set of

message profiles such that rule 1 applies, i.e., R1 = {m : mj = (θ, α, x, 1) for all j ∈ N ,

with α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ)}. Second, if all agents j 6= i send some

message mj = (θ, α, x, 1) with α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ), while agent

i sends a different message mi = (θi, αi, xi, zi), then rule 2 applies and agent i is the

only agent differentiating his message. Let Ri
2 be the set of these message profiles. Let

R2 = ∪i∈NRi
2. Third, let R3 be the set of message profiles such that rule 3 applies.

Consider an equilibrium σ∗ of G(θ∗, u), and let M∗
i be the set of message profiles

that occur with positive probability under σ∗
i . We need to show that gO(m∗) ⊆ f(θ∗)
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for all m∗ ∈ M∗ := ×i∈NM∗
i .

For any player i ∈ N , for all m∗
i = (θi, αi, xi, zi) ∈ M∗

i , define the (deviation) message

mD
i (m∗

i ) = (θi, αD, xD, zD), where: 1) αD differs from αi in at most the alternative

associated with elements (fk(θ), θ, θ
i) for all θ ∈ Θ, for all k ∈ {1, . . . , Kθ}, 2) xD ∈

maxθ∗

i X, and 3) zD > zi and for 1 > µ ≥ 0, the integer zD is chosen strictly larger than

the integers zj selected by all the other players j 6= i in all messages m∗
−i ∈ M∗

−i, except

possibly a set of message profiles Mµ
−i ⊆ M∗

−i having probability of being sent less than

µ. (Note that µ can be chosen arbitrarily small, but not necessarily zero because other

players may randomize over an infinite number of messages.) Consider the following

deviation σD
i for player i from the equilibrium strategy σ∗

i :

σD
i (mi) =







σ∗
i (m

∗
i ) if mi = mD

i (m∗
i ) for some m∗

i ∈ M∗
i

0 otherwise
.

First, note that under (σD
i , σ∗

−i), the set of messages sent is a subset of Ri
2∪R3: either

rule 2 applies and all players but player i send the same message or rule 3 applies. Second,

whenever rule 3 applies, player i gets his preferred alternative at state θ∗ with arbitrarily

high probability (1−µ). Third, suppose that under σ∗, there exists m∗ ∈ Rj
2 with j 6= i.

Under (σD
i , σ∗

−i), with the same probability that m∗ is played, (mD
i (m∗

i ), m
∗
−i) ∈ R3 is

played (rule 3 applies) and with probability at most µ, the lottery g((mD
i (m∗

i ), m
∗
−i))

under (mD
i (m∗

i ), m
∗
−i) might be less preferred by player i than the lottery g(m∗). (With

probability 1 − µ, g((mD
i (m∗

i ), m
∗
−i)) = maxθ∗

i X.) Yet, since µ can be made arbitrarily

small and utilities are bounded, the loss can be made arbitrarily small. Consequently, by

setting αD(fk(θ), θ, θ
i) <θ∗

i αi(fk(θ), θ, θ
i) for all θ and all k ∈ {1, . . . , Kθ}, player i can

guarantee himself a maximal loss of ū, arbitrarily small, in the event that m∗ ∈ ∪j 6=iR
j
2

under σ∗.

Let us now suppose that there exists (m∗
i , m

∗
−i) ∈ R1; that is, for all j 6= i, m∗

j = m∗
i =

(θ, α, x, 1). In the event the message sent by all others is m∗
j = m∗

i , player i strictly gains

from the deviation if αD(fk(θ), θ, θ) ∈ Li(fk(θ), θ) and either (1) αD(fk(θ), θ, θ) ≻
θ∗

i fk(θ)

or (2) αD(fk(θ), θ, θ) ∈ SLi(fk(θ), θ), αD(fk(θ), θ, θ) <θ∗

i fk(θ) and fk(θ) 6∈ maxθ∗

i X.

Since the expected gain in this event can be made greater than ū by appropriately

choosing µ, (1) and (2) cannot hold for any player i. It follows that for all i and all k, it

must be that (1) Li(fk(θ), θ) ⊆ Li(fk(θ), θ
∗) and (2) either SLi(fk(θ), θ) ⊆ SLi(fk(θ), θ

∗)
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or fk(θ) ∈ maxθ∗

i X. Therefore, by the weak* set-monotonicity of f , we must have

f(θ) ⊆ f(θ∗). This shows that gO(m∗
i , m

∗
−i) ⊆ f(θ∗) for all (m∗

i , m
∗
−i) ∈ R1.

Let us now suppose that there exists (m∗
i , m

∗
−i) ∈ Ri

2; that is, for all j 6= i, m∗
j =

(θ, α, x, 1) 6= m∗
i . In this case, any player j 6= i strictly gains from the deviation

σD
j whenever zD is the largest integer, which occurs with probability of at least 1 −

µ, unless gO(m∗
i , m

∗
−i) ⊆ maxθ∗

j X. Since µ can be made arbitrarily small, it must

be gO(m∗
i , m

∗
−i) ⊆ maxθ∗

j X for all j 6= i. Therefore, by no-veto power, it must be

gO(m∗
i , m

∗
−i) ⊆ f(θ∗) for all (m∗

i , m
∗
−i) ∈ Ri

2.

It only remains to consider messages (m∗
i , m

∗
−i) ∈ R3. For such messages the argument

is analogous to messages in Ri
2. For no player i to be able to profit from the deviation

σD
i , it must be gO(m∗

i , m
∗
−i) ⊆ maxθ∗

i X for all i ∈ N . Therefore, the condition of no-veto

power implies gO(m∗
i , m

∗
−i) ⊆ f(θ∗) for all (m∗

i , m
∗
−i) ∈ R3. �

Some remarks are in order. First, our mechanism is a randomized mechanism. As

we have already explained, we believe this is natural given that we consider the problem

of implementation in mixed Nash equilibrium.

Second, our construction uses integer games. While we agree that integer games

are not entirely satisfactory (see Jackson, 2001, for persuasive arguments), we are no

different from the large literature on Nash implementation in having to resort to integer

games in order to rule out unwanted (not f -optimal) mixed Nash equilibria.9

Third, Theorem 2 strongly relies on the condition of weak* set-monotonicity, a weak-

ening of Maskin monotonicity, which is relatively easy to check in applications. We have

not tried to look for necessary and sufficient conditions for mixed Nash implementation.

We suspect that such a characterization will involve conditions that are hard to check in

practice, as it is the case for Maskin’s Nash implementation (e.g., condition µ of Moore

and Repullo, 1990, condition M of Sjöström, 1991, condition β of Dutta and Sen, or

strong monotonicity of Danilov, 1992). We do know, however, as the example below

shows, that weak* set-monotonicity is not necessary for Nash implementation.

9Much of the literature on Nash implementation only requires that there are no unwanted pure Nash

equilibria (the appendix in Maskin, 1999, is an exception). Then integer games can be replaced by

modulo games. Modulo games, however, have (possibly unwanted) mixed equilibria.

18



Example 4 There are three players, 1, 2 and 3, three alternatives a, b and c, and two

admissible profiles of preferences θ and θ′. Preferences are given in the table below.

θ θ′

1 2 3 1 2 3

a b b a ∼ c b ∼ c b

c c a a

b a c b a c

The social choice correspondence is f(θ) = {a, b, c} and f(θ′) = {b, c}. It is not weak*

set-monotonic, but it is implementable in mixed Nash equilibrium. To see that f is not

weak* set-monotonic, note that a /∈ f(θ′) and yet: Li(x, θ) ⊆ Li(x, θ′) for all x ∈ {a, b, c},

for all i ∈ {1, 2, 3}; SL3(x, θ) ⊆ SL3(x, θ′) for all x ∈ {a, b, c}; SL1(c, θ) ⊆ SL1(c, θ
′),

SL1(b, θ) ⊆ SL1(b, θ
′), and SL1(a, θ) 6⊆ SL1(a, θ′), but a ∈ maxθ′

1 X; SL2(a, θ) ⊆

SL2(a, θ′), SL2(c, θ) ⊆ SL2(c, θ
′), and SL2(b, θ) 6⊆ SL1(b, θ

′), but b ∈ maxθ′

2 X. To

show that f is implementable in mixed Nash equilibrium, consider the mechanism in

which players 1 and 2 have two messages each, m1 and m2, player 3 has no messages,

and the allocation rule is represented below (player 1 is the row player):

m1 m2

m1 b c

m2 a b

If the profile of preferences is θ′, (m1, m2) is the unique pure Nash equilibrium of the

game, with outcome c. There is also an equilibrium in which player 1 chooses m1 and

player 2 (appropriately) mixes over m1 and m2. There is no equilibrium in which both

players mix. (Note that m2 is weakly dominant for player 2 at state θ′.) On the other

hand, it is clear that if the profile of preferences is θ, then there is an equilibrium in

which both players totally mix between m1 and m2. Therefore, f is implementable in

Nash equilibrium, although it is not weak* set-monotonic.

We now claim that the restriction to compact sets of cardinal representations and

mixed Nash C-implementation in Theorem 2 can be relaxed (to mixed Nash imple-

mentation) if we strengthen the condition of weak* set-monotonicity to strong set-

monotonicity. Theorem 3 formally states this result without proof.10

10The proof is obtained from the proof of Theorem 2 by setting εk(m) = 0 for all m.
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Definition 4 A social choice correspondence f is strong set-monotonic if for all pairs

(θ, θ′) ∈ Θ × Θ, we have f(θ) ⊆ f(θ′) whenever for all x ∈ f(θ), for all i ∈ N , it is

Li(x, θ) ⊆ Li(x, θ′).

Note that on the domain of strict preferences, strong set-monotonicity coincides with

weak and weak* set-monotonicity. Moreover, if a social choice correspondence is Maskin

monotonic, then it is strong set-monotonic, and if it is strong set-monotonic, then it is

weak-set monotonic.

Theorem 3 Let 〈N, X, Θ〉 be an environment with n ≥ 3. If the social choice correspon-

dence f is strong set-monotonic and satisfies no-veto power, then it is implementable in

mixed Nash equilibrium.

6 Dispensing with No-Veto Power

As pointed out by Benôıt and Ok (2008) and Bochet (2007), the appeal of the no-veto

power condition may be questioned in settings with a small number of agents. In the

context of pure Nash implementation, and allowing for out-of-equilibrium randomness

in the mechanism, they showed that no-veto power can be dispensed with, provided that

some mild domain restrictions are imposed.11 We now show that similar results can be

obtained in the context of mixed Nash implementation.

Definition 5 (Bochet, 2007) An environment 〈N, X, Θ〉 satisfies top-strict-difference

if for any θ ∈ Θ and x ∈ X such that x ∈ ∩i∈I maxθ
i X for I ⊆ N with |I| = n−1, there

exist j, k ∈ N such that maxθ
j X = maxθ

k X = {x}.

Top strict difference requires that if n−1 agents rank x at the top, then at least two

agents must rank x strictly at the top.

11Bochet (2007) showed that with n ≥ 3 Maskin monotonicity is sufficient for Nash implementation

if preferences satisfy top-strict difference. Benôıt and Ok (2008), again with n ≥ 3, showed that Maskin

monotonicity and weak unanimity of f are sufficient if preferences satisfy the top-coincidence condition.

Both papers use out-of-equilibrium randomness in the mechanism, but limit themselves to rule out

unwanted pure strategy equilibria.
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Definition 6 (Benôıt and Ok, 2008) An environment 〈N, X, Θ〉 satisfies the top-

coincidence condition if for any θ ∈ Θ and any I ⊆ N with |I| = n − 1, the set

∩i∈I maxθ
i X is either empty or a singleton.

Clearly, the top-coincidence condition is satisfied on the domain of single-top prefer-

ences. (Remember that on the domain of single-top preferences, each player has a single

most preferred alternative at each state.)

Definition 7 A social choice correspondence f is weakly unanimous if for all θ ∈ Θ,

we have x ∈ f(θ) whenever {x} = ∩i∈N maxθ
i X.

As argued by Benôıt and Ok (2008), the top-coincidence condition is a fairly mild

domain restriction, while weak unanimity is a much weaker condition than no-veto

power. Clearly, if f satisfies no-veto power, then it is weakly unanimous, but the converse

does not hold.

Theorem 4 Let 〈N, X, Θ〉 be an environment with n ≥ 3. If the social choice corre-

spondence f is weak* set-monotonic and either (a) the environment satisfies the top-

coincidence condition and f is weakly unanimous, or (b) the environment satisfies the

top-strict-difference condition, then f is C-implementable in mixed Nash equilibrium.12

Proof For part (a) we use the same mechanism as in the proof of Theorem 2. For

part (b) we slightly modify rule 3, replacing it with the following.

Rule 3’: Let i∗ be a player announcing the highest integer zi∗ . If neither rule 1 nor

rule 2 applies, then g
(

(θi, αi, xi, zi)i∈N

)

is the random lottery that assigns probability
(

1 − 1
z

i∗

)

to xi∗ and probability 1
z

i∗
to the uniform lottery over all alternatives in X.

The proof of both parts is very similar to the proof of Theorem 2; only two changes

are needed.

The first, more substantial, change is for the case of a message realization m∗ ∈ Ri
2.

As in the proof of Theorem 2, we may conclude that all the alternatives in the support

of Pm∗,g must belong to maxθ∗

j X for all j ∈ N \ {i}. (Recall that m∗
j = (θ, α, x, 1) for all

12Theorem 4 is stated for weak* set-monotonic correspondences and C-implementation, but also holds

for strong set-monotonic correspondences and implementation. Only a modification like the one needed

to prove Theorem 3 is required.
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j ∈ N \ {i}, with α(fk(θ), θ, θ) = fk(θ) for all fk (θ) ∈ f (θ) , and m∗
i = (θi, αi, xi, zi) 6=

m∗
j .)

(a) By the top-coincidence condition, the support of Pm∗,g must then consist of a

single alternative x∗. Hence it must be x∗ = f(θ). Player i may deviate and send the

message mD
i = (θi, αD, xD, zi), with xD ∈ maxθ∗

j X and with αD differing from αi only in

the component αD(fk(θ), θ, θ
i) ∈ Li(fk(θ), θ). For such a deviation not to be profitable

it must be: (i) x∗ = fk(θ) <θ∗

i αD(fk(θ), θ, θ
i) and (ii) if αD(fk(θ), θ, θ

i) ∈ SLi(fk(θ), θ)

then x∗ ≻θ∗

i αD(fk(θ), θ, θ
i) or x∗ ∈ maxθ∗

i X. We can conclude that: (1) Li(x
∗, θ) ⊆

Li(x
∗, θ∗) and (2) either SLi(x

∗, θ) ⊆ SLi(x
∗, θ∗) or x∗ ∈ maxθ∗

i X. Furthermore, since

x∗ ∈ maxθ∗

j X for all j ∈ N\{i}, (1) and (2) hold for all j. Consequently, f(θ) = x∗ ⊆

f(θ∗) by the weak* set-monotonicity of f .

(b) By the top-strict-difference condition, there must be at least a j ∈ N\{i} such

that maxθ∗

j X is a singleton. Hence the support of Pm∗,g must consist of a single alter-

native x∗ and it must be x∗ = f(θ). The rest of the proof of this case is as the proof of

part (a).

The second, minor, change in the proof is for the case of a message realization m∗

such that rule 3 (rule 3’) applies. Let i∗ be a player announcing the highest integer zi∗ .

Since no player must be able to profitably gain from a deviation, it must be the case

that xi∗ ∈ maxθ∗

i X for all i ∈ N . (a) It follows from the top-coincidence condition and

weak unanimity that x ∈ f(θ∗). (b) It follows from the top-strict-difference condition

that for at least one agent j, we have maxθ∗

j X = {xi∗}, then, by rule 3’, setting zj > zi∗

and xj = xi∗ is a profitable message deviation for agent j. �

7 Applications

This section contains a series of remarks in which we provide applications of our results

to some important social choice rules.

Remark 1 The strong Pareto correspondence is defined as follows: fPO (θ) := {x ∈ X :

there is no y ∈ X such that x ∈ Li(y, θ) for all i ∈ N and x ∈ SLi(y, θ) for at least

one i ∈ N}. The correspondence fPO is weak set-monotonic, while it fails to be Maskin

monotonic. To see that fPO is weak set-monotonic, consider two states θ and θ′ such that
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for all i ∈ N , for all x ∈ fPO(θ), (i) Li(x, θ) ⊆ Li(x, θ′) and (ii) SLi(x, θ) ⊆ SLi(x, θ′).

Suppose that x∗ ∈ fPO(θ), but x∗ /∈ fPO(θ′). At state θ′, there must then exists y ∈ X

such that y /∈ SLi(x
∗, θ′) for all i ∈ N and y /∈ Li(x

∗, θ′) for at least one i ∈ N . It

follows that y /∈ SLi(x
∗, θ) for all i ∈ N and y /∈ Li(x

∗, θ) for at least one i ∈ N , a

contradiction with x∗ ∈ fPO(θ). Consequently, fPO (θ) ⊆ fPO (θ′) and fPO is weak set-

monotonic. Therefore, on the domain of single-top preferences, fPO satisfies weak* set-

monotonicity.13 Moreover, while it violates no-veto power, fPO satisfies weak unanimity.

Hence, if we restrict attention to the domain of single-top preferences, Theorem 4 applies

and fPO is C-implementable in mixed Nash equilibrium. To see that fPO fails no-veto

power, suppose that at θ all players but one are indifferent between a and b, while the

remaining player strictly prefers a over b. Suppose also that a and b are strictly preferred

by all players to all other alternatives. Then, no-veto power requires b to be f -optimal

while b 6∈ fPO (θ). To see that the strong Pareto correspondence is not Maskin monotonic

on the domain of single-top preferences, consider the following example. There are three

players, 1, 2 and 3, and two states of the world θ and θ′. Preferences are given in the

table below.
θ θ′

1 2 3 1 2 3

d d b d d b

b a a b a ∼ b a

c b c c c

a c d a c d

The strong Pareto correspondence is: fPO(θ) = {a, b, d} and fPO(θ′) = {b, d}. Maskin

monotonicity does not hold since L2(a, θ) ⊆ L2(a, θ′) and yet a 6∈ fPO(θ′).14

Remark 2 A coalitional game is a quadruple 〈N, X, θ, v〉, where N is the set of players,

X is the finite set of alternatives, θ is a profile of preference relations, and v : 2N \{∅} →

2X . An alternative x is weakly blocked by the coalition S ⊆ N \{∅} if there is a y ∈ v(S)

13Recall that on the domain of single-top preferences, maxθ
i X is a singleton for each i ∈ N , for θ ∈ Θ.

14In the unrestricted domain of preferences fPO is not weak* set-monotonic. To see this, suppose

alternative d is not available in the example. The strong Pareto correspondence is then f(θ) = {a, b}

and f(θ′) = {b}. Weak* set-monotonicity fails, since it is L2(a, θ) ⊆ L2(a, θ′), a ∈ maxθ′

2 {a, b, c} and yet

a 6∈ fPO(θ′). In fact, following the reasoning in Example 2, we can see that fPO is not C-implementable

in mixed Nash equilibrium in this modified example.

23



such that x ∈ Li(y, θ) for all i ∈ S and x ∈ SLi(y, θ) for at least one i ∈ S. If there is

an alternative that is not weakly blocked by any coalition in 2N \ {∅}, then 〈N, X, θ, v〉

is a game with a non-empty strong core. A coalitional environment with non-empty

strong core is a quadruple 〈N, X, Θ, v〉, where Θ is a set of preference relations such that

〈N, X, θ, v〉 has a non-empty strong core for all θ ∈ Θ. The strong core correspondence

fSC is defined for all coalitional environments with non-empty strong core as follows:

fSC (θ) := {x ∈ v(N) : x is not weakly blocked by any ∅ 6= S ⊆ N} . Using arguments

that parallel the ones used for the strong Pareto correspondence, it can be verified that

on the unrestricted domain of preferences the strong core correspondence fSC is weak

set-monotonic. If we restrict attention to the domain of single-top preferences fSC also

satisfies weak* monotonicity, while it is not Maskin monotonic on either domain of

preferences. Like fPO, the strong core correspondence violates no-veto power. However,

fSC satisfies weak unanimity and hence, by Theorem 4, is C-implementable in mixed

Nash equilibrium in the domain of single-top preferences.

Remark 3 On the unrestricted domain of preferences, a Maskin monotonic social choice

function - that is a correspondence f such that f (θ) is a singleton for all θ - must be

constant (Saijo, 1988). This needs not be the case for a weak set-monotonic social choice

function. To see this, define a partition {Θ1, . . . , ΘK} of Θ with Θ1 := {θ ∈ Θ : x1 ∈

maxθ
i X} and Θk := {θ ∈ Θ \ (∪k′<kΘk′) : xk ∈ maxθ

i X} for all k > 1 and let f(θ) = xk

for all θ ∈ Θk, for all k. The social choice function f is a selection of player i’s dictatorial

social choice correspondence and is not constant. Yet, it is weak set-monotonic.15

Remark 4 On the domain of strict preferences, the top-cycle correspondence, an im-

portant voting rule, is weak set-monotonic, while it is not Maskin monotonic. At each

state θ, the top-cycle correspondence selects the smallest subset f(θ) of alternatives such

that no alternative outside the set is (strictly) preferred by a strict majority of players

to any alternative inside the set. Formally, we say that alternative x defeats alternative

15To get some intuition, consider two states θ and θ′ such that for all players but player i, preferences

are the same at θ and θ′, player i’s preferences differ only between x2 and x1: x2 ∈ maxθ
i X , x2 ≻θ

i x1,

x1 ∈ maxθ′

i X and x1 ∼θ′

i x2. Let f(θ) = x2 and f(θ′) = x1. Maskin monotonicity and f(θ) = x2 would

imply that x2 ∈ f(θ′); hence f is not Maskin monotonic. However, weak set-monotonicity does not

imply that x2 ∈ f(θ′) since the strict lower contour sets of player i are not nested; f does not violate

weak-set monotonicity.
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y at state θ, written x ≫θ y, if the number of players who prefer x to y is strictly greater

than the number of players who prefer y to x. The top-cycle correspondence is defined

as:

fTC(θ) := ∩{X ′ ⊆ X : x′ ∈ X ′, x ∈ X \ X ′ implies x′ ≫θ x}.

Note that if at state θ the alternative x is a Condorcet winner, then fTC(θ) = {x}.

To prove that the top-cycle correspondence is weak set-monotonic, assume that x∗ ∈

fTC(θ) \ fTC(θ′) while Li(x, θ) ⊆ Li(x, θ′) for all x ∈ fTC(θ), for all i ∈ N. (Re-

call that when preferences are strict Li(x, θ) \ {x} = SLi(x, θ) and, therefore, strong

set-monotonicity coincides with weak set-monotonicity and weak* set-monotonicity.)

Clearly, if x∗ is a Condorcet winner at θ and, hence, fTC(θ) = {x∗}, then x∗ is also a

Condorcet winner at θ′, hence x∗ ∈ fTC(θ′), a contradiction. So, assume that x∗ is not

a Condorcet winner. There must then exist another z ∈ fTC(θ) such that it is not the

case that z ≫θ x∗. Since Li(x
∗, θ) ⊆ Li(x

∗, θ′) and Li(z, θ) ⊆ Li(z, θ
′) for all i ∈ N ,

the ranking between x∗ and z has not changed when moving from θ to θ′, hence it must

be z /∈ fTC(θ′). Iterating the argument (with x∗ = z), it follows that fTC(θ) ∩ fTC(θ′)

must be empty. Finally, since for any x ∈ fTC(θ), x ≫θ y for all y ∈ X \fTC(θ), it must

be that x ≫θ′ y for all y ∈ X \ fTC(θ) as the lower contour sets are nested. Therefore,

fTC(θ′) must be empty, a contradiction with the non-emptyness of the top-cycle set at

each state. Since fTC satisfies no-veto power, it follows that Theorem 3 applies: on

the domain of strict preferences the top-cycle correspondence is implementable in mixed

Nash equilibrium. To see that fTC is not Maskin monotonic, consider the following

example with two states, three alternatives and three players.

θ θ′

1 2 3 1 2 3

a c b a c c

b a c b a b

c b a c b a

We have that fTC(θ) = {a, b, c} and fTC(θ′) = {c}. Since Li(a, θ) ⊆ Li(a, θ′) for all

i ∈ N , Maskin monotonicity and fTC(θ) = {a, b, c} would require a ∈ fTC(θ′).

Remark 5 Another voting rule, the uncovered-set correspondence, is weak set-monotonic

but not Maskin monotonic on the domain of strict preferences. The uncovered-set corre-

spondence is defined as fUS = fTC ∩ fPO. It follows from the weak set-monotonicity of
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fTC and fPO that fUS is weak set-monotone and, hence, by Theorem 3, implementable

in mixed Nash equilibrium.

Remark 6 The Borda and the Kramer voting rules fail to satisfy weak set-monotonicity.16

It is simple to see that the example in Maskin (1999, page 30) shows that the Borda rule

fails to satisfy not only Maskin monotonicity, but also weak set-monotonicity. For the

Kramer rule, consider the example in the table below with five players, three alternatives

and two states θ and θ′.

θ θ′

1 2 3 4 5 1 2 3 4 5

a a a a c a a a a b

b b c c b b b b b c

c c b b a c c c c a

The Kramer rule selects a at state θ and b at state θ′, a violation of weak set-monotonicity.

So, our results are not so permissive so as to imply that all “reasonable” social choice

correspondences are implementable in mixed Nash equilibrium.

8 Conclusions

In this paper, we have introduced the concept of mixed Nash implementation. According

to our definition, a mechanism implements a social choice correspondence f in mixed

Nash equilibrium if the set of all pure and mixed Nash equilibrium outcomes corresponds

to the set of f -optimal alternatives at each preference profile. We have shown that weak

set-monotonicity, a weakening of Maskin’s monotonicity, is necessary for implementa-

tion in mixed Nash equilibrium. Moreover, we have provided several sets of sufficient

conditions for implementation, which involve either mild domain restrictions and weak

unanimity or no-veto power. Importantly, we have shown that important social choice

correspondences that are not Maskin monotonic, like the strong Pareto, the strong core,

the top-cycle and the uncovered set, may be implemented in mixed Nash equilibrium.

Several open problems are left for future research. A first issue is to provide necessary

16The Kramer score of alternative x at state θ is maxy 6=x |{i ∈ N : x ≻θ
i y}|. The Kramer rule selects

the alternatives with the highest Kramer score at each state.
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and sufficient conditions for implementation in mixed Nash equilibrium. A second prob-

lem is to find sufficient conditions for the case of two players. A third problem is to

provide sufficient conditions which do not rely on randomized mechanism. Yet another

issue is to extend the analysis to incomplete information, and study implementation in

mixed Bayesian equilibrium.
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