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Abstract

I propose a game-theoretic model of costly voting that predicts signi�cant turnout rates even
when the electorate is arbitrarily large. The model has two key features that jointly drive the
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an altruistic agent compares her private voting cost with the expected contribution of her vote to
the welfare of the society. Under suitable homogeneity assumptions, the asymptotic predictions
of my model coincide with those of Feddersen and Sandroni (2006a) up to potential di¤erences
between the respective parameters that measure the importance of the election. I demonstrate
with an example that these homogeneity assumptions are not necessary for qualitative predictions
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1. Introduction

Why do we observe substantial turnout rates even among millions of voters? Since

Downs (1957), this very basic question has been a major challenge for political economists.

The di¢ culty is that voting is a time consuming, costly activity, but a single vote (among

many others) is highly unlikely to in�uence the election outcome. Thus, according to the

classical pivotal-voter approach, the turnout rate in a large election must be approximately

zero (Palfrey and Rosenthal, 1985).1

In this paper, I propose a game-theoretic model that predicts signi�cant turnout rates

even when the electorate is arbitrarily large. The model has two key features that jointly

derive the result: (i) altruism towards other voters, and (ii) uncertainty about aggregate

voting behavior.

The objective of an altruistic agent is to maximize the expected value of an additive

welfare function (determined by her ideological beliefs). This implies that when deciding

whether to vote or not, a given altruistic agent compares her private voting cost with

the expected contribution of her vote to the welfare of the society.2 The latter term is

asymptotically proportional to nP, where n is the size of the electorate (excluding the
agent) and P is the probability that the agent will be decisive (pivotal). Thus, compared
with the classical model that assumes population invariant utility functions, the presence

of altruism scales the perceived bene�ts to voting by n. In this framework, whether the

agent would vote in a large election depends on the rate at which P converges to zero.
Uncertainty about aggregate voting behavior, the second key component of the model,

ensures that the equilibrium value of P is asymptotically proportional to 1=n. This, in

turn, implies that the expected contribution of our agent�s vote to the welfare of the society

converges to a positive number, making it well possible for the agent to vote or abstain,

depending on her voting cost.

To model such aggregate uncertainty, I assume that the agents�types are independently

and identically distributed conditional on a parameter q; and that the true value of q is

unknown. More speci�cally, q has two components q` and qr; and qi equals the (condi-

tional) probability that a randomly chosen agent among the supporters of candidate i is

altruistic. By the law of large numbers, in a large election, qi can also be seen as the

fraction of altruistic agents among the supporters of candidate i. Thus, e¤ectively, I as-

sume that the fraction of altruistic agents who support any given candidate is unknown.

1More precisely, Palfrey and Rosenthal show that the turnout rate must be approximately equal to the
fraction of agents who perceive voting as a civic duty that is more important than the associated costs. In
this paper, I abstract from the fact that citizens may perceive voting as a civic duty.

2It is also worth noting that I allow the welfare function in the mind of an altruistic agent to be biased
towards her self-interest. The use of such biased welfare functions in the analysis of social choice problems
dates back to Sen (1966).
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Since sel�sh agents abstain, this uncertainty randomizes the equilibrium vote shares of

the two candidates in such a way that the implied pivot probabilities are proportional to

1=n. By contrast, when q` and qr are known, pivot probabilities decline at an exponential

rate, excluding the special cases in which the values of the parameters that characterize

the electorate happen to imply tie in equilibrium. Hence, when q` and qr are known, the

conclusion of the impossibility theorem of Palfrey and Rosenthal (1985) typically survives

(see Proposition 6 below).

I also show that my theory is compatible with several stylized phenomena related to

political elections. Speci�cally, the model implies that the expected total turnout increases

with the importance and expected closeness of the election, and that the expected turnout

rate of the minority is larger than that of the majority.3

Why does an altruistic agent adopt a welfare maximizing behavior? There are two

possible interpretations. The �rst, more traditional, interpretation is that what I refer to

as a �welfare function� is, in fact, an altruistic von Neumann-Morgenstern utility index;

and the agent is an expected utility maximizer in the standard sense. A disadvantage of

this interpretation is that, when given the chance, such an altruistic agent would be willing

to make huge sacri�ces in order to in�uence the outcome of a large election. In turn,

according to the second interpretation, the agent believes that the maximization of the

welfare function in her mind corresponds to an ethical mode of behavior.4 Moreover, the

agent is �ethical�in the sense that she receives a payo¤ by adopting the ethical behavior.

Thus, the agent votes if, and only if, (i) this is the ethical act, and (ii) the payo¤ of acting

ethically exceeds her private voting cost. Here, the payo¤ associated with ethical behavior

represents the intrinsic utility of such behavior. This alternative interpretation follows the

�warm-glow�literature that focuses on intrinsic value of prosocial actions (e.g., Andreoni,

1990; Coate and Conlin, 2004; Feddersen and Sandroni 2006a, 2006b).

If, in the second interpretation, the intrinsic payo¤ of ethical behavior exceeds the

maximum possible voting cost, the agents corresponding to two interpretations behave

precisely in the same way. I focus on this particular case because allowing for a smaller

intrinsic payo¤ does not lead to qualitatively di¤erent predictions within the context of

my model (see Section 5 below). Furthermore, in real elections that motivate this paper,

a single vote is not likely to in�uence the election outcome, implying that even altruistic

agents in the traditional sense may not be willing to incur unreasonably large voting costs.

Therefore, I remain agnostic about the two interpretations of the model.

Variety of empirical and experimental �ndings support the idea of other-regarding vot-

3These predictions are compatible with empirical and experimental �ndings (see Section 3).
4The ethical theory that promotes such behavior in a game-theoretic set-up is known as act utilitarianism

(see Harsanyi, 1980). I compare this interpretation of my model with the earlier literature on ethical voters
throughout the paper and in Online Appendix A (at https://�les.nyu.edu/oe240/public/atsj1_o_app.pdf).

2



ers. Notably, there is considerable evidence that voting behavior is better explained by

�sociotropic�concerns about the overall state of the macroeconomy rather than individual

concerns (Kinder and Kiewiet, 1979; Markus, 1988). For instance a person, say, an econo-

mist, who might vote against a proponent of free trade policies may actually be concerned

about the number of low skilled workers who may lose their job, rather than her personal

�nancial situation. Moreover, recent experimental evidence points to a positive relation

between subjects�participation in elections and (i) their level of altruism measured with

their generosity in dictator games (Fowler, 2006; Fowler and Kam, 2007), and (ii) their

moral concerns about the well-being of others (Feddersen, Gailmard and Sandroni, 2009).

Motivated by similar observations, recently, scholars have proposed several models of

altruistic or ethical voters. In this literature, the closest model to mine is that of Feddersen

and Sandroni (2006a, 2006b), which focuses on ethical voters who are concerned with

the well-being of the society. Just as I do in the present paper, Feddersen and Sandroni

assume that the fraction of ethical agents who support a given candidate is uncertain. The

distinctive future of their model is the equilibrium concept that they utilize, which is not

game-theoretic in the traditional sense. A key ingredient of their model is a group structure

that divides the set of all types (i.e., agents�characteristics) into certain groups. A rule

for a given group de�nes a type contingent behavior that the types in that group should

follow. Ethical agents get an intrinsic payo¤ by acting as they should, and they compare

this payo¤ with their private voting cost when deciding whether to vote or not (as in the

second interpretation of my model). Thereby, a rule pro�le determines the actual behavior

of all types. In equilibrium, this behavior is required to be consistent in the sense that it

must be induced by a rule pro�le that achieves the best (expected) social outcome from

the perspective of all types in any given group, taking as given the behavior of the types

outside that group.

By de�nition, the consistency requirement above necessitates all types in a given group

to agree about the optimality of a certain rule. This, in turn, implies that the permissible

group structures depend on the level of homogeneity of agents�characteristics such as the

intensity of their preferences towards the candidates.5 By utilizing suitable homogeneity

assumptions,6 Feddersen and Sandroni (2006a, 2006b) focus on a particular case with

two groups determined by the favored candidates of the agents. I also utilize analogous

homogeneity assumptions in the main body of the present paper. In Online Appendix A,

I show that, under these assumptions, the asymptotic predictions of my model coincides

5Speci�cally, higher levels of homogeneity facilitate larger group structures (in measure theoretic sense).
Online Appendix A contains a more detailed discussion of the role of homogeneity assumptions in this set-
up.

6�Heterogeneity within a group is possible, but must be restricted to di¤erences among individuals�cost
to vote.�(Feddersen and Sandroni, 2006b, p.3)
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precisely with those of Feddersen and Sandroni (2006a) for a suitable speci�cation of social

preferences in their model. Feddersen and Sandroni do not investigate if their homogeneity

assumptions are salient for their �ndings. Fortunately, my game-theoretic approach is

compatible with various forms of heterogeneity in agents�characteristics. I demonstrate

this with an example in Appendix A, which shows that all my �ndings survive even under

an extreme form of heterogeneity in agents�intensity of preferences. It is also worth noting

that while Feddersen and Sandroni assume a continuum of agents, I study the asymptotic

behavior of a �nite model.

Another related paper is due to Edlin, Gelman and Kaplan (2007), who propose a model

of altruistic voters with exogenous pivot probabilities. In line with my approach, Edlin et

al. (2007) assume that the pivot probabilities are inversely proportional to the size of the

electorate. By endogenizing pivot probabilities, in this paper I report more satisfactory

comparative statics exercises. Speci�cally, my �ndings that relate turnout to expected

closeness of the election and to the relative size of the supporters of the candidates are not

within the scope of Edlin et al. (2007).

To the best of my knowledge, Jankowski (2007), and Faravelli and Walsh (2011) are the

only other game-theoretic papers on altruistic voters. Unlike the present paper, Jankowski�s

model predicts tie in equilibrium, which is not compatible with substantial vote di¤erentials

that we observe in real elections. (More on this in Online Appendix C.) A key feature of

Jankowski�s model is that all agents have the same, deterministic voting cost. In equilib-

rium, all agents are indi¤erent between voting and abstaining, and they randomly select

these actions in such a way that the expected fraction of votes for both candidates equals

1=2. In turn, my �ndings show that introducing cost uncertainty to Jankowski�s model

would typically lead to low turnout rates by eliminating such mixed strategy equilibria.

(See, in particular, Footnote 17 below.)

Faravelli andWalsh (2011) is a concurrent, working paper that proposes a fundamentally

di¤erent approach. They relax the usual winner-take-all assumption. Speci�cally, they

assume that the winning candidate responds smoothly to her margin of victory. In their

model, a single vote has always an e¤ect on the policy outcome, but this e¤ect becomes

smaller in a large election. Assuming a form of altruism as in the present paper, they show

that this alternative approach is also compatible with signi�cant turnout rates, despite the

fact that there is no uncertainty about aggregate voting behavior in their model.

From a technical point of view, a key �nding of the present paper is a formula on

the magnitude of pivot probabilities that requires q to be a continuous random variable

(see Lemma E1 in Appendix E). Earlier, Good and Mayer (1975) have provided a related

formula. The main novelty of my approach is that I allow for abstention. Put formally,

Good and Mayer assume that a randomly chosen agent votes for a given candidate with an
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unknown probability P and for the other candidate with probability 1 � P . By contrast,

in my model, even the altruistic agents may abstain. Speci�cally, in the equilibrium of my

model, a randomly chosen agent votes for candidate i with probability �iqiF (C�i ); where �i
is the fraction of agents who prefer candidate i, and F (C�i ) is the fraction of participants

among altruistic agents with such preferences. Allowing for abstention in this way enables

me to identify the interactions between individuals�participation decisions and turnout

rates of the supporters of the two candidates. In turn, my comparative statics exercises

build upon these observations.

In the next section I formally introduce my model. In Section 3, I present my main

�ndings under uncertainty in q. Section 4 contains my negative result for the case of

known q. In Section 5, I discuss several extensions of my basic model with uncertain q.

In Section 6, I relate my model to Feddersen and Sandroni (2006a, 2006b). I conclude in

Section 7. Appendix contains the proofs and some other supplementary material.

2. The Model

The society consists of n+1 agents with a generic member h. To simplify the exposition,

I assume that all agents are eligible to vote and that n is a known positive integer.

Throughout the paper, I often use the same notation for a random variable and a

possible value of that random variable.

Agent h has private knowledge of: (i) her policy type which can be ` (left) or r (right),
(ii) her personality type which can be s (sel�sh) or a (altruistic), and (iii) her voting
cost C 2 R+. I denote by �h the three dimensional random vector that describes these

characteristics. In what follows, I simply write �type�instead �policy type.�

� 1; :::; �n+1 are iid random variables conditional on a possibly random vector q � (q`; qr).
Here, qi 2 [0; 1] stands for the probability that a randomly chosen agent of type i 2 f`; rg
is altruistic. I denote by G the joint distribution of (q`; qr). I assume that q` and qr are

positive with probability 1. In turn, � stands for the probability that a randomly chosen

agent is of type `. For simplicity, I assume that � is known. The distribution function of a

randomly chosen agent�s voting cost is given by F .

When n is large, by the law of large numbers, � can be seen as the fraction of type `

agents and qi as the fraction of altruistic agents among type i agents. I set � � 1=2 so that
type ` agents is a minority.

I make the following assumption on the distribution of C.

(H1) The support of F is an interval of the form [0; c] � R+ for some c > 0. Moreover, F
has a density f that is continuous and positive on [0; c].
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There are two candidates, also denoted by ` and r. Given any i 2 f`; rg, j stands for
the element of f`; rg di¤erent from i. The election is decided by majority rule. In case of

a tie, the winner is determined by tossing a fair coin.

An agent of type i believes that the victory of candidate i will bring a material policy

payo¤ u > 0 to every agent and the victory of candidate j is worth 0. Thus, agents of

di¤erent types disagree about which candidate is good for the whole society. Accordingly, I

assume that the behavior of an altruistic agent h0 of type imaximizes the following function:

E

 �
u1i � Ch01

h0
�
+  

X
h 6=h0

�
u1i � Ch1

h
�!

: (1)

Here, E is the expectation operator;  2 (0; 1] is the weight that an altruistic agent�s

objective function places on others� payo¤s; Ch is the voting cost of agent h, for h =

1; :::; n+ 1, and

1h � 1 if h votes, 1h � 0 otherwise;
1i � 1 if candidate i wins, 1i � 0 otherwise.

As I discussed earlier, there are two interpretations of why the agent in question maxi-

mizes the function (1).

(I) Preference-Intensity Interpretation: The agent is an expected utility maximizer
in the traditional sense, and the term inside the expectation operator in (1) is simply the

von Neumann-Morgenstern utility index of the agent. Therefore, the agent always takes

the action that maximizes (1).

(II) Warm-Glow Interpretation: (1) represents a welfare function (that is possibly
biased towards the agent�s self-interest). The agent believes that taking the action that

maximizes this function is ethically right thing to do. Moreover, the agent is ethical in the

sense that she receives an intrinsic payo¤D > 0 by adopting the ethical mode of behavior.

Thus, whenever she should vote from the ethical point of point of view, the agent compares

D with her private voting cost Ch0. Speci�cally, the agent votes for a given candidate if

this action maximizes (1) and if, at the same time, D � Ch0. In turn, the agent abstains if

D < Ch0 ; or if this is the action that maximizes (1).

It is important to note that according to interpretation (II), the agent takes the action

that maximizes (1) whenever D � Ch0. If D � c, this is a sure event, and hence, the two in-

terpretations predict the same behavior. Henceforth, I assume D � c within interpretation

(II). (I discuss the case D < c below, in Remark 1 and Section 5.)

When solving the optimization problem that I just described, each altruistic agent takes
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as given the strategies of others in a game-theoretic fashion. A (pure) strategy for agent

h is a measurable map Yh : f`; rg � fa; sg � R+ ! f�1; 0; 1g such that Yh(i; s; C) � 0

for i 2 f`; rg and C 2 R+. Here, �1; 1 and 0 stand for �vote for candidate `,� �vote
for candidate r� and �abstain,� respectively. Thus, sel�sh agents (who care only about

their own payo¤) are assumed to abstain. Since such agents would necessarily abstain as n

tends to1, this assumption has no role in my asymptotic results; it simply serves to avoid
technical details.

The action that agent h will take is a random variable given by Xh � Yh � �h. Since
the agents are ex-ante symmetric, I assume that all agents use the same strategy, i.e.,

Y1 = Y2 = � � � = Yn+1. Given that � 1; :::; �n+1 are iid conditional on q, it follows that so are

X1; :::; Xn+1.

Since voting costs are positive, for any agent casting a vote against her favored candidate

is strictly dominated by abstaining. Conditional on q; this makes the number of votes for

candidate ` a Binomial random variable with �success probability� PrfXh = �1 j qg.
Similarly, PrfXh = 1 j qg gives the success probability for the conditional distribution
of the number of votes for candidate r. I denote by Pi(q) the implied conditional pivot

probability for a given agent of type i. That is, Pi(q) is the conditional probability of the

event that the election is tied excluding the agent and candidate i loses the coin toss, or

the agent�s vote creates a tie and i wins the coin toss. The usual formula for Pi(q) can be

found in Appendix E.1.

Gi stands for the posterior distribution function of q from the perspective of an altru-

istic agent of type i. In turn, Pi denotes such an agent�s assessment of the unconditional
probability of being pivotal:

Pi �
Z
[0;1]2

Pi(q) dG
i(q): (2)

Consider an altruistic agent h0 of type i whose voting cost is C � Ch0. Holding �xed the

strategies of all other agents, let E+i be the value of (1) that obtains if the agent votes for
candidate i and if the expectation operator is applied with respect to Gi. Similarly, let Ei
be the corresponding value of (1) that obtains if the agent abstains. It can easily be seen

that E+i � Ei = u (1 +  n)Pi � C. Here, the term

�i � u (1 +  n)Pi (3)

is the increase in (1) due to the potential contribution of the agent�s vote to the welfare

of the society through the election outcome. It follows that to maximize (1), an altruistic

agent of type i should vote for candidate i if �i > C; and abstain if C < �i. These

observations lead to the following notion of equilibrium.
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De�nition 1. An equilibrium consists of a pair of cuto¤ points C�` ; C
�
r 2 R+ such that

��i = C�i for i 2 f`; rg ; where ��i is the value of (3) induced by the conditional voting
probabilities PrfXh = �1 j qg = �q`F (C

�
` ) and PrfXh = 1 j qg = (1� �)qrF (C

�
r ).

Remark 1. Recall that according to interpretation (II), even if the voting cost C of a type
i agent is less than �i; the agent would not vote whenever C > D. This point becomes

immaterial when D � c, for then the event C > D becomes null. On the other hand, when

D < c; the notion of equilibrium above needs to be modi�ed accordingly. In Section 5, I will

show that the case D < c does not lead to qualitatively di¤erent predictions (although the

implied turnout rates would typically be lower). In fact, the modi�ed notion of equilibrium

can be transformed back to the equilibrium notion above upon a suitable adjustment of

voting costs.

The following preliminary observation shows that an equilibrium exists, and the cuto¤

points are positive in any equilibrium.

Proposition 1. An equilibrium exists. Moreover, in any equilibrium, C�i > 0 for every

type i.

As n tends to1; do the cuto¤points converge to 0 or to positive numbers? By equation

(3), the answer to this question depends on the rate at which P` and Pr converge to 0. In
turn, the rate of convergence of P` and Pr depends on the distribution of q via the equation
(2). In the remainder of the paper, I will examine the asymptotic behavior of equilibria

under two alternative assumptions on the distribution of q.

3. Asymptotic Turnout when q Is Unknown

In this section, I assume that q is a continuous random variable. Speci�cally:

(H2) G has a continuous and positive density g on [0; 1]2.

I will also assume that:

(H3) g(t+ "; t� ") is nonincreasing in " for 0 � " � minft; 1� tg and every �xed t 2 [0; 1].

(H4) g(q`; qr) = g(qr; q`) for every (q`; qr) 2 [0; 1]2:

(H2) is my most important assumption, for, by itself, it ensures that limnC
�
i;n > 0 for

any type i and any sequence of convergent equilibria (C�`;n; C
�
r;n). Assumptions (H3) and

(H4), on the other hand, enable me to show that there exists a unique such limit point for

each type and to report clear-cut comparative statics exercises. Intuitively, (H3) implies

that the prior density g does not place higher probabilities on asymmetric realizations of

q` and qr. More speci�cally, (H3) requires that a vertical movement away from the line
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q` = qr (caused by a fall in qr) does not increase g. In turn, (H4) rules out the cases in

which one of the candidates may have an ex-ante advantage in terms of the fractions of

altruistic agents. In particular, (H4) implies that the expected values of q` and qr with

respect to g are equal to each other.

It is important to note that (H3) and (H4) allow a positive correlation between q` and qr;

as one may expect in reality. For example, it can easily be checked that both assumptions

hold if the distribution of q is obtained by conditioning a bivariate normal distribution to

the unit square [0; 1]2 provided that the marginals of the normal distribution are identical.

A simple case which immediately implies (H3) and (H4) is when q` and qr are independently

and uniformly distributed. More generally, when q` and qr are iid beta random variables

with monotone or unimodal densities, then (H3) and (H4) hold.7

My �nal assumption in this section is that:

(H5) C is uniformly distributed on [0; c].

While (H5) simpli�es the exposition of my comparative statics exercises, all my �ndings

remain true for a more general class of cost distributions (see Section 5).

I start with a simple claim:

Claim 1. The posterior distribution Gi admits a density gi de�ned by

gi(q) � qi
qi
g(q) for every q 2 [0; 1]2; (4)

where qi is the expectation of qi with respect to g.

In the next proposition, I show that the cuto¤ points of both types converge to positive

numbers.8 I also provide two equations that jointly determine these limit points. This is

the main �nding of the paper.

Proposition 2. For each type i; there exists a unique number C�i such that limnC
�
i;n = C�i

for any sequence of equilibria (C�`;n; C
�
r;n). Moreover, we have 0 < C�i <1 and

C�i = u 
T �j
qi

Z 1

maxfT�` ;T�r g
0

�g(�T �r ; �T
�
` ) d� for i = `; r; (5)

where T �` � �F (C�` ) and T
�
r � (1� �)F (C�r ).

In the proof of this proposition, I �rst provide a formula for the asymptotic magnitude

7In Appendix B, I provide explicit formulas for the compatible distributions that I mentioned in this
paragraph.

8I do not have a result on the rate of this convergence, but I have performed some simulations. The
results indicate that the cuto¤ points do not signi�cantly di¤er from their limit points when n > 1000.
(See Online Appendix B.)

9



of Pi under the assumption that the cuto¤ points of both types remain bounded away
from 0. Then, I show that the cuto¤ points are indeed bounded away from 0. Thereby, I

conclude that

nPi !
Z 1

maxfT�` ;T�r g
0

gi(�T �r ; �T
�
` ) d� (6)

along any subsequence of equilibria that converges to an arbitrary pair of numbers (C�` ; C
�
r ).

Then, I substitute (4) into expression (6) and invoke the de�nition of equilibrium to obtain

the system of equations (5). The �nal step in the proof is to show that this system of

equations has a unique solution (C�` ; C
�
r ). Since it is somewhat involved, I will discuss this

uniqueness issue after presenting my comparative statics exercises.

Now, I will examine expression (6) more closely to provide insight about the behavior

of pivot probabilities. The �rst point to note is that the conditional pivot probability Pi(q)

exhibits a knife-edge behavior depending on the distance between the voting probabilities

PrfXh = �1 j qg and PrfXh = 1 j qg. If this distance remains bounded away from
0 as n ! 1, then Pi(q) declines at an exponential rate with n (see Corollary E1 in

Appendix E). By contrast, Pi(q) is asymptotically proportional to 1=
p
n when PrfXh =

�1 j qg = PrfXh = 1 j qg. Thus, for large values of n, almost all contribution to

unconditional pivot probability Pi comes from those q for which PrfXh = �1 j qg and
PrfXh = 1 j qg are almost equal to each other. In turn, in equilibrium, the condition
PrfXh = �1 j qg = PrfXh = 1 j qg holds if and only if �q`F (C�` ) = (1 � �)qrF (C

�
r ).

Therefore, Pi can be approximated by the posterior likelihood of those realizations of q
that are very close to the following set:

CR �
�
(q`; qr) 2 [0; 1]2 :

q`
(1� �)F (C�r )

=
qr

�F (C�` )

�
:

I refer to this set as the critical ray, and hence the notation CR. Next note that if we
denote by � the common value of q`

(1��)F (C�r )
and qr

�F (C�` )
along the critical ray, we obtain the

following alternative expression:

CR =

�
(�T �r ; �T

�
` ) : 0 � � � 1

maxfT �` ; T �r g

�
;

where T �` � �F (C�` ) and T
�
r � (1 � �)F (C�r ). Expression (6) builds open this equality.

Speci�cally, (6) tells us that, asymptotically, Pi is equal to 1=n multiplied by the integral
of gi (with respect to �) over CR.
Since nPi is asymptotically proportional to �i, we can understand the asymptotic be-

havior of �i by examining the integral on the right side of expression (6). The following

lemma uncovers two properties of this integral, which prove useful in the rest of my analysis.
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Lemma 1. Set 'i (T`; Tr) �
R 1

maxfT`;Trg
0 gi(�Tr; �T`) d� for i = `; r and (T`; Tr) 2 (0; 1)2

with T` + Tr � 1.
(i) (Level E¤ect) The functions '` and 'r decrease with T`+Tr holding Tr=T` constant.

(ii) (Ratio E¤ect) Suppose Tr � T`. Then, the functions '` + 'r and 'r decrease with

a further increase in Tr=T` holding T` + Tr constant.

I present the proof of this lemma in Appendix E, which is a simple algebraic exercise.

To gain insight, let T` and Tr stand for hypothetical values of the equilibrium objects T �`
and T �r , respectively. Suppose that excluding a given altruistic agent, all agents behave as

implied by T` and Tr. Then, how would the changes in T` and Tr in�uence the motivation

to vote for the particular agent that we excluded? The level and ratio e¤ects answer this

question. Speci�cally, level e¤ect shows that an increase in T` + Tr decreases �` and �r
asymptotically. Thereby, the level e¤ect formalizes the idea that a single agent would be

less inclined to vote in elections with higher expected turnout. Similarly, the anticipation of

a large margin of victory could decrease agents�motivation to vote. Ratio e¤ect formalizes

this point by showing that, asymptotically, �` + �r decreases in response to an increase

in Tr=T` � 1. On the other hand, while �r behaves in the same direction, �` may or may
not decrease. The reason is the informational asymmetry between the two types of agents:

for each q over the critical ray, we have g`(q)=gr(q) = q`=qr = Tr=T` implying that �`=�r
approximately equals Tr=T`. Thus, an increase in Tr=T` simply increases �`=�r.

3.1 Comparative Statics

Let us take a large value of n and suppose that all agents behave as predicted by

the equilibrium of the model. Then, by the law of large numbers, the observed fraction

of votes for candidate i relative to the size of the electorate (including the abstainers)

would approximately be equal to qiT �i (up to a small probabilistic error term). In turn,

Proposition 2 implies that T �i must be close to the number T
�
i . Thus, in my comparative

statics exercises, I use the random variable qiT �i to approximate the fraction of votes for

candidate i relative to the size of the electorate. This motivates the following de�nition.

De�nition 2. Expected turnout rate refers to q`T �` +qrT
�
r , while expected margin of victory

is de�ned by

MV �
Z
[0;1]2

����qrT �r � q`T
�
`

qrT �r + q`T �`

���� g(q) dq:
In turn, the winning probability of the majority is the probability of the event

n
q`
qr
� T �r

T �`

o
with respect to g.
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By the logic of approximation that I just explained, we can also view the random variable

qiF (C
�
i ) as the turnout rate of type i agents. Thus, in what follows, by the expected turnout

rate of the minority (resp. majority) I mean the number q`F (C
�
` ) (resp. qrF (C

�
r )). Finally,

I will refer to � as the level of disagreement, for smaller values of � correspond to those cases

in which a large fraction of the society agrees that candidate r is better than candidate `.

The next proposition compares the equilibrium behavior of the two types of agents.

Proposition 3. Suppose � < 1=2: Then, C�r is smaller than C�` , while the winning

probability of the majority is larger than 1=2. 9

That C�r is smaller than C
�
` means that an altruistic agent in the majority is less likely

to vote than an altruistic agent in the minority. Since q` = qr, this also implies that

the expected turnout rate of the majority is smaller than the expected turnout rate of the

minority. This phenomenon is known as the underdog e¤ect in the literature.10 Proposition

3 also shows that the underdog e¤ect is not strong enough to o¤set the size advantage of

the majority in that they are more likely to win the election.

Analytically, Proposition 3 is a trivial consequence of the following observations that

we obtain by dividing the �rst equation in (5) with the second one:

C�`
C�r

=
T �r
T �`
� (1� �)F (C�r )

�F (C�` )
, i.e., (7)

C�`F (C
�
` )

C�rF (C
�
r )
=
1� �

�
. (8)

On the other hand, conceptually, what drives Proposition 3 is the aforementioned in-

formational asymmetry: In a large election with T �i > T �j , the outcome of the election can

be close only if qj > qi. But for such q; we have gj(q) > gi(q), implying that an altruistic

agent of type j deems herself more likely to be pivotal than an altruistic agent of type i.

Thus, in the limit, T �i > T �j implies C
�
j > C�i . But with � < 1=2, this can be true only if

C�` > C�r and T
�
` < T �r . Moreover, in view of the symmetry assumption (H4), that T

�
` < T �r

simply means that the winning probability of the majority is larger than 1=2.

The next proposition establishes a negative correlation between turnout and margin

of victory. This phenomenon, which is known as the competition e¤ect, has attracted

considerable attention in the empirical literature (e.g., Shachar and Nalebu¤, 1999; Blais,

2000).

Proposition 4. An increase in the level of disagreement increases the expected turnout
rate (unless the expected turnout rate is already at its maximum level, q`� + qr(1 � �)).

9When � = 1=2; these strict relations turn into equalities.
10Levine and Palfrey (2007) provide experimental evidence for the underdog e¤ect.
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Moreover, an increase in the level of disagreement decreases the expected margin of victory.

The proof of the �rst part of Proposition 4 builds upon the level and ratio e¤ects. To

understand the basic arguments, assume that C�` and C
�
r are less than c. Then, under the

uniformity assumption (H5), equations (7) and (8) imply that T �r =T
�
` is decreasing with �.

Thus, an increase in � causes an upward pressure on C�r and C
�
` + C�r through the ratio

e¤ect. On the other hand, if the expected turnout rate were to fall, the level e¤ect would

push up C�r and C
�
` +C

�
r further. But then, since F (C) is linear in C, the expected turnout

rate would also increase, which is a contradiction. In turn, if the expected turnout rate

were to remain constant, we would obtain a similar contradiction. Hence, an increase in �

must actually increase the expected turnout rate. Finally, the second part of Proposition 4

follows from the fact that the expected margin of victory increases with T �r =T
�
` (see Lemma

E6 in Appendix E).

The last result of this section examines the e¤ects of the parameters u;  and c.

Proposition 5. An increase in u increases the expected turnout rate (unless the expected
turnout rate is already at its maximum level). Moreover, the expected margin of victory is a

nondecreasing function of u . The consequences of a decrease in c are analogous to those

of an increase in u .

A particular implication of Proposition 5 is that the expected turnout rate increases

with u. The parameter u measures how strongly a given candidate would contribute to

the welfare of the society according to her supporters� belief. Therefore, Proposition 5

is consistent with empirical �ndings which show that there is a positive relation between

turnout and voters�perception of how important the election is (e.g., Teixeira, 1987, 1992).

The level e¤ect is the main force behind Proposition 5. Indeed, if C�` and C
�
r are less

than c, the ratio T �r =T
�
` solely depends on �. So, among such equilibria, the ratio e¤ect is

silent about the implications of a change in u. On the other hand, by the level e¤ect, a

fall in the expected turnout rate would push C�` and C
�
r upward. Moreover, an increase in

u would only strengthen the upward pressure on C�` and C
�
r ; implying that the expected

turnout rate should actually increase. Therefore, a fall in the expected turnout rate is not

compatible with an increase in u. By the same logic, we can also rule out the case in which

the expected turnout rate remains constant in response to an increase in u.

In turn, since the expected margin of victory is an increasing function of T �r =T
�
` ; the

second part of Proposition 5 is equivalent to saying that T �r =T
�
` is a nondecreasing function

of u . The latter statement is true because: (i) T �r =T
�
` is constant for smaller values of u ;

(ii) as we increase u ; at some point C�` reaches c while C
�
r remains below c, and (iii) a

further increase in u increases T �r while keeping T
�
` constant.

In passing, I will comment on the proof of the fact that the system of equations (5) has
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a unique solution. The �rst point to note is that if there were two solutions, say (C�` ; C
�
r )

and (C
�
` ; C

�
r), the sign of C

�
` � C

�
` would be the same as that of C

�
r � C

�
r by equation (8).

Assume therefore that C
�
` > C�` and C

�
r > C�r : Then, (H5) and (8) imply C

�
`=C

�
r � C�` =C

�
r .

Thus, by (7), when moving from the smaller solution to the larger solution, the ratio e¤ect

creates a downward pressure on �r. However, the level e¤ect also pushes �r downward,

implying that C
�
r � C�r , a contradiction as we seek.

4. Asymptotic Turnout when q Is Known

In this section, I investigate the asymptotic behavior of equilibria under the assumption

that q` and qr are known. Since � is already taken as deterministic, this assumption rules

out the only source of parametric uncertainty. Thereby, we obtain a binomial model with

altruistic voters. In this set-up, the knife-edge behavior of pivot probabilities leads to the

following negative result.

Proposition 6. Suppose that q` and qr are known and equal, and that (H1) holds. Then,
for any sequence of equilibria

�
C�`;n; C

�
r;n

�
:

(i) � < 1
2
implies limnC

�
`;n = limnC

�
r;n = 0.

(ii) � = 1
2
implies limnC

�
`;n = limnC

�
r;n =1.

The �rst part of Proposition 6 shows that when � < 1=2; the cuto¤ points converge

to 0 as n tends to 1; provided that other potential asymmetries do not o¤set the size

advantage of the majority. Hence, the impossibility theorem of Palfrey and Rosenthal

(1985) essentially survives when q is known.

The proof of the �rst part of the proposition builds upon two main observations. First,

as I noted in the previous section, when PrfXh = �1 j qg and PrfXh = 1 j qg are distant,
the pivot probabilities P`(q) and Pr(q) decrease at an exponential rate with n, while �i
increases only linearly with n. Therefore, when q is known, equilibria with positive cuto¤

points can be sustained asymptotically only if the equilibrium values of PrfXh = �1 j qg
and PrfXh = 1 j qg get arbitrarily close to each other as n tends to 1.
The second point is that if, in equilibrium, PrfXh = �1 j qg and PrfXh = 1 j qg are

close to each other, the implied pivot probabilities for the two types of agents must also be

close, and hence, the cuto¤ points C�` and C
�
r must be close as well. But, assuming q` = qr

and � < 1=2, if C�` and C
�
r are substantially large numbers that are close to each other,

the continuity of F implies that PrfXh = �1 j qg = �q`F (C
�
` ) is signi�cantly smaller than

PrfXh = 1 j qg = (1� �)qrF (C
�
r ), which is a contradiction.

On the other hand, when q` = qr and � = 1
2
, in equilibrium we have PrfXh = �1 j qg =

PrfXh = 1 j qg. Therefore, in this case, the implied pivot probabilities are asymptotically
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proportional to 1=
p
n, and the cuto¤ points become arbitrarily large as n tends to 1.

In Appendices C and D, I will provide some generalizations of Proposition 6 which show

that the conclusion of this result is quite robust. It should also be noted that if we were

to assume that the agents vote for the two candidates with equal probabilities in an iid

fashion, the law of large numbers would virtually rule out signi�cant vote di¤erentials in a

large election. (More on this in Online Appendix C.) By contrast, when q is uncertain in

my model, not only is the majority more likely to win, but we might even observe extreme

vote di¤erentials at asymmetric realizations of q. Next, I will discuss some extensions of

the basic model that I analyzed in Section 3.

5. Extensions of the Positive Results

As I discussed in Introduction, an important issue in earlier models on ethical voters

is the role of homogeneity assumptions that imply the existence of large groups of agents

with similar ethical judgments. (More on this in Online Appendix A.) So far, in this paper

I have utilized similar homogeneity assumptions. However, my approach is conceptually

independent from these assumptions, for in my model, each agent takes as given the behav-

ior of others in a game-theoretic fashion. For example, one of my homogeneity assumptions

(which might be especially questionable) is that each agent can be characterized by the

same known level of u. This corresponds to a situation in which all agents agree about

how strongly their favored candidates would contribute to the welfare of the society. In

Appendix A, I will show that we can indeed dispense with this assumption. Speci�cally,

if for each agent, u is a (privately known) random draw from a uniform distribution, then

the conclusions of Propositions 1-4 and a suitable modi�cation of Proposition 5 continue

to hold.

When analyzing this example, I transform voting costs in a way that enables me to

utilize the machinery that I have developed in Section 3. The transformed cost distribution

is not uniform and does not have a bounded support. To cover such cases, in Appendix

E, when proving my results I will replace (H1) and (H5) with more general assumptions.

Speci�cally, I will show that except for the comparative statics exercise with respect to c;

the conclusions of Propositions 1-6 remain true if:

(i) The support of F is a subinterval of R+ that contains 0;

(ii) F is continuously di¤erentiable, strictly increasing and concave on its support;

(iii) F (
C)=F (C) is a nonincreasing function of C 2 R++ for every �xed 
 � 1.

Examples of such distribution functions include the exponential distribution F (C) � 1�
e��C (C 2 R+; � > 0) (or the exponential distribution conditioned to an interval [0; c]) and
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functions of the form F (C) � c��C� for C 2 [0; c] and some �xed � 2 (0; 1]. In particular,
(H5) implies properties (i)-(iii). It should also be noted that in the main body of the paper,

instead of property (i) above I have chosen to use (H1) simply because this allows me to

assume D � c so that interpretations (I) and (II) predict the same behavior.

Within interpretation (II), all of my results continue to hold when 0 < D < c (although

the implied turnout will be lower than that implied by interpretation (I)). To see the

reason, let C be the voting cost of an altruistic agent of type i. Then, according to

interpretation (II), the agent would vote for her favored candidate if and only if C �
minf�i; Dg. Thus, the corresponding notion of equilibrium requires a pair of cuto¤ points

C�` ; C
�
r such that �

�
i = C�i ; PrfXh = �1 j qg = �q`F (minfC�` ; Dg) and PrfXh = 1 j qg =

(1 � �)qrF (minfC�r ; Dg). In turn, if we set eF (C) � F (minfC;Dg) for C 2 R+, we can
rewrite these equations as ��i = C�i ; PrfXh = �1 j qg = �q` eF (C�` ) and PrfXh = 1 j qg =
(1 � �)qr eF (C�r ). Notice that such a pair (C�` ; C�r ) is simply the equilibrium of a model as

in Section 2, the only di¤erence being that eF takes the role of F . Moreover, eF possesses

all relevant properties of a distribution function with support [0; D] (although we haveeF (D) < 1). In particular, eF inherits the properties (i)-(iii) above whenever F satis�es

these properties. Consequently, the implied comparative statics remain the same except

that we should replace the parameter c in Proposition 5 with D.

By changing the objective function of an altruistic agent, we can obtain various modi-

�cations of my basic model. Such modi�cations would predict positive asymptotic turnout

so long as the agent�s objective function increases linearly with n. For example, an altruis-

tic agent may care only about those agents who prefer the same candidate as her. A simple

version of such a situation can be modeled by restricting the domain of the summation

operator in (1) to the set fh : h is of type i; h 6= h0g. This model can be analyzed by
multiplying the right side of equations (5) with �i.11

The implications of introducing ineligible agents to my model would be akin to those

of increasing the altruism parameter  . In fact, if we denote by � the fraction of eligible

agents, the corresponding modi�cation of the model can be analyzed by replacing u with

u =�.

Finally, it should be noted that my �ndings remain true when the size of the electorate

is uncertain (see Appendix C).

11We can also envision non-altruistic voters who enjoy in�uencing others�payo¤s. For example, a conser-
vative voter might enjoy forcing policies upon liberals. (I am grateful to a referee for calling my attention
to this point.)
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6. Relations to Rule Utilitarian Voter Model of Feddersen and Sandroni

As I noted in Introduction, the ethical voter model of Feddersen and Sandroni (2006a,

2006b) is based on the notion of a rule, which refers to a type contingent behavior that

applies to all types in a given group. In turn, their equilibrium notion (i.e., consistency

requirement) formalizes the following scenario: A given agent contemplates the social con-

sequences of various rules that her group could follow in principle (given the behavior of

the types outside her group). Thereby, the agent identi�es a socially optimal rule that

maximizes her social preferences. She believes that this optimal rule is the ethical rule that

she and other types in her group should follow.

This notion of ethical behavior is aptly called (group-based) rule utilitarianism. This

is quite distinct from the notion of ethical behavior that I utilize in this paper, for inter-

pretation (II) of my model builds upon the assumption that when maximizing her social

preferences, each agent takes as given the behavior of everyone else (regardless of their

types). Yet, qualitatively, my comparative statics exercises (Propositions 3-5) lead to the

same conclusions as those of Feddersen and Sandroni (2006a). In Online Appendix A, I will

prove that the relation between the two models is much deeper. In fact, the predictions of

the two models are cardinally equivalent for a suitable speci�cation of social preferences in

Feddersen-Sandroni model.

A closer look into this rule utilitarian model is in order to understand the content of the

equivalence result. In the general version of their model, Feddersen and Sandroni (2006b)

assume that the social preferences of an ethical agent can be represented with a function

of the following form:

wp� #(�): (9)

Here, p is the probability that the agent�s favored candidate wins the election, � is the

expected per capita cost of voting, # is an increasing function, and w is a parameter that

the authors refer to as �the importance of the election.�In a special version of this model,

Feddersen and Sandroni (2006a) focus on the case #(�) � �. If, in addition, w corresponds

to the agent�s estimation of the per capita material bene�t associated with the policies of

her favored candidate, then (9) reduces to expected per capita payo¤ (from the perspective

of the agent in question). This special form of (9) is simply the objective function of a

purely altruistic agent in the sense of my model, who places the same weight to her own

payo¤ as that of others. While this observation clari�es the conceptual connection between

the two models, formally the equivalence result reads as follows:

If we set #(�) � � and w � u ; the �rst order conditions of the rule utilitarian voter

model coincides with equations (5). So, in this case, when the �rst order conditions in the

17



rule utilitarian voter model are su¢ cient, the two models predict exactly the same turnout

rates.12

In light of this equivalence result, Propositions 3-5 are simply extensions of the compar-

ative statics exercises of Feddersen and Sandroni (2006a). My comparative statics exercises

are more general because Feddersen and Sandroni (2006a) assume that the fractions of the

two types of ethical agents are independent uniform random variables. The cost distrib-

utions that I discussed in Section 5 are also outside the scope of Feddersen and Sandroni

(2006a).

More importantly, the driving forces behind the comparative statics of the two models

are quite distinct. In my model, what drives the results is the behavior of individual pivot

probabilities. In particular, two related phenomena that I have uncovered here, namely,

the level and ratio e¤ects, explain most of the comparative statics. Moreover, Bayesian

updating of agents�beliefs underlie the ratio e¤ect and the underdog e¤ect. By contrast,

in Feddersen and Sandroni (2006a), a single agent can never be pivotal,13 and the agents

do not update their beliefs according to their types.

A further implication of Bayesian updating is that, in the present model, the prior prob-

ability of winning for candidate i tends to be smaller than the posterior probability that an

altruistic agent of type i places on this event. Hence, when there is no overwhelming ma-

jority, altruistic agents of both types may believe that their favored candidate is more likely

to win the election.14 This is consistent with Fischer�s (1999) observations on Australian

voters, which show that in 1994, a large majority of the supporters of the Australian Labor

Party thought that they are going to win the next election, while a large majority of the

supporters of the Liberal National Coalition held the opposite belief.

7. Concluding Remarks

In the literature on voter participation, a prominent theory explains turnout in large

elections with elites�ability to mobilize large groups of voters (e.g., Uhlaner, 1989; Morton,

1991; Shachar and Nalebu¤, 1999; Herrera and Martinelli, 2006). In line with this approach,

empirical evidence points to a positive relation between turnout and political leaders�e¤orts

12This is the content of Proposition O1 in Online Appendix A. The conclusion of this equivalence result
is very robust. In particular, it remains valid if 0 < D < c and if we adopt interpretation (II) of my model.
I have also veri�ed that the same conclusion obtains when � is a random variable that takes �nitely many
values and q is a continuous random variable, or vice versa. (The proofs are available upon request.)
13Instead, group-wise pivot probabilities play a comparable role in their model.
14For example, if q is uniform on [0; 1]2 and � � 1=2, according to the posterior of altruistic agents of type

`, the probability of their victory is
R 1
0

�R q`
0

q`
1=2dqr

�
dq` =

R 1
0
2(q`)

2dq` =
2
3 ; and similarly, for altruistic

agents of type r.
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(Shachar and Nalebu¤, 1999). On the other hand, as Feddersen (2004) points out, if

voting is costly, it is not so clear how elites persuade large groups of agents to vote. In

particular, explaining turnout with large-scale, external reward/punishment mechanisms

seems problematic in several respects.

Following a rule utilitarian approach, earlier models on ethical voters also focus on

large groups of agents.15 Unlike elite-based models, this literature does not require an

external device to coordinate agents�behavior. Rather, agents�sense of group membership

and ethical concerns give rise to equilibria in which the agents behave as if there are a

few leaders each controlling a large fraction of agents.16 However, such equilibria require

a certain level of homogeneity in agents� characteristics such as their perception of the

importance of the election, the strength of their ethical values, or their beliefs about the

distribution of voting costs. (More on this in Online Appendix A.)

In this paper, I proposed a game-theoretic approach that separates the ethical-voter idea

from group-based approaches. The basic model that I have studied in Section 3 utilizes

the analogues of the homogeneity assumptions of Feddersen and Sandroni (2006a). The

two models make the same predictions up to potential di¤erences between the respective

parameters that measure the importance of changing the winner (namely, u and w).

Moreover, as I demonstrate with an example in Appendix A, my approach is conceptually

independent from homogeneity of agents�characteristics.

It is important to note that suitable extensions of the present model may allow us

to relate turnout to elites�e¤orts. For example, we can think of an extension in which

candidates�campaign e¤orts cause horizontal shifts between the masses of the supporters

of the two candidates and vertical shifts in the distribution of social preferences among the

supporters of a given candidate (by changing supporters�perception of u). Thereby, it may

be possible to obtain a model of mobilization in a voluntary-participation/costly-voting

framework. I leave it as an open question to determine if the aforementioned empirical

evidence can be explained along these lines.

In my model, uncertainty in the fractions of altruistic agents smoothens the behavior

of pivot probabilities. The implied pivot probabilities are inversely proportional to the size

of the electorate. Thus, if we were to identify the policies of the two candidates with two

points on the real line, the expected e¤ect of a single vote on the policy outcome would

also be inversely proportional to the size of the electorate. Faravelli and Walsh (2011) have

recently shown that, even with iid voters, the e¤ect of a single vote can be of the same

order if candidates respond smoothly to their margin of victory. More speci�cally, in their

15When setting up their model, Feddersen and Sandroni (2006b) allow for small groups, but they do not
study the equilibria of their model for such group structures.
16Proposition 3 of Feddersen and Sandroni (2006b) formalizes this point.
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model, a single vote has always some e¤ect on the policy outcome, and the implied change

in the outcome is inversely proportional to the size of the electorate. A comparison of the

relative merits of the two models might be an interesting task for future research.

A few �nal remarks are in order. My model is not meant to provide a precise picture

of the mental process through which altruism motivates voting or a complete list of the

motivations of real voters. For instance, citizens may vote to express their ethical concerns

(Feddersen et al., 2009), because of a sense of civic duty (Riker and Ordeshook, 1968;

Blais, 2000), or because they fail to behave in a perfectly optimal/rational manner (Levine

and Palfrey, 2007). As it is based on the notion of pivotality, my approach has relatively

closer ties with the classical pivotal-voter model, which remains as a fundamental tool for

political economists outside the realm of large, costly elections. Hence, I hope that this

paper may help establishing a closer connection between our understanding of small or

costless elections and that of large, costly elections.

Appendix
A. Heterogeneity in Agents�Valuations

In this appendix, I assume that for each agent, u � 0 is a random draw from a continuous
distribution. Agents have private knowledge of their value of u. Moreover, the distribution

of u is independent across agents (and from any other random variable in the model). This

implies an extreme form of heterogeneity: any agent of a given type knows that almost

surely there is no other agent with whom she can precisely agree about the value of u.

In this modi�ed model, the value of u for a particular agent in�uences the rate of increase

of her objective function as described in expression (3). Let us relable this expression as

�u;i. Since the distribution of u is independent across agents, any two altruistic agents of

type i face the same pivot probability Pi. Hence, with

�i � (1 +  n)Pi; (A-1)

we have �u;i = u�i.

Let us denote with ��u;i and �
�
i the equilibrium values of �u;i and �i, respectively. As

in Section 2, in equilibrium, an altruistic agent of type i with a given u must vote with

probability F (��u;i) = F (u��i ). This implies that PrfXh = �1 j qg = �q`EF (u�
�
`) and

PrfXh = 1 j qg = (1��)qrEF (u��r) for a randomly chosen agent h. (Here, the expectation
operator E is applied with respect to u; and as before, Xh speci�es agent h�s behavior as

a function of her uncertain characteristics.) Thus, we seek a pair of cuto¤ points C�` ; C
�
r

such that C�i = �
�
i for i = `; r; where ��i is the value of expression (A-1) induced by the
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conditional voting probabilities PrfXh = �1 j qg = �q`EF (uC
�
` ) and PrfXh = 1 j qg =

(1� �)qrEF (uC
�
r ).

Note that if we set eF (C) � EF (uC) for C 2 R+, these cuto¤ points C�` ; C�r coincide
with the equilibrium of a dual model with u � 1 and cost distribution eF . The two models
are also equivalent in terms of the implied expected turnout and margin of victory.

Remark A1. The equilibrium of the model with random u that I described above is

consistent with both interpretations (I) and (II) (provided that F has a bounded support

and D exceeds the maximum possible voting cost). However, typically, the support of eF
will not be bounded. Thus, in the dual model, we should focus on interpretation (I) so that

[0;��i ) de�nes the participation region for altruistic agents of type i. This causes no loss of

generality, for the dual model is only a tool to solve the original model with random u.

As a concrete example, let us assume that u and C are uniformly distributed on [0; u]

and [0; c]; respectively. We then �nd that, with ! � c
u
,

eF (C) = ( 1
2!
C if 0 � C � !;

1� !
2
C�1 if C > !:

Thus, for every 
 � 1, we have

eF (
C)eF (C) =
8>><>>:


 if 0 < C � !


;

!
�
2C�1 � !



C�2

�
if !



< C � !;


�1
�


�1
1�!=(2C) + 1

�
if C > !:

It is easily veri�ed that the function eF (
C)= eF (C) is nonincreasing in C 2 R++:
In turn, the density of eF is as follows:

ef(C) = ( 1
2!

if 0 � C � !;
!
2
C�2 if C > !:

Note that ef is continuous and nonincreasing. In particular, eF is concave. To summarize,eF satis�es the properties (i)-(iii) in Section 5.
From my analysis in Appendix E, it follows that, under the assumptions (H2)-(H4),

the conclusions of Propositions 1-4 hold for the dual model without any modi�cations.

Moreover, the expected turnout rate is increasing with  and u
c
; while the expected margin

of victory is nondecreasing with  and u
c
. (See, in particular, Remark E1 in Appendix E.)
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B. Examples of Compatible g

Let us denote by eg the density of a bivariate normal random variable eq = (eq`; eqr) with
identical marginal distributions. That is, eg(eq) � 1

2��2
p
1��2

e�Q(eq)=2 for eq 2 R2; where

Q(eq) � 1
1��2

�� eq`��
�

�2
� 2�

� eq`��
�

�� eqr��
�

�
+
� eqr��

�

�2�
. Here, � (resp. �) is the common

mean (resp. standard deviation) of the components of eq, and � is the correlation coe¢ cient.
Then, the density of eq conditioned to [0; 1]2 satis�es the assumptions (H3) and (H4). This
conditional density has the form g(q) = eg(q)=K for q 2 [0; 1]2, where K > 0 is the

probability that eq belongs to [0; 1]2.
As I noted in text, another important case is the class of beta distributions. If qi has a

beta distribution, its density has the form K (qi)
��1 (1� qi)��1 for 0 � qi � 1, where � and

� are nonnegative parameters, and K > 0 is a normalizing constant (that depends on �

and �). A beta density is unimodal if �; � > 1, and monotone if � � 1 � � or � � 1 � �.

When � = � = 1, we obtain the uniform distribution. If q` and qr have independent beta

distributions, their joint density takes the form g(q) = K2 (q`qr)
��1 ((1� q`)(1� qr))

��1.

In this case, g satis�es (H3) and (H4) provided that � � 1 and � � 1. In particular,

unimodal densities and monotone densities with � = 1 � � or � � 1 = � are compatible

with (H3) and (H4).

C. Population Uncertainty

This appendix demonstrates how the conclusions of Proposition 1-6 can be reproduced

under population uncertainty. Suppose that n is a random, positive integer that is stochas-

tically independent from every other random variable in the model. Also assume that for

any realization of n, the distribution of agents�characteristics is as in Section 2.

In this framework, expression (3) depends on the realization of n, but its interpretation

remains the same. Let us relable this expression as �i(n). When the expected value of n

is �nite, �i(n) would also have a �nite expectation. Thus, in this case, we can modify our

notion of equilibrium in an obvious way and show that such an equilibrium exists and is

positive (as in Proposition 1).

Consider a sequence of probability distributions Qm for n: Now, if limmQmfn � bg = 0
for every positive integer b, large values of m would correspond to unambiguously large

elections. In this case, it can be shown that the conclusions of Propositions 2-6 would also

hold as m!1.
Here, the key observation is that when n is stochastically independent from agents�

characteristics, the cuto¤ points and the realization of n would determine Pi uniquely, irre-
spective of the distribution of n. Thus, we can apply Lemma E1 in Appendix E uniformly
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in m. Thereby, we can prove that equations (5) continue to hold. Similarly, Pi(q) would

exhibit a knife-edge behavior for large values of m, implying the conclusion of Proposition

6.17 (The details are available upon request.)

D. More on the Case of Known q

The following result is a more general version of Proposition 6 that dispenses with the

assumption that q` = qr. This result also allows u;  and F be type dependent. Moreover,

we see that even if voting costs are bounded away from 0; low turnout rates are guaranteed.

In other words, the assumption that 0 belongs to the support of voting costs, as demanded

by (H1), serves only to conclude that the cuto¤ points are close to 0.

Proposition (General Impossibility Result). Let u` and ur be type dependent ana-

logues of the parameter u, and similarly for  `,  r, F` and Fr. Suppose that q` and qr

are known, F` and Fr are continuous distributions on R with F`(0) = Fr(0) = 0, and there

exists a type i such that: (1) Fi is weakly less than Fj in the sense of �rst order stochastic

dominance; (2) ui i � uj j; and (3) �iqi > �jqj. Then, in the corresponding modi�cation

of the model in Section 2, we have limn F`(C
�
`;n) = limn Fr(C

�
r;n) = 0 along any sequence of

equilibria.

For brevity, I omit the proof of this proposition, which is similar to the proof of Propo-

sition 6 in Appendix E below.

E. Proofs

For convenience, the order proofs and the format of the assumptions will be di¤erent

than the results and the assumptions appear in text. I will state an assumption right

before proving a result which demands that particular assumption. After introducing an

assumption, without further mention, throughout the remainder of the appendix I will

assume that the property in question holds.

E.1 Preliminaries

De�nition E1. an ' bn means limn
an
bn
= 1 for sequences of positive real numbers (an), (bn).

17In line with this argument, Myerson (2000) has shown that in Poisson voting games, unconditional
pivot probabilities (found by averaging over n) also decline exponentially with the expected size of the
electorate, whenever the expected vote shares of the two candidates are di¤erent. In particular, it follows
that in the Poisson voting game of Jankowski (2007), relaxing the assumption of deterministic costs renders
large-scale turnout impossible unless the fractions of the two types of agents are the same.
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Set p`(q) � PrfXh = �1 j qg and pr(q) � PrfXh = 1 j qg for a randomly selected
agent h and any q 2 [0; 1]2. The following expression gives the conditional probability of
the event that candidate i is one behind or tie occurs (excluding any given agent):

pivi(q) �
bn=2cX
b=0

n!
(n�2b)!b!b!p`(q)

bpr(q)
b(1� p`(q)� pr(q))n�2b

+

b(n�1)=2cX
b=0

n!
(n�2b�1)!b!(b+1)!pi(q)

bpj(q)
b+1 (1� p`(q)� pr(q))n�2b�1.

(E-1)

Here, b!c stands for the largest integer less than or equal to a number !. Similarly, I will
denote by d!e the smallest integer greater than or equal to !. On occasion, I will consider
speci�c functional forms for p`(q) and pr(q). In such cases, instead of pivi(q) I will write

pivi(a; b; n), where a and b stand for the functional forms of p`(q) and pr(q), respectively.

The tie breaking rule implies that

Pi(q) =
1

2
pivi(q) for any q 2 [0; 1]2 . (E-2)

Therefore, in what follows, I examine the asymptotic behavior of pivi(q).

The �rst point to note is that, by a central limit theorem, p`(q) = pr(q) > 0 implies

pivi(q) ' 1p
�np

; where p stands for the common value of p`(q) and pr(q) (see Feller, 1966,

p. 90). On the other hand, as I will show momentarily, when p`(q) and pr(q) are distinct,

pivi(q) converges to 0 at an exponential rate. In fact, this observation is a simple conse-

quence of the following classical theorem, which shows that the rate of convergence in the

law of large numbers is exponential.

Hoe¤ding Inequality. Let Z1; :::; Zn be independent random variables such that, for every
h = 1; :::; n; we have bh � Zh � dh for a pair of real numbers bh; dh. Put S �

Pn
h=1 Zh.

Then:

(i) For any � � 0, PrfS� ES � �g � e�2�
2=
Pn
h=1(dh�bh)

2

.

(ii) For any � � 0, PrfS� ES � �g � e�2�
2=
Pn
h=1(dh�bh)

2

.

The �rst part of the above result is a straightforward modi�cation of the statement of

Theorem 2 of Hoe¤ding (1963). In turn, the second part can easily be derived from the

�rst part.

The implied bounds on conditional pivot probabilities read as follows.

Corollary E1. Suppose that for some q 2 [0; 1]2 and n 2 N; we have n jp`(q)� pr(q)j � 1.
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Set � � jp`(q)� pr(q)j and let i be such that pi(q) > pj(q). Then

pivi (q) � e�n�
2=2 and pivj (q) � e�(n��1)

2=2n.

Proof. Set S� �
Pn

h=1Xh; so that piv`(q) = PrfS� 2 f0; 1gg and pivr(q) = PrfS� 2
f0;�1gg, where the probability operator refers to conditional probabilities at the given q.
Assume �rst pr(q) > p`(q). Note that in this case, ES� = n�. Thus,

pivr(q) � Pr
�
S� � 0

	
= Pr

�
S� � n� � �n�

	
� e�2(n�)

2=4n = e�n�
2=2;

piv`(q) � Pr
�
S� � 1

	
= Pr

�
S� � n� � 1� n�

	
� e�2(n��1)

2=4n = e�(n��1)
2=2n:

Here, the last inequalities in both lines follow from part (ii) of Hoe¤ding inequality with

bh � �1 and dh � 1 (h = 1; :::; n). Similarly, when pr(q) < p`(q); we have ES� = �n�. In
this case, the desired conclusion follows from part (i) of Hoe¤ding inequality. �

The next corollary is another routine application of Hoe¤ding inequality, which provides

bounds for binomial tail probabilities. (I omit the proof.)

Corollary E2. Let Z1; :::; Zn be independent Bernoulli random variables each with success
probability %, and set S �

Pn
h=1 Zh. Then:

(i) For any number � � %, PrfS � �ng � e�2(��%)
2n.

(ii) For any number � � %, PrfS � �ng � e�2(��%)
2n.

E.2 Proofs of Propositions 1 and 6

Proposition 1 only demands the following property.

Assumption 1. F is a continuous distribution on R+ with F (0) = 0.

Proof of Proposition 1. Set U � u (1 +  n) =2 and 
 � [0; 1]2 � [0; U ]2. Let us denote
a generic element of 
 by (q;C) � (q`; qr; C`; Cr). De�ne a function P : 
 ! R as

P(q;C) � pivi(�q`F (C`); (1 � �)qrF (Cr); n). Since F is continuous, the function P is

continuous on 
. In fact, since 
 is compact, P must be uniformly continuous. This, in

turn, implies that for any i; the map C! �i(C) � U
R
[0;1]2

P(q;C) dGi(q) is continuous on

[0; U ]2. Moreover, clearly, (�`(�);�r(�)) is a self map on [0; U ]2. Hence, by Brouwer �xed
point theorem this map has a �xed point which proves the existence of an equilibrium.

To establish positivity of cuto¤ points, suppose by contradiction that in an equilibrium

we have C�i = 0 for a type i. Since F (0) = 0; this implies that type i agents abstain with

probability 1 (excluding a given agent). Therefore, the election would be tied if all agents

are of type i. The probability of this event equals (�i)
n. It follows that Pi � 1

2
(�i)

n > 0:

Thus, we must have ��i > 0; a contradiction. �
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Proposition 6 demands the following additional property.

Assumption 2. 0 belongs to the support of F .

Proof of Proposition 6. For the given value of q, let us relabel expression (E-1) as pivi;n.
If we denote by S�i the number of votes for candidate i excluding a given agent, from

de�nitions it follows that

pivr;nk
piv`;nk

�
Pr
�
S�` � S�r = 0

	
+ Pr

�
S�r � S�` = �1

	
Pr
�
S�` � S�r = 0

	
+ Pr

�
S�` � S�r = �1

	 : (E-3)

Set p�`;n � �q`F (C
�
`;n) and p

�
r;n � (1��)qrF (C�r;n). It is easy to see that (in equilibrium)

we have

Pr
�
S�i � S�j = �1

	
=

X
b=0;1;:::;n
n�b is odd

n!

b!n�b�1
2
!n�b+1

2
!

�
1� p�`;n � p�r;n

�b �
p�`;np

�
r;n

�n�b�1
2 p�j;n:

Therefore,

Pr
�
S�r � S�` = �1

	
=
p�`;n

p�r;n
Pr
�
S�` � S�r = �1

	
; (E-4)

whenever p�r;n is positive.

To prove part (i), assume � < 1=2. I will now show that

lim sup
k

p�`;nk
p�r;nk

< 1; (E-5)

for any subsequence p�r;nk that is bounded away from 0. Assume by contradiction that

limk

p�`;nk
p�r;nk

� 1 for a subsequence p�r;nk that is bounded away from 0. Then, (E-3), (E-4) and
the de�nition of equilibrium imply that

lim inf
k

C�r;nk
C�`;nk

= lim inf
k

pivr;nk
piv`;nk

� 1: (E-6)

By passing to a further subsequence of nk if necessary, assume C�`;nk and C
�
r;nk

converge,

possibly to 1, and let the corresponding limits be C�` and C�r ; respectively. Then, (E-6)
implies C�r � C�` . Since F is continuous, it follows that limk F (C

�
r;nk
) = F (C�r ) � F (C�` ) =

limk F (C
�
`;nk
), where F (1) � 1. But then, � < 1=2 and q` = qr imply limk p

�
r;nk

=

(1 � �)qr limk F (C
�
r;nk
) > �q` limk F (C

�
`;nk
) = limk p

�
`;nk

; for p�r;nk is bounded away from 0

so that limk F (C
�
r;nk
) > 0. This contradicts the supposition that limk

p�`;nk
p�r;nk

� 1 and proves
(E-5).

To complete the proof of part (i), suppose that for some i; there is a subsequence C�i;nk
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that is bounded away from 0. Then, p�i;nk is also bounded away from 0 since 0 belongs

to the support of F . Moreover, given that C�i;nk is bounded away from 0, Corollary E1

implies limk(p
�
`;nk
�p�r;nk) = 0; for �i increases only linearly with n. It follows that p

�
`;nk

and

p�r;nk are both bounded away from 0; and that limk

p�`;nk
p�r;nk

= 1. This contradicts (E-5), as we

sought.

To prove part (ii), I will �rst show that p�`;n = p�r;n for every n 2 N. Suppose by
contradiction p�i;n > p

�
j;n for some i and n. Then, PrfS�i �S�j = �1g � PrfS�j �S�i = �1g;

and hence, pivi;n � pivj;n: This, in turn, implies that C�i;n � C�j;n. Since q` = qr and � = 1
2
;

it then follows that p�i;n � p�j;n; a contradiction.
Börgers (2004, Remark 1) shows that, for a �xed n; if a randomly chosen agent votes for

the two candidates with the same probability p, then pivot probabilities decrease with p:

Since p�`;n = p
�
r;n, it follows that C

�
i;n � u (1 +  n) 1

2
pivn for every n and i, where pivn stands

for the value of expression (E-1) at p`(q) = pr(q) = 1=2. Moreover, as I noted earlier, we

have pivn ' 1=
q
�n1

2
. Thereby, we obtain the desired the conclusion: limnC

�
i;n = 1 for

i = `; r. �

E.3 On the Magnitude of Pi when q Is Unknown

Good and Mayer (1975) have shown that limn n
R 1
0
pivi (p; 1� p; n) � (p) dp = � (1=2)

for any density � on [0; 1] that is continuous at 1=2. Later, Chamberlain and Rothschild

(1981) proved the same result independently.

In my model, randomness of q creates an analogous environment: given any possible

q, in equilibrium, a randomly chosen agent votes for candidates ` and r with probabilities

�q`F (C
�
` ) and (1��)qrF (C�r ); respectively. The next lemma is an extension of Good-Mayer

formula that corresponds to this scenario.

Lemma E1. Let � be a continuous (but not necessarily positive) density on [0; 1]2. Fix a
pair of positive numbers (T`; Tr) with T` + Tr � 1. Then, for any type i;

lim
n
n

Z 1

0

Z 1

0

pivi(q`T`; qrTr; n)�(q`; qr) dq`dqr = 2

Z 1
maxfT`;Trg

0

�(�Tr; �T`) d�: (E-7)

Moreover, the convergence is uniform on any set T of such (T`; Tr) which is bounded from

below by a (strictly) positive vector.

Proof. Set �n � n
R 1
0

R 1
0
pivi(q`T`; qrTr; n)�(q`; qr) dq`dqr for every n 2 N and a �xed

i 2 f`; rg. To evaluate �n, consider the substitution (q`; qr) = W (t; p) � ( tp
T`
; t(1�p)

Tr
). It is

a routine task to verify that W is a bijection from the set

V � f(t; p) : 0 < t < T` + Tr; max f0; 1� Tr=tg < p < min f1; T`=tgg
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onto (0; 1)2. (The inverse of W is de�ned by W�1 (q`; qr) � (T`q`+Trqr; T`q`
T`q`+Trqr

) = (t; p).)

Moreover, W is continuously di¤erentiable, and J �
"

p=T` t=T`

(1� p)=Tr �t=Tr

#
is its Jacobian

matrix. Since jdet J j = t
T`Tr

, from the change of variables formula it follows that for every

n 2 N;

�n =

Z T`+Tr

0

�t;n dt

where, for every t 2 (0; T` + Tr),

�t;n � n
t

T`Tr

Z
It

pivi (tp; t(1� p); n) �
�
tp

T`
;
t(1� p)
Tr

�
dp; (E-8)

and It �
�
max

�
0; 1� Tr

t

	
;min

�
1; T`

t

	�
(see Billingsley, 1995, Theorem 17.2, p. 225). Note

that the interval It is nondegenerate, because 0 < t < T` + Tr implies
T`
t
> 1� Tr

t
.

Pick any � > 0. First, I will show that
R n��
0

�t;n dt converges to 0 as n!1 (uniformly

on a set T of the given form).18 Let S�` ; S
�
r be as in the proof of Proposition 6, so that

total turnout equals S�` + S�r (excluding a given agent). Denote by m a possible value

of S�` + S�r . Let B(�;n; t) be the binomial probability distribution with population size n
and success probability t. For a �xed (t; p) 2 V , let us suppose that a randomly chosen

agent votes for candidates ` and r with probabilities tp and t(1�p), respectively. Then, we
would have PrfS�` + S�r = mg = B(m;n; t) for every nonnegative integer m and positive

integer n. Moreover, among those who participate, a randomly chosen agent would vote

for candidates ` and r with probabilities p and 1� p; respectively: Thus, pivi(p; 1� p;m)
would give us the probability of the event that the election is tied or candidate i is 1 behind

conditional on the event S�` + S�r = m for any m = 0; 1; :::; where pivi(�; �; 0) � 1. Hence,
for every n 2 N and (t; p) 2 V , we have

pivi(tp; t(1� p); n) =
nX

m=0

B(m;n; t)pivi(p; 1� p;m): (E-9)

Thus,
R n��
0

�t;n dt � n n
��

T`Tr
�
R 1
0

Pn
m=0 B(m;n; t)

�R 1
0
pivi(p; 1� p;m)dp

�
dt, where � is an

upper bound for �. Note that
R 1
0
piv`(p; 1� p;m) dp �

R 1
0

�
m

bm=2c
�
pbm=2c(1� p)m�bm=2c dp �R 1

0
B(bm=2c ;m; p) dp = 1

m+1
(see, e.g., Chamberlain and Rothschild, 1981). Similarly,

18Over a region of integration, if the integrand is not explicitly de�ned, I assume that it equals zero.
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R 1
0
pivr (p; 1� p;m) dp = 1

m+1
and

R 1
0
B(m;n; t)dt = 1

n+1
. Hence,

Z n��

0

�t;n dt � n
n��

T`Tr
�

nX
m=0

1

m+ 1

Z 1

0

B(m;n; t) dt

= n
n��

T`Tr
�

nX
m=0

1

m+ 1

1

n+ 1
� n��

T`Tr
�

nX
m=0

1

m+ 1
.

Since the Harmonic series diverges at logarithmic rate, n��
Pn

m=0
1

m+1
tends to 0. It thus

follows that, for any �xed � > 0,Z n��

0

�t;n dt = �n �
Z T`+Tr

n��
�t;n dt! 0

(uniformly on T where 1
T`Tr

is bounded from above).

Fix "0 > 0. Since � is continuous on the compact set [0; 1]2, it must be uniformly

continuous. It thus follows that there is a positive number " < 1=2 such that, for all

(t; p) 2 V with jp� 1=2j � ",����� � tpT` ; t(1� p)Tr

�
� �t

���� � "0; where �t � �

�
t

2T`
;
t

2Tr

�
. (E-10)

(Notice that
��� tpT` � t

2T`

��� = ��p� 1
2

�� t
T`
and t=T` is bounded from above on T; and similarly for��� t(1�p)Tr

� t
2Tr

���. Thus, such a number " can be chosen uniformly on T.)
Now �x a positive number � < 1=2 and consider any n such that 2"n1�� � 1. When

t � n�� and jp� 1=2j > ", i.e., jp� (1� p)j > 2", we then have n�t;p � nt jp� (1� p)j �
2"n1�� � 1. Thus, in this case, Corollary E1 implies pivi(tp; t(1� p); n) � e�(n�t;p�1)

2=2n �
e�(2"n

1���1)
2
=2n. That is, the integrand in (E-8) is less than �e�(2"n

1���1)
2
=2n. Since � <

1=2; it is easily veri�ed that ne�(2"n
1���1)

2
=2n ! 0. Hence, it follows that

R T`+Tr
n�� �t;n dt �R T`+Tr

n�� �t;n dt tends to 0 (uniformly on T) where

�t;n � n
t

T`Tr

Z
�t

pivi(tp; t(1� p); n) �
�
tp

T`
;
t(1� p)
Tr

�
dp

and �t � It\ [1=2� "; 1=2 + "], for 0 < t < T`+Tr and n 2 N. In particular, we can ignore
any t > min

�
2T`
1�2" ;

2Tr
1�2"

	
, because for such t we have T`=t < 1=2� " or 1� Tr=t > 1=2 + "

so that �t = ?. We therefore conclude that, with t" � min
�
2T`
1�2" ;

2Tr
1�2" ; T` + Tr

	
,

�n �
Z t"

n��
�t;n dt! 0
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(uniformly on T).

Now notice that, by (E-9),

t"Z
n��

�t;n dt =

t"Z
n��

tn

T`Tr

nX
m=0

B(m;n; t)
 R
�t

pivi (p; 1� p;m) �
�
tp

T`
;
t(1� p)
Tr

�
dp

!
dt. (E-11)

Moreover, by Corollary E2, whenever t � n��, we have n
P

m>t(1+")n B(m;n; t) �
ne�2t

2"2n � ne�2"
2n1�2� . Since � < 1=2; clearly, ne�2"

2n1�2� ! 0. Thus, the sequence

n
P

m>t(1+")n B(m;n; t) converges to 0 uniformly on t � n��. Similarly, for the sequence

n
P

m<t(1�")n B(m;n; t). Moreover, in (E-11) the integral inside the parenthesis and t
T`Tr

are

bounded from above (for relevant values of t and (T`; Tr) 2 T). It follows that we can focus
on nonnegative integersm such that t(1�")n � m � t(1+")n. Combining this observation

with (E-10), we conclude that for all su¢ ciently large n (and every (T`; Tr) 2 T):

�"+
Z t"

n��

�
�t � "0

� t

T`Tr
n

bt(1+")ncX
m=dt(1�")ne

B(m;n; t)
�Z

�t

pivi(p; 1� p;m) dp
�
dt (E-12)

� �n

� "+

Z t"

n��

�
�t + "0

� t

T`Tr
n

bt(1+")ncX
m=dt(1�")ne

B(m;n; t)
�Z

�t

pivi(p; 1� p;m) dp
�
dt. (E-13)

In (E-13), for each m � t(1 � ")n; the integral in parenthesis is at most (m + 1)�1 �
(t(1� ")n)�1. Thus, we see that for all su¢ ciently large n (and every (T`; Tr) 2 T):

�n � "+

Z t"

n��

�
�t + "0

� t

T`Tr
n

�
1

t(1� ")n

�
dt = "+

1

T`Tr(1� ")

Z t"

n��

�
�t + "0

�
dt. (E-14)

Next notice that for t < t0" � min
�
2T`
1+2"

; 2Tr
1+2"

	
we have T`=t > 1=2 + " and 1 � Tr=t <

1=2�"; and thus, �t = [1=2� "; 1=2 + "]. Since
R 1
0
pivi(p; 1�p;m) dp = 1

m+1
, it clearly fol-

lows that
R
�t
pivi(p; 1�p;m) dp � m�1(1�") for all su¢ ciently largem; say, form � m, and

every t < t0". Since n
��(1�")n eventually exceedsm; and since t0" < t"; we conclude that the

expression in (E-12) is at least �"+
R t0"
n�� (�

t � "0) t
T`Tr

n
�Pbt(1+")nc

m=dt(1�")ne B(m;n; t)
�

1�"
t(1+")n

dt

for all su¢ ciently large n (and every (T`; Tr) 2 T). As I noted before, here, the term

inside the parenthesis converges to 1 uniformly for t � n��. It thus follows that, for all

su¢ ciently large n (and every (T`; Tr) 2 T): �n � �"+
R t0"
n�� (�

t � "0) (1�")2
T`Tr(1+")

dt. Since we

can choose " and "0 arbitrarily small, by the de�nitions of t" and t0", this observation along

with (E-14) imply that �n ! 1
T`Tr

R 2minfT`;Trg
0

�t dt (uniformly on T). Finally, the substitu-
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tion t = 2T`Tr� gives 1
T`Tr

R 2minfT`;Trg
0

�t dt = 2
R 1

maxfT`;Trg
0 �(Tr�; T`�) d�: This completes the

proof. �

The following property will be crucial in what follows.

Assumption 3. G has a continuous density g on [0; 1]2.

Proof of Claim 1. Recall thatGi(b`; br) � Pr fq` � b`; qr � br j h is of type i and altruisticg
for every (b`; br) 2 [0; 1]2, that is,

Gi(b`; br) =
Prfq` � b`; qr � br; h is of type i and altruisticg

Prfh is of type i and altruisticg

=

R br
0

R b`
0
Prfh is of type i and altruistic j q`; qrg g(q`; qr) dq`dqrR
[0;1]2

Prfh is of type i and altruistic j qgdG(q)

=

R br
0

R b`
0
�iqig(q`; qr) dq`dqrR

[0;1]2
�iqi dG(q)

=

Z br

0

Z b`

0

qi
qi
g(q`; qr) dq`dqr;

where qi denotes the mean of qi; �` � � and �r � 1� �. Thus, the function gi(q) � qi
qi
g(q)

is a density for Gi on [0; 1]2. �
Throughout the remainder of the appendix, gi denotes the density of Gi as de�ned in

the above proof. In the next lemma, I derive a formula for the equilibrium value of Pi,
assuming that the cuto¤ points are bounded away from 0.

Lemma E2. Let k ! nk be an increasing self-map on N. Assume that for every k, the
voting game with nk agents admits an equilibrium (C�`;nk ; C

�
r;nk
) such that the sequences

T �`;nk � �F (C�`;nk) and T �r;nk � (1 � �)F (C�r;nk) converge to positive numbers T
�
` and T �r ,

respectively. For every k; let Pi;nk denote the corresponding value of expression (2). Then,
for any type i,

lim
k
nkPi;nk =

Z 1

maxfT�` ;T�r g
0

gi(�T �r ; �T
�
` ) d�. (E-15)

Proof. By equation (E-2), we have Pi;nk = 1
2

R
[0;1]2

pivi(q`T
�
`;nk

; qrT
�
r;nk

; nk) dG
i(q); that is,

Pi;nk =
1

2

Z
[0;1]2

pivi(q`T
�
`;nk

; qrT
�
r;nk

; nk)g
i(q) dq: (E-16)

Notice that gi is continuous by continuity of g. Moreover, since limk T
�
i;nk

= T �i > 0, the

sequences T �`;nk and T
�
r;nk

are bounded away from 0. So, Lemma E1 applies to the right side

of (E-16). That is, for each �xed k; we have

lim
m

m

2

Z
[0;1]2

pivi(q`T
�
`;nk

; qrT
�
r;nk

;m)gi(q) dq =

Z 1

max

�
T�
`;nk

;T�r;nk

�
0

gi(�T �r;nk ; �T
�
`;nk
) d�:
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Moreover, this convergence is uniform in k. Also note that the right side of the above

equality is simply the function 'i (as de�ned in Lemma 1) evaluated at (T �`;nk ; T
�
r;nk
). Since

this function is continuous, it follows that

lim
k

nk
2

Z
[0;1]2

pivi(q`T
�
`;nk

; qrT
�
r;nk

; nk)g
i(q) dq =

Z 1

maxfT�` ;T�r g
0

gi(�T �r ; �T
�
` ) d�:

The desired conclusion follows from (E-16): limk nkPi;nk =
R 1

maxfT�` ;T�r g
0 gi(�T �r ; �T

�
` ) d�. �

E4. Proofs of Proposition 2 and Lemma 1

In what follows, an asymptotic equilibrium refers to a pair of nonnegative, ex-

tended real numbers (C�` ; C
�
r ) that is the limit of a convergent subsequence of equilib-

ria (C�`;nk ; C
�
r;nk
). Note that any sequence of equilibria has a subsequence that converges

to an asymptotic equilibrium. Given (C�` ; C
�
r ), as usual, let us set T

�
` � �F (C�` ) and

T �r � (1� �)F (C�r ), where F (1) � 1.
Consider an asymptotic equilibrium (C�` ; C

�
r ) ; and let Pi;nk be de�ned as in Lemma

E2 for the subsequence of equilibria (C�`;nk ; C
�
r;nk
) that converges to (C�` ; C

�
r ). Then, by

continuity of F; T �`;nk � �F (C�`;nk) and T
�
r;nk

� (1 � �)F (C�r;nk) converge to T
�
` and T

�
r ;

respectively. Hence, if T �` and T
�
r are positive numbers, equations (E-15) must hold. Since

C�i;nk � u (1 +  nk)Pi;nk ; we can then conclude that:

C�i = u 

Z 1

maxfT�` ;T�r g
0

gi(�T �r ; �T
�
` ) d� for i = `; r: (E-17)

Moreover, since gi(�T �r ; �T
�
` ) �

�T �j
qi
g(�T �r ; �T

�
` ); the equations above are equivalent to:

C�i = u 
T �j
qi

Z 1

maxfT�` ;T�r g
0

�g(�T �r ; �T
�
` ) d� for i = `; r: (E-18)

It is also clear that if these equations hold, then C�i <1 for i = `; r.

In view of these arguments, to complete the proof Proposition 2 it su¢ ces to show that:

(a) T �` and T
�
r are positive at any asymptotic equilibrium; (b) equations (E-18) have a

unique solution (C�` ; C
�
r ).

The following technical observation will be useful in the proof of the point (a). (In what

follows, Z+ denotes the set of all nonnegative integers.)
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Lemma E3. For every p 2 [0; 1], m 2 Z+ and i 2 f`; rg ; de�ne

�i (p;m) �
(
pivi (p; 1� p;m+ 1) if m is odd,

pivi (p; 1� p;m) if m is even.

Then, for every p 2 [0; 1] and i 2 f`; rg, the function �i (p; �) is nonincreasing on Z+:
Moreover, for any " > 0 and p 2 (0; 1) such that

��� 12p � 1��� � " and
��� 1
2(1�p) � 1

��� � ";

we have (1� ")�i (p;m) � pivi (p; 1� p;m) � (1 + ")�i (p;m), for every m 2 Z+ and
i 2 f`; rg.

Proof. Let us write pivi (m) and �i (m) instead of pivi (p; 1� p;m) and �i (p;m) ; re-

spectively. First notice that, with p` � p and pr � 1 � p, if m is odd, we have pivi (m) =
m!

m�1
2
!m+1

2
!
(pi)

m�1
2 (pj)

m+1
2 , and ifm is even, we have pivi (m) = m!

m
2
!m
2
!
(p`)

m
2 (pr)

m
2 . Therefore,

for every i 2 f`; rg and m 2 Z+,

pivi (m+ 1) =

(
2pipivi (m) if m is odd,
m+1
m+2

2pjpivi (m) if m is even.

Thus, when pi > 0 and m is odd, we have 1
2pi
�i (m) � 1

2pi
pivi (m+ 1) = pivi (m), so that��� 12pi � 1��� � " implies (1� ")�i (m) � pivi (m) � (1 + ")�i (m). Since �i (m) � pivi (m) for

every even m; the desired inequalities between �i (m) and pivi (m) are proved.

To show that �i (m) is nonincreasing, note that pivi (m+ 2) � 4p`prpivi (m) � pivi (m)

for every m. It follows that �i (m) � �i (m+ 1) for every even m; and �i (m) = �i (m+ 1)

for every odd m. �

Next, I will prove the point (a) with the help of the following two assumptions.

Assumption 4. The support of F is a subinterval of R+. Moreover, F has a density f

that is continuous and positive on its support.

Assumption 5. g(q) > 0 for every q 2 [0; 1]2.

Lemma E4. C�` > 0 and C
�
r > 0 at any asymptotic equilibrium (C�` ; C

�
r ).

Proof. Consider a subsequence of equilibria (C�`;nk ; C
�
r;nk
) that converges to an asymptotic

equilibrium (C�` ; C
�
r ). Let us �rst assume that the ratio T

�
`;nk

=T �r;nk remains bounded away

from 0 and 1. Suppose by contradiction that C�` or C�r equals 0.
Fix a number "0 2 (0; 1) and choose an " 2 (0; 1

2
) such that for every p 2

�
1
2
� "; 1

2
+ "
�

we have
��� 12p � 1��� � "0 and

��� 1
2(1�p) � 1

��� � "0. By Lemma E3, for every such p,

(1� "0)�i(p;m) � pivi(p; 1� p;m) for every m 2 Z+ and i 2 f`; rg . (E-19)
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Fix an i 2 f`; rg. As in the proof of Lemma E1, for every k 2 N and 0 < t < T �`;nk+T
�
r;nk
,

set t0";k � min
n
2T �`;nk
1+2"

;
2T �r;nk
1+2"

o
;

�t;k �
�
max

�
0; 1�

T �r;nk
t

�
;min

�
1;
T �`;nk
t

��
\ [1=2� "; 1=2 + "] ;

�t;k � nk
t

T �`;nkT
�
r;nk

Z
�t;k

pivi(tp; t(1� p); nk)gi
 

tp

T �`;nk
;
t(1� p)
T �r;nk

!
dp:

Notice that t0";k ! 0 as k ! 1 and that t0";k < T �`;nk + T �r;nk for every k 2 N . As we

have seen in the proof of Lemma E1, t 2 (0; t0";k) implies �t;k = [1=2 � "; 1=2 + "]. Thus,

from equation (E-9) and the de�nition of gi it easily follows that, for every k 2 N and

t 2 (0; t0";k),

�t;k �
g0
qi

�
1

2
� "

�
nkt

2

T �j;nk
�
T �i;nk

�2 nkX
m=0

B(m;nk; t)
 Z

�t;k

pivi(p; 1� p;m) dp
!
; (E-20)

where g0 > 0 is a lower bound for g.

Clearly, there is an m0 2 N such that
R 1=2+"
1=2�" �i(p;m)dp � m�1(1� "0) for every integer

m � m0. Moreover, since �i is nonincreasing in m, for every nonnegative integer m < m0;

we have
R 1=2+"
1=2�" �i(p;m)dp �

R 1=2+"
1=2�" �i(p;m0)dp � m�1

0 (1 � "0). Combining these observa-

tions with (E-19), we conclude that
R
�t;k

pivi(p; 1� p;m) dp � (1�"0)2
maxfm;m0g ; for every k 2 N;

m 2 Z+ and t 2 (0; t0";k). In view of (E-20), it follows that for every k 2 N and t 2 (0; t0";k),

�t;k � �
nkt

2

T �j;nk
�
T �i;nk

�2 nkX
m=0

B(m;nk; t)
1

maxfm;m0g
;

where � � g0
qi

�
1
2
� "
�
(1 � "0)2 > 0. Notice that since t0";k ! 0, by Corollary E2(i), there

is a sequence of numbers bk ! 1 such that for every k 2 N and every t 2 (0; t0";k) we haveP
m�"nk B(m;nk; t) � bk. Since the function 1

maxf�;m0g is nonincreasing on Z+, it follows
that, for every k 2 N,Z t0";k

0

�t;k dt � � nk

T �j;nk

�
T �i;nk

�2 bk
maxf"nk;m0g

Z t0";k

0

t2 dt = � nk

T �j;nk

�
T �i;nk

�2 bk
maxf"nk;m0g

(t0";k)
3

3
. (E-21)

Since T �`;nk=T
�
r;nk

is bounded away from 0 and 1, obviously so is (t0";k)
3

T �j;nk

�
T �i;nk

�2 . Hence, for
large k, the right side of (E-21) is proportional to �"�1. Since we can choose " and "0

arbitrarily small, we therefore conclude that, for any type i, C�i;k ! 1 as k ! 1, a
contradiction.
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It remains to show that T �`;nk=T
�
r;nk

is bounded away from 0 and1. By suppressing the
dependence on k, assume T �r > T �` . First note that, as in (E-4), for every q 2 [0; 1]2, we
have Pr

�
S�r � S�` = �1 j q

	
qrT

�
r = Pr

�
S�` � S�r = �1 j q

	
q`T

�
` . Thus:Z

[0;1]2
Pr
�
S�r � S�` = �1 j q

	
gr(q) dq =

q`T
�
`

qrT
�
r

Z
[0;1]2

Pr
�
S�` � S�r = �1 j q

	
g`(q) dq:

(E-22)

Moreover, the conditional probability of tie at (q`; qr) 2 [0; 1]2 is

tie(q`; qr) �
bn2 cX
m=0

n!

m!m!(n� 2m)!(1� T �` q` � T �r qr)
n�2m(T �` q`)

m(T �r qr)
m:

Since T �r > T �` , whenever qr > q` we have T �` q` + T �r qr > T �` qr + T �r q`; which obvi-

ously implies that tie(q`; qr) < tie(qr; q`). Hence,
R
qr>q`

qr
qr
g(q`; qr)tie(q`; qr) d(q`; qr) <R

qr>q`

qr
qr
g(q`; qr)tie(qr; q`) d(q`; qr): Clearly, here, the latter integral can be rewritten asR

qr<q`

q`
qr
g(qr; q`)tie(q`; qr) d(q`; qr). We therefore see thatZ

qr>q`

gr(q)tie(q) dq < b

Z
qr<q`

g`(q)tie(q) dq, (E-23)

where b > 0 is the maximum value of q`
qr

g(qr;q`)
g(q`;qr)

for (q`; qr) 2 [0; 1]2. Moreover,Z
qr<q`

gr(q)tie(q) dq =

Z
qr<q`

qr
qr
g(q)tie(q) dq

< q`
qr

Z
qr<q`

q`
q`
g(q)tie(q) dq = q`

qr

Z
qr<q`

g`(q)tie(q) dq.

(E-24)

Combining (E-22)-(E-24), we see that for T �r;nk=T
�
`;nk

> 1, the ratio C�r;nk=C
�
`;nk

is

bounded from above. In particular, T �r;nk=T
�
`;nk

can be arbitrarily large only if both C�`;nk
and C�r;nk are arbitrarily close to 0. Since f(0) > 0, this implies F (C�r;nk)=F (C

�
`;nk
) =R C�r;nk

0 f(C) dC=
R C�`;nk
0 f(C) dC ' f(0)C�r;nk=f(0)C

�
`;nk

= C�r;nk=C
�
`;nk
; that is, C�r;nk=C

�
`;nk

is

asymptotically equal to F (C�r;nk)=F (C
�
`;nk
), a contradiction. Similarly, T �`;nk=T

�
r;nk

is also

bounded from above. �

The uniqueness result requires (H3) and (H4) as well as a further assumption on F .

Assumption 6. (H3) and (H4) hold.

Assumption 7. F (
C)
F (C)

is a nonincreasing function of C 2 R++ for every �xed 
 � 1.
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I will now prove Lemma 1, and then proceed to the proof of uniqueness.

Proof of Lemma 1. The level e¤ect amounts to saying that 'i(bT`; bTr) < 'i(T`; Tr) for

b > 1. Notice that the substitution �0 � �b implies
R 1

maxfbT`;bTrg
0

�bTj
qi
g(�bTr; �bT`) d� =

1
b

R 1
maxfT`;Trg
0

�0Tj
qi
g(�0Tr; �

0T`) d�
0. Thus, 'i(bT`; bTr) = 'i(T`; Tr)=b for b > 1. This proves

the level e¤ect.

For the ratio e¤ect, let T` + Tr = eT` + eTr and T` � Tr < eTr. By (H4), we have q` = qr.

Hence, '`(T`; Tr) + 'r(T`; Tr) =
T`+Tr
q`

R 1=Tr
0

�g(�Tr; �T`) d� and '`(eT`; eTr) + 'r(eT`; eTr) =eT`+eTr
q`

R 1=eTr
0

�g(� eTr; � eT`) d�. Moreover, (H3) implies that g(�Tr; �T`) � g(� eTr; � eT`) for every
� � 1=eTr. It immediately follows that '`(T`; Tr) + 'r(T`; Tr) > '`(eT`; eTr) + 'r(eT`; eTr).
Similarly, we have 'r(T`; Tr) > 'r(eT`; eTr). �

Lemma E5. Equations (E-18) have a unique solution.

Proof. Suppose by contradiction that equations (E-18) have two di¤erent solutions,

(C�` ; C
�
r ) and (C

�
` ; C

�
r). Then, both solutions must satisfy (8). Hence, the sign of C

�
` � C

�
`

is the same as that of C�r � C
�
r. Without loss of generality, let us assume C

�
` > C�` and

C
�
r > C�r :

Set 
 � C
�
`=C

�
r and 
 � C�` =C

�
r : By (8), we have 
F (
C

�
r )=F (C

�
r ) = 
F (
C

�
r)=F (C

�
r).

Thus, 
 < 
 implies 
F (
C�r )=F (C
�
r ) < 
F (
C

�
r)=F (C

�
r), that is, F (
C

�
r )=F (C

�
r ) <

F (
C
�
r)=F (C

�
r), which contradicts Assumption 7. Hence, we must have 
 � 
. By (7),

this also implies that T
�
r=T

�
` � T �r =T

�
` � 1. But then, by applying the ratio and level

e¤ects successively, we see that 'r(T
�
` ; T

�
r) < 'r(T �` ; T

�
r ). From (E-17), it then follows that

C
�
r < C�r ; a contradiction. �

E.5 Proofs of Proposition 3-5

Proof of Proposition 3. If � < 1=2, equation (8) immediately implies C�` > C�r . Then,

by invoking (7), we see that T �r > T �` . Moreover, since g is symmetric, the distributions

of qr=q` and q`=qr are identical. Hence, Prfq`=qr � T �r =T
�
` g = Prfqr=q` � T �r =T

�
` g >

Prfqr=q` � T �` =T
�
r g = 1� Prfq`=qr � T �r =T

�
` g. Thus, Prfq`=qr � T �r =T

�
` g > 1=2. �

Lemma E6. MV is an increasing function of T �r =T
�
` .

Proof. First note that

MV =

Z
q`
qr
�T�r
T�
`

T �r qr � T �` q`
T �r qr + T �` q`

g(q)dq +

Z
qr
q`
�
T�
`
T�r

T �` q` � T �r qr
T �r qr + T �` q`

g(q)dq

Let gqr=q` and gq`=qr stand for the densities of qr=q` and q`=qr; respectively. If we express

both of the above integrands in terms of x � T �r
T �`
and q`

qr
, by changing variables in an obvious
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way, we �nd that MV is equal to:Z x

0

�
1

1 + x�1z
� 1

xz�1 + 1

�
gq`=qr(z) dz +

Z x�1

0

�
1

xz + 1
� 1

1 + x�1z�1

�
gqr=q`(z) dz:

By symmetry of g, we have g �gqr=q` =gq`=qr . Moreover, in the above line, at z = x the �rst

integrand equals 0 and at z = x�1 the second integrand equals 0. Thus, a marginal change

in x does not a¤ect MV through the integration bounds. From Leibniz rule it therefore

follows that dMV
dx

is equal to:

Z x

0

�
x�2z

(1 + x�1z)2
+

z�1

(xz�1 + 1)2

�
g(z) dz �

Z x�1

0

�
z

(xz + 1)2
+

x�2z�1

(1 + x�1z�1)2

�
g(z) dz:

In the second integral, if we substitute z = x�2ez and then write z instead of ez, we see that
dMV

dx
=

Z x

0

�
x�2z

(1 + x�1z)2
+

z�1

(xz�1 + 1)2

��
g(z)� g(x�2z)x�2

�
dz.

Recall that x � 1. At x = 1 the expression above equals 0. Assume now x > 1. It

su¢ ces to show that, for every z 2 (0; x),

g(z) > g(x�2z)x�2: (E-25)

First, �x a z 2 (0; 1]. Recall that g(z) =
R 1
0
g(y; yz)y dy (see, e.g., Rohatgi, 1976, p.

141). Hence, the substitution y = t
1+z

gives g(z) =
R 1+z
0

g( t
1+z

; tz
1+z
) t
(1+z)2

dt. Since x > 1,

similarly, we �nd that g(x�2z)x�2 =
R 1+x�2z
0

g( t
1+x�2z ;

tx�2z
1+x�2z )

tx�2

(1+x�2z)2 dt. Now, t
1+z

+
tz
1+z

= t = t
1+x�2z +

tx�2z
1+x�2z and

t
1+x�2z �

t
1+z

� tz
1+z

imply, by (H3), that g( t
1+z

; tz
1+z
) �

g( t
1+x�2z ;

tx�2z
1+x�2z ) for every t 2 [0; 1 + x�2z]. Moreover, it is easily seen that, for the given

values of x and z, we have tx�2

(1+x�2z)2 =
t

(x+x�1z)2 < t
(1+z)2

whenever t > 0. This proves

(E-25) for the case z 2 (0; 1]:
Now let 1 < z < x. Then, applying (E-25) to ez � z�1 < 1 and ex � xz�1 > 1 gives

g(ez) > g(ex�2ez)ex�2, that is, z�2g(z�1) > g(x�2z)x�2. But since Prf qr
q`
� zg = 1� Prf q`

qr
�

z�1g for z > 0; and since gqr=q` =gq`=qr ; we have g(z) = z�2g(z�1). This completes the

proof. �

Assumption 8. F is a concave function on its support.

Proof of Proposition 4. Let � < � � 1=2; and denote by (C�` ; C
�
r ) and (C

�
` ; C

�
r) the

asymptotic equilibria that correspond to � and �; respectively. Using the notation in the

proof of Lemma E5, I will �rst show that 
 > 
.

By contradiction, suppose 
 � 
: Then, (8) implies 
F (
C
�
r)=F (C

�
r) < 
F (
C�r )=F (C

�
r ) �
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F (
C�r )=F (C
�
r ). By Assumption 7, we must thus have C

�
r < C

�
r so that C

�
` = 
C�r <


C
�
r = C

�
` and T

�
` < T

�
` . Hence, by (7), T �` + T �r = T �` (1 + 
) < T

�
`(1 + 
) = T

�
` + T

�
r.

Moreover, T �r =T
�
` � T

�
r=T

�
` . Thus, by the level and ratio e¤ects, we must have C

�
r > C

�
r, a

contradiction.

It follows that 
 > 
, as we sought. This implies T �r =T
�
` > T

�
r=T

�
` . Thus, by Lemma

E6, expected margin of victory at � is smaller than that at �.

Let c be the supremum of the support of F . It remains to show that C�r < c implies

q`T
�
` + qrT

�
r < q`T

�
` + qrT

�
r. Since q` = qr; the latter inequality can be rewritten as

T �` + T
�
r < T

�
` + T

�
r. Suppose by contradiction that T

�
` + T

�
r � T

�
` + T

�
r. Then, by the level

and ratio e¤ects, we have

C�r < C
�
r and C�` + C�r < C

�
` + C

�
r.

Notice that if F is concave on its support, it is also concave on R+. Therefore, from the

inequalities above it easily follows that

�F (C�` ) + (1� �)F (C�r ) � �F (C
�
`) + (1� �)F (C

�
r): (E-26)

Moreover, since f is positive on the support of F; C�r < c implies F (C�r ) < F (C�` ). Whence,

�F (C�` ) + (1� �)F (C�r ) < �F (C�` ) + (1� �)F (C�r ): (E-27)

By combining (E-26) and (E-27), we see that T �` + T �r < T
�
` + T

�
r, a contradiction. �

Proof of Proposition 5. Let (C�` ; C
�
r ) and (C

�
` ; C

�
r) stand for the solutions of equations

(E-18) for u and u > u ; respectively.

Using the usual notation, I will �rst show that 
 � 
. Suppose by contradiction

that 
 > 
: Then, as in the proof of Proposition 4, Assumption 7 implies C�r > C
�
r and

T �` + T �r > T
�
` + T

�
r. Moreover, T

�
r =T

�
` > T

�
r=T

�
` . Hence, by the level and ratio e¤ects,

'r(T �` ; T
�
r ) < 'r(T

�
` ; T

�
r) so that u '

r(T �` ; T
�
r ) < u 'r(T

�
` ; T

�
r). But then, equation (E-17)

implies C�r < C
�
r, a contradiction. Hence, 
 � 
 and T �r =T

�
` � T

�
r=T

�
` . By Lemma E6, this

immediately implies that the expected margin of victory at u is greater than or equal to

that at u .

Now, let c be the supremum of the support of F and suppose C�r < c . First assume

that 
 < 
. Then, as I noted above, C�r < C
�
r and T

�
` + T �r < T

�
` + T

�
r. Thus, in this

case, the expected turnout rate that corresponds to u is higher, as we seek. Suppose

now 
 = 
 so that T �r =T
�
` = T

�
r=T

�
` . Assume by contradiction that T

�
` + T �r � T

�
` + T

�
r.

Then, just as in the previous paragraph, u < u and equations (E-17) imply C�` < C
�
`

and C�r < C
�
r. Since F is strictly increasing on its support, these observations yield a
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contradiction: T �` + T �r < T
�
` + T

�
r.

Finally, consider an alternative cost distribution F and let c be the supremum of the

support of F . Suppose c < c <1. As in the case of uniform distributions, also assume that
F (C) = F ( c

c
C) for every C 2 R+. Then, clearly, ( ccC

�
` ;

c
c
C�r ) solves the modi�ed version

of (E-18) that is obtained by replacing F and u with F and c
c
u , respectively. Since

F ( c
c
C�i ) = F (C�i ) for i = `; r, it obviously follows that the implications of replacing F with

F (while holding u �xed) are the same as the implications of replacing u with c
c
u in

the model with F . �

Remark E1. In the dual model of Appendix A, the distribution function eF depends only
on c

u
. Moreover, if we consider two di¤erent values of this parameter, say ! and !; the

associated distributions satisfy eF!(C) = eF!(!!C) for every C � 0. Thus, following the

argument above, the implications of increasing c
u
are the same as those of decreasing  .
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