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Abstract

This paper demonstrates that a misspecified model of information processing inter-
feres with long-run learning and offers an explanation for why individuals may continue
to choose an inefficient action, despite sufficient public information to learn the true state.
I consider a social learning environment where agents draw inference from private signals,
public signals and the actions of their predecessors, and sufficient public information exists
to achieve asymptotically efficient learning. Prior actions aggregate multiple sources of
information; agents face an inferential challenge to distinguish new information from re-
dundant information. I show that when individuals significantly overestimate the amount
of new information contained in prior actions, beliefs about the unknown state become
entrenched and incorrect learning may occur. On the other hand, when individuals suffi-
ciently overestimate the amount of redundant information, beliefs are fragile and learning
is incomplete. When agents have an approximately correct model of inference, learning is
complete – the model with no information-processing bias is robust to perturbation.
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1 Introduction

Observational learning plays an important role in the transmission of information, opinions and
behavior. People use bestseller lists to guide their purchases of books or cars or computers.
Co-workers’ decisions to join a retirement plan influence a person’s decision to participate her-
self. Social learning also influences behavioral choices, such as whether to smoke or exercise
regularly, or ideological decisions, such as which side of a moral or political issue to support.
Given the gamut of situations influenced by observational learning, it is important to under-
stand how people learn from the actions of their peers, and how departures from Bayesian
models of learning affect long-run outcomes. This paper explores how a misspecified model
of information processing may interfere with asymptotic learning, and demonstrates that such
biases offer an explanation for how inefficient choices can persist even when contradicted by
public information. The results have important implications for policies aimed at counteracting
inefficient social choices; in the face of information processing errors, the timing and frequency
of public information campaigns becomes particularly relevant for long-run efficiency.

Individuals face an inferential challenge when extracting information from the actions of
others. An action often aggregates multiple sources of information; full rationality requires
agents to parse out the new information and discard redundant information. A critical feature
of standard observational learning models in the tradition of Smith and Sorensen (2000) is
common knowledge of how individuals process information. Agents understand exactly how
preceding agents incorporate the action history into their decision-making rule, and are aware
of the precise informational content of each action. However, what happens if agents are unsure
about how to draw inference from the actions of their predecessors? What if they believe the
actions of previous agents are more informative than is actually the case, or what if they
attribute too many prior actions to repeated information and are not sensitive enough to new
information?

Motivated by this possibility, I allow agents to have a misspecified model of the information
possessed by other agents to draw a distinction between the perceived and actual informa-
tional content of actions. Consider an observational learning model where individuals have
common-value preferences that depend on an unknown state of the world. They act sequen-
tially, observing a private signal before choosing an action. A fraction p of individuals also have
access to public information about the state, including public signals and the actions of pre-
vious agents. These socially informed agents understand that prior actions reveal information
about private signals, but fail to accurately disentangle this new information from the redun-
dant information also contained in prior actions. Formally, informed agents believe that any
other individual is informed with probability p̂, where p̂ need not coincide with p. When p̂ < p,
an informed decision maker attributes too many actions to the private signals of uninformed
individuals. This leads him to overweight information from the public history, and allows public
beliefs about the state to become entrenched. On the other hand, when p̂ > p, an informed
decision maker underweights the new information contained in prior actions, rendering beliefs
more fragile to contrary information.

To understand how model misspecification affects long-run learning requires careful analysis
of the rate of information accumulation, and how this rate depends on the way informed agents
interpret prior actions. Theorem 1 specifies thresholds on beliefs about the share of informed
agents, p̂1 and p̂2, such that when p̂ < p̂1 both correct and fully incorrect learning occur, and
when p̂ > p̂2, beliefs about the state perpetually fluctuate, rendering learning incomplete. Both
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cases admit the possibility of inefficient learning: informed agents can continue to choose the
suboptimal action, despite observing an infinite sequence of new information. When p̂ falls
between these two thresholds, p̂ ∈ (p̂1, p̂2), correct learning obtains and informed agents will
eventually choose the optimal action. Correct beliefs about agent types lead to efficient learning,
p ∈ (p̂1, p̂2).

Fully incorrect learning or incomplete learning is possible when p̂ 6= p because the public
belief about the state is no longer a martingale. This also complicates the analysis on a technical
level, as it is no longer possible to use the Martingale Convergence Theorem to establish belief
convergence. The Law of the Iterated Logarithm (LIL) and Law of Large Numbers (LLN)
are jointly used to establish belief convergence when p̂ < p̂2, and rule out belief convergence
when p̂ > p̂2. While I describe this approach in the framework of the model misspecification
outlined above, it is general in that it could easily be utilized to examine other forms of model
misspecification.

Model misspecification has important policy implications. To illustrate the relevance of this
result, consider a parent deciding whether there is a link between vaccines and autism. The
parent observes public signals from the government and other public health agencies, along with
the vaccination decisions of their peers. If all parents are rational, then a public health campaign
to inform parents that there is no link between vaccines and autism should eventually overturn
a herd on refusing vaccinations. However, if parents do not accurately disentangle repeated
information and attribute too many choices to new information, then observing many other
parents refusing to vaccinate their children will lead to strong beliefs that this is the optimal
choice, and make it less likely that the public health campaign is effective.1 When this is the
case, the best way to quash a herd on refusing vaccinations is to release public information
immediately and frequently. This contrasts with the fully rational case, in which the timing of
public information release is irrelevant for long-run learning outcomes.

Banerjee (1992) and Bikhchandani, Hirshleifer, and Welch (1992) first model social learning
in a sequential setting with binary signals. Smith and Sorensen (2000) study a social learning
framework with a general signal distribution and crazy types. An unbounded signal space is
sufficient to ensure complete learning, eliminating the possibility of inefficient cascades. Ace-
moglu, Dahleh, Lobel, and Ozdaglar (2011) examines social learning in a network - the rational
model of sequential learning with uninformed agents is a special case of their model.

This paper is most closely related to concurrent work on social learning by Eyster and
Rabin (2010). They extend a sequential learning model with continuous actions and signals to
allow for “inferential naivety”: players realize that previous agents’ action choices reflect their
signals, but fail to account for the fact that these actions are also based on the actions of agents
preceding these players. While continuous actions lead to full revelation of players’ signals in
the absence of inferential naivety, inferential naivety can confound learning by overweighing
actions of the first few agents. Although similar in nature, inferential naivety and model
misspecification differ in generality and interpretation. Inferential naivety considers the case in
which every repeated action is viewed as being independent with probability one, whereas in the
current setting, most decision makers are sophisticated and recognize that actions contain some
repeated information, but misperceive the exact proportion. Additionally, all agents observe
public information in Eyster and Rabin (2010). The analogue of inferential naivety in my
environment corresponds to p̂ = 0 and p = 1. As such, both papers provide complementary

1This example abstracts from the payoff interdependencies of vaccines.
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explanations for the robustness of inefficient learning. Eyster and Rabin (2010) also embed
inferentially naive agents in a model with rational agents. When every nth player in the
sequence is inferentially naive, rational agents achieve complete learning but inferentially naive
agents do not. Augmenting the misspecified and inferentially naive models with fully rational
agents who do not know precisely which previous agents are also rational, naive or uninformed
is an interesting avenue left open for future research.

Several other papers examine boundedly rational information processing in a social learning
framework. Guarino and Jehiel (2013) employ the concept of analogy based expectation equi-
librium (ABEE), in which agents best respond to the aggregate distribution of action choices.
Learning is complete in a continuous action model - in an ABEE, the excess weight placed
on initial signals increases linearly with time, preventing these initial signals from permanently
dominating subsequent new information. This contrasts with Eyster and Rabin (2010), in which
the excess weight on initial signals doubles each period, allowing a few early signals to dominate
all future signals. As in the fully rational model, complete learning no longer obtains in an
ABEE when actions are discrete. Demarzo, Vayanos, and Zwiebel (2003) introduce the notion
of persuasion bias in a model of opinion formation in networks. Decision makers embedded
in a network graph treat correlated information from others as being independent, leading to
informational inefficiencies. Although this paper studies a different environment than theirs, it
provides a natural analogue for considering persuasion bias in social learning. Earlier work by
Eyster and Rabin (2005) on cursed equilibrium also examines information processing errors. A
cursed player doesn’t understand the correlation between a player’s type and his action choice,
and therefore fails to realize a player’s action choice reveals information about his type.

The recent initial response models, including level-k analysis and cognitive hierarchy mod-
els, are similar in spirit to this paper.2 Consider level-k analysis in the context of sequential
learning. Anchoring level 0 types to randomize between the two possible actions, level 1 types
best respond by following their private signal - this corresponds to uninformed types. Level
2 types believe all other agents follow their private signal, and thus act as informed agents
with beliefs p̂ = 0. Consequently, the main difference between level-k analysis and the model
misspecification in this paper is the beliefs informed agents have about other agents’ types - in
this paper, informed agents can place positive weight on other agents using a level 2 decision
rule, whereas in a level k analysis, informed agents believe that all other agents use a level 1
decision rule. In both settings, level 2 agents misperceive the share of other agents who are
level 2. The comparison to a cognitive hierarchy model is similar.

The organization of this paper proceeds as follows. Section 2 sets up the model and solves
the individual decision-problem. Section 3 characterizes the asymptotic learning dynamics of a
misspecified model of inference, while Section 4 discusses the results and concludes. All proofs
are in the Appendix.

2 Model

The basic set-up of this model mirrors a standard sequential learning environment with binary
action and state spaces, and a continuous signal space.

States, Actions and Payoffs. There are two payoff-relevant states of the world, ω ∈ {L, R}
with common prior belief P (ω = L) = 1/2. Nature selects one of these states at the beginning

2Costa-Gomes, Crawford, and Iriberri (2009). Camerer, Ho, and Chong (2004).
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of the game. A countably infinite set of agents T = {1, 2, ...} act sequentially and attempt
to match the realized state of the world by making a single decision between two actions,
at ∈ {L,R}. They receive a payoff of 1 if their action matches the realized state, and a payoff
of 0 otherwise: u(at, ω) = 1at=ω.

Information. Each agent privately observes a signal about the state of the world, st. Signals
are independent and identically distributed, conditional on the state, with conditional c.d.f.
F ω. Assume that FL, FR are differentiable and mutually absolutely continuous, with Radon
Nikodym derivative f = dFL/dFR. This ensures that no private signal perfectly reveals the
state, and allows for a normalization such that the signal st = P (ω = L|st) corresponds to the
private belief that the state is L. Let [b, b̄] represent the convex hull of this support. Beliefs
are bounded if 0 < b < b̄ < 1, and are unbounded if [b, b̄] = [0, 1]. To ensure that signals are
informative, assume that the Radon Nikodym derivative f(s) = dFL(s)/dFR(s) is increasing
in s. This is equivalent to the monotone likelihood ratio property.

Public signals also reveal information about the state. Each period, a public signal spt
is released with probability ε > 0. For simplicity, assume that this public signal is binary,
spt ∈ {L,R} with precision πp = P (spt = ω) ∈ (1/2, 1). Denote the event in which no public
signal is released as spt = ∅.

Agent Types. There are two types of agents, θ ∈ {I, U}. With probability p ∈ (0, 1), an
agent is a socially informed type I who observes the action choices of her predecessors and
the sequence of public signals, ht = (a1, ..., at−1; s

p
1, ..., s

p
t ). She uses her private signal and this

history to guide her action choice. With probability 1 − p, an agent is a socially uninformed
type U who only observes his private signal. An alternative interpretation for this uninformed
type is a behavioral type who is not sophisticated enough to draw inference from the history.
This type’s decision is solely guided by the information contained in his private signal.

Beliefs About Types. Individuals face an inferential challenge when extracting information
from the actions of others. An action contains information about both an agent’s private signal
and prior actions and public signals. Full rationality requires informed agents to parse out the
private information in an action, and discard the redundant information about other actions
and public signals. But what happens if informed agents misunderstand the link between
action choices and information? For example, what if informed agents realize that prior actions
contain repeated information, but do not fully understand how to disentangle the new and
redundant information? Or what if informed agents know how to draw inference from the
private information contained in an action, but fail to realize that these actions also contain
repeated information?

Motivated by this possibility, I introduce higher-order uncertainty over the level of infor-
mation possessed by other agents to allow for a distinction between the perceived and actual
informational content of actions. Formally, each informed individual believes that any other
individual is informed with probability p̂, where p̂ need not coincide with p. An informed agent
believes that other agents also hold the same beliefs about whether previous agents are in-
formed or uninformed. Incorrect beliefs about p can persist because no agent ever learns what
the preceding agents actually observed or incorporated into their decision-making processes.

Remark. Although it is admittedly restrictive to require that agents hold identical mis-
perceptions about others, and this misperception takes the form of a potentially incorrect
point-mass belief about the distribution of p, it is a good starting point to examine the possi-
ble implications of model misspecification. The working paper Bohren (2010) elaborates on a
model in which agents begin with a non-degenerate prior distribution over p, and learn about p
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from the action history. Extending the model to allow for heterogenous biases is left for future
research.

2.1 The Individual Decision-Problem

Before choosing an action, each agent observes his type θ and a private signal s. Informed
agents also observe the public history h. A decision rule specifies an action a for each history
and signal realization pair. I look for an outcome that has the nature of a Bayesian equilibrium,
in the sense that agents use Bayes rule to formulate beliefs about the state of the world and seek
to maximize payoffs. The decision rule of each type is common knowledge, as is the fact that
all informed agents compute the same (possibly inaccurate) probability of any history h. This
outcome departs from the Bayesian equilibrium concept because agents interpret the history
through the lens of their potentially misspecified beliefs about the share of informed agents.

Throughout the analysis, it is convenient to express the public belief of informed agents as
a likelihood ratio,

lt =
P (ω = L|ht; p̂)
P (ω = R|ht; p̂)

which depends on the history and beliefs about the share of informed agents. After receiving
private signal s, an informed agent updates this public belief to the private belief lI = l

(
s

1−s

)
,

while an uninformed agent bases his private posterior belief solely on his private signal, lU =(
s

1−s

)
.

Guided by posterior belief lθ, each agent maximizes her payoff by choosing a = L if lθ ≥ 1,
and a = R otherwise. An agent’s decision can be represented as a cut-off rule. Informed agents
have a signal cut-off sI(l) = 1/(l+ 1), such that the agent chooses action L when s ≥ sI(l) and
chooses action R otherwise. The signal threshold for uninformed agents is independent of the
likelihood ratio, sU = 1/2.

2.2 Cascade formation

An information cascade occurs when it is optimal for an agent to choose the same action
regardless of her private signal realization; therefore, this action reveals no private information.
As is standard in the literature, a cascade occurs when public beliefs outweigh the strongest
private belief.

Lemma 1. An informed agent is in an information cascade when l ≥ (1− b) /b or l ≤(
1− b̄

)
/b̄. Uninformed agents are never in an information cascade.

As in Smith and Sorensen (2000), the cascade set of informed agents is an interval for
bounded private beliefs, [0, (1− b) /b]∪

[(
1− b̄

)
/b̄, 1

]
and a set of points for unbounded private

beliefs, {0, 1}.
With bounded private beliefs, a cascade forms in finite time.3 Informed agents no longer

reveal private information in a cascade, but public information continues to aggregate from
uninformed agents and public signals. Therefore, all cascades break with positive probability,
and the formation of a cascade does not necessarily imply belief convergence. I say a cascade
persists in the limit if, when a cascade forms in period t, there exists no τ > t where the

3Public signals and uninformed agents allow beliefs to jump inside the cascade set.
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cascade breaks. When private beliefs are unbounded, a cascade does not form in finite time
and a weaker notion is necessary. A limit cascade occurs when beliefs converge to a point in
the cascade set, but do not necessarily enter the cascade set in finite time. For bounded private
beliefs, informed agents will herd when a cascade persists in the limit, whereas for unbounded
private beliefs, informed agents herd when a limit cascade forms.

3 Learning Dynamics

I next characterize the long-run behavior of a misspecified model of inference, and determine
how the failure of agents to accurately interpret the action history will interfere with the long-
run learning dynamics and action choices of agents. Represent the likelihood ratio 〈lt〉∞t=1 as a
stochastic process with l0 = 1 and transitions:

ψ(a = L|ω, l; p) = p(1− F ω(1/(l + 1))) + (1− p)(1− F ω(1/2))

ψ(a = R|ω, l; p) = pF ω(1/(l + 1)) + (1− p)F ω(1/2)

ψp(sp = ω|ω) = επp

ψp(sp 6= ω|ω) = ε(1− πp)
ψp(sp = ∅|ω) = 1− ε

φ(a, sp, l; p̂) = l

(
ψ(a|L, l; p̂)
ψ(a|R, l; p̂)

)(
ψp(sp|L)

ψp(sp|R)

)
where ψ(a|ω, l; p) denotes the probability of action a, given likelihood ratio l and state ω, and
ψp(sp|ω) denotes the probability of public signal sp, given state ω. The probability of action a is
a weighted average of the probability that an uninformed type chooses a when using cut-off rule
sU = 1/2 and the probability that an informed type chooses a using cut-off rule sI(l) = 1/(l+1).

The likelihood ratio is updated based on the perceived probability of action a, ψ(a|ω, l; p̂),
which depends on agents’ beliefs about the share of informed agents. If agents attribute a
smaller share of actions to informed agents, p̂ < p, then they place more weight on the action
revealing private information and overestimate the informativeness of prior actions. The oppo-
site holds when agents attribute too large a share to informed agents. Given a likelihood ratio
lt, action at and public signal spt , the likelihood ratio in the next period is lt+1 = φ(at, s

p
t , lt; p̂).

The joint process 〈at, sp, lt〉 is a discrete-time Markov process defined on A × A ∪ {∅} ×
R+. Given state {at, spt , lt}, the process transitions to state

{
at+1, s

p
t+1, φ(at+1, s

p
t+1, lt; p̂)

}
with probability ψ(at+1|ω, lt; p)ψp(spt+1|ω). The stochastic properties of 〈lt〉 determine long-run
learning dynamics.

3.1 Stationary and Stable Limit Points

If agents accurately interpret the action history, p̂ = p, then the likelihood ratio is a martingale,
as is standard in the literature. However, when agents have an inaccurate model of inference, the
likelihood ratio may no longer be a martingale and it is not possible to use standard martingale
methods to establish belief convergence. I first characterize the set of stationary points for the
likelihood ratio; these are candidate limit points for 〈lt〉. Next, I determine how the stability
of these stationary points depends on p̂ to establish the dynamics of the likelihood ratio near
a stationary point. Finally, I use the law of the iterated logarithm (LIL) to show that the
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likelihood ratio converges to each stable stationary point with positive probability, from any
starting point, and almost surely doesn’t converge to unstable points.

At a stationary point, the likelihood ratio remains constant for any action and public signal
profile that occur with positive probability.

Definition 1. A point l̃ is stationary if either (i) ψ(a|ω, l; p) = 0 and ψp(sp|ω) = 0 or (ii)
φ(a, sp, l; p̂) = l for all (a, sp) ∈ {L,R} × {L,R, ∅}.

Public signals are always informative; therefore, the only stationary points are 0 and ∞. This
is also true without public signals, provided at least one of the following is true: (i) signals are
unbounded, (ii) there are uninformed agents or (iii) agents believe there are uninformed agents.
Lemma 2 formalizes this result.

Lemma 2. The set of stationary points of l are l̃ ∈ {0,∞}.

A stationary point l̃ is stable if the likelihood ratio process 〈lt〉 converges to l̃ with positive

probability when l0 is in the neighborhood of l̃.

Definition 2. Let l̃ be a stationary point of 〈lt〉. Then l̃ ∈ (−∞,∞) is stable if there exists

an open ball N0 around 0 such that l0 − l̃ ∈ N0 ⇒ P (lt → l̃) > 0. A point l̃ = ∞ is stable if
there exists an M such that l0 > M ⇒ P (lt →∞) > 0.

The challenge in establishing convergence results for 〈lt〉 stems from the fact that the transitions
ψ and φ depend on the current value of the likelihood ratio. Corollary C.1 of Smith and Sorensen
(2000) derives a criterion for the local stability of a nonlinear stochastic difference equation with
state-dependent transitions. In the current setting, the stability of a stationary point can be
reframed in the context of the martingale properties of the log likelihood ratio. If 〈log lt〉 is a
supermartingale for lt near zero, then 〈log lt〉 diverges to negative infinity and zero is a stable
stationary point of l, whereas if 〈log lt〉 is a submartingale for lt near infinity, then it diverges
and infinity is a stable stationary point of l.

I use this criterion to characterize the relationship between the stability of a stationary point
and the beliefs informed agents hold about the informativeness of prior actions. If informed
agents sufficiently overestimate the share of uninformed agents, both zero and infinity are stable
stationary points, whereas if agents sufficiently underestimate the share of uninformed agents,
then there are no stable stationary points. When beliefs are close to correct, zero is the only
stable stationary point. Lemma 3 formally states this result.

Lemma 3. There exist unique cutoffs p̂1 ∈ [0, p) and p̂2 ∈ (p, 1] such that:

1. If p̂ < p̂1 then the set of stable stationary points are l̃ ∈ {0,∞}.

2. If p̂ ∈ (p̂1, p̂2) then l̃ = 0 is the only stable stationary point.

3. If p̂ > p̂2, then there are no stable stationary points.

Beliefs p̂ influence the information that accumulates from each action, but not the proba-
bility of each action. When lt is near zero, beliefs favor state R. As p̂ increases, agents place
more weight on the informativeness of contrary L actions and less weight on the informativeness
of supporting R actions. This makes the likelihood ratio take a bigger jump away from zero
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when an L action is observed, and a smaller jump towards zero when an R action is observed.
At some cut-off p̂2, 〈log lt〉 flips from being a supermartingale to a submartingale near zero.
Above p̂2, zero is no longer a stable stationary point. Similar logic establishes the stability of lt
near infinity for some cut-off p̂1. When p̂ = p, the likelihood ratio is a martingale. Therefore,
〈log lt〉 is a supermartingale and zero is a stable stationary point, establishing that p < p̂2. The
martingale convergence theorem precludes infinity from being a stable point when p̂ = p; this
establishes that p > p̂1.

The next Lemma establishes that the likelihood ratio converges to a point l̃ if and only if l̃
is a stable stationary point. Additionally, if l̃ is a stable stationary point, then the likelihood
converges to l̃ with positive probability, from any initial value.

Lemma 4. P (lt → l̃) > 0 iff l̃ is a stable stationary point of 〈lt〉.

The LIL enables a precise characterization of belief convergence. Consider the case of
bounded signals. During a cascade, the probability of each action is independent across time.
By the law of large numbers (LLN), the share of each action and public signal converge to their
expected values when the cascade persists. These shares determine the limit of the likelihood
ratio. If the candidate limit point lies inside the cascade set, then by the LIL Sheu (1974),
there is a positive measure of sample paths that converge to this limit without crossing outside
the cascade set, and the cascade persists in the limit with positive probability.4 On the other
hand, if the candidate limit point lies outside the cascade set, then the likelihood ratio will
eventually leave the cascade set and the cascade breaks almost surely. Precisely the same
criterion determines whether a stationary point is stable and whether lt converges to a value
inside or outside the cascade set. Therefore, whenever a stationary point is stable, the likelihood
ratio converges to this point with positive probability, from any starting value l0. The intuition
is similar for the case of unbounded signals. I bound the likelihood ratio near zero or infinity
with an i.i.d. process, and use the LIL to determine the limiting behavior of this i.i.d. process.

3.2 Asymptotic Learning

This section presents the main result of the paper - a characterization of the learning dynamics
in a misspecified model of inference. I use insights from the stability of stationary points to
determine whether observing an infinite sequence of new information allows informed agents to
eventually learn the true state, and examine what happens when learning fails.

Several possible long-run outcomes may occur. Learning is complete if public beliefs converge
to a point mass on the true state, whereas learning is incorrect if public beliefs converge to a
point mass on the incorrect state. If public beliefs about the state remain interior, either by
converging to an interior belief or perpetually oscillating, then learning is incomplete. Belief
convergence implies action convergence for informed agents, in that they eventually choose the
same action. Note that action convergence never obtains for uninformed agents, as their actions
always depend on their private information.

If the likelihood ratio has a limit, then the support of the limit is equal to the set of stable
stationary points, by Lemma 4. For complete learning to arise almost surely, zero must be
the unique stable stationary point. If both zero and infinity are stable stationary points, then

4The LIL bounds the rate at which a sequence converges to its expected value. The probability that the
sequence crosses outside this bound infinitely often is zero.
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both complete and incorrect learning arise, whereas if there are no stable stationary points,
the likelihood ratio perpetually oscillates and learning is incomplete. Theorem 1 characterizes
the relationship between asymptotic learning outcomes and informed agents’ interpretation of
prior actions.

Theorem 1. There exist unique cutoffs p̂1 and p̂2 such that:

1. If p̂ < p̂1, then complete and incorrect learning both occur with positive probability. In-
complete learning almost surely does not occur.

2. If p̂ ∈ (p̂1, p̂2), then complete learning occurs almost surely.

3. If p̂ > p̂2, then incomplete learning occurs almost surely and beliefs perpetually oscillate.

Both complete and incorrect learning outcomes arise when agents attribute too many ac-
tions to uninformed agents. Agents overestimate the informativeness of actions supporting the
more likely state, and underestimate the informativeness of contrary actions, causing beliefs to
quickly become entrenched. When beliefs about the share of informed agent are relatively accu-
rate, incorrect learning is no longer possible, while complete learning remains possible. Finally,
when informed agents attribute too few actions to uninformed agents, they underestimate the
informativeness of actions supporting the more likely state, and overestimate the informative-
ness of contrary actions. This prevents belief convergence - there are no stable stationary points
and learning is incomplete.

It is also necessary to rule out incomplete learning when p̂ < p̂2. Consider the case of
bounded signals. When a cascade persists with positive probability, the probability that the
likelihood ratio returns to any value outside the cascade set is strictly less than one. Therefore,
the probability that a value outside the cascade set occurs infinitely often is zero – eventually
a cascade forms and persists. When a cascade persists and the likelihood ratio remains inside
the cascade set, the LLN guarantees belief convergence.

The asymptotic properties of learning determine whether the action choices of informed
agents eventually converge on the optimal action. When p̂ falls between the two thresholds,
p̂ ∈ (p̂1, p̂2), only correct learning is possible. Learning will be efficient in that informed agents
will choose the optimal action all but finitely often. Otherwise, there is positive probability
that learning will be inefficient and informed agents will choose the suboptimal action infinitely
often. Correct beliefs about agent types lead to efficient action choices, given that p ∈ (p̂1, p̂2).

4 Discussion

This paper demonstrates that a misspecified model of information processing impacts asymp-
totic learning. Individuals may continue to choose an inefficient action, despite sufficient public
information to learn the true state. This has important policy implications. In a correctly spec-
ified model, complete learning obtains regardless of the structure of public information releases.
However, in the face of model misspecification, the timing and frequency of public information
impact the asymptotic properties of the learning process. When p̂ < p̂1, immediate release
of public information will prevent beliefs from becoming entrenched on the incorrect state. A
delayed public response will require stronger or more frequent public signals to overturn an in-
correct herd. Policy interventions are required on a short-term basis: once a herd begins on the
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correct action, it is likely to persist on its own (although another short-term intervention may
be necessary in the future). When p̂ > p̂1, the important policy dimension is the frequency or
strength of public information. As herds become more fragile, more frequent or precise public
information is required to maintain a correct herd. A policy intervention must be maintained
ad infinitum; once an intervention ceases, the herd will eventually break.

Experimental evidence from Goeree, Palfrey, Rogers, and McKelvey (2007) suggests that
new information does indeed continue to accumulate in cascades: some agents still follow their
private signal, despite the fact that all agents observe the history. In rational models, this
off-the-equilibrium-path action would be ignored. However, it seems plausible that subsequent
agents would recognize these off-the-equilibrium-path actions are likely to reveal an agent’s
private signal, even if they are unsure of the exact prevalence of such actions. Koessler,
Ziegelmeyer, Bracht, and Winter (2008) examines the fragility of cascades in an experiment
where an expert receives a more precise signal than other participants. The unique Nash equi-
librium is for the expert to follow her signal; observation of a contrary signal overturns a cascade.
However, experts rarely overturn a cascade when equilibrium prescribes that they do so. As the
length of the cascade increases, experts become even less likely to follow their signal: they break
65% of cascades when there are two identical actions, but only 15% of cascades when there are
five or more identical actions. Elicited beliefs evolve in a manner similar to the belief process
that would arise if all agents followed their signals, and each action conveyed private informa-
tion. In addition, off-the-equilibrium-path play frequently occurs, and these non-equilibrium
actions are informative. This provides support for both the presence of uninformed agents and
a misspecified belief about their frequency. Kubler and Weizsacker (2004) also find evidence
consistent with a misspecified model of social learning. They conclude that subjects do learn
from their predecessors, but are uncertain about the share of previous agents who also learned
from their predecessors. Particularly, agents underestimate the share of previous agents who
herded and overestimate the amount of new information contained in previous actions.

This model leaves open interesting questions for future research on model misspecification.
Individuals may differ in their depth of reasoning and their ability to combine different infor-
mation sources - introducing heterogeneity into how agents process information would capture
this. Allowing for partial observability of histories would also be a natural extension, while
introducing payoff interdependencies would make the model applicable to election and financial
market settings.

5 Appendix: Proofs

Proof of Lemma 1: Suppose l ≥ (1− b) /b. The strongest signal an agent can receive in
favor of state R is b. This leads to posterior lI = lb/ (1− b) ≥ 1 and an informed agent finds it
optimal to choose a = L. Therefore, for any signal s ≥ b, an informed agent will choose action
L. The signal threshold of uninformed agents is independent of the likelihood ratio; combined
with the assumption that b < b̄ guarantees that an uninformed agent chooses both actions with
positive probability. Q.E.D.

Proof of Lemma 2: At a stationary point l̃, φ(a, sp, l̃) = l̃ for all a and sp that occur with

positive probability when l = l̃. As ψp(sp|L)/ψp(sp|R) 6= 1 for sp ∈ {L,R} and P (sp|ω) > 0 for
sp ∈ {L,R}, independent of l, the only possible candidates for stationary points are l ∈ {0,∞}.

11



This is also true without public signals, provided signals are unbounded or p < 1 or p̂ < 1.
Q.E.D.

The proof of Lemma 3 makes use of several intermediate lemmas and Corollary C1. from Smith
and Sorensen (2000), which is reproduced below using the notation of this paper.

Lemma 5 (Condition for Stable Fixed Point). Given a finite set A, probability measure p(.|x)
defined on A for any x ∈ R+ and Borel measurable function f : A×R+ → R+, suppose 〈xt〉∞t=0

is a Markov process with transition rule xt+1 = f(at, xt) for at ∈ A, governed by the probability
measure P (B|x) =

∑
{a:f(a,x)∈B} p(a|x) for any set B in the Borel σ−algebra on R+. Suppose

x̃ is a fixed point of x. Then x̃ is a stable fixed point if∑
a∈A

p(a|x̃) log fx(a, x̃) < 0

Proof: See Smith and Sorensen (2000).

Lemma 6. Assume the ratio of two densities, fL(x)/fR(x) satisfies the monotone likelihood

ratio property. Then d
dx

FL

FR (x) ≥ 0 and d
dx

1−FL

1−FR (x) ≥ 0 and FL ≤ FR.

Proof: Let x1 ≥ x0

⇒ fL(x1)

fR(x1)
≥ fL(x0)

fR(x0)

⇒
∫ x1

0

fL(x1)f
R(x0)dx0 ≥

∫ x1

0

fL(x0)f
R(x1)dx0

⇒ fL(x1)F
R(x1) ≥ FL(x1)f

R(x1)

⇒ d

dx

FL(x)

FR(x)
=
FR(x)fL(x)− FL(x)fR(x)

FR(x)2
≥ 0

The proof of the remaining case is analogous. First order stochastic dominance follows directly
from the monotone likelihood property. Q.E.D.

Lemma 7. Assume the ratio of two densities, fL(x)/fR(x) satisfies the monotone likelihood
ratio property. Then the transition of the likelihood ratio changes with p̂ as follows:

1. If l > 1, then d
dp̂

(
ψ(R|L,l;p̂)
ψ(R|R,l;p̂)

)
< 0 and d

dp̂

(
ψ(L|L,l;p̂)
ψ(L|R,l;p̂)

)
< 0

2. If l < 1, then d
dp̂

(
ψ(R|L,l;p̂)
ψ(R|R,l;p̂)

)
> 0 and d

dp̂

(
ψ(L|L,l;p̂)
ψ(L|R,l;p̂)

)
> 0

3. If l = 1, then d
dp̂

(
ψ(R|L,l;p̂)
ψ(R|R,l;p̂)

)
= 0 and d

dp̂

(
ψ(L|L,l;p̂)
ψ(L|R,l;p̂)

)
= 0

Proof:
d

dp̂

(
ψ(R|L, l; p̂)
ψ(R|R, l; p̂)

)
=
FL(1/(l + 1))FR(1/2)− FL(1/2)FR(1/(l + 1))

[p̂FR(1/(l + 1)) + (1− p̂)FR(1/2)]2
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Lemma 6 established that d
dx

FL

FR (x) > 0. Suppose l > 1. Then

FL(1/(l + 1))

FR(1/(l + 1))
<

FL(1/2)

FR(1/2)

⇒ FL(1/(l + 1))FR(1/2) − FL(1/2)FR(1/(l + 1)) < 0

and therefore, d
dp̂

(
ψ(R|L,l;p̂)
ψ(R|R,l;p̂)

)
< 0. The proof of the remaining cases is analogous. Q.E.D.

Proof of Lemma 3: From Lemma 5, when ω = R, the fixed point l̃ = 0 is a stable fixed point
of l if

θ(p̂, l̃ = 0) :=
∑

(a,sp)∈{L,R}×{L,R,∅}

ψ(a|R, 0; p)ψp(sp|R) log φl(a, s
p, 0; p̂) < 0

where

φl(a, s
p, 0; p̂) =

(
ψ(a|L, 0; p̂)

ψ(a|R, 0; p̂)

)(
ψp(sp|L)

ψp(sp|R)

)
Simplify θ(p̂, 0) as

θ(p̂, 0) =
∑
a

ψ(a|R, 0; p) log

(
ψ(a|L, 0; p̂)

ψ(a|R, 0; p̂)

)
+
∑
sp

ψp(sp|R) log

(
ψp(sp|L)

ψp(sp|R)

)
= (1− p)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
+
(
p+ (1− p)FR(1/2)

)
log

(
p̂+ (1− p̂)FL(1/2)

p̂+ (1− p̂)FR(1/2)

)
− δ

where δ := ε (2πp − 1) log
(

πp

1−πp

)
> 0 is the public signal component of θ.

If p̂ = 1, then for small enough ε and p < 1,

θ(p̂ = 1, 0) = (1− p)(1− FR(1/2)) log

(
1− FL(1/2)

1− FR(1/2)

)
− δ > 0

since FL ≤ FR and therefore 1−FL(1/2)
1−FR(1/2)

> 1. At p̂ = p, lt is a martingale and θ(p̂ = p) < 0 Also,

θ(p̂, 0) is increasing in p̂ :

dθ

dp̂
= ψ(R|R, 0; p)

(
ψ(R|R, 0; p̂)

ψ(R|L, 0; p̂)

)
d

dp̂

(
ψ(R|L, l; p̂)
ψ(R|R, l; p̂)

)
> 0

and d
dp̂

(
ψ(R|L,l;p̂)
ψ(R|R,l;p̂)

)
> 0 at l = 0. Therefore, there exists a p̂2 ∈ (p, 1) s.t. θ(p̂2, 0) = 0. For p̂ <

p̂2, θ(p̂, 0) < 0 and 0 is a stable limit point, while for p̂ > p̂2, θ(p̂, 0) > 0 and 0 is not a stable
limit point.

Now consider the limit point l̃ =∞. Transform the problem to consider the Markov process
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〈(at, xt = 1/lt)〉 with transitions

ψ̃(R|ω, x; p) = pF ω

(
x

1 + x

)
+ (1− p)F ω(1/2)

ψ̃(L|ω, x; p) = p

(
1− F ω

(
x

1 + x

))
+ (1− p)(1− F ω(1/2))

φ̃(a, sp, x; p̂) = x

(
ψ̃(a|R, x; p)

ψ̃(a|L, x; p)

)(
ψp(sp|R)

ψp(sp|L)

)
When ω = R, the fixed point x̃ = 0 is a stable fixed point if

θ̃(p̂, x̃ = 0) :=
∑

(a,sp)∈{L,R}×{L,R,∅}

ψ̃(a|R, 0; p)ψp(sp|R) log φ̃x(a, s
p, 0; p̂) < 0

Note θ̃(p̂, 0) = −θ(p̂,∞). Simplify θ̃(p̂, 0) as

θ̃(p̂, 0) =
((
p+ (1− p)(1− FR(1/2)

))
log

(
p̂+ (1− p̂)(1− FR(1/2))

p̂+ (1− p̂)(1− FL(1/2))

)
+(1− p)FR(1/2) log

(
FR(1/2)

FL(1/2)

)
+ δ

Suppose at p̂ = p, θ̃(p, 0) < 1, and therefore xt = 1/lt → 0 with positive probability in the
neighborhood of 0. Then lt converges to ∞ with positive probability, a contradiction since lt is
a martingale at p̂ = p. Therefore, θ̃(p, 0) > 0.

If p̂ = 0, then

θ̃(p̂ = 0, 0) =
(
1− (1− p)FR(1/2)

)
log

(
1− FR(1/2)

1− FL(1/2)

)
+ (1− p)FR(1/2) log

(
FR(1/2)

FL(1/2)

)
+ δ

which is less than zero when

p > 1−
log
(

1−FL(1/2)
1−FR(1/2)

)
+ δ

FR(1/2)
[
log
(
FR(1/2)
FL(1/2)

)
+ log

(
1−FL(1/2)
1−FR(1/2)

)] := p∗

Also note θ̃(p̂, 0) is increasing in p̂ :

dθ̃

dp̂
= ψ̃(L|R, 0; p)

ψ̃(L|L, 0; p̂)

ψ̃(L|R, 0; p̂)

d

dp̂

(
ψ̃(L|R, 0; p̂)

ψ̃(L|L, 0; p̂)

)
> 0

since ψ̃(L|R,0;p̂)
ψ̃(L|L,0;p̂)

= ψ(L|R,∞;p̂)
ψ(L|L,∞,p̂) and d

dp̂

(
ψ(L|L,l;p̂)
ψ(L|R,l;p̂)

)
< 0 when l > 1. Therefore, when p > p∗ there

exists a p̂1 ∈ (0, p) s.t. θ̃(p̂1, 0) = 0. For p̂ < p̂1, θ̃(p̂, 0) < 0 and 0 is a stable limit point of x

and for p̂ > p̂1, θ̃(p̂, 0) > 0 and 0 is not a stable limit point of x. When p < p∗, then 0 is not a

stable limit point of x : θ̃(p̂, 0) > 1 for all p̂ and incorrect learning is not possible for any beliefs
p̂. Q.E.D.
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Proof of Lemma 4: Theorem B.1 in Smith and Sorensen (2000) establishes that a martingale
cannot converge to a non-stationary point; this is straightforward to extend to the current
setting. Therefore, if P (lt → l̃) > 0, then l̃ ∈ {0,∞}. It remains to establish that l̃ is a stable

stationary point if and only if P (lt → l̃) > 0 from any starting point l0.
I first use the LIL to bound the convergence of an i.i.d. random variable. Define ran-

dom variable γ(a, sp) := φl(a, s
p, 0; p̂) with P (γ(a, sp)) := P (a, sp|ω = R, l = 0; p) and σ2 :=

V ar (log γ(a, sp)). Then E [log γ(a, sp)] = θ(p̂, 0). By the LIL,

lim sup
t→∞

∑t
i=1 (log γ(ai, s

p
i )− θ(p̂, 0))√

2σ2 log log σ2
= 1 a.s.

Thus, for δ > 0,

P

[
1

t

t∑
i=1

log(ai, s
p
i ) ≥ βt + θ(p̂, 0) i.o.

]
= 0

where βt := (1 + δ)
√

2σ2 log log tσ2

t
. For almost all sample paths, there exist only finitely many t

such that 1
t

∑t
i=1 log γ(ai, s

p
i ) lies outside [θ(p̂, 0)− βt, θ(p̂, 0) + βt]. Define

ζ :=

{
{âi, ŝi} |

1

t

t∑
i=1

log γ(ai, s
p
i ) > θ(p̂, 0) + βt for some t

}

as the set of sample paths such that 1
t

∑t
i=1 log γ(ai, s

p
i ) crosses its upper bound at least once. To

show that the measure of ζ is strictly less than 1, consider the following. For each {âi, ŝi} ∈ ζ,
form a corresponding sample path {a′i, s′i} by changing âs to a′s 6= âs and ŝi to s′s = ∅ for each s
such that 1

s

∑s
i=1 log γ(âi, ŝi) > Bs. Then each sample in ζ has a unique corresponding sample

path in its complement ζc. Therefore, P (ζc) ≥ P (ζ), which implies P (ζc) ≥ 1/2 and the set of
sample paths such that 1

t

∑t
i=1 log γ(ai, s

p
i ) never crosses its upper bound has positive measure.

Case (i): Suppose signals are bounded. Let τ be the first time that the likelihood ratio
enters the cascade set for action R :

τ = [t : lt ∈ [0, (1− b) /b] and ls /∈ [0, (1− b) /b] ∀s < t]

Note that τ is finite with positive probability and log lτ ≤ log (1− b) /b. Define a stochastic
process 〈λt〉:

λt =

{
log lτ +

∑t
i=τ+1 log γ(ai, s

p
i ) if t > τ

log lt if t ≤ τ

The processes 〈λt〉 and 〈lt〉 coincide as long as an R cascade has not formed and broken. By
the law of large numbers, P (limt→∞

1
t−τ
∑t

i=τ+1 log γ(ai, s
p
i ) = θ(p̂, 0)) = 1.

Suppose 0 is a stable point, θ(p̂, 0) < 0. An R cascade forms in finite time with positive
probability, and persists for any finite number of periods with positive probability; combining
this with the LIL, there exists a δ1 > 0 such that P (λt < log (1− b) /b+ (t− δ1) θ(p̂, 0) + βt−δ1
for all t > δ1) > 0 and the cascade persists in the limit with positive probability. On this set
of sample paths, λt converges to −∞, so P (limt→∞ λt = −∞) > 0. Given that 〈λt〉 and 〈lt〉
coincide along the set of sample paths where a cascade forms and persists, the likelihood ratio
also diverges to −∞ with positive probability, P (limt→∞ lt = −∞) > 0.
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Now suppose 0 is not a stable point, θ(p̂, 0) > 0. Given lτ > 0, there exists a ε1 < ∞ such
that λt > −ε1 +

∑t
i=τ+1 log γ(ai, s

p
i ) and for all ε2 > 0, there exists a δ2 such that for t > δ2,

P (λt > −ε1 + (t− τ) θ(p̂, 0)− ε2) = 1. Therefore, P (∃t > τ s.t. λt > log (1− b) /b) = 1, which
also implies P (∃t > τ s.t. lt > log (1− b) /b) = 1 and a cascade breaks almost surely. The
proof is analogous for a cascade on action L with ∞ as a stable stationary point.

Case (ii): Suppose signals are unbounded. Let infinity be a stable stationary point, θ(p̂,∞) >
0. Then, by continuity, ∃l∗ <∞ such that∑

a,sp

ψ(a|R, l∗; p)ψp(sp|R) log φl(a, s
p,∞; p̂) = 0.

Let τ be the first time that the likelihood ratio crosses l∗, which is finite with positive probability.
Define a stochastic process 〈λt〉:

λt =

{
log lτ +

∑t
i=τ+1 log γ(ai, s

p
i , l) if t > τ

log lt if t ≤ τ

where γ(a, sp, l) := φl(a, s
p,∞; p̂) is an r.v. with P (γ(a, sp, l)) := P (a, sp|ω = R, l; p). Note

that lt > λt, and for l > l∗, E[log γ(a, sp, l)] > 0. Similar arguments to the case of bounded
signals show that if λt > l∗ at time t, then P (λs > l∗ for all s > t) > 0 and on the set of sample
paths where λs > l∗ for all s > t, λt →∞. Since lt > λt, P (lt →∞) > 0. A similar argument
bounds lt from above to establish that P (lt →∞) = 0 when θ(p̂,∞) < 0. An analogous proof
establishes that P (lt → 0) > 0 iff θ(p̂, 0) < 0. Q.E.D.

Proof of Theorem 1: Combining Lemma 4 and 3 establishes the set of limit points of
the likelihood ratio, as a function of p̂. When p̂ < p̂1, 0 and ∞ are both limit points of the
likelihood ratio. Therefore, both complete learning and fully incorrect learning occur with
positive probability. When p̂ ∈ (p̂1, p̂2), 0 is the unique limit point of the likelihood ratio,
leading to complete learning with positive probability. When p̂ > p̂2, the likelihood ratio neither
converges to zero nor diverges. These are the only two candidate limit points; therefore, the
likelihood ratio does not converge and learning is incomplete.

It is also necessary to rule out incomplete learning when p̂ < p̂2. First consider bounded
signals. When p̂ < p̂2, once a cascade forms, the probability of returning to no cascade is
less than 1 for at least one type of cascade. Therefore, by Theorem 8.2 in Billingsley (1995)
P (ls ∈

(
log (1− b) /b),

(
1− b̄

)
/b̄
)

i.o.) = 0. Eventually a cascade forms and persists in the
limit, and learning is incomplete with probability 0. Similar logic establishes that when p̂ < p̂2
and signals are unbounded, P (ls = l i.o.) = 0 for l such that θ(p̂, l) = 0, and beliefs eventually
converge. Q.E.D.

References

Acemoglu, D., M. A. Dahleh, I. Lobel, and A. Ozdaglar (2011): “Bayesian Learning
in Social Networks,” The Review of Economic Studies.

Banerjee, A. V. (1992): “A Simple Model of Herd Behavior,” The Quarterly Journal of
Economics, 107, 797–817.

16



Bikhchandani, S., D. Hirshleifer, and I. Welch (1992): “A Theory of Fads, Fashion,
Custom, and Cultural Change as Informational Cascades,” The Journal of Political Economy,
100, 992–1026.

Billingsley, P. (1995): Probability and Measure, Wiley-Interscience, 3 ed.

Bohren, A. (2010): “Information Processing Uncertainty in Social Learning,” .

Camerer, C. F., T.-H. Ho, and J.-K. Chong (2004): “A Cognitive Hierarchy Model of
Games,” The Quarterly Journal of Economics, 119, 861–898.

Costa-Gomes, M. A., V. P. Crawford, and N. Iriberri (2009): “Comparing Models
of Strategic Thinking in Van Huyck, Battalio, and Beil’s Coordination Games,” Journal of
the European Economic Association, 7, 365–376.

Demarzo, P. M., D. Vayanos, and J. Zwiebel (2003): “Persuasion Bias, Social Influence,
And Unidimensional Opinions,” The Quarterly Journal of Economics, 118, 909–968.

Eyster, E. and M. Rabin (2005): “Cursed Equilibrium,” Econometrica, 73, 1623–1672.

——— (2010): “Nave Herding in Rich-Information Settings,” American Economic Journal:
Microeconomics, 2, 221–43.

Goeree, J. K., T. R. Palfrey, B. W. Rogers, and R. D. McKelvey (2007): “Self-
Correcting Information Cascades,” Review of Economic Studies, 74, 733–762.

Guarino, A. and P. Jehiel (2013): “Social Learning with Coarse Inference,” American
Economic Journal: Microeconomics, 5, 147–74.

Koessler, F., A. Ziegelmeyer, J. Bracht, and E. Winter (2008): “Fragility of Infor-
mation Cascades: An Experimental Study using Elicited Beliefs,” Jena Economic Research
Papers in Economics 2008-094, Friedrich-Schiller-University Jena, Max-Planck-Institute of
Economics.

Kubler, D. and G. Weizsacker (2004): “Limited Depth of Reasoning and Failure of
Cascade Formation in the Laboratory,” Review of Economic Studies, 71, 425–441.

Sheu, S. S. (1974): “Some Iterated Logarithm Results for Sums of Independent Two-
dimensional Random Variables,” The Annals of Probability, 2, 1139–1151.

Smith, L. and P. Sorensen (2000): “Pathological Outcomes of Observational Learning,”
Econometrica, 68, 371–398.

17


	1 Introduction
	2 Model
	2.1 The Individual Decision-Problem
	2.2 Cascade formation

	3 Learning Dynamics 
	3.1 Stationary and Stable Limit Points
	3.2 Asymptotic Learning

	4 Discussion
	5 Appendix: Proofs

