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Abstract

Cross-ownership smooths firms’ idiosyncratic shocks but affects their portfolio choice

and, therefore, their risk-taking position. The classical intuition on the role of pooling

risk in raising welfare is valid when ownership is evenly dispersed. However, when the

ownership of some firms is concentrated in the hands of a few others, deeper integra-

tion leads to excessive risk-taking and volatility and, consequently, it results in lower

aggregate welfare.
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1 Introduction

Back in the 1930s, the influential work of Berle and Means (1932) reported that ownership of

capital of large corporations in USA was dispersed among small shareholders and that 44%

of the largest 200 corporations were under effective management control. This picture was

scrutinised within the corporate finance literature over the years.1 After the Second World

War, the increase in stock market participation of households, buying directly companies’

shares, made the dispersed ownership structure even more salient. But from 1980 households’

participation in the stock market started to be channeled via the acquisition of mutual funds

actively managed by an institution. Davis (2008) investigated the implication of this trend to

ownership structure. He reported a widespread increase in cross-ownership accompanied by an

increase in ownership concentration. Harford et al. (2011) provide similar insights. Fichtner

et al. (2020) revised and confirmed these earlier empirical results, taking into account the

growth of passive funds. In a recent study, He and Huang (2020) show that the fraction of

U.S. public firms that are cross-held has increased from below 10% in 1980 to about 60% in

2014.

In view of the increase in ownership concentration, empirical research has investigated

whether the picture of “separation between ownership and control” depicted by Berle and

Means (1932) is still relevant for the modern economy. Many influential papers have confirmed

a de-facto separation between ownership and control, even when the network of ownership is

highly concentrated. This may occur because even sizeable cross-holdings are still too small

to create real control (see Harford et al. (2011)). Additionally, legal restrictions and conflict

of interests make it costly for companies to interfere on management decisions (Davis (2008)).

On the other hand, there is some indirect evidence of collusion across companies with a large

share of cross-holding, e.g., He and Huang (2020). We recognise that establishing a causal link

between ownership and control is difficult as there could be many mechanisms at work. But

it seems uncontroversial that, even if not complete, there is a fair amount of division between

ownership and managerial control.

Motivated by these empirical results, we develop a model to study the implications of cross-

ownership for firms’ portfolio choice and welfare. A collection of firms is located in a network

of cross-holding. We focus on cross-holding in the form of shares, but other instruments

that channel the performances of one firm on other firms can be included. The network of

1The introduction of LaPorta et al. (1999) and the introduction of Davis (2008) provides a concise review
of this literature.
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cross-holding reflects the claims that each firm has on the value of other firms. There is full

separation of who makes these claims (the shareholders) and the decision maker of a firm

(the manager who has full control). The manager of a given firm is assumed to be risk averse

and has the choice to invest in projects of different risks. For example, a manager can invest

on outgoing projects to expand the current capacity or can finance new projects that are

riskier. The investments by firms’ managers and the network of cross-holding together define

the distribution of returns. To simplify the analysis we assume that firm’s decision makers

have mean-variance preferences and that every firm can invest its endowment in a risk-free

asset or in a distinct risky project.

We begin by deriving a summary measure that aggregates all direct and indirect claims

induced by the cross-holding network: we refer to this as (the matrix of) ownership. Ownership

keeps track of indirect claims of cross-holding and determines the set of final bilateral transfers.

In Proposition 1, we characterise decentralised firms’ risk-taking behaviour. In Proposition 2,

we find the social optimum for risk-taking of firms, when constrained by a given network of

cross-holding. These two results clarify who are the firms that take too much or too little risk

relative to socially optimal investment and how this depends on their network location. We

explain this next.

Portfolio choice in a cross-ownership network leads to two competing forces–one involving

diversification and the other risk-shifting. Cross-ownership allows firms to diversify and invest

in high return projects despite their risk. But cross-ownership also skews the incentives of

how much risk firms take because those that make portfolio decisions do not bear all of the

risk they take on. Indeed, a firm will absorb some of the risk taken by the firms it has shares

in. How these two effects shape the firm’s portfolio choice depends on the local structure of

its network of ownership. Low self-ownership incentivises firms to take too much risk. Firms

whose ownership is concentrated in the hand of a few others also take too much risk as the risk

taken is shifted to a few neighbours. In contrast, firms with high self-ownership and whose

ownership is dispersed take too little risk.

At the aggregate level, the cross-ownership network that maximizes aggregate utility is one

where self-ownership is minimized and each firm’s ownership is uniformly distributed across

all other firms (Proposition 3). This is achieved in a complete and symmetric cross-holding

network and, in this setting, it is analogous to a perfect insurance scheme. Yet, empirical

research has documented highly concentrated cross-ownership networks in the modern econ-

omy. Complementary to the body of research discussed above, network scientists, working in
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the intersection between computer science, economics and finance, investigated the structure

of cross-ownership networks within and across different countries. Glattfelder and Battison

(2009) mapped ownership networks focusing on the stock markets of 48 countries. In a subse-

quent work, Vitali et al. (2011) studied transnational corporations, including both listed and

non-listed companies around the world. This analysis revealed that cross-ownership networks

have a bow-tie structure, see Figure 1 for a stylised example.

The bow-tie structure provides a taxonomy to group firms in three categories based on

their local network of ownership. It also clarifies the nature of asymmetries in cross-ownership

networks. Firms that have many shares of other firms in their portfolio but that do not raise

equity by issuing their own shares belong to the in-section. Firms located in the core of the

bow tie have shares of other core firms and of out-section firms, but they are also cross-held

by in-section firms. The out-section firms do not cross-hold other firms, but raise capital

by issuing shares that are mainly acquired by the core firms. Glattfelder and Battiston

(2009) and Vitali et al. (2011) pointed out that the core section is tightly connected and

firms in the out-section are highly exposed to the performance of firms in the core section.

The bow-tie describes cross-ownership across transnational firms. However, it also resembles

many properties of the ownership structure of traditional national corporations. National

corporations are often organized in an almost tree-like structure with monotonous flow of

value. For example, see La Porta et al. (1999), who mapped the ownership structures of the

20 largest publicly traded firms in each member of a list of 27 wealthy economies.

Based on this evidence, we study the portfolio choice in a bow-tie network. We parame-

terize the bow-tie structure and derive the corresponding matrix of ownership. We show that

both core and out-section firms can over or under invest relative to the social optimum and

we provide conditions for both cases (Proposition 4). We also show that deeper integration

among core-section firms increases the welfare of core-firms, because it allows more diversifi-

cation among them. However, it has a non-monotonic effect on the welfare of in-section firms.

In fact, deeper integration can also trigger a reduction in aggregate welfare (Proposition 5).

The negative effect of deeper integration in a bow-tie network occurs when there are only

a few firms in the in-sector, and each holds major shares of core firms. In such a case, the

integration of core firms is analogous to increasing diversifications across core firms, so the

core firms take on a lot of risk. But this risk is shifted mainly to the few in-section firms, and

this lowers their welfare substantially.

We also illustrate the role of diversification and concentration with the analysis of the

Allianz AG cluster (reported in La Porta et al. (1999)). We start from the empirical cross-
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holding network and, based on that, derive the ownership structure. We observe that the

centre of the cluster, Allianz AG, takes more risk than peripheral firms. We then perform a

thought experiment in which the shares of Allianz AG are concentrated in a single hand, and

show that this reduces social welfare.

We then develop further the analysis of social welfare. We derive an expression for the

welfare of networks in which linkages are small (thin networks). In thin networks, welfare is

well approximated by only the first two layers of investments. We show that being thin is a

sufficient condition, independently of the structure of cross-holding, for integration to increase

welfare (Proposition 6). Yet, also in thin networks the variance across investments reduces

the welfare benefits that more integration creates.

Finally, we relax the assumption that the returns of projects are uncorrelated. We show

existence of an equilibrium and provide sufficient conditions for uniqueness. In the case of weak

positive correlation we find that correlation typically mitigates risk taking. More precisely,

we show that the larger is the partial insurance that i provides to other firms, the larger is

the moderating effect of positive weak correlation on firm i’s risk-taking.

We build on two important strands of research. The first line of work is the research on

cross-holdings and linkages.2 From this literature we borrow the formalization of cross-holding

networks. The second strand is the literature on portfolio choice. In a complete market setting,

any uncertainty on returns is washed out and only expected returns matter. However, when

markets are incomplete, maybe because access is restricted, risk matters.3 This motivates a

richer model of firm risk-taking choices. We build on a prominent strand of the literature

that has used the portfolio model of Pyle (1971) and Hart and Jaffee (1974). Within this

framework, firms are assumed to behave as competitive portfolio managers, taking prices and

yields as given and choosing their portfolio (composition of their balance sheets and liabilities)

in order to maximize the expected utility of the firms’s financial net worth.4

An important assumption of our model is that we take the cross-ownership structure,

and therefore the exposure to the risk-taking behavior of other firms, as given. Our analysis

and result should be interpreted as the study of how exogenous regulations and rigidities in

2See, for example, Azar et al. (2018), Brioschi et al. (1989), Eisenberg, and Noe (2001), Fedenia et al.
(1994) and the recent work of Elliott et al. (2014)

3As stressed by Rochet (1992), “it is hard to believe that a deep understanding of the banking sector can
be obtained within the set-up of complete contingent markets, essentially because of the Modigliani-Miller
indeterminacy principle”.

4The portfolio choice model has been successfully used to evaluate the effect of capital regulations on risk-
taking, see e.g., Koehn and Santomero (1980), Kim and Santomero (1988), Keeley and Furlong (1990), Zhou
(2010) and Gersbach and Rochet (2012).
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cross-holding affect the level of investment of a firm in a risky project that is not directly

accessible to other firms. This is in line with a large literature that has focussed on situations

in which not all the elements of a firm’s balance sheet can be chosen. In particular, Rochet

(1992) reevaluates the work of Koehn and Santomero (1980) and Kim and Santomero (1988)

in a model in which the firm equity capital is fixed, in the short run over which the model

spans; this reflects the real distinction in the way equity capital can be altered in the short

run relative to other securities.

In the recent work on contagion in financial networks, attention has focused on the role of

the distribution of shocks and the architecture of networks in the case of bankruptcy.5 There

are two distinguishing features of our work. First, the origin of the shocks – the investments

in risky projects – is itself an object of individual decision making.6 Second, the economics

system is not “damaged”, i.e., there is no risk of bankruptcy. Thus, the focus of our work is,

first, on how the network of linkages shapes the level of risk-taking by agents and, second, on

how it spreads the rewards of the risky choices across different parts of the system. Our work

on the effects of integration and on optimal network design should be seen as complementary

to the existing body of work.7

Section 2 introduces the model. Section 3 presents our main results. Section 4 extends

the main result to correlation across firms. Section 5 concludes. The proofs of the results are

presented in the Appendix.

2 Model

There are N = {1, ..., n}, n ≥ 2 firms. Firm i has an endowment w ∈ R and chooses to

allocate it between a safe asset, with return normalized to zero, and a (personal) risky project

i, with return zi. We assume that zi is normally distributed with mean µ > 0 and variance σ2;

5See, for example, Allen and Gale (2000), Babus (2016), Farboodi (2014), Cabrales et al. (2017), Elliott et
al. (2014), Elliott and Hazell (2015), Greenwood, Landier, and Thesmar (2015) and Gai and Kapadia (2010).
For a survey, see Cabrales et al. (2015).

6Jackson and Pernoud (2019) consider a model in which linkages affect incentives but focus on contagion
due to bankruptcy. See also Shu (2019). A recent paper of Vohra et al (2020) studies how agency-conflict
between a firm interplays with ownership networks and its effect on shocks propagation.

7In a recent paper, Belhaj and Deroian (2012) study risk-taking by agents located within a network. The
main modeling difference is that they assume bilateral output sharing with no spillovers. So, with independent
assets, there are no network effects in their model; also in their model, strategic effects in risk-taking derives
from the assumption of positive correlation in returns to risky assets. Our focus is on how the structure of
the ownership network shapes risk-taking, and the effects of integration and diversification and the design of
optimal networks (with weights on systemic risk). These issues are not addressed in their paper.
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we impose that w > µ/σ2. We assume that the n risky projects are uncorrelated. Investments

by firm i in the risky asset and the safe asset are denoted by βi ∈ [0, w] and w−βi, respectively.

Let β = {β1, ..., βn} denote the profile of investments.

Firms are embedded in a network of cross-holdings; we represent the network as a n × n
matrix S, with sii = 0, sij ≥ 0 and

∑
j∈N sji < 1 for all i ∈ N . The link sij represents

the fractional claim that firm i has on firm j’s economic value Vj. The economic value Vj

is in turn determined by the profile of investments β, the realization of projects’ returns,

z = {z1, ..., zn}, and the cross-holding network S. This is at the essence of the formulation

of cross-holdings that we adopt and we present it next; see e.g., Brioschi, Buzzacchi, and

Colombo (1989), Elliott, Golub and Jackson (2014), Eisenberg and Noe (2001), and Fedenia,

Hodder, and Triantis (1994).

Let Wi = βizi be firm i’s returns; firm i’s inflated value is then

V i = Wi +
∑
j=1

sijV j,

and the corresponding vector equation V = W + SV delivers a fixed point V = (I − S)−1W .

Firm i’s value Vi is then the fraction of V i that firm i owns, i.e.,

Vi = (1−
∑
j

sji)V i.

Let D be a n× n diagonal matrix, in which the i-th diagonal element is the self ownership of

firm i, 1−
∑

j∈N sji, without taking account of indirect linkages, and define Γ = D[I − S]−1.

It follows that the vector of economic values of different firms is defined by:

V = ΓW (1)

The element (i, j) of Γ, denoted by γij, is firm i’s shares of each firm j’s “primitive” returns,

Wj. Since, for each i ∈ N ,
∑

j∈N sji < 1, we can express

Γ = D

∞∑
k=0

Sk,

and therefore γij is the sum of all walks in S that starts at i and ends at j, where each walk
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is discounted based on its length, i.e., for every i 6= j,

γij = [1−
∑
j∈N

sji]

[
0 + sij +

∑
k

sikskj + ..

]
.

Since Γ is column-stochastic, γii = 1−
∑

j 6=i γji.

We assume that firms seek to maximize a mean-variance utility function8:

Ui(βi, β−i) = E[Vi(β)]− α

2
V ar[Vi(β)].

Using expression (1), it follows that

E[Vi(β)] =
∑
j∈N

γijE[Wj] and V ar[Vi(β)] = σ2
∑
j∈N

γ2
ijβ

2
j . (2)

Therefore, firm i’s utility is

Ui(βi, β−i) = µ
∑
j∈N

γijβj −
σ2

2

∑
j∈N

γ2
ijβ

2
j . (3)

The assumption that the n risky projects are independent implies that investment choices

are strategic independent, i.e., the cross partial derivative of expression (3) between firms’

investment choices is zero. We extend the model to allow for correlation in Section 4. Let β∗

denote the vector of optimal choices. Our aim is to develop a systematic understanding of the

relationship between the network of cross-holdings, S, portfolio choice β∗, and its consequences

for welfare.

3 Risk-taking in cross-ownership networks

The optimal investment by firm i can be written as:

β∗i = arg max
βi∈[0,w]

µγiiβi −
σ2

2
γ2
iiβ

2
i .

8For a discussion of the foundations of mean-variance utility, see Gollier (2001).

7



If firm i has no cross-holding –i.e., sij = sji = 0 for all i 6= j ∈ N – then γii = 1, and, therefore,

the optimal investment is β̂ = µ/σ2.9 We shall refer to β̂ as firm i’s autarchy investment.

With this definition in place, we state our characterization result on the individualy optimal

risk-taking. Note that as actions are strategic independent, the result delivers the equilibrium

investment.

Proposition 1 The equilibrium investment of firm i is:

β∗i = min

{
w,

β̂

γii

}
. (4)

Hereafter we assume that w is large and so optimal investments are interior. We note that

relative to autarchy, cross-holding raises firms’ propensity to take risk: firm i’s risk-taking

investment is negatively related to his self-ownership, as captured by γii. Thus, firm i invests

more than firm j in the risky project if, and only if, γii < γjj.

The intuition is the following. Cross-ownership provides implicit insurance to firms. A

firm with a low γii is a firm with lot of direct and/or indirect shareholders. In this case, when

firm i’s returns are high the shareholders extract large benefits from the firm, but when i’s

returns are low, the shareholders extract much less. This implicit insurance encourages firm

i’s risk-taking.

We now compare risk-taking behavior with socially optimal choice. We assume that the

planner seeks to maximize aggregate utilities. The objective of the planner is

max
β

W (β, S) =
∑
i∈N

[
E[Vi]−

1

2
V ar[Vi]

]
.

We obtain:

Proposition 2 The optimal investment of the social planner in risky projects is

βPi = min

[
w,

β̂∑
j∈N γ

2
ji

]

Hence, firm i over-invests in the risky project as compared to the social planner, β∗i > βPi if

9Note that β̂ < w because we have assumed that w > µ/σ2.
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and only if

γii <
∑
j∈N

γ2
ji

In order to understand the externalities created by the network of cross-holding, we com-

pare the marginal utility of increasing βi for firm i, with the marginal utility of the utilitarian

planner. We have respectively:

∂W (β, S)

∂βi
− ∂Ui(βi, S)

∂βi
= µ(1− γii)− σ2βi

∑
j∈N\{i}

γ2
ji

The first term reflects that firm i does not internalize the positive impact that investing

on its risky asset has on aggregate returns of the economy. This lack of internalization leads

to under investment and it is driven by the fact that the cross-holding network does not fully

insure firm i (γii > 0). At the same time, firm i does not internalize that its own risky

investment creates costs to its shareholders. This effect, summarised by the second term,

leads to over investment relative to socially optimal choice, and it is large when the shares of

i are concentrated in the hands of a few others.

This analysis points out to two conflicting forces. Cross-ownership allows firms to be

diversified and, so, take higher risks. But cross-ownership also implies that the risk taken by

a firm is shifted, in part, to its neighbours. When the ownership of a firm is concentrated in

the hands of a few others, taking high risks is not desirable. In contrast, when the ownership

of a firm is dispersed, then risk taking does not lead to large risk exposures. In this case firms

tend to take too little risk relative to the socially optimal level. The implications of these two

forces on welfare are investigated next.

3.1 Utilities and welfare across cross-holding networks

We now investigate the utilities and welfare consequences of different topology of cross-holding

networks. Under private optimal investments, firm i’s utility is

Ui(β
∗
i , S) = β̂µ

∑
j

[
γij
γjj
− 1

2

γ2
ij

γ2
jj

]
, (5)
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and aggregate welfare is:

W (β∗, S) =
µ2

σ2

∑
i

∑
j

[
γij
γjj
− 1

2

γ2
ij

γ2
jj

]
.

Define ρij = γij/γjj and let ρi = {ρi1, ..., ρin}. Note that ρij determines the impact of

firm j’s investment on i’s expected value. This should be interpreted as the ratio between

the partial insurance that j gets from firm i, γij, and the fraction of j’s risk-taking that is

not insured through cross-holding, γjj. We can rewrite expression 5 and observe that firm i’s

utility depends on the “average” of ρij across j and the concentration of ρij across j. Define

ρ̄i =
1

n

∑
j

ρij and ε2i =
1

n

∑
j

(ρ̄i − ρij)2

and note that ρ̄i ∈ [ 1
n
, 1]. We obtain:

Ui(β
∗, S) ∝ ρ̄i︸︷︷︸

average i’s partial insurance to others

−1

2
[ρ̄2
i + ε2i ]︸ ︷︷ ︸

diversification i’s partial insurance to others

Since ρ̄i ≤ 1, firms whose location in the cross-holding network determines a large ρ̄i are

better off, ceteris paribus. A higher ρ̄i means that i plays a large role in partially insuring

other firms through direct and indirect cross-ownership. This encourages risk-taking and it

increases expected returns. Of course, this risk is shifted in part to connected firms and this

creates a cost because returns are more volatile. This cost is increasing in ε2i , which is large

in cross-holding networks for which the entries of vector ρij are very dispersed. Intuitively, a

high ε2i captures a network in which firm i’s ownership is in the hand of a few firms, and so

those firms have large exposure to the risk taken by firm i.

At a more aggregate level, a similar representation can be extended to describe aggregate

welfare generated by cross-ownership network S. Indeed, let

ρ̄ =
1

n

∑
i

ρ̄i and ε2 =
1

n

∑
i

(ρ̄− ρ̄i)2 + ε2i ,

where again ρ̄ ∈ [ 1
n
, 1]. Then

W (β∗, S) = n2β̂µ

[
ρ̄− 1

2
ρ̄2 − 1

2
ε2
]
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Cross-ownership networks with a large ρ̄ creates lot of partial insurance. This stimulates risk-

taking thereby increasing average economic returns. Networks with higher ε2 are networks with

great asymmetries in ownership structure across firms. This, in turn, increases concentration

of risk exposure thereby creating costs for the economy.

Based on this interpretation, the cross-ownership network that maximize aggregate utility

will be the one that maximize ρ̄ and, at the same, time minimizes ε2. This is the cross-

ownership network that generates the most effective insurance across firms.

Proposition 3 The cross-ownership network S∗ that solves arg maxSW (β∗(S), S) is the com-

plete network with symmetric cross-ownership, i.e., s∗ij = 1/(n−1) for all i 6= j. This generates

W (β∗, S∗) =
1

2
n2β̂µ

Note that network S∗ leads to γij = 1/n for all ij. Hence, ρ̄i = ρ̄ = 1 for all i and

ε2i = ε2 = 0. The network S∗ is the cross-ownership network that generates complete insurance.

3.2 Bow-tie cross-holding networks

In the last part of the paper we will highlight properties of the cross-ownership network S

that leads to more or less imperfect insurance, and we will look at the consequences for

welfare. We start by focusing on the empirically relevant bow-tie structure (see discussion

in the introduction). A bow-tie structure has three sections: the in-section, core-section and

out-section. In the in-section there are firms investing in firms in the core-section, whereas

the out-section firms are those without ownership stakes in other firms. Firms belonging to

the core-section have cross-holding with each other and with out-section firms. Formally:

Definition 1 In a bow-tie cross-holding network S the set of firms is partitioned in three sets

{NI ,NC ,NO} and

• For all i ∈ NI , sij is equal to sI for all j ∈ NC and 0 otherwise;

• For all i ∈ NC, sij is equal to sC for all j ∈ NC, sF for all j ∈ NO and 0 otherwise;

• For all i ∈ NO, sij is equal to 0 for all j ∈ N .

Finally, nIsI+(nC−1)sC < 1 and nCsF < 1, where nI = |NIN |, nC = |NC | and nF = |NO|.
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In Out

Figure 1: A stylized bow tie

The bow tie structure can be seen as hierarchical, where cross-holding is top-down, with

the core firms also cross-holding shares laterally.

The following proposition describes optimal investment of each type of firm in a bow-tie

network and also determines over and under investment relative to socially optimal risk-taking.

Proposition 4 Suppose the cross-holding network has a bow-tie structure. Firms in the in-

section invest β∗I = β̂, firms in the out-section invests β∗F = β̂/(1 − nCsF ), and firms in the

core-section invest

β∗C =
(sC + 1)[1− (nC − 1)sC ]

[1− (nC − 1)sC − nIsI ][1− (nC − 2)sC ]
β̂

Relative to the social planner investment: a.) firms in the in-section invest efficiently, b.)

core-firms over-invest in the risky projects if and only if

[1− (nC − 1)sC − nIsI ][1− (nC − 2)sC ]

(sC + 1)[1− (nC − 1)sC ]
<

1

2
(6)

and, c.) for any given nI , nF , sI , sC, there exists bF , 0 < bF < 1, such that out-section firms

over-invest in the risky projects if and only if nCsF > bF .

Condition 6 tells us that core-firms will over-invest when most of their shares are held by

the upstream firms, i.e., the in-section firms. Note that for small cross-holdings across core

firms (small sC) the LHS of inequality 6 is roughly (1−nIsI) and so the condition for core firms

to over invest is roughly that nIsI > 1/2. Intuitively, when most of the shares of core firms

are held by the upstream firms, self-ownership of core-firms is low and so core firms invest
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substantially in the risky project. At the same time, the risk they take is shifted to the in-

section firms, who are disproportionally exposed to core firms’ actions. Similar interpretations

apply for the case of over-investment of out-section firms.

The deviation from optimal investment affects welfare via changes in expected return and

volatility. To gain insight we consider the simplest possible hierarchical structure that entails

cross-holding between core firms, the “fat bow tie” network. In this configuration, there is

only one firm in the in-section and the out-section, but there are two core firms. This is a

stylised example of the empirical evidence that ownership networks have a bow-tie structure

with a dense core, and few in-section firms exposed to it. What we want to understand is the

effect of an increase in cross-holding integration.

Definition 2 We say that S is more integrated than S ′ if sij ≥ s′ij for all i, j ∈ N and

sij > s′ij for some i, j ∈ N .

The definition of integration reflects the idea that links between firms have become stronger.

What is the effect of an increase in integration across core firms in the fat bow tie structure?

Proposition 5 Suppose a fat bow tie structure, i.e., nI = nF = 1 and nC = 2. An increase

in integration between the two core firms, i.e., an increase in sC, leads to the following: a) the

welfare of each core firm increases, b) the welfare of the out-section firm does not change and

c) there exists a sI > 0, such that for sI > sI , the welfare of in-sector firms first increases and

then decreases (with an increase of sC).

As the two core firms become more integrated, their individual self-ownership decreases

and so each take higher risk. This higher risk translates in higher and higher variance for

the in-section firm and, eventually, this decreases its welfare. This effect can be very large

and can lead to a decrease in aggregate welfare. Figure 2, obtained with sI = 0.3, sF = 0.2,

provides an example in which an increase in integration across the two core firms results in

lower aggregate welfare.

3.3 Allianz AG

To illustrate the role of diversification and concentration we consider the case of Allianz AG,

a public company with six large shareholders reported in La Porta and al. (1999). In this
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Figure 2: Non monotonicity of social welfare
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Figure 3: Cross holding network (a) and ownership network (b)

cluster of firms, Allianz AG holds shares of four other core firms and these, plus two in-firms,

invest in Allianz AG (see panel A of Figure 3.3).10. The resulting ownership network11 is

represented in panel B Figure 3.3.12.

The centre of the cluster, Allianz AG., has the smallest self-ownership and is the firm

taking the maximum risk. On the other hand, the two in-firms, Bayerishe V. and Finck, take

the lowest risk.13.

10The numerical analysis uses the analytical formulation obtained in the Appendix and the code can be
obtained from the authors.

11Note that firms in this cluster also have cross-holding with firms outside the cluster. We allocate these
shares to an external investor, which, in line with our model, is represented by the manager

12In this picture we ignored, for clarity, three linkages of less than 3%.
13The capital available to the firm for private investment in the risky project may vary. However, as we

assume mean variance preferences for the manager and sufficiently large capital to ensure interiority, investment
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In this network, six firms own Allianz AG shares adding to a total of 65% of Allianz AG.

To illustrate the effect of concentration of shareholding we suppose that instead these shares

are concentrated in a single hand, Munchener R. (we maintain the assumption that Allianz

AG is the manager). The increase in concentration implies that the volatility that Allianz

AG investment creates is absorbed by large only by a single firm. This is quantified by the

significant rise in the value of ρMunchener from 0.23 to 0.36 while the average of ρi over all

firms falls from 0.194 to 0.188. In turn, this increases the variance of ρi, increasing ε2 (as

defined in section 3.1). Finally, this has an effect on welfare: the increases in concentration

generates a loss in social welfare, from 0.175n2β̂µ to 0.168n2β̂µ.

3.4 The welfare effects in thin networks

In this section we develop further the analysis of social welfare. The difficulty stems from the

complexity of the dependence of ρ̄i with the elements of S. We consider economies where the

interlikages are sufficiently small to legitimate the focus on links with directly connected firms

and their own neighbours.

We know that γij can be obtained as an infinite series. Truncating the series when it

involves three interlinkages, i.e., terms like sikskhshj, we obtain

ρi =
1

n

∑
j

γij
γjj
' 1

n

(
ηouti (1− ηini ) +

∑
j

sij
(
ηinj + ηoutj

)
+ 1

)
(7)

where ηini =
∑

j∈N sji and ηouti =
∑

j∈N sij are the in-degree and out-degree of i ∈ N ,

respectively.

From this expression we learn that the extent to which firm i provides insurance to other

firms is increasing in its own out-degree and is decreasing in its in-degree. In addition, ρi also

rises when firm i invests in firms that have both high in-degree and high out-degree.

Next, in the appendix we show that social welfare can be approximated by

σ

µ
W (β∗, S) ' n

2
+
∑
i

ηouti +
1

2

(∑
i

(
ηini
)2 −

∑
ij

(sij − sj)2

)

A rise in integration, linked to an increase in the economy wide in-degree and out-degree,

is independent of the size of the firm.
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increases welfare. However, concentration of investment in any given firm j into a few hands

generates a rise in the variance
∑

i (sij − sj)
2 . In the aggregate, any rise of variances leads to

an increase in the sum of variances across all firms which reduces social welfare14.

These insights are formalised in the next proposition.

Proposition 6 Let V (S) =
∑

i,j (sij − sj)2 . There exist w > 0 and s̄ > 0 so that if w > w

and ||S||max < s̄ and ||S ′||max < s̄, it holds that

1. If S is more integrated than S ′, then W (β∗, S) > W (β∗, S ′).

2. If
∑

i η
out
i =

∑
i η

′out
i ,

∑
i (η

in
i )

2
=
∑

i (η
′in
i )

2
and V (S ′) > V (S) then W (β∗, S) >

W (β∗, S ′).

When the strength of each link in S is sufficiently small, i.e., the network of cross-holdings

S is thin, the effect of integration on welfare is dominated by the first order term
∑

i η
out
i .

Regardless of the topological structure of the cross-holding, integration increases the extent

that firms partially insure each other and welfare rises. In other words, risk-shifting is always

second order compared to gains from insurance. However, as integration grows welfare still

grows but the variance in investment
∑

i (sij − sj)
2, which is second order in s, gains impor-

tance and reduce the benefits of integration. Concentration of investments in few investors

is detrimental to welfare. Finally, as integration continues to grow further, second and third

order effects may dominate, and integration may reduce welfare in asymmetric networks, as

in the bow-tie example.

4 Correlated returns

We now relax the assumption that the returns of projects are uncorrelated. We show that

there exists an equilibrium and provide sufficient conditions for uniqueness and for interiority

of the equilibrium. We then show how our main results extend to the case of weak correlation.

Recall that each project zi is normally distributed with mean µ and variance σ2 and

therefore z = {z1, ..., zn} is a multivariate normal distribution. Let Ω be the covariance

14Equivalently this amount to maximise
∑
i,j,p 6=j sijspj while keeping the terms

∑
ij s

2
ij minimal, that is

possibly with sijspj with p 6= j.
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matrix. Under the assumption that z is a non-degenerate multivariate normal distribution, it

follows that Ω is positive definite. Note that.

Ui(βi, β−i) = µ
∑
j∈N

γijβj −
α

2

∑
j∈N

∑
j′∈N

γijβjγij′βj′σ
2
jj′ , (8)

and the sign of ∂2Ui/(∂βi∂βj) is the same as the sign of −σij; that is, investments in risky

project i and j are strategic substitutes (strategic complement) whenever the returns from

the two projects are positively correlated (negatively correlated).

Let ◦ be the Hadamard product. Let b be an n dimensional vector where the i-th element

is µ.

Proposition 7 There always exists an equilibrium and the equilibrium is unique if
∑

j sij <

1/2 for all i. Furthermore

1. There exists a w̄ > 0 and a s̄ > 0 such that if w > w̄ and ||S||max < s̄ the unique

equilibrium is interior and takes the following form β = {β1, ..., βn}:

β =
1

α
[Γ ◦ Ω]−1b.

2. Let σ2
ii = σ2 for all i and σ2

ij = δσ2 for all i 6= j where δ ∈ [−1, 1]. Then, in an interior

equilibrium,

βi =
µ

σ2α

∑
j

{[I + δΓ̂]−1}ij
1

γjj

where Γ̂ is the matrix of entries γ̂ij = γij/γii. For weak correlation, that is when δ → 0,

we obtain

βi 'δ→0 β
∗
i (1−Nδρi)

Proposition 7 has an interesting feature. Positive weak correlation reduces investment of

a firm i in the risky project by a factor δ
∑

j
γij
γii

= Nδρi. Note that ρ̄i captures the role that i

plays in partially insuring, through direct and indirect cross-ownership, other firms. Therefore,

the proposition implies that the larger the partial insurance that i provides to other firms, the

larger the moderating effect of positive weak correlation on firm i’s risk-taking. The intuition

is the following: when firm i provides low partial insurance to others, the other firm will
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take more risk, but then, as risky projects are positively correlated, this decreases more the

incentives of firm i to take risks.

5 Conclusion

Financial linkages have the potential to smoothen the shocks and uncertainties faced by in-

dividual components of the system. However, they also channel the financial shocks and so

create costs for risk averse agents. In the case of cross-holding, each firm benefits from owning

a specific optimal portfolio of shares, and deviations from this may annihilate the gains from

diversification of risk.

In this paper we explore situations in which the portfolio of shares owned by a firm is

exogenously fixed, and each firm can decide on the level of investment of a single private

project. The analysis also assumes separation between ownership and control. We find that

integration, in the sense of deeper cross-holdings, increases risk taking and investment. As

the unconstrained social optimum is symmetric and associated to significant risk taking, in-

tegration may result in an increase in social welfare. This intuition is always correct when

cross-holdings are small, but as these become larger, integration may reduce social welfare.

The origin is a decrease in welfare of firms that are shareholders of firms that are central and

take high risks. Cross-holding imposes a risk shift to connected firms. When the shares of

a firm are concentrated in a few hands, risk shifting creates large exposures to a few firms.

Finally, we find that positive correlation typically mitigates risk taking. More precisely, the

larger the partial insurance provided to other firms, the larger the moderating effect of positive

weak correlation on risk-taking.

We have emphasised in the introduction the mixed empirical evidence of the extent to

which ownership translates into managerial control. Although there is a recent literature that

attacks this problem in some specific circumstances (for example, Azar et al. (2018)), we

leave for further research the task of integrating cross-ownership, endogenous risk taking and

control. Allowing managers to optimize the whole portfolio rather than the sole private project

is the other main avenue for further research. In a frictionless world, the optimal portfolio

would generate a symmetric cross-holding network. But realistically there are frictions, and

these might be the source of asymmetries.
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7 Appendix

Proof of Proposition 1 Suppose that the solution is interior. As the objective function is concave, the first-

order condition is sufficient. Taking derivatives in (3) with respect to βi and setting it equal to 0, immediately

yields the required expression for optimal investments. Substituting the optimal investments in the expressions

for the expected value and variance yields the expressions in the statement of the result.

Proof of Proposition 2 Rewriting the objective function of the planner we obtain that

W (S) =
∑
i∈N

βiµ−
α

2

∑
i∈N

βiσ
2Ai, (9)

where Ai ≡
∑
j∈N γ

2
ji. Suppose the optimum is interior. Then, under the assumption that projects are

independent, we obtain that for every i ∈ N , the first order condition is

µ− σ2βiαAi = 0. (10)

We obtain that the optimal level of investment of the social planner is, for every i,

βPi = min

[
wi, β̂

1

Ai

]
. (11)

Since for individual i we have β∗i = min
{
w, β̂γii

}
there is over-investment iff

∑
j∈N γ

2
ji >γii.

Proof of Proposition 3 First we prove the expression for social welfare. From the definition of ε2i we

have

ε2i =
1

n

∑
j

(ρ̄2i + ρ2ij − 2ρ̄iρij)⇒
∑
j

ρ2ij = n
(
ε2i + ρ̄2i

)
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Therefore

W (β∗, S)
nµ2

σ2

∑
i

[
ρi −

1

2

(
ε2i + ρ̄2i

)]
Let ε2ρ be defined by

ε2ρ =
1

n

∑
i

(ρ̄− ρ̄i )
2

=
1

n

((∑
i

ρ̄2i

)
−nρ̄2

)
⇒
∑
i

ρ̄2i = n
(
ε2ρ + ρ̄2

)
Finally

W (β
∗
, S) =

nµ2

σ2

(
nρ −1

2

(∑
i

ε2i +
∑
i

ρ̄2i

))
=
nµ2

σ2

(
nρ −1

2

(∑
i

ε2i + n
(
ε2ρ + ρ̄2

)))

introducing ε2 we obtain the stated expression.

We now look at the first-best design problem. Substituting in expression (9) the centralised solution

βP = {βP1 , ..., βPn }, we obtain that

W (S, βP ) =
1

2

∑
i∈N

β̂µ
1

Ai

Recall that Ai =
∑
j∈N γ

2
ji and therefore Ai only depends on {γ1i, ..., γni}. Moreover, if we fix i, the expression

β̂µ
1

Ai

is declining in Ai. Next note that if, for some i, γli > γki for some l 6= i and k 6= i, then, we can always find

a small enough ε > 0 so that, by making the local change γ′li = γli − ε and γ′ki = γki + ε, we strictly decrease

Ai, without altering Aj for all j 6= i. Hence, such a local change strictly increases welfare. This implies that

at the optimum γli = γki for all l, k 6= i. Set γli = γki = γ; hence,γii = 1− (n− 1)γ. Then, W is maximized

when Ai is minimized, or, equivalently, γ minimizes

(n− 1)γ2 + [1− γ(n− 1)]2

which implies that γ = 1/n. Note that Γ such that γij = 1/n for all i and for all j is obtained when S is

complete and sij = 1/(n− 1) for all i and for all j, j 6= i.

Now we consider the second-best design problem. Note that by setting sij = 1/(n− 1) for all i 6= j, we obtain

that γij = 1/n for all i, j and that, as a consequence β∗ coincides with the socially optimal choice. Hence, the

planner can replicate the first best outcome just by setting sij = 1/(n− 1) for all i 6= j.

Proof of Proposition 4. Investment in the bow tie

Let there be nI investor firms with share sI in each of the nC core firms. These have share sC in each of the

other nC − 1 core firms (fully connected core). In addition they have sF shares in each of the nF final firms.
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The S matrix reads

S =

0 sI ⇑ 0

0 sC ⇑ −sCI sF ⇑
0 0 0


(nI+nC+nF )×(nI+nC+nF )

where ⇑ is a matrix of ones. Let

G = I − S =

I A 0

0 B C

0 0 I


with

A = −sI ⇑nI×nC

B = −sC ⇑nC×nC
+(1 + sC)InC×nC

C = −sF ⇑nC×nF

There are three important preliminary results. Note that the condition∑
j

sji < 1.

introduces an upper bound on the elements of S, which is here

nCsI + (nC − 1)s < 1

nCsF < 1

Lemma 1 If [⇑]n×p is the n× p matrix of ones and Mp×q a p× q matrix then

[⇑]n×pMp×q [⇑]q×r =
(∑

M
)

[⇑]n×r

where (
∑
M) is the sum of the elements of M. In addition

[⇑]n×p [⇑]p×q = p [⇑]n×q

Proof: Right multiplying a matrix M by a matrix of ones delivers a matrix with rows made up of the sums

of all elements in the row of the original matrix M . Left multiplying a matrix M by a matrix of ones, delivers

a matrix with columns made up of the sums of all elements in the column of the original matrix M .

End Proof
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Lemma 2 The Leontief inverse of G is

G−1 =

I −AB−1 AB−1C

0 B−1 −B−1C
0 0 I



Proof : I A 0

0 B C

0 0 I


I −AB−1 AB−1C

0 B−1 −B−1C
0 0 I

 =

I 0 0

0 I 0

0 0 I


End Proof.

Lemma 3 The inverse of B is B−1 = 1 if nC = 1 and otherwise

B−1 =
1

(nC − 1) s2C + (nC − 2)sC − 1
[−sC ⇑nC×nC

+sCInC×nC
+ ((nC − 2)sC − 1) InC×nC

]

=
1

∆
[−sC ⇑nC×nC

+ ((nC − 1)sC − 1) InC×nC
]

with ∆ = (nC − 1) s2C + (nC − 2)sC − 1.

Proof : As B = −sC ⇑nC×nC
+(1 + sC)InC×nC

we need to verify that BB−1 = I. That is

(−sC ⇑nC×nC
+(1 + sC)InC×nC

) (−sC ⇑nC×nC
+ ((nC − 1)sC − 1) InC×nC

) = ∆InC×nC

Expanding the product and using the fact that (⇑nC×nC
)
2

= nC ⇑nC×nC
we obtain

= s2C (⇑nC×nC
)
2 − nCs2CInC×nC

+
(
(nC − 1) s2C + (nC − 2)sC − 1

)
InC×nC

= ∆InC×nC

End Proof.

We now use these results to prove the Proposition. First note that

[sI ⇑nI×nC
] [−sCnCsF ⇑nC×nC

+ ((nC − 1)sC − 1) InC×nC
]

= [−nCsCsI + sI ((nC − 1)sC − 1)] ⇑nI×nC

[−sI ⇑nI×nC
] [−sC ⇑nC×nC

+ ((nC − 1)sC − 1) InC×nC
] [−sF ⇑nC×nF

]

= −
[
n2CsCsIsF − nCsIsF ((nC − 1)sC − 1)

]
⇑nI×nF

− [−sC ⇑nC×nC
+ ((nC − 1)sC − 1) InC×nC

] [−sF ⇑nC×nF
]

= − [nCsCsF − sF ((nC − 1)sC − 1)] ⇑nC×nF
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The normalisation matrix D with diagonal elements dii = 1−
∑
j sji is

D =

I 0 0

0 (1− (nC − 1)sC − nIsI) I 0

0 0 (1− nCsF ) I


and the matrix Γ is

D

∆

∆InI×nI
[−nCsCsI + sI ((nC − 1)sC − 1)] ⇑nI×nC

−
[
n2CsCsIsF − nCsIsF ((nC − 1)sC − 1)

]
⇑nI×nF

0 [−sC ⇑nC×nC
+ ((nC − 1)sC − 1) InC×nV

] − [nCsCsF − sF ((nC − 1)sC − 1)] ⇑nC×nF

0 0 ∆InF×nF


leading to

Γ =
1

∆

∆InI×nI
a ⇑nI×nC

b ⇑nI×nF

0 c ⇑nC×nC
+dInC×nC

h ⇑nC×nF

0 0 (1− nCsF ) ∆InF×nF


with

a = (−nCsCsI + sI ((nC − 1)sC − 1))

b = −
(
n2CsCsIsF − nCsIsF ((nC − 1)sC − 1)

)
c = −sC (1− (nC − 1)sC − nIsI)

d = (1− (nC − 1)sC − nIsI) ((nC − 1)sC − 1)

h = − (1− (nC − 1)sC − nIsI) (nCsCsF − sF ((nC − 1)sC − 1))

The diagonal reads

ΓD =
1

∆

∆InI×nI
0 0

0 (1− (nC − 1)sC − nIsI) ((nC − 2)sC − 1) InC×nC
0

0 0 (1− nCsF ) ∆InF×nF


We now show that investment by core firms is increasing in nI , sI , nC ,sC while investment of the final firms

is increasing in both nF and sF . Clearly investment in the core increases with the number of external firms,

nI investing in it and the size of the investment sI . We want to explore the dependence on sC and nC . To

simplify notation, let m = nIsI , nC−1 = p and s = sC . Assume nC> nI so that m = nIsI < nI < nC . We

study the dependence of investment on s, that is sC , by looking at the partial derivative.

∂

∂s

βc

β̂c
=

1

(s (p− 1)− 1)
2

1

(m+ sp− 1)
2

p
(
p2s2 −mps2 − 2ps+ms2 + 2ms+ 1

)
Expressed as a function of s, the derivative would change sign at

(
p2 −mp+m)s2 + 2(−p+m) + 1

)
= 0
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We need to investigate the sign of the discriminant of this equation which is

−m
(
2m− 2p−mp+ p2 + 1

)
This means there are no roots if

2m− 2p−mp+ p2 + 1 > 0⇔

(nC − 1)2 + 1 > 2(nC − 1) + nIsI(nC − 3)

which is automatically true if sI < 1− 1
nC

which is true. This means that the sign of the derivative in respect

to s does not changes as s grows. We only need to check it for very small s then. We have that

lim
s→0

∂

∂s

βc

β̂c
=

1

(m− 1)
2 [p+ (m− 1) (p− 1) + (m− 1) (1− p)] =

p

(m− 1)
2 > 0.

Investment by the core is increasing in s (that is sC).

Role of nC . We can now analyse the role of nC . With nC−1 ≡ p and sC ≡ s we see that

∂

∂n

βc

β̂c
=

∂

∂p

ps2 + (p− 1)s− 1

(1− ps−m) ((p− 1)s− 1)
=
s (s+ 1)

(
p2s2 − 2ps+ms+ 1

)
(s (p− 1)− 1)

2
(m+ ps− 1)

2

One way to evaluate the sign of p2s2−2ps+ms+ 1 is to consider this as a polynomial of s and check for roots

p2s2 − 2ps+ms+ 1 = 0

The discriminant of this equation is −4mp+m2 when both m, p 6= 0. The relevant value is then

−4mp+m2 = nIsI (−4(nC − 1) + nIsI) < 0

So as soon as

nC >
nIsI

4
+ 1⇔ 1 >

sI
4

+
1

nC

as nI ≤ nC which is clearly true. This means that the sign of the derivative in respect to nC doesn’t change

as s grows. We only need to check it for very small s then. We have that

lim
s→0

∂

∂n

βc

β̂c
=

1

(1−m)
+

1

(1−m)
2

(−12
> 0

We now prove the results on over-investment. By Proposition 2 core-firms over invest if and only if

γcc < γ2cc + γ2Ic + γ2fc

but note that γfc = 0 and so γIc = 1− γcc Thus the above inequality for overinvestment becomes

γcc < γ2cc + (1− γcc)2
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which is like γcc < 1/2. This condition is

[1− (nC − 1)sC − nIsI ][1− (nC − 2)sC ]

(sC + 1)[1− (nC − 1)sC ]
<

1

2

You can see that if sc = 0 then the above condition becomes

nIsI >
1

2

To see that this makes sense, consider a hierarchy and suppose that sI is large. Then C firms takes lot of risk,

they over invest and this is absorbed by the I firms. The case of out-section firms is more cumbersome as we

need to show that

γff < γ2ff + γ2cf + γ2If

From Proposition 4 we have

γcf = −nF (1− (nC − 1)sC − nIsI) (nCsCsF − sF ((nC − 1)sC − 1))

(−1) s2C + (nC − 2)sC − 1

γIf = −
nF
(
n2CsCsIsF − nCsIsF ((nC − 1)sC − 1)

)
(nC − 1) s2C + (nC − 2)sC − 1

γff = (1− nCsF )

When sc = 0 we obtain

γcf = nF (1− nIsI) sF
γIf = nF (nCsIsF )

γff = (1− nCsF )

then

γff < γ2ff + γ2cf + γ2If

becomes

(1− nCsF )− (1− nCsF )
2

< (nF (1− nIsI) sF )
2

+ n2F (nCsIsF )
2

nCsF (1− nCsF ) < n2F s
2
F

(
n2Cs

2
I + n2Is

2
I − 2nIsI + 1

)

Proof of Proposition 5: Welfare in the fat bow tie with nI = 1, n = 2, nF = 1

From Proposition 4 we have

Γ =
1

∆

∆InI×nI
a ⇑nI×nC

b ⇑nI×nF

0 c ⇑nC×nC
+dInC×nC

h ⇑nC×nF

0 0 (1− nCsF ) ∆InF×nF


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with

a = (−sCsI + sI (−1))

b = − (sCsIsF − sIsF (−1))

c = −sC (1− nIsI)

d = (1− nIsI) (−1)

h = − (1− nIsI) (nCsCsF − sF (−1))

The diagonal reads

ΓD =
1

∆

∆InI×nI
0 0

0 (1− nIsI) ((−sC − 1) InC×nC
0

0 0 (1− sF ) ∆InF×nF



Φ = ΓΓ−1D =

InI×nI
WIC ⇑nI×nC

WIF ⇑nI×nF

0 WCC1 ⇑nC×nC
+WCC2InC×nC

WCF ⇑nC×nF

0 0 InF×nF


with

WIC =
(−nCsCsI + sI ((nC − 1)sC − 1))

(1− (nC − 1)sC − nIsI) ((nC − 2)sC − 1)

WCC1 =
sC

1− (nC − 2)sC

WCC2 =
(nC − 1)sC − 1

(nC − 2)sC − 1

WCF = − (1− (nC − 1)sC − nIsI) (nCsCsF − sF ((nC − 1)sC − 1))

((nC − 1) s2C + (nC − 2)sC − 1) (1− nF sF )

WIF = −
(
n2CsCsIsF − nCsIsF ((nC − 1)sC − 1)

)
((nC − 1) s2C + (nC − 2)sC − 1) (1− nCsF )

We now look at quadratic terms.

Φ2 =
[{

ΓΓ−1jj
}
ij

]2
=

InI×nI
W 2
IC ⇑nI×nC

W 2
IF ⇑nI×nF

0 (WCC1 ⇑nC×nC
+WCC2InV ×nC

)
2

W 2
CF ⇑nC×nF

0 0 InF×nF


where

(WCC1 ⇑nC×nC
+WCC2InV ×nC

)
2

=
1

((nC − 2)sC − 1)
2

(
s2C ⇑nC×nC

+ ((nC − 2)sC − 1)
2
InV ×nC

)
= W 2

CC1 ⇑nC×nC
+InV ×nC
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Thus

Φ2 =
[{

ΓΓ−1jj
}
ij

]2
=

InI×nI
W 2
IC ⇑nI×nC

W 2
IF ⇑nI×nF

0 W 2
CC1 ⇑nC×nC

+InV ×nC
W 2
CF ⇑nC×nF

0 0 InF×nF


Therefore

∑
j

(
Φij −

1

2
Φ2
ij

)
(nI+nC+nF )×1

=


1
2InI×nI

(
WIC − 1

2W
2
IC

)
⇑nI×nC

(
WIF − 1

2W
2
IF

)
⇑nI×nF

0
(
WCC1 − 1

2W
2
CC1

)
⇑nC×nC

+
(
WCC2 − 1

2

)
InC×nC

(
WCF − 1

2W
2
CF

)
⇑nC×nF

0 0 1
2InF×nF

 ⇑(nI+n+nF )×1

Replacing the values nI = 1, nC = 2, nF = 1 we find that ∆ = s2C − 1 and

Φ =


1 sI(sC+1)

1−sC−sI
sI(sC+1)
1−sC−sI

2sIsF
(1−sC)(1−sF )

0 1 s (1−sC−sI)sF
(1−sC)(1−sF )

0 s 1 (1−sC−sI)sF
(1−sC)(1−sF )

0 0 0 1


Finally

Wi = β̂µ
∑
j

(
Φij −

1

2
Φ2
ij

)

= β̂µ


1/2 + 2 sI(sC+1)

1−sC−sI −
(
sI(sC+1)
1−sC−sI

)2
+ 2sIsF

(1−sC)(1−sF ) −
1
2

(
2sIsF

(1−sC)(1−sF )

)2
1/2 + sC − 1

2s
2
C + (1−sC−sI)sF

(1−sC)(1−sF ) −
1
2

(
(1−sC−sI)sF
(1−sC)(1−sF )

)2
1/2 + sC − 1

2s
2
C + (1−sC−sI)sF

(1−sC)(1−sF ) −
1
2

(
(1−sC−sI)sF
(1−sC)(1−sF )

)2
1/2


For the in-firms we have

WI = β̂µ

(
1/2 + 2

sI (sC + 1)

1− sC − sI

(
1− 1

2

(
sI (sC + 1)

1− sC − sI

))
+

2sIsF
(1− sC) (1− sF )

(
1− 1

2

(
2sIsF

(1− sC) (1− sF )

)))

First term increases in s, sI , sF . The term sI(sC+1)
1−sC−sI

(
1− 1

2
sI(sC+1)
1−sC−sI

)
increases in sI(sC+1)

1−sC−sI until sI(sC+1)
1−sC−sI = 1

and then decreases. The last term increases in 2sIsF
(1−sC)(1−sF ) until 2sIsF

(1−sC)(1−sF )= 1 and then decreases. For

fixed 0 < sC < 1/2, sF = 0 and large enough R we see that WI is initially increasing and then decreasing in

sI . For fixed 0 < sI < 1, sF = 0, we see that WI is initially increasing and then decreasing in sC . The question

is whether sI(sC+1)
1−sC−sI > 1 happens in the range 0 < sC < 1/2 ? The bound is given by sI(3/2)

1/2−sI > 1 that is

3/2sI > 1/2 − sI or 5/2sI > 1/2 or sI > 1/5. The general pattern is true for small sF . What happens for

larger sF ? The crucial value for non monotonicity of this term is 2sIsF
(1−sC)(1−sF ) = 1 which involves large enough
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sI and sF and possibly s. As sF tends to 1 we have non monotonicy. Note however, that the contribution of

this term is small for small values of 2sIsF
(1−sC)(1−sF ) . To conclude, for R sufficiently large, sI sufficiently large,

WI is non monotonous in s and sF . For sF sufficiently and small and large WI is non monotonous in sI . In the

mid range of sF , as sI rises the first term is non monotonous and the second term becomes non monotonous

only after 2sIsF
(1−s)(1−sF ) = 1 which might never happen. So it is a question of comparing the second and third

term, which is hard. For the core firms we have

WC = β̂µ

(
1/2 + sC −

1

2
s2C +

(1− sC − sI) sF
(1− sC) (1− sF )

(
1− 1

2

(
(1− sC − sI) sF
(1− sC) (1− sF )

)))
The term sF+1

sC−1 (sC + sI − 1) is increasing in all shares. The term sC− 1
2s

2
C changes the sign of the derivative at

sC= 1, so it is always increasing. In addition, the next term becomes decreasing as soon as (1−sC−sI)sF
(1−sC)(1−sF ) > 1

which mean sC (1− sC − sI) sF > (1− sC) (1− sF ) . In terms of sC this means

sC >
1− 2sF + sIsF

1− 2sF
> 1

As we need sC smaller then 1/2 we see that this is not possible. So WC is increasing in sC . Concerning the

role of sI note that (1−sC−sI)sF
(1−sC)(1−sF ) is decreasing in sI the expression. Finally social welfare in the fat bow tie is

given by W =
∑
iWi = WI + 2WC +WF .

Proof of Proposition 6. Truncating all series at the third order terms we obtain for i, j, i 6= j

ρij =
(1−

∑
p 6=i spi)

(
sij +

∑
p 6=i,j sipspj +

∑
p 6=i,q 6=j,p 6=q sipspqsqj + ...

)
(1−

∑
p 6=j spj)

(
1 +

∑
p 6=j sjpspj +

∑
p 6=j,q 6=j,p 6=q sjpspqsqj + ...

) ' sij +
∑
p sipspj − sij

∑
p spi

1−
(∑

p spj −
∑
p sjpspj

)
'

(
sij +

∑
p

sipspj − sij
∑
p

spi

)1 +
∑
p

spj −
∑
p

sjpspj +

(∑
p

spj −
∑
p

sjpspj

)2


' sij +
∑
p

sipspj − sij
∑
p

spi + sij
∑
p

spj ' sij +
∑
p

sipspj + sij
(
ηinj − ηini

)
Then

ρ̄i =
1

n

∑
j

ρij '
1

n

(
ηouti +

∑
p

sip
(
ηoutp + ηinp

)
−ηouti ηini +1

)

and

ρ̄ =
1

n

∑
i

ρ̄i '
1

n2

∑
i

ηouti +
1

n2

∑
j

(
ηinj
)2

+
1

n
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Looking at welfare

σ2

µ2
Wi '

∑
j 6=i

(
sij +

∑
p

sipspj + sij
(
ηinj − ηini

))
+ 1

−1

2

∑
j 6=i

(
sij +

∑
p

sipspj + sij
(
ηinj − ηini

))2

+ 1


'

1

2
+ ηouti +

∑
p

sipη
out
p − ηouti ηini +

∑
j

sijη
in
j −

1

2

∑
j

s2ij


and the aggregate

σ2

µ2

∑
i

Wi '
n

2
+
∑
i

ηouti +
∑
p

ηinp η
out
p −

∑
i

ηouti ηini +
∑
j

(
ηinj
)2 − 1

2

∑
ij

s2ij

' n

2
+
∑
i

ηouti +
∑
i

(
ηini
)2 − 1

2

∑
ij

s2ij

However, the variance of investment of firm i in firm j, i.e. sij , is

∑
i

(sij − sj)2 =
∑
i

s2ij −

(∑
i

sij

)2

=
∑
i

s2ij −
(
ηinj
)2

Summing all these variances we obtain∑
ij

(sij − sj)2 =
∑
i,j

s2ij −
∑
j

(
ηinj
)2

Then

σ2

µ2

∑
i

Wi '
n

2
+
∑
i

ηouti +
∑
i

(
ηini
)2 − 1

2

∑
ij

(sij − sj)2 +
∑
j

(
ηinj
)2

' n

2
+
∑
i

ηouti +
1

2

∑
i

(
ηini
)2 −∑

ij

(sij − sj)2


Therefore, In thin networks,
∑
i Ui(S) >

∑
i Ui(S

′) if

∑
i

ηouti +
1

2

∑
i

(
ηini
)2 −∑

ij

(sij − sj)2
 >

∑
i

η′outi +
1

2

∑
i

(
η

′in
i

)2
−
∑
ij

(
s′ij − s′j

)2
and using the definition of ηini and ηouti we obtain the condition in the Proposition. The “only if” part also

follows. If S is more integrated than S′ then ηouti ≥ η′outi and the inequality is strict for some i. This implies

that moving from S′ to S there is a positive first order effect in aggregate utilities. Therefore, for s̄ small
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enough, aggregate utility is higher in S and than S′.

Proof of Proposition 7. Let ◦ be the Hadamard product and Γ̂ be a n × n matrix where γ̂ii = 0 for all i

and γ̂ij = γij/γii for all i 6= j. We first prove the statement of existence and uniqueness. Note that our game

belongs to the class of games analysed by Rosen 1965. Indeed, recall that

Ui(βi, β−i) =
∑
j

γij(wr + βj(µ− r))−
α

2

∑
j

∑
j′

γijβjγij′βj′σ
2
jj′ . (12)

It is easy to see that Ui(βi, β−i) is continuous in (βi, β−i) and it is concave in βi. Moreover, strategy space is

from a convex and bounded support, so our game belongs to the class of games of Rosen 1965. This implies

existence. Rosen 1965 also provides a sufficient condition for uniqueness. For some positive vector r, let

g(β, r) be a vector where element i is ri
∂Ui

∂βi
. Let G(β, r) be the Jacobian of g(β, r). A sufficient condition for

uniqueness is that: there exists a positive vector r such that for every β and β′ the following holds

(β − β′T g(β′, r) + (β′T g(β, r) > 0.

Moreover, a sufficient condition for this above condition to hold is that there exists a positive vector r such

that the symmetric matrix G(β, r) +G(β, r)T is negative definite. In our case, by fixing r to the unit vector,

we have that

G(β, 1) +G(β, 1)T = −α[Γ + ΓT ] ◦ Ω

So, it would be sufficient to show that

[Γ + ΓT ] ◦ Ω

is positive definite. It is well known that the Hadamard product of two positive definite matrix is also a

positive definite matrix. Since Ω is positive definite, it is sufficient to show that [Γ + ΓT ] is positive definite.

Since the sum of positive definite matrix is a positive definite matrix, it is sufficient to show that Γ is positive

definite. The condition that
∑
j sij < 1/2, implies that Γ is a strictly diagonally dominant, and therefore

positive definite. We now turn to characterize interior equilibrium. In an interior equilibrium we must have

that
∑
j γijσ

2
ijβj = µ−r

α , for all i ∈ N . That is

[Γ ◦ Ω]β =
µ− r
α

1.

Third, assume that σ2
i = σ2 for all i and that σ2

ij = δσ2 for all i 6= j and δ ∈ [−1, 1]. Denote by D(Γ) a n× n
diagonal matrix, where the elements in the diagonal are the same as the elements in the diagonal of Γ. Note

that Γ ◦ Ω = σ2 [δ (Γ−D(Γ)) +D(Γ)] but as Γ−D(Γ) = D(Γ)Γ̂ we obtain

Γ ◦ Ω = σ2
[
δD(Γ)Γ̂ +D(Γ))

]
= D(Γ)

[
I + δΓ̂

]
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It then follows that

β =
µ− r
ασ2

[
D(Γ)[I + δΓ̂]

]−1
1

=
µ− r
ασ2

[
I + δΓ̂

]−1
D(Γ)−11,

and therefore, for every i, we have that:

βi =
µ− r
σ2α

∑
j

{[I + δΓ̂]−1}ij
1

γjj

Note that if δ = 0 then [Γ ◦ Ω]−1 = 1
σ2 [D(Γ)]−1; if δ = 1 then [Γ ◦ Ω]−1 = 1

σ2 [I − S]D−1. Indeed Γ ◦ Ω =

σ2D(Γ)[I + Γ̂] = σ2Γ = σ2D[I − S]−1. Using this expression we may deduce the equilibrium portfolios. We

note that
∑
j{[I + ρΓ̂]−1}ij 1

γjj
is a form of centrality of agent i in network Γ̂: γ̂ij = γij/γii and therefore is

the ratio between the share that i has on j directly and indirectly and the share that i has of herself directly

and indirectly.The limiting case of small correlations is obtained as follows

βi =
µ

σ2α

∑
j

[I + δΓ̂]−1ij
1

γjj
=

µ

σ2α

∑
j

∑
k=0

[(−δ)k
{

Γ̂k
}
ij

1

γjj

' µ

σ2α

∑
j

(
(δij − δγ̂ij)

1

γjj

)
' µ

σ2α

∑
j

(
δij
γjj
− δ γij

γii

1

γjj

)

' β∗i

1− δ
∑
j

(
γij
γjj

) ' β∗i
1− δ

∑
j

ρij


' β∗i (1− nδρi)

Note that Investment when correlation is infinitesimal is given by βi 'δ→0 β
∗
i

(
1− δ

∑
j
γij
γjj

)
'δ→0 β

∗
i (1− nδρi) .
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