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Abstract

Seemingly unrelated regression models generalize linear regression models by consid-

ering multiple regression equations that are linked by contemporaneously correlated

disturbances. Robust inference for seemingly unrelated regression models is con-

sidered. MM-estimators are introduced to obtain estimators that have both a high

breakdown point and a high normal efficiency. A fast and robust bootstrap procedure

is developed to obtain robust inference for these estimators. Confidence intervals for

the model parameters as well as hypothesis tests for linear restrictions of the regres-

sion coefficients in seemingly unrelated regression models are constructed. Moreover,

in order to evaluate the need for a seemingly unrelated regression model, a robust

procedure is proposed to test for the presence of correlation among the disturbances.

The performance of the fast and robust bootstrap inference is evaluated empirically

in simulation studies and illustrated on real data.
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1. INTRODUCTION

Many scientists have investigated statistical problems involving multiple linear regression

equations. Unconsidered factors in these equations can lead to highly correlated distur-

bances. In such cases, estimating the regression parameters equation-by-equation by, e.g.,

least squares is not likely to yield efficient estimates. Therefore, seemingly unrelated re-

gression (SUR) models have been developed. SUR models take the underlying covariance

structure of the error terms across equations into account. Applications in econometrics and

related fields include demand and supply models (Kotakou, 2011; Martin et al., 2007), cap-

ital asset pricing models (Hodgson et al., 2002; Pástor and Stambaugh, 2002), chain lad-

der models (Hubert et al., 2017; Zhang, 2010), vector autoregressive models (Wang, 2010),

household consumption and expenditure models (Kuson et al., 2012; Lar et al., 2011), envi-

ronmental sciences (Olaolu et al., 2011; Zaman et al., 2011), natural sciences (Cadavez and Henningsen,

2012; Hasenauer et al., 1998) and many more.

A SUR model, introduced by Zellner (1962), consists of m > 1 dependent linear regres-

sion equations, also called blocks. Denote the jth block in matrix form by

yj = Xjβj + εj ,

where yj = (y1j , . . . , ynj)
⊤ contains the n observed values of the response variable and Xj

is an n × pj matrix containing the values of pj input variables. Note that the number of

predictors does not need to be the same for all blocks. The vector βj = (β1j , . . . , βpjj)
⊤

contains the unknown regression coefficients for the jth block and εj = (ε1j, . . . , εnj)
⊤

constitutes its error term. The error term εj is assumed to have E[εj ] = 0 and Cov[εj] =

σjjIn where σjj is the unknown variance of the errors in the jth block, and In represents

the identity matrix of size n. In the SUR model blocks are connected by the assumption

of contemporaneous correlation. That is, the ith element of the error term of block j may

be correlated with the ith element of the error term of block k. With i and ℓ observation

numbers and j and k block numbers, the covariance structure of the disturbances can be
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summarized as

E[εijεik] = σjk, i = 1, . . . , n and j, k = 1, . . . , m;

E[εijεℓj] = 0, i 6= ℓ;

E[εijεℓk] = 0, j 6= k and i 6= ℓ.

Note that each regression equation in a SUR model is a linear regression model in its own

right. The different blocks may seem to be unrelated at first sight, but are actually related

through their error terms.

The regression equations in a SUR model can be combined into two equivalent single

matrix form equations. Let bdiag() denote the operator that constructs a block diagonal

matrix from its arguments. Moreover, let ⊗ denote the Kronecker product and let Σ be

a symmetric matrix with elements σjk. First, the SUR model can be rewritten as a single

linear regression model

y = Xβ + ε,

where y = (y⊤1 , . . . , y
⊤

m)
⊤, X = bdiag(X1, . . . , Xm) a nm × p block diagonal matrix with

p =
∑m

j=1 pj, and β = (β⊤

1 , . . . , β
⊤

m)
⊤. For the error term ε = (ε⊤1 , . . . , ε

⊤

m)
⊤ it then holds

that Cov[ε] = Σ⊗ In. Secondly, the SUR model can be represented as a multivariate linear

regression model

Y = X̃B+ E,

where Y = (y1, . . . , ym), X̃ = (X1, . . . , Xm), B = bdiag(β1, . . . , βm) and E = (ε1, . . . , εm).

Equivalently, we can write the error matrix as E = (e1, . . . , en)
⊤ with ei = (εi1, . . . , εim)

⊤

which satisfies Cov[ei] = Σ. Hence, the covariance of the error matrix E is given by

Cov[E] = Σ ⊗ In.

It is well-known that ordinary least squares which ignores the correlation patterns across

blocks may yield inefficient estimators. Generalized least squares (GLS) is a modification

of least squares that can deal with any type of correlation, including contemporaneous

correlation. For the SUR model, the GLS estimator takes the form

β̂GLS = (X⊤(Σ−1 ⊗ In)X)−1X⊤(Σ−1 ⊗ In)y. (1)

GLS coincides with the separate least squares estimates if σjk for j 6= k, or if X1 =

. . . = Xm. GLS is more efficient than least squares estimator (Zellner, 1962), but in
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most situations the covariance Σ needed in GLS is unknown. Feasible generalized least

squares (FGLS) estimates the elements of Σ by σ̂jk = ε̂⊤j ε̂k/n where ε̂j is the residual

vector of the jth block obtained from ordinary least squares and then replaces Σ in GLS

by the resulting estimator Σ̂. The finite-sample efficiency of FGLS is smaller than for GLS,

although the asymptotic efficiency of both methods is identical. Note that FGLS can be

repeated iteratively.

Alternatively, maximum likelihood estimators (MLE) can be considered (see Srivastava and Giles,

1987). Assuming that the disturbances are normally distributed, the log-likelihood of the

SUR model is given by

l(β,Σ|X, y) = −mn
2

ln(2π)− n

2
ln(|Σ|)− 1

2
(y −Xβ)⊤(Σ−1 ⊗ In)(y −Xβ). (2)

Maximizing this log-likelihood with respect to (β,Σ) yields the estimators (β̂MLE, Σ̂MLE)

which are the solutions of the following equations

β̂MLE = (X⊤(Σ̂−1
MLE ⊗ In)X)−1X⊤(Σ̂−1

MLE ⊗ In)y

Σ̂MLE = (Y − X̃B̂MLE)
⊤(Y − X̃B̂MLE)/n

(3)

with B̂MLE the block diagonal form of β̂MLE. Hence, the maximum likelihood estimators

correspond to the fully iterated FGLS estimators.

It is well-known that outliers in the data (observations which deviate from the majority

of the data) can severely influence classical estimators such as LS, MLE and their modi-

fications. Hence, FGLS and MLE are expected to yield non-robust estimates. Robust M-

estimators for the SUR model have been proposed, but these estimators lack affine equivari-

ance (Koenker and Portnoy, 1990). Bilodeau and Duchesne (2000) have introduced robust

and affine equivariant S-estimators. Recently, Hubert et al. (2017) developed an efficient

algorithm for these estimators. Despite its remarkable robustness properties, S-estimators

can have a low efficiency, which makes them less suitable for inference. Therefore, we

introduce MM-estimators for the SUR model which can combine high robustness with a

high efficiency. To obtain efficient and powerful robust tests, we also introduce an efficient

MM-estimator of the error scale based on the residuals of the MM-estimates.

Asymptotic theory can be used to draw inference corresponding to the MM-estimates

in the SUR model. However, these asymptotic results rely on assumptions that are hard to
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verify in practice. The bootstrap (Efron, 1979) offers an alternative approach that does not

require strict assumptions. However, the standard bootstrap lacks speed and robustness.

Therefore, the fast and robust bootstrap (FRB) procedure of Salibian-Barrera and Zamar

(2002) is adapted to the SUR setting. The FRB can be used to construct confidence inter-

vals (Salibian-Barrera et al., 2006; Salibian-Barrera and Zamar, 2002) as well as to develop

hypothesis tests (Salibian-Barrera, 2005; Salibian-Barrera et al., 2016; Van Aelst and Willems,

2011). In particular, one of our main goals is to develop a robust test for diagonality of the

covariance matrix Σ to evaluate the need for using a SUR model.

To set the scene, MM-estimators for the SUR model are introduced in Section 2 as an

extension of S-estimators. Section 3 focuses on the fast and robust bootstrap procedure

to develop robust inference. In Section 4 the MM-estimator of scale is introduced and hy-

pothesis tests concerning the regression coefficients are studied. In Section 5 we investigate

a robust procedure to test for diagonality of the covariance matrix Σ, i.e., to test whether

a SUR model is really needed. The finite-sample performance of the FRB inference proce-

dures is investigated by simulation in Section 6. Section 7 illustrates the robust inference on

a real data example from economics and Section 8 concludes. The supplementary material

includes properties of MM-estimators and the proposed test statistics, and contains some

extra results on robust confidence intervals.

2. ROBUST ESTIMATORS FOR THE SUR MODEL

2.1 S-estimators

We first introduce S-estimators for the SUR model as proposed by Bilodeau and Duchesne

(2000). Consider so-called ρ-functions which satisfy the following conditions:

(C1) ρ is symmetric, twice continuously differentiable and satisfies ρ(0) = 0

(C2) ρ is strictly increasing on [0, c] and constant on [c,∞[ for some c > 0.

The most popular family of ρ-functions is the class of Tukey bisquare ρ-functions given by

ρ(u) = min(u2/2− u4/2c2 + u6/6c4, c2/6) where c > 0 is a tuning parameter.
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Definition 1. Let (Xj, yj) ∈ R
n×(pj+1) for j = 1, . . . , m and let ρ0 be a ρ-function with

parameter c0 in (C2). Then, the S-estimators of the SUR model (B̃, Σ̃) are the solutions

that minimize |C| subject to the condition

1

n

n
∑

i=1

ρ0

(

√

ei(B)⊤C−1ei(B)
)

= δ0,

where the minimization is over all B = bdiag(b1, . . . , bm) ∈ R
p×m and C ∈ PDS(m) with

PDS(m) the set of positive definite and symmetric matrices of dimension m × m. The

determinant of C is denoted by |C| and ei(B)⊤ represents the ith row of the residual matrix

Y − X̃B.

The constant δ0 can be chosen as δ0 = EF [ρ0(‖e‖)] to obtain a consistent estimator

at an assumed error distribution F . Usually, the errors are assumed to follow a normal

distribution with mean zero and then we can take F ∼ Nm(0, Im). As before, the regression

coefficient estimates in the matrix B̃ can also be collected in the vector β̃ = (β̃⊤

1 , . . . , β̃
⊤

m)
⊤.

The first-order conditions corresponding to the above minimization problem yield the

following fixed-point equations for S-estimators

β̃ = (X⊤(Σ̃−1 ⊗ D̃)X)−1X⊤(Σ̃−1 ⊗ D̃)y

Σ̃ = m(Y − X̃B̃)⊤D̃(Y − X̃B̃)

(

n
∑

i=1

v0(d̃i)

)−1 (4)

with diagonal matrix D̃ = diag(w0(d̃1), . . . , w0(d̃n)) where d̃
2
i = ei(B̃)⊤Σ̃−1ei(B̃), w0(u) =

ψ0(u)/u, ψ0(u) = ρ′0(u) and v0(u) = ψ0(u)u − ρ0(u) + δ0. Note the similarities with the

GLS in (1) and the MLE in (3). The factor w0(d̃i) can be interpreted as the weight that

the estimator gives to the ith observation. A small (large) residual distance d̃i leads to

a large (small) weight w0(d̃i). The smaller the weight of an observation, the smaller its

contribution to the SUR fit. To compute the S-estimates efficiently, Hubert et al. (2017)

developed the fastSUR algorithm based on the ideas of Salibian-Barrera and Yohai (2006).

The breakdown point of an estimator is the smallest fraction of the data that needs to

be contaminated in order to drive the bias of the estimator to infinity. S-estimators with a

bounded loss function, as we consider here, have a positive breakdown point (Lopuhaä and Rousseeuw,

1991; Van Aelst and Willems, 2005). Their asymptotic breakdown point equals ε∗ =
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δ0/ρ0(c0). The constant δ0 has been fixed to guarantee consistency, but the parameter

c0 can be tuned to obtain any desired breakdown point 0 < ε∗ ≤ 0.5. Hence, S-estimators

can attain the maximal breakdown point of 50%. S-estimators with a smaller value of c0

downweight observations more heavily and correspond to a higher breakdown point.

S-estimators satisfy the first-order conditions of M-estimators (see Huber and Ronchetti,

2009), so they are asymptotically normal. However, the choice of the tuning parameter c0

involves a trade-off between breakdown point (robustness) and efficiency at the central

model (Bilodeau and Duchesne, 2000). For this reason, S-estimators are less adequate for

robust inference. MM-estimators (Yohai, 1987) avoid this trade-off by computing an effi-

cient M-estimator starting from a highly robust S-estimator (see, e.g., Kudraszow and Maronna,

2011; Tatsuoka and Tyler, 2000; Van Aelst and Willems, 2013). We now introduce MM-

estimators for the SUR model.

2.2 MM-estimators

Let Σ̃ denote the S-estimator of covariance in Definition 1. Decompose Σ̃ into a scale

component σ̃ and a shape matrix Γ̃ such that Σ̃ = σ̃2Γ̃ with |Γ̃| = 1.

Definition 2. Let (Xj, yj) ∈ R
n×(pj+1) for j = 1, . . . , m and let ρ1 be a ρ-function with

parameter c1 in (C2). Given the S-scale σ̃, MM-estimators of the SUR model (B̂, Γ̂) mini-

mize
1

n

n
∑

i=1

ρ1

(

√

ei(B)⊤G−1ei(B)

σ̃

)

,

over all B = bdiag(b1, . . . , bm) ∈ R
p×m and G ∈ PDS(m) with |G| = 1. The MM-estimator

for covariance is defined as Σ̂ = σ̃2Γ̂.

As before, the MM-estimator of the regression coefficients B̂ can also be written in

vector form β̂ = (β̂⊤

1 , . . . , β̂
⊤

m)
⊤. Similarly as for S-estimators, the first-order conditions

corresponding to the above minimization problem yield a set of fixed-point equations:

β̂ = (X⊤(Σ̂−1 ⊗ D)X)−1X⊤(Σ̂−1 ⊗ D)y

Σ̂ = m(Y − X̃B̂)⊤D(Y − X̃B̂)

(

n
∑

i=1

ψ1(di)di

)−1 (5)
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with D = diag(w1(d1), . . . , w1(dn)) where d2i = ei(B̂)⊤Σ̂−1ei(B̂), w1(u) = ψ1(u)/u and

ψ1(u) = ρ′1(u). Starting from the initial S-estimates, the MM-estimates are calculated

easily by iterating these estimating equations until convergence.

MM-estimators inherit the breakdown point of the initial S-estimators. Hence, they can

attain the maximal breakdown point if initial high-breakdown point S-estimators are used.

Moreover, since MM-estimators also satisfy the first-order conditions of M-estimators, they

are asymptotically normal. In the supplementary material it is shown that the asymptotic

efficiency of β̂ does not depend on the ρ-function ρ0 of the initial S-estimator. Therefore,

the breakdown point and the efficiency of MM-estimators can be tuned independently.

That is, the tuning constant c0 in ρ0 can be chosen to obtain an S-scale estimator with

maximal breakdown point, while the constant c1(> c0) in ρ1 is tuned to attain a desired effi-

ciency, e.g., 90%, at the central model with normal errors. Note that while MM-estimators

have maximal breakdown point, there is some loss of robustness because the bias due to

contamination is generally higher as compared to S-estimators (see, e.g., Berrendero et al.,

2007).

3. FAST AND ROBUST BOOTSTRAP

The asymptotic distribution of MM-estimators can be used to obtain inference for the

parameters in the SUR model based on their MM-estimates. However, these asymptotic

results are only reasonable for sufficiently large samples and rely on the assumption of

elliptically symmetric errors which does not necessarily hold in practice. The bootstrap

offers an alternative approach that requires less assumptions. Unfortunately, for robust

estimators the standard bootstrap procedure lacks speed and robustness. The standard

bootstrap is computer intensive because many bootstrap replicates are needed and the

fastSUR algorithm is itself already computationally intensive. Moreover, classical bootstrap

does not yield robust inference results. Indeed, due to the resampling with replacement,

the proportion of outlying observations varies among bootstrap samples. Some bootstrap

samples thus contain a majority of outliers, resulting in breakdown of the estimator. These

estimates affect the bootstrap distribution leading to unreliable inference. Therefore, we

use the fast and robust bootstrap introduced by Salibian-Barrera and Zamar (2002) and
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generalized in e.g., Salibian-Barrera et al. (2006) and Peremans et al. (2017).

Consider an estimator θ̂ of a parameter θ that satisfies the fixed-point equations g(θ̂) = θ̂

where the function g depends on the given sample. For a bootstrap sample it equivalently

holds that g∗(θ̂∗) = θ̂∗. Now, consider g∗(θ̂) as a first-step approximation of the bootstrap

estimate θ̂∗. These first-step approximations underestimate the variability of the bootstrap

distribution since the starting value is the same for all bootstrap approximations. To

remedy this deficiency a linear correction factor can be derived from a Taylor expansion of

g∗(θ̂∗). This yields the fast and robust bootstrap (FRB) estimator, given by

θ̂R∗ = θ̂ + (I −∇g(θ̂))−1(g∗(θ̂)− θ̂),

with ∇g(θ̂) the gradient of g evaluated at θ̂. Consistency of θ̂R∗ has been discussed in detail

by Salibian-Barrera and Zamar (2002); Salibian-Barrera et al. (2006). The FRB estimator

is computationally much more efficient because the first-step approximations are easy to

compute and the linear correction term needs to be calculated only once, since it depends

only on the original sample. Moreover, for a robust estimator the fixed-point equations

usually correspond to a weighted version of the corresponding equations for the non-robust

MLE or generalized least squares estimator. The weights in the equations downweight

outlying observations. In such case, the FRB estimator is robust because no matter how

many times an outlying observation appears in a bootstrap sample, it receives the same low

weight as in the original sample since the weights depend on the estimate θ̂ corresponding

to the original sample.

To apply the FRB to the S and MM-estimators for the SUR model, we rewrite the

estimating equations of S-estimators in (4) as

g4(β̃, Σ̃) = (X⊤(Σ̃−1 ⊗ D̃)X)−1X⊤(Σ̃−1 ⊗ D̃)y

g3(β̃, Σ̃) = m(Y − X̃B̃)⊤D̃(Y − X̃B̃)

(

n
∑

i=1

v0(d̃i)

)−1

where D̃ = diag(w0(d̃1), . . . , w0(d̃n)), d̃
2
i = ẽi(B̃)⊤Σ̃−1ẽi(B̃). Similarly, we rewrite the

estimating equations (5) of MM-estimators as

g1(β̂, Γ̂, Σ̃) = (X⊤(Γ̂−1 ⊗ D)X)−1X⊤(Γ̂−1 ⊗ D)y

g2(β̂, Γ̂, Σ̃) = φ((Y − X̃B̂)⊤D(Y − X̃B̂))

9



where D = diag(w1(d1), . . . , w1(dn)), d
2
i = |Σ̃|−1/mei(B̂)⊤Γ̂−1ei(B̂), and φ(A) = |A|−1/mA

for an m × m matrix A. Now, let θ̂ = (β̂⊤, vec(Γ̂)⊤, vec(Σ̃)⊤, β̃⊤)⊤ be the vector which

combines the S and MM-estimates for the SUR model and let

g(θ̂) = (g1(β̂, Γ̂, Σ̃)
⊤, g2(β̂, Γ̂, Σ̃)

⊤, g3(β̃, Σ̃)
⊤, g4(β̃, Σ̃))

⊤. (6)

Then, we have that g(θ̂) = θ̂. Expressions for the partial derivatives in ∇g can be found

in the supplementary material.

Based on the FRB estimates θ̂R∗ confidence intervals for the model parameters can be

constructed by using standard bootstrap techniques. This is shown in more detail in the

supplementary material. In the next sections we construct robust test procedures for the

SUR model and show how FRB can be used to estimate their null distribution.

4. ROBUST TESTS FOR THE REGRESSION PARAMETERS

Consider the following general null and alternative hypothesis with respect to the regression

parameters in the SUR model

H0 : Rβ = q vs H1 : Rβ 6= q, (7)

for some R ∈ R
r×p and q ∈ R

r. Here r ≤ p represents the number of linear restrictions

on the regression parameters under the null hypothesis. For example, for R = (0, . . . , 0, 1)

and q = 0 the null hypothesis simplifies to βpmm = 0. Note that the null hypothesis can

restrict regression parameters of different blocks, e.g., H0 : β11 = β12.

For maximum likelihood estimation, the standard test statistic is the well-known likelihood-

ratio statistic. With the log-likelihood in (2) it is given by

ΛMLE = −n ln
(

|Σ̂MLE|
|Σ̂MLE,r|

)

,

where Σ̂MLE is the MLE in the full model and Σ̂MLE,r the MLE in the restricted model

under the null hypothesis. Under the null hypothesis the test statistic is asymptotically

chi-squared distributed with r degrees of freedom. See, e.g., Henningsen and Hamann

(2007) for more details on standard test statistics (such as Wald and F-statistics) in SUR

models.
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A robust likelihood-ratio type test statistic corresponding to MM-estimators can be ob-

tained by using the plug-in principle. Let Σ̂ denote the unrestricted scatter MM-estimator

and Σ̂r the restricted MM-estimator. Then, the robust likelihood-ratio statistic becomes

ΛS = −n ln
(

|Σ̂|
|Σ̂r|

)

= −2nm ln

(

σ̃

σ̃r

)

, (8)

with σ̃ and σ̃r the scale S-estimators of the full and null model, respectively. Similarly to

ΛMLE, the test statistic ΛS is nonnegative, since σ̃ ≤ σ̃r by definition of the S-estimators.

The test statistic ΛS in (8) only depends on S-scale estimators. Hence, the low efficiency

of S-estimators may affect the efficiency of tests based on ΛS. In the linear regression

context, Van Aelst et al. (2013) recently introduced an efficient MM-scale estimator corre-

sponding to regression MM-estimators. Analogously, we propose to update the S-estimator

of scale σ̃ in the SUR model by a more efficient M-scale σ̂, defined as

σ̂ = σ̃

√

√

√

√

√

1

nδ1

n
∑

i=1

ρ1





√

ei(B̂)⊤Γ̂−1ei(B̂)

σ̃



.

Similarly to δ0, the constant δ1 can be chosen as δ1 = EF [ρ1(‖e‖)] to obtain a consistent

estimator at the assumed error distribution F , e.g., F ∼ Nm(0, Im). The likelihood-ratio

type test statistic corresponding to this MM-scale estimator is then defined as

ΛMM = −2nm ln

(

σ̂

σ̂r

)

. (9)

Results on the asymptotic distribution and influence function of these test statistics are

provided in the supplementary material. Since the asymptotic distribution is only useful

for sufficiently large samples, we consider FRB as an alternative to estimate the null dis-

tribution of the test statistics. However, since likelihood-ratio type test statistics converge

at a higher rate than the estimators themselves, a standard application of FRB leads to an

inconsistent estimate of the null distribution of the test statistic (Van Aelst and Willems,

2011). To overcome this issue, the test statistic ΛS in (8) is rewritten as

ΛS = −2nm ln

(

s̃(B̃, Γ̃)

s̃(B̃r, Γ̃r)

)

, (10)

where (B̃, Γ̃) and (B̃r, Γ̃r) are the S-estimators in the full and null model respectively and

where s̃(B,G) is the multivariate M-estimator of scale corresponding to a given B ∈ R
p×m
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and G ∈ PDS(m) with |G| = 1. That is, s̃(B,G) is the solution of

1

n

n
∑

i=1

ρ0

(

√

ei(B)⊤G−1ei(B)

s̃(B,G)

)

= δ0. (11)

Similarly, the MM-based test statistic ΛMM in (9) is rewritten as

ΛMM = −2nm ln

(

ŝ(B̃, Γ̃, B̂, Γ̂)

ŝ(B̃r, Γ̃r, B̂r, Γ̂r)

)

, (12)

where

ŝ(B̃, Γ̃, B̂, Γ̂) = s̃(B̃, Γ̃)

√

√

√

√

√

1

nδ1

n
∑

i=1

ρ1





√

ei(B̂)⊤Γ̂−1ei(B̂)

s̃(B̃, Γ̃)



. (13)

Let θ̂ = (β̂⊤, vec(Γ̂)⊤, vec(Γ̃)⊤, β̃⊤)⊤ contain the S and MM-estimators of the regression

coefficients and error shape matrices for the full model and let θ̂r contain the corresponding

estimators for the reduced model. Denote Θ̂ = (θ̂, θ̂r), then both test statistics can be

written in the general form

Λ. = h(Θ̂),

where the dot in the subscript can be either S or MM and the function h is determined

by (10)-(11) or (12)-(13), respectively. The FRB approximation for the null distribution of

this test statistic then consists of the values

ΛR∗

. = h∗(Θ̂R∗),

where Θ̂R∗ = (θ̂R∗, θ̂R∗

r ) are the FRB approximations for the regression and shape estimates

in the bootstrap samples. It can be checked that the function h satisfies the condition

∇h(Θ̂) = op(1), (14)

so the partial derivatives of h vanish asymptotically. This condition guarantees that the

FRB procedure consistently estimates the null distribution of the test statistic, as shown

in Van Aelst and Willems (2011). Note that the FRB procedure for hypothesis tests is

computationally less efficient than for the construction of confidence intervals (see supple-

mentary material) because the S-scales of the full and null model have to be computed by
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an iterative procedure for each of the bootstrap samples. However, the increase in compu-

tation time is almost negligible compared to the time needed by the standard (non-robust)

bootstrap for these robust estimators.

Bootstrapping a test statistic to estimate its null distribution requires that the boot-

strap samples follow the null hypothesis, even when this hypothesis does not hold in

the original data. Therefore, we first construct null data that approximately satisfy the

null hypothesis, regardless of the hypothesis that holds in the original data. According

to Salibian-Barrera et al. (2016), for the linear constraints in (7) null data for ΛMM can be

constructed as

(X̃(0), Y (0)) = (X̃, X̃B̂r + E),

with E = Y − X̃B̂ the residuals in the full model. Bootstrap samples are now generated by

sampling with replacement from the null data (X̃(0), Y (0)). Let (B̂(0), Σ̂(0)) denote the MM-

estimates for the null data in the full model and let (B̂
(0)
r , Σ̂

(0)
r ) denote the MM-estimates for

the null data in the restricted model. Due to affine equivariance we have that (B̂(0), Σ̂(0)) =

(B̂r, Σ̂), so these estimates can be obtained without extra computations. However, the

estimates for the reduced model cannot be derived from equivariance properties and need

to be computed from the transformed data. Similarly, null data can be constructed for

ΛS. Finally, when N FRB recalculated values ΛR∗

. of the test statistic have been calculated

based on the null data, then the corresponding FRB p-value is given by

p-value =
(#ΛR∗

. > Λ.) + 1

N + 2
, (15)

where Λ. is the value of the test statistic at the original sample.

5. ROBUST TEST FOR DIAGONALITY OF THE

COVARIANCE MATRIX

The key feature of the SUR model is the existence of contemporaneous correlation, cor-

responding to a non-diagonal covariance matrix Σ. If the covariance matrix is diagonal

the SUR model simplifies to m unrelated regression models. Therefore, by testing for

diagonality of Σ the necessity of a SUR model is evaluated.
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Consider the following hypotheses

H0 : Σ is diagonal vs H1 : Σ is not diagonal. (16)

A popular diagonality test for the standard SUR model is the Breusch-Pagan test (Breusch and Pagan,

1980) which is based on the Lagrange multiplier idea (Baltagi, 2008). It measures the total

sum of squared correlations:

LMMLE = n
∑

j<k

r2jk,

with rjk the elements of the sample correlation matrix of the residual vectors ε̂j, j =

1, . . . , m. Here, each ε̂j is the residual vector corresponding to a single-equation LS fit in

block j. Under the null hypothesis LMMLE is asymptotically chi-squared distributed with

m(m− 1)/2 degrees of freedom. Evidently, the LS based Breusch-Pagan test is vulnerable

to outliers in the data. Therefore, we introduce robust Breusch-Pagan type tests.

Contrary to the classical estimators, the S and MM-estimators in a SUR model do not

simplify to their univariate analogues under the null hypothesis. However, to calculate the

restricted estimates the S and MM-estimators and corresponding fastSUR algorithm can

be adapted such that the equations for the off-diagonal elements of the covariance matrix

are excluded. For example, in case of MM-estimators the estimating equations become

β̂r = (X⊤(Σ̂−1
r ⊗ D)X)−1X⊤(Σ̂−1

r ⊗ D)y

σ̂r,jj = m

(

n
∑

i=1

w1(di)e
2
ij(B̂r)

)(

n
∑

i=1

ψ1(di)di

)−1

for j = 1, . . . , m and with D = diag(w1(d1), . . . , w1(dn)) where d2i = ei(B̂r)
⊤Σ̂−1

r ei(B̂r).

The restricted covariance matrix estimates Σ̃r and Σ̂r under H0 then become diagonal

matrices as needed. Since the tuning constants of the ρ-functions are kept fixed, the

reduced estimators (β̃r, Σ̃r, β̂r, Σ̂r) also have the same breakdown-point and efficiency level

as their counterparts in the full model. Moreover, the multivariate structure is not lost,

i.e., we still obtain a single weight for each observation across all blocks.

Based on the restricted estimators, we now estimate the correlation between the errors

of block j and k as

rjk =

∑n
i=1w1(di)eij(B̂r)eik(B̂r)

√

(

∑n
i=1w1(di)e

2
ij(B̂r)

)(

∑n
i=1w1(di)e

2
ik(B̂r)

)

,
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with d2i = ei(B̂r)
⊤Σ̂−1

r ei(B̂r). Based on these correlation estimates we propose a robust

Breusch-Pagan test statistic:

LMMM = n
∑

j<k

r2jk. (17)

Note that LMMM is nonnegative. Similarly, a robust Breusch-Pagan test based on S-

estimators, denoted by LMS, can be defined as well, but it will not benefit from the gain

in efficiency of MM-estimators.

From their asymptotic chi-squared distribution (see the supplementary material) non-

robust p-values may be derived. Alternatively, FRB can again be used to estimate the null

distribution of the test statistics. Note that the robust Breusch-Pagan test statistic only

requires the estimates in the restricted model as can be expected for a Lagrange multiplier

test. Let θ̂r denote the vector that collects all S and MM-estimators in the restricted model.

Based on the FRB approximations θ̂R∗

r , bootstrap replications for the null distribution of

LMMM can be generated as

LMR∗

MM = n
∑

j<k

(rR∗

jk )
2,

with

rR∗

jk =

∑n
i=1w1(d

R∗

i )eij(B̂
R∗

r )eik(B̂
R∗

r )
√

(

∑n
i=1w1(dR∗

i )e2ij(B̂
R∗
r )
)(

∑n
i=1w1(dR∗

i )e2ik(B̂
R∗
r )
)

,

where (dR∗

i )2 = ei(B̂
R∗

r )⊤(Σ̂R∗

r )−1ei(B̂
R∗

r ), and similarly for LMS. It is straightforward to

check that the consistency condition in (14) holds under H0 for these test statistics, where

h is now defined through (17). Hence, the FRB procedure consistently estimates the null

distribution of the test statistics.

To make sure that the bootstrap samples satisfy the null hypothesis, we generate boot-

strap samples from the following transformed data

(X̃(0), Y (0)) = (X̃, X̃B̂+ EΣ̂−1/2),

with E = Y − X̃B̂ the residuals in the full model. The residuals E of the full SUR model

are possibly correlated across blocks. By transforming these residuals with Σ̂−1/2, this

correlation is removed and it can be expected that for the transformed data

Σ̂(0) ≈ Im and Σ̂(0)
r ≈ Im, (18)
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regardless of the hypothesis that holds in the original data. Note that in the SUR model

we cannot rely on equivariance properties to obtain the identity matrix exactly because

the model is only affine equivariant for transformations within blocks. However, extensive

empirical investigation confirmed that (18) holds for the transformed data, and the corre-

sponding value of the test statistic LM
(0)
MM indeed becomes approximately zero. Similarly,

null data can be created for LMS as well.

6. FINITE-SAMPLE PERFORMANCE

We now investigate by simulation the performance of FRB tests based on the robust

likelihood-ratio test statistics ΛS and ΛMM and the robust Breusch-Pagan statistics LMS

and LMMM. The tests are performed at the 5% significance level. We study both the

efficiency of the tests under the null hypothesis and the power under the alternative as well

as their robustness.

In the SUR model, bootstrap samples can be obtained by either case (row) resampling

from the original sample (X̃, Y ) or by resampling the m-dimensional residuals ei, i =

1, . . . , n. While the results in the previous sections hold for both types of bootstrapping, in

this paper we use case resampling which is a more nonparametric approach than the model

based error resampling.

Consider first the following hypothesis test in a SUR model:

H0 : βpmm = 0 vs H1 : βpmm 6= 0. (19)

To investigate the efficiency of the test procedures, data are simulated under the null

hypothesis. Observations are generated according to a SUR model with three blocks (m =

3) and two predictors (as well as an intercept) in each block. Hence, there are p = 9

regression coefficients in the model. The predictor variables are generated independently

from a standard normal distribution. The p-dimensional vector of regression coefficients

equals β = (1, . . . , 1, 0)⊤ such that the null hypothesis holds. The covariance matrix Σ is

taken to be a correlation matrix with all correlations equal to 0.5. The multivariate errors

are generated from either Nm(0,Σ) or tm(0,Σ) (a multivariate elliptical t-distribution with

mean zero and scatter Σ) with 3 degrees of freedom. To investigate the robustness of the
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procedure we also considered contaminated data. We have generated the worst possible

type of outliers, namely bad leverage points, by replacing in each block all the regressors

of the first 10% or 30% of the observations by uniform values between -10 and -5 and by

adding to each of the corresponding original responses a value that is normally distributed

with mean 20 and variance 1.

Robust S-estimators and MM-estimators with maximal breakdown point of 50% are

computed. The MM-estimator is tuned to have 90% efficiency. The null distribution of both

ΛS and ΛMM are estimated by FRB as explained in Section 4, using N = 1000 bootstrap

samples. The corresponding p-values are obtained as in (15). For each simulation setting

1000 random samples are generated for sample sizes n = 25, 50, 75, 100, 150, 200, 250 and

300 (recall that n represents the number of observations per block). Figure 1 shows the

empirical level of the two tests for both clean and contaminated data. It can be seen that
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Figure 1: Rejection rates of the hypothesis test in (19) based on the test statistics ΛS

(dashed) and ΛMM (dotted). The solid (red) line represents the rejection level of 5%.

the empirical levels are close to the 5% nominal level in most cases. The difference between

ΛS and ΛMM is mainly seen when the sample size is small. Indeed, for n = 25, the test

using ΛMM performs better than when ΛS is used. Note that outliers in the data only have

a limited effect on the rejection rates, showing robustness of the level of the FRB tests.
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To investigate the power of the robust tests, we have simulated data sets under the

alternative hypothesis. In Figure 2 we show the power of the tests for samples of size

n = 100 with β = (1, . . . , 1, d)⊤ where d ranges from 0 to 0.5 with step length 0.1. From

Normal errors
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Figure 2: Power curves of the hypothesis test in (19) based on the test statistics ΛS (dashed),

ΛMM (dotted) and ΛMLE (dash-dotted). The solid (red) line represents the rejection level

of 5%.

the left plot we see that the power increases quickly when d becomes larger. The power of

the robust tests is only slightly lower than for the classical test in the non-contaminated

setting. Moreover, the power of the ΛMM test is (slightly) higher than for the ΛS test. The

plot on the right shows that the classical test completely fails if the data is contaminated

with 10% of bad leverage points. On the other hand, the robust tests are not affected much

by the contamination and yield similar power curves as in the case without contamination.

Let us now consider the test for diagonality of the covariance matrix in (16). First, data

are generated under the null hypothesis, i.e., data are simulated as in the previous section,

but the multivariate errors are generated from either Nm(0,Σ) or from tm(0,Σ) with Σ

the identity matrix. The LM test statistic corresponding to both S and MM-estimators

is computed. As before, 1000 data sets were generated for each setting. In Figure 3 the

rejection rates are plotted as a function of sample size for the four cases considered (normal

errors, t-distributed errors, 10% contamination and 30% contamination). The rejection

rates in the different cases behave similar. The lower efficiency of S-estimators becomes

apparent as the empirical levels of LMS are lower in all (but one) cases. For small sample

sizes the nominal level is clearly underestimated, but for MM-estimation the nominal level

is already reached for n ≥ 75. The efficiency of the tests is not much affected by heavy

tailed errors or contamination which confirms their robustness under the null hypothesis.
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Figure 3: Rejection rates of the hypothesis test in (16) based on the test statistics LMS

(dashed) and LMMM (dotted). The solid (red) line represents the rejection level of 5%.

To investigate the power of the test procedures, data were simulated under the alter-

native hypothesis as well. To this end, Σ was set equal to an equicorrelation matrix with

correlation τ taking values from 0 to 0.5 with step length 0.1 for the case n = 100. The left
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Figure 4: Power curves of the hypothesis test in (16) based on the test statistics LMS

(dashed), LMMM (dotted) and LMMLE (dash-dotted). The solid (red) line represents the

rejection level of 5%.

plot in Figure 4 shows the resulting power curves of the classical and robust Breusch-Pagan

tests. We see that the test based on MM-estimators performs almost as well as the classical

Breusch-Pagan test. For τ = 0.4 the empirical level of LMMM reaches almost one. The
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test based on S-estimators performs less well in this setting with m = 3 blocks. However,

we have noted that the performance of LMS increases with the number of blocks m in the

SUR model. For larger block sizes the difference with LMMM becomes negligible. The right

plot in Figure 4 shows that the classical Breusch-Pagan test cannot handle contamination,

resulting in a drastic loss of power. On the other hand, the power of the robust tests is

not affected much by the bad leverage points, resulting in power curves that are similar

to the uncontaminated case. This setting where Σ is an equicorrelation matrix can be

considered to be a strong deviation from diagonality because the deviation is present in all

covariance elements. Therefore, we also investigated the power of the diagonality test for

other structures of Σ. It turns out that the comparison between the three tests remains the

same for other settings. The power curves for the case where only one covariance deviates

from zero are given in the supplementary material.

7. EXAMPLE: GRUNFELD DATA

As an illustration we consider the well-known Grunfeld data (see, e.g., Bilodeau and Duchesne

(2000)). This dataset contains information on the annual gross investment of 10 large U.S.

corporations for the period 1935-1954. The recorded response is the annual gross invest-

ment of each corporation (Investment). Two predictor variables have been measured as

well, which are the value of outstanding shares at the beginning of the year (Shares) and

the beginning-of-year real capital stock (Capital). One may expect that within the same

year the activities of one corporation can affect the others. Hence, the SUR model seems to

be appropriate. Unfortunately, the classical and robust estimators of the covariance matrix

become singular when all 10 companies are considered. Therefore, we only focus on the

measurements of three U.S. corporations: General Electric (GE), Westinghouse (W) and

Diamond Match (DM). General Electric and Westinghouse are active in the same field of

industry and thus their activities can highly influence each other. Since the interest is in

modeling dependencies between the corporations within the same year, a SUR model with

three blocks is considered. The model is given by

Investmentij = β0j + β1j Sharesij + β2j Capitalij + εij, (20)
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with Cov[εij , εik] = σjk for i = 1, . . . , 20 and j, k = 1, 2, 3.

We consider inference corresponding to the standard MLE and robust MM-estimators.

MM-estimates are obtained with 50% breakdown point and a normal efficiency of 90%. For

the MLE, inference is obtained by using asymptotic results and standard bootstrap. For

MM-estimators, robust inference is based on the asymptotic results as well as on FRB using

N = 1000 bootstrap samples generated by case resampling. Given the small sample size,

we may expect that the bootstrap inference is more reliable than the asymptotic inference

according the simulation results in the previous section.

Table 1 contains the estimates for the regression coefficients and corresponding standard

errors (between brackets) based on bootstrap for the SUR model in (20). We can clearly see

Corporation MLE MM-estimator

Intercept Shares Capital Intercept Shares Capital

GE
-42.270 0.049 0.122 -30.661 0.033 0.152

(27.559) (0.016) (0.034) (26.679) (0.014) (0.026)

W
-3.684 0.067 0.018 -6.320 0.059 0.117

(8.293) (0.016) (0.074) (10.779) (0.022) (0.102)

DM
-0.716 0.016 0.453 -0.855 0.002 0.614

(1.394) (0.022) (0.144) (0.608) (0.009) (0.093)

Table 1: Estimated regression coefficients and bootstrap standard errors (between brackets)

for the MLE and MM-estimator applied to the SUR model for the Grunfeld data. Standard

errors have been obtained by classical bootstrap (MLE) or FRB (MM-estimates).

that there are differences between the estimates of both procedures. Focusing on the slope

estimates, we see that the MM-estimator yields larger effects of Capital (beginning-of-year

real capital stock) and smaller effects of Shares (value of outstanding shares at beginning

of the year) on annual gross investments than the MLE. The largest differences can be seen

in the estimates β̂22, β̂13, and β̂23 and their standard errors. The estimates for the scatter
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matrix Σ and corresponding correlation matrix R are given by

Σ̂MLE =











784.2 224.2 19.4

97.8 6.5

1.0











, RMLE =











1 0.81 0.69

1 0.65

1











,

and

Σ̂MM =











520.9 194.6 6.1

110.1 2.6

0.2











, RMM =











1 0.81 0.56

1 0.52

1











,

respectively. The robust covariance estimates are generally smaller than the classical esti-

mates. Both estimators find large correlations between the errors of the different blocks.

The largest correlation occurs between the first two blocks, which correspond to the equa-

tions of General Electric and Westinghouse.

Since there are several differences between the non-robust MLE and the robust MM-

estimates, we investigate the data for the presence of outliers. Outliers can be detected by

constructing a multivariate diagnostic plot as in Hubert et al. (2017). This plot displays

the residual distances of the observations versus the robust distance of its predictors. Based

on the SUR estimates the residual distances are computed as

di =

√

ei(B̂MM)⊤Σ̂
−1
MMei(B̂MM).

Similarly, to measure how far an observations lies from the majority in the predictor space,

robust distances can be calculated as

RDi =

√

(X̃i − m̂MM)⊤Ĉ
−1
MM(X̃i − m̂MM),

with X̃i the ith row of X̃ and where m̂MM and ĈMM are MM-estimates of the location and

scatter of X̃ (Tatsuoka and Tyler, 2000). Note that contributions of intercept terms have

been removed from X̃ so that only the actual predictors are taken into account. For non-

outlying observations with normal errors, the squared residual distances are asymptotically

chi-squared distributed with m degrees of freedom as usual. Therefore, a horizontal line at

cut-off value
√

χ2
m,0.975 (the square root of the 0.975 quantile of a chi-squared distribution

with m degrees of freedom) is added to the plot to flag outliers. Observations that exceed
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this cut-off are considered to be outliers. Similarly, if the predictors of the regular obser-

vations are approximately normally distributed, then asymptotically the squared robust

distances are approximately chi-squared distributed with p degrees of freedom. Therefore,

we add a vertical line to the plot at cut-off value
√

χ2
p,0.975 to identify outliers in the predictor

space, i.e., leverage points. An observation is called a vertical outlier if its residual distance

exceeds the cut-off but it is not outlying in the predictor space. If the observation is also

outlying in the predictor space, it is called a bad leverage point. Observations with small

residual distance which are outlying in the predictor space are called good leverage points

because they still follow the SUR model. Similarly, a diagnostic plot can be constructed

based on the initial S-estimates for the SUR model or even based on the MLE, although

the latter will not reliably identify outliers due to the non-robustness of the estimates.

Multivariate diagnostic plots corresponding to our analysis of the Grunfeld data are

shown in Figure 5, based on both the MLE and MM-estimates. The diagnostic plot corre-
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Figure 5: Multivariate diagnostic plots based on the classical estimates (left panel) and

robust estimates (right panel) for three companies in the Grunfeld data

sponding to the classical non-robust estimates does not reveal any clear outliers. It seems

that all observations follow the SUR model. However, outliers may have affected the es-

timates to the extent that the outliers are masked. Therefore, we consider the robust
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diagnostic plot corresponding to the MM-estimates. This plot indeed shows a different pic-

ture. Three vertical outliers and one bad leverage point are identified, as well as one good

leverage point. The three vertical outliers correspond to the years 1946, 1947 and 1948,

while the bad leverage point corresponds to the year 1954. Further exploration of the data

indicates that the three vertical outliers are mainly due to exceptionally high investments

in those three post World War II years. For the final year 1954, the measurements for

all variables are rather extreme, most likely due to the postwar booming economy, which

explains why this year is flagged as a bad leverage point in the robust analysis. These four

outliers may potentially influence the inference results based on MLE, leading to misleading

conclusions. To verify the effect of the outliers on the MLE estimates of the parameters,

we also calculated the MLE estimates based on the data without the outliers. The results

(not shown) confirmed that the outliers and especially the bad leverage point affect the

MLE estimates, because without these outliers the MLE estimates highly resemble the

MM-estimates in Table 1.

The large correlation estimates between the errors of the different blocks already sug-

gested that these correlations should not be ignored, and thus that the SUR model is

indispensable. We can now formally test whether it is indeed necessary to use the SUR

model. Therefore, we apply the diagonality test in Section 5 to test the hypotheses in (16).

Table 2 shows the results for the Breusch-Pagan test as well as our robust Breusch-Pagan

test. The table contains the values of both test statistics, as well as the corresponding

asymptotic p-values and bootstrap p-values. The proportionality constant for the asymp-

totic chi-squared distribution is estimated by using the empirical distribution to calculate

the expected value. We immediately see that at the 5% significance level, the null hy-

Estimator LM AS p-value B p-value

MLE 23.482 0.001 0.003

MM 14.825 0.003 0.019

Table 2: Results of the classical and robust Breusch-Pagan test for the hypothesis test

in (16) using the Grunfeld data.
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pothesis of diagonality is rejected in all cases. Hence, the outliers in this example do not

affect the MLE estimates in such a way that the covariance structure of the SUR model is

completely hidden.

From an econometric point of view it can now be interesting to investigate whether

the predictors Shares and Capital have the same effect on investments for the two energy

companies General Electric and Westinghouse. Hence, we test

H0 : β11 = β12 and β21 = β22 vs H1 : β11 6= β12 or β21 6= β22. (21)

Table 3 contains the values of the likelihood-ratio statistics and corresponding asymptotic

and bootstrap p-values. If we consider a 5% significance level, then the conclusion is not

Estimator Λ AS p-value B p-value

MLE 6.728 0.035 0.168

MM 7.255 0.057 0.086

Table 3: Classical and robust test results for the hypothesis test in (21) using the Grunfeld

data.

completely clear for the MLE. The commonly used asymptotic p-value does reject the

null hypothesis, but based on the bootstrap p-value we cannot reject the null hypothesis

anymore. On the other hand, the robust test yields asymptotic and bootstrap p-values

that lie closer together and which do not reject the null hypothesis. Hence, the presence

of outliers does not affect the outcome of the robust hypothesis test while it seems to have

caused instability for the classical test based on the MLE. Indeed, if we remove the bad

leverage point, then the asymptotic p-value corresponding to the MLE already increases

to 0.061 which is in line with the p-value based on the MM-estimator for the full data set.

8. CONCLUSION

In this paper we have introduced MM-estimators for the SUR model as an extension of S-

estimators. MM-estimators combine high robustness (breakdown point) with high efficiency
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at the central model. Based on these MM-estimators robust inference for the SUR model

has been developed based on the FRB principle. We considered likelihood ratio type

statistics to test the existence of linear restrictions among the regression coefficients. While

MM-estimators update the S-estimates of the regression coefficients and shape matrix, they

do not automatically update the S-scale estimate. However, it turns out that more accurate

and powerful tests are obtained if a more efficient MM-scale estimator is used.

An important question is whether it is necessary to use a joint SUR model rather than

individual linear regression models for each of the blocks. To evaluate the need for a SUR

model we proposed a robust alternative for the well-known Breusch-Pagan test. The FRB

was used again to obtain a highly reliable test for diagonality of the covariance matrix, i.e.,

for existence of contemporaneous correlation among the errors in the different blocks of the

SUR model.
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SUPPLEMENTARY MATERIAL

In the supplementary material we introduce functionals corresponding to MM-estimators

and discuss important properties of these MM-functionals such as equivariance, influence

function and asymptotic variance. Also influence functions and asymptotic distributions

are derived for the proposed robust test statistics. Power curves are included for a situation

which is less deviating from diagonality than the equicorrelation matrix. Furthermore, we

construct bootstrap confidence intervals based on FRB and evaluate their performance in

a simulation study. In addition, we illustrate these confidence intervals on Grunfeld data.

The appendix also contains expressions for the partial derivatives required in the FRB
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procedure, a verification of the consistency conditions for the robust test on regression

coefficients, and the proofs of the theorems.
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Lopuhaä, H. P. and Rousseeuw, P. J. (1991). Breakdown points of affine equivariant

estimators of multivariate location and covariance matrices. The Annals of Statistics,

19:229–248.

Martin, S., Rice, N., Jacobs, R., and Smith, P. (2007). The market for elective surgery:

Joint estimation of supply and demand. Journal of Health Economics, 26(2):263–285.

Olaolu, M., Ajayi, A., and Akinnagbe, O. (2011). Impact of National Fadama Development

Project II on Rice farmers profitability in Kogi State, Nigeria. Journal of Agricultural

Extension, 15(1):64–74.
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Abstract

In the supplementary material we introduce functionals corresponding to MM-estimators

and discuss important properties of these MM-functionals such as equivariance, in-

fluence function and asymptotic variance. Also influence functions and asymptotic

distributions are derived for the proposed robust test statistics. Power curves are

included for a situation which is less deviating from diagonality than the equicor-

relation matrix. Furthermore, we construct bootstrap confidence intervals based on

fast and robust bootstrap and evaluate their performance in a simulation study. In

addition, we illustrate these confidence intervals on Grunfeld data. The appendix

also contains expressions for the partial derivatives required in the fast and robust

bootstrap procedure, a verification of the consistency conditions for the robust test

on regression coefficients, and the proofs of the theorems.
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9. PROPERTIES OF MM-ESTIMATORS

We investigate the properties of MM-estimators in more detail. To this end, we first intro-

duce MM-functionals corresponding to the MM-estimators introduced in the manuscript.

We state equivariance properties of these MM-functionals and investigate their robustness

and efficiency by deriving their influence function and asymptotic variance. We present re-

sults for both the estimator of the regression coefficients β̂ and the estimator of the scatter

Σ̂.

9.1 Functionals

Functional versions of S and MM-estimators for the SUR model can be defined as follows.

Definition 3. Let H : Rp+m −→ R be the distribution function of (X̃⊤, Y ⊤)⊤ and let ρ0

be a ρ-function as before. Then, the S-functionals of the SUR model (B̃(H), Σ̃(H)) are the

solutions that minimize |C| subject to the condition

EH

[

ρ0

(

√

e(B)⊤C−1e(B)
)]

= δ0,

over all B = bdiag(b1, . . . , bm) ∈ R
p×m and C ∈ PDS(m) with e(B) = Y − B⊤X̃.

To define the MM-functionals, we again decompose the scatter matrix functional into

a scale and a shape component, i.e., Σ̃(H) = σ̃2(H)Γ̃(H) such that |Γ̃(H)| = 1.

Definition 4. Let H : Rp+m −→ R be the distribution function of (X̃⊤, Y ⊤)⊤ and let ρ1 be

a ρ-function as before. Given the S-scale functional σ̃(H), the MM-functionals of the SUR

model (B̂(H), Γ̂(H)) minimize

EH

[

ρ1

(

√

e(B)⊤G−1e(B)

σ̃(H)

)]

,

over all B = bdiag(b1, . . . , bm) ∈ R
p×m and G ∈ PDS(m) with |G| = 1. The MM-functional

for covariance is defined as Σ̂(H) = σ̃2(H)Γ̂(H).

Note that the S and MM-estimators can be obtained by the choice H = Ĥn, the

empirical distribution function corresponding to the data.
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9.2 Equivariance

Similarly as for S-estimators (Bilodeau and Duchesne, 2000), it can easily be shown that

the MM-functionals in the SUR model are equivariant under affine transformations of the

regressors, regression transformations and blockwise scale transformations of the responses.

For ease of notation, let us write the MM-functionals as β̂(X, Y ) and Σ̂(X, Y ) with

X = bdiag(X⊤

1 , . . . , X
⊤

m) with Xj ∈ R
pj . Then, the MM-functionals satisfy the following

equivariance properties:

(a) Affine equivariance of regressors:

β̂(XA, Y ) = A−1β̂(X, Y ) and Σ̂(XA, Y ) = Σ̂(X, Y ),

with A = bdiag(A1, . . . , Am) where the blocks Aj are of size pj × pj.

(b) Regression equivariance:

β̂(X, Y +Xa) = β̂(X, Y ) + a and Σ̂(X, Y +Xa) = Σ̂(X, Y ),

for any a ∈ R
p.

(c) Scale equivariance of responses:

β̂(X,AY ) = Ãβ̂(X, Y ) and Σ̂(X,AY ) = AΣ̂(X, Y )A,

for any diagonal matrixA = diag(a11, . . . , amm) with diagonal matrix Ã = diag(a11, . . . , a11, . . . , amm, . . . , amm)

in which each diagonal element ajj of A is repeated pj times.

9.3 Influence Function

We now derive the influence functions of the MM-functionals introduced above. Since

MM-functionals reduce to S-functionals when ρ1 = ρ0, we only have to consider influence

functions for MM-functionals. While the breakdown point is a global measure of robustness,

the influence function is a local measure of robustness. The influence function of a functional

T measures the effect on T of an infinitesimal amount of contamination at a point z =

(x̃⊤, y⊤)⊤ ∈ R
p+m. Consider the contaminated distribution

Hǫ,∆z
= (1− ǫ)H + ǫ∆z,
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with ∆z the point mass distribution at z and 0 < ǫ < 1. Then, the influence function of T

is defined as

IF(z;T,H) = lim
ǫ→0

T (Hǫ,∆z
)− T (H)

ǫ
=

∂

∂ǫ
(T (Hǫ,∆z

))
∣

∣

∣

ǫ=0
.

To derive the influence function, we consider the SUR model

Y = B⊤X̃ + E = Xβ + E,

where the p-dimensional vector X̃ has distributionK and is independent of them-dimensional

error variable E. We assume that E follows a unimodal elliptically symmetric distribution

FΣ with density

fΣ(u) = |Σ|−1/2g(u⊤Σ−1u),

where Σ ∈ PDS(m) and the function g has a strictly negative derivative. The error distri-

bution is thus symmetric around the origin. Let Hβ,Σ denote the resulting distribution of

Z = (X̃⊤, Y ⊤)⊤. The following theorem gives the influence functions of the regression and

scatter MM-functionals for model distributions Hβ,Σ.

Theorem 1. If Z = (X̃⊤, Y ⊤)⊤ has model distribution Hβ,Σ as defined above, then the

influence functions of the MM-estimators for the SUR model are given by

IF(z; β̂, Hβ,Σ) =
1

η1
w1(‖e‖Σ)EK [X

⊤Σ−1X ]−1x⊤Σ−1e, (22)

and

IF(z; Σ̂, Hβ,Σ) =
m

π1
ψ1(‖e‖Σ)‖e‖Σ

(

ee⊤

‖e‖2Σ
− 1

m
Σ

)

+
2

γ0
(ρ0(‖e‖Σ)− δ0)Σ,

with e = y − xβ and where we use the notation ‖a‖2C = a⊤C−1a for a ∈ R
m and C ∈

PDS(m). With F := FΣ the constants are given by

η1 = EF

[(

1− 1

m

)

w1(‖E‖Σ) +
1

m
ψ′

1(‖E‖Σ)
]

, (23)

π1 =
1

m+ 2
EF [(m+ 1)ψ1(‖E‖Σ)‖E‖Σ + ψ′

1(‖E‖Σ)‖E‖2Σ], (24)

γ0 = EF [ψ0(‖E‖Σ)‖E‖Σ]. (25)

Note that the influence function of the regression functional β̂ is bounded in e but

unbounded in x. Hence, contamination in the direction of the response has a bounded
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influence on β̂. The effect becomes zero for far away outliers because the weight function

w1(‖e‖Σ) becomes zero for large values of its argument. On the other hand, contamination

in the predictor space can have an infinitely large effect on the estimator, but only if the

corresponding residual is sufficiently small. This means that the point is a good leverage

point since it does not deviate from the SUR model. Moreover, the influence function of

the scatter functional Σ̂ only depends on e and is bounded. Hence, contamination in the

predictor space does not affect the scatter functional while the effect of contamination in

the response remains bounded.

9.4 Asymptotic Variance

Following Hampel et al. (1986), the asymptotic variance of a functional T is obtained by

ASV(T,H) = EH [IF(z;T,H)IF(z;T,H)⊤].

By using the expressions for the influence functions in Theorem 1 we immediately obtain the

asymptotic variances of the MM-estimators for the SUR model in Theorem 2 below. We use

the notationKm for the commutation matrix of sizem2×m2 such thatKmvec(A) = vec(A)⊤

for any matrix A ∈ R
m×m. Note that vec denotes the vector operator, stacking all columns

of its matrix argument into one vector.

Theorem 2. If Z = (X̃⊤, Y ⊤)⊤ has model distribution Hβ,Σ, then the asymptotic variances

of the MM-estimators for the SUR model are given by

ASV(β̂, Hβ,Σ) =
α1

mη21
EK [X

⊤Σ−1X ]−1, (26)

and

ASV(Σ̂, Hβ,Σ) = σ1(Im2 +Km)(Σ ⊗ Σ) + σ2vec(Σ)vec(Σ)
⊤.

With F := FΣ as before, the constants α1, σ1 and σ2 are equal to

α1 = EF [ψ
2
1(‖E‖Σ)], (27)

σ1 =
m

π2
1(m+ 2)

EF [ψ
2
1(‖E‖Σ)‖E‖2Σ],

σ2 =
4

γ20
EF [(ρ0(‖E‖Σ)− δ0)

2]− 2

m
σ1,

and η1, π1 and γ0 are given by (23), (24) and (25), respectively.
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In case of S-estimators (ρ1 = ρ0), these expressions correspond to the asymptotic vari-

ances of S-estimators in Bilodeau and Duchesne (2000). Moreover, the asymptotic variance

of the scatter Σ̂ coincides with that in Lopuhaä (1989) and Salibian-Barrera et al. (2006).

The asymptotic relative efficiency (ARE) for the regression coefficients β̂, relative to

the MLE β̂MLE, becomes

ARE(β̂, Hβ,Σ) =
ASV(β̂MLE, Hβ,Σ)

ASV(β̂, Hβ,Σ)
=
mη21
α1

.

Note that the ARE does not depend on the number of predictors p in the SUR model nor

on the distribution of X̃ , but only depends on the number of blocks m in the model and

the distribution of the errors. Moreover, it can immediately be seen that the ARE of the

MM-estimator β̂ does not depend on the initial loss function ρ0 for the S-estimator, but

only depends on the loss function ρ1. Hence, the constant c1 in ρ1 can indeed be tuned to

guarantee a desired efficiency at the central model, independently of the breakdown point

which is determined by the constant c0 in ρ0.

10. ASYMPTOTIC RESULTS OF THE PROPOSED TEST

STATISTICS

Furthermore, we present some asymptotic results of the robust test statistics Λ. and LM.

(see Sections 4 and 5 of the manuscript respectively).

10.1 Robust Tests for the Regression Parameters

Under the null hypothesis in (7) the asymptotic distributions of the test statistics ΛS and

ΛMM are proportional to a chi-squared distribution with r degrees of freedom. Denote

ηℓ = EF

[(

1− 1

m

)

wℓ(‖E‖Σ) +
1

m
ψ′

ℓ(‖E‖Σ)
]

,

γℓ = EF [ψℓ(‖E‖Σ)(‖E‖Σ)],

αℓ = EF [ψ
2
ℓ (‖E‖Σ)],

for ℓ = 0, 1 and with F = FΣ. Remark that the constants η1, γ0 and α1 are already defined

in (23), (25) and (27) respectively. Then, we have the following result.
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Theorem 3. Let Z = (X̃⊤, Y ⊤)⊤ have model distribution Hβ,Σ. Under the null hypothesis

H0 : Rβ = q it holds that

ΛS

d−→ α0

η0γ0
χ2
r ,

and

ΛMM

d−→ α1

η1γ1
χ2
r.

These asymptotic null distributions can be used to obtain p-values corresponding to

the test statistics in the finite-sample case. However, this standard approach requires a

sufficiently large sample size and also accurate estimates of the expectations in the propor-

tionality factors to obtain reliable results.

Robustness of these test statistics is investigated through their influence functions. The

(first-order) influence function of these test statistics equals zero. Therefore, we consider

their second-order influence function (Croux et al., 2008), which is defined as

IF2(z;T,H) =
∂2

∂ǫ2
(T (Hǫ,∆z

))
∣

∣

∣

ǫ=0
.

Boundedness of this influence function guarantees stability of the asymptotic level and

power of the asymptotic test in presence of contamination (Heritier and Ronchetti, 1994).

The next theorem yields the second-order influence functions of ΛS and ΛMM at model

distribution Hβ,Σ under the null hypothesis H0.

Theorem 4. If Z = (X̃⊤, Y ⊤)⊤ has model distribution H := Hβ,Σ and if H0 is true, then

the second-order influence functions of ΛS and ΛMM are given by

IF2(z; ΛS, H) = −2mη0
γ0

(R IF(z; β̃, H)− q)⊤
(

REK [X
⊤Σ−1X ]−1R⊤

)−1
(R IF(z; β̃, H)− q),

and

IF2(z; ΛMM, H) =

(

1− γ1
2δ1

)

IF2(z; ΛS, H)−mη1
δ1

(R IF(z; β̂, H)−q)⊤
(

REK [X
⊤Σ−1X ]−1R⊤

)−1
(R IF(z; β̂, H)−q).

The second-order influence functions in Theorem 4 are unbounded in x but bounded

in e. The redescending nature of the functions w0 and w1 guarantees that contamination

in the response does not affect the test statistics when ‖e‖Σ becomes large. Hence, only

good leverage points can have a large effect on the test statistics. Since γj < 2bj and the

constants ηj and γj are always positive, the impact of contamination is larger for ΛMM than

for ΛS. The increased efficiency of MM-estimators thus implies some loss in robustness.
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10.2 Robust Test for Diagonality of the Covariance Matrix

The following theorem shows that under the null hypothesis in (16) the asymptotic dis-

tribution of the robust test statistics LMS and LMMM is proportional to a chi-squared

distribution.

Theorem 5. Let Z = (X̃⊤, Y ⊤)⊤ have model distribution Hβ,Σ. Assume that Σ is a

diagonal matrix. Then, it holds that

LMS

d−→ m

(m+ 2)γ20
EF [ψ

2
0(‖E‖Σ)‖E‖2Σ] χ2

m(m−1)/2,

and

LMMM

d−→ m

(m+ 2)γ21
EF [ψ

2
1(‖E‖Σ)‖E‖2Σ] χ2

m(m−1)/2.

To investigate the robustness of the resulting tests, we again derive the second-order

influence function of the test statistics under the null hypothesis.

Theorem 6. If Z = (X̃⊤, Y ⊤)⊤ has model distribution Hβ,Σ and if Σ is a diagonal matrix,

then the second-order influence function of LMS and LMMM are given by

IF2(z;LMS, H) =
2m2

γ20
w2

0(‖e‖Σ)
∑

j<k

e2je
2
k

σjjσkk
,

and

IF2(z;LMMM, H) =
2m2

γ21
w2

1(‖e‖Σ)
∑

j<k

e2je
2
k

σjjσkk
.

This theorem shows that leverage points do not influence the test statistic and that large

response outliers have zero influence as well. The boundedness of the second-order influ-

ence functions ensures the stability of the asymptotic level and power of these diagonality

tests (Heritier and Ronchetti, 1994).

11. FINITE-SAMPLE PERFORMANCE OF DIAGONALITY

TEST (CONTINUED)

In Section 6 of the manuscript we have investigated the power of the diagonality test for

the situation where Σ is an equicorrelation matrix with correlation τ ranging from 0 to 0.5
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with step length 0.1. While for this setting the deviation from diagonality was present in

all covariance elements, we now consider a situation that is less diverging from diagonality.

In particular, we consider the same simulation setting as in the final paragraph of Section 6

but now set Σ equal to










1 τ 0

τ 1 0

0 0 1











,

where τ takes values from 0 to 0.5 with step length 0.1. For data simulated under this

alternative hypothesis, the resulting power curves are shown in Figure 6. The left plot

Normal errors

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

10% bad leverage points

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

Figure 6: Power curves of the hypothesis test in (16) based on the test statistics LMS

(dashed), LMMM (dotted) and LMMLE (dash-dotted). The solid (red) line represents the

rejection level of 5%.

corresponds to the situation with normal errors without outliers. The right panel shows

the power curves in case 10% contamination is added to the data as in Section 6 of the

manuscript. Compared to the equicorrelation setting considered in the manuscript, all

power curves increase at a slower pace because we are now considering a difficult case

where only one correlation is responsible for the deviation from diagonality. However,

when comparing the classical and robust Breusch-Pagan tests, the same conclusions can be

drawn as in the manuscript. In absence of contamination the test based on MM-estimators

performs almost as well as the classical test. Moreover, in contrast to the classical test its

performance is not much affected in the presence of bad leverage points.

40



12. ROBUST CONFIDENCE INTERVALS

The results in Theorem 2 can be used to construct confidence intervals for the parameters

in the SUR model based on their MM-estimates. For example, a 100(1 − α)% confidence

interval for a regression parameter βkl can be obtained as

[β̂kl − z1−α/2

√

ASV(β̂kl, Ĥn)/n, β̂kl + z1−α/2

√

ASV(β̂kl, Ĥn)/n], (28)

with zα the α quantile of the standard normal distribution and ASV(β̂kl, Ĥn) an estimate

of the asymptotic variance in (26) based on the empirical distribution corresponding to the

data.

Alternatively, regular bootstrap confidence intervals are constructed as follows. Let

(β̂∗

kl)1, . . . , (β̂
∗

kl)N be a set of N parameter estimates based on bootstrap samples. Then a

100(1− α)% percentile confidence interval for βkl is obtained as

[(β̂∗

kl)((N+1)αL), (β̂
∗

kl)((N+1)αR)],

where (β̂∗

kl)(.) denotes the order statistics corresponding to the bootstrap estimates. Ba-

sic percentile (BP) confidence intervals select αL = α/2 and αR = 1 − α/2. To im-

prove the accuracy of the confidence intervals, the bias-corrected and accelerated (BCa)

method (Efron, 1987) can be used to determine the confidence levels αL and αR. See, e.g.,

Davison and Hinkley (1997) for more details on percentile methods.

As explained in Section 3 of the manuscript, confidence intervals based on standard

bootstrap are not attractive because they are not robust. Therefore, we propose to con-

struct bootstrap confidence intervals based on the FRB estimates. For example, a 100(1−
α)% FRB percentile confidence interval for βkl is computed as

[(β̂R∗

kl )((N+1)αL), (β̂
R∗

kl )((N+1)αR)], (29)

where (β̂R∗

kl )1, . . . , (β̂
R∗

kl )N is a set of N FRB bootstrap replicates.
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13. FINITE-SAMPLE PERFORMANCE FOR CONFIDENCE

INTERVALS

The performance of confidence intervals obtained by FRB based on robust S and MM-

estimators for the SUR model is investigated by simulation. We focus on intervals for the

regression coefficients β with 95% confidence level. The performance is measured by their

coverage and their average length.

We consider the same simulation setting as in Section 6 of the manuscript. Robust

S-estimators and MM-estimators are computed with maximal breakdown point of 50%

and the MM-estimator has 90% efficiency. N = 1000 bootstrap samples are generated for

the FRB. Three different confidence intervals are calculated for the slopes in the model:

asymptotic confidence intervals (AS) given by (28), and BP and BCa confidence intervals

according to (29) based on FRB. For each simulation setting the coverage is estimated by

the fraction of the confidence intervals that contains the true value of the parameter. The

reported coverage and average lengths of the confidence intervals are the average results

for all slopes in the model. In Figure 7 the coverage is depicted as a function of sample

size, while the average interval lengths are given in Tables 4 and 5 for data with normal

errors, containing 0% or 10% of contamination, respectively. From Figure 7 we can see

that the coverage for S and MM-estimators is very similar for all settings. These results

clearly show that the FRB confidence intervals reach the nominal 95% coverage level much

sooner (for n ≥ 50 already) then the asymptotic confidence intervals, which for n = 300

still haven’t completely reached the nominal level. Moreover, there is almost no difference

between the two types of FRB percentile confidence intervals. Hence, the more complex

BCa intervals do not seem to offer any gain over the more simple basic percentile intervals

in this case. For the situations with normal and t-distributed errors, the coverage converges

to the nominal level for all three methods. On the other hand, for data contaminated with

10% or 30% bad leverage points in each block, the asymptotic confidence intervals fail to

get close to 95% coverage while the FRB confidence intervals still reach the nominal level

quickly. This clearly shows the robustness of the FRB based confidence intervals.

Using MM-estimators does not yield confidence intervals with better coverage compared
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Figure 7: Coverage results of 95% confidence intervals obtained by the AS (dashed), BP

(dash-dotted) and BCa (dotted) methods. The solid (red) line represents the nominal level

of 95%.

to S-estimators. However, as can be seen from Table 4 and 5, confidence intervals based

on MM-estimators are generally shorter than those based on S-estimators. The increased

efficiency of the MM-estimators thus leads to more informative confidence intervals. These

tables also show that the asymptotic confidence intervals are much shorter than the FRB
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Estimator Type Sample size n

25 50 75 100 150 200 250 300

AS 0.467 0.470 0.406 0.359 0.298 0.260 0.234 0.214

S BP 1.315 0.786 0.538 0.437 0.336 0.283 0.250 0.226

BCa 1.319 0.787 0.539 0.438 0.338 0.284 0.251 0.227

AS 0.533 0.458 0.380 0.331 0.272 0.236 0.212 0.194

MM BP 1.064 0.572 0.431 0.362 0.288 0.245 0.218 0.198

BCa 1.126 0.573 0.433 0.364 0.289 0.246 0.219 0.199

Table 4: Average length of 95% confidence intervals obtained with the AS, BP and BCa

methods for normal errors and without contamination.

Estimator Type Sample size n

25 50 75 100 150 200 250 300

AS 0.387 0.349 0.298 0.261 0.216 0.188 0.169 0.155

S BP 1.506 0.751 0.526 0.430 0.334 0.282 0.250 0.226

BCa 1.543 0.754 0.528 0.432 0.336 0.283 0.251 0.227

AS 0.426 0.340 0.283 0.246 0.202 0.175 0.157 0.144

MM BP 1.084 0.587 0.444 0.374 0.297 0.254 0.226 0.205

BCa 1.108 0.590 0.446 0.376 0.298 0.255 0.227 0.206

Table 5: Average length of 95% confidence intervals obtained with the AS, BP and BCa

methods for normal errors and 10% bad leverage points.

intervals in all cases. However, these intervals are too short, resulting in (severe) under-

coverage as seen in Figure 7. Note that in terms of average length there is again little

difference between the BCa and BP confidence intervals. Finally, by comparing the two

tables it can be seen that 10% of bad leverage points does not affect the average length of
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the FRB confidence intervals much in this setting.

Similarly as for the regression coefficients, confidence intervals for the elements of the

scatter matrix Σ or shape matrix Γ and scale σ can be constructed. For the shape matrix,

the behavior of the confidence intervals is the same as for the regression coefficients. For the

scale and the elements of the scatter matrix the performance is generally worse in presence

of contamination. The reason is that the scale S-estimator is not redescending and thus

contamination has a persistent effect on the scale estimate which also affects the confidence

intervals.

In summary, we can conclude that asymptotic confidence intervals only yield reliable

results for clean data with large sample size while FRB confidence intervals remain reliable

for contaminated data and smaller sample sizes. Moreover, MM-estimators yield more

informative inference than S-estimators.

14. EXAMPLE: GRUNFELD DATA (CONTINUED)

As in Section 7 of the manuscript we use the Grunfeld data and consider a SUR model with

three blocks corresponding to the U.S. corporations General Electric (GE), Westinghouse

(W), and Diamond Match (DM). The SUR model is given in (20). As before, the MM-

estimates are calculated with 50% breakdown point and a normal efficiency of 90%. The

robust coefficient estimates (and their bootstrap standard errors) are presented in Table 1

of the manuscript.

We consider the construction of confidence intervals corresponding to the robust MM-

estimators. Confidence intervals are computed based on asymptotic results and the fast

and robust bootstrap. For the FRB N = 999 bootstrap samples are generated using case

resampling.

We now compare inference results for regression coefficients in the SUR model. As an

example, we first focus on β22, the slope for predictor Capital in the regression equation

for Westinghouse. A histogram of the FRB replications of β̂22 is presented in Figure 8.

The solid (red) vertical line corresponds to the MM-estimate of this coefficient as reported

in Table 1. The dashed (orange) lines represent the asymptotic 95% confidence interval

based on the MM-estimate as given by (28). The dash-dotted (purple) and dotted (blue)
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Figure 8: Histogram of FRB replications of β̂22 in the SUR model for the Grunfeld data.

The solid (red) line corresponds to the MM-estimate β̂22. Three 95% confidence intervals

based on the MM-estimate are shown. The dashed (orange) lines represent the boundaries

of the asymptotic confidence interval. The dash-dotted (purple) and dotted (blue) lines

show the bound of the BP and BCa confidence intervals, respectively.

lines represent the BP and BCa confidence intervals as given by (29), respectively. It can

immediately be seen that the asymptotic confidence interval which relies on the assump-

tion that the distribution of β̂22 is a normal distribution is much narrower than the other

two. However, from the histogram of the FRB replications it is clear that the bootstrap

distribution is skewed, which indicates that the normality assumption is not realistic. The

two bootstrap confidence intervals do not rely on the normality assumption and they can

also better resist the effect of outliers, which makes them more reliable in this case. When

checking significance of this regression coefficient, the bootstrap confidence intervals yield

a different conclusion than the asymptotic confidence interval. Indeed, both bootstrap per-

centile confidence intervals contain zero, implying that the coefficient is non-significant, but
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based on the asymptotic confidence interval the coefficient would be considered significant.

However, as seen in the simulations, the asymptotic confidence interval is most likely too

small, leading to under-coverage and too optimistic conclusions.

The three confidence intervals for each of the regression coefficients are reported in

Table 6. As already seen in the simulations, both percentile confidence intervals are very

Corporation Coefficient AS BP BCa

lower upper lower upper lower upper

GE

β01 -68.941 7.619 -84.541 21.659 -89.872 17.221

β11 0.015 0.051 0.010 0.069 0.012 0.071

β21 0.117 0.187 0.083 0.184 0.096 0.186

W

β02 -19.106 6.465 -25.379 18.015 -34.574 10.736

β12 0.035 0.082 0.017 0.105 0.027 0.121

β22 0.029 0.204 -0.117 0.282 -0.123 0.280

DM

β03 -2.253 0.543 -2.187 0.110 -2.167 0.170

β13 -0.016 0.020 -0.011 0.021 -0.013 0.019

β23 0.554 0.674 0.411 0.773 0.390 0.757

Table 6: Three 95% confidence intervals (AS, BP and BCa) for the regression coefficients

in the SUR model for the Grunfeld data, based on their MM-estimates.

similar, while the asymptotic confidence intervals are generally much shorter. This illus-

trates again that asymptotic confidence intervals may lead to unreliable conclusions.

APPENDIX

Partial derivatives of g. In order to apply the fast and robust bootstrap procedure the

partial derivatives ∇g need to be computed. The Jacobian of g = (g⊤1 , g
⊤

2 , g
⊤

3 , g
⊤

4 )
⊤ given
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in equation (6) has the following form

∇g =



























∂g1

∂β̂

∂g1

∂Γ̂

∂g1

∂Σ̃
0

∂g2

∂β̂

∂g2

∂Γ̂

∂g2

∂Σ̃
0

0 0
∂g3

∂Σ̃

∂g3

∂β̃

0 0
∂g4

∂Σ̃

∂g4

∂β̃



























.

Note that the two upper rows in this gradient correspond to the estimating equations of

the MM-estimator, while the two bottom rows correspond to those of the S-estimator. The

expressions for the S-estimator are omitted because these are similar to the derivatives for

the MM-estimator. Consider the matrices

Ai = bdiag(ai, . . . , ai) i = 1, . . . , n

where the vector ai is repeated m times. The vector ai has length n and is defined as

ai = (0, . . . , 0, 1, 0, . . . , 0)⊤ with the 1 at the ith entry of the vector. Write ỹi = A⊤

i y and

xi = A⊤

i X , that is, ỹi and xi contain the information of the ith observation across all

blocks. Introduce the following notation as well:

U = X⊤(Σ̂−1 ⊗ D)X (p× p)

W = X⊤(Σ̂−1 ⊗ D)y (p× 1)

T = (W ⊗ Ip)
⊤(U−1 ⊗ U−1) (p× p2)

V = (Y − X̃B̂)⊤D(Y − X̃B̂) (m×m)

S = |V |−1/m

(

Im2 − 1

m
vec(V )vec(V −1)⊤

)

(m2 ×m2)
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Straightforward derivations then lead to the following expressions:

∂g1

∂β̂
= T

(

n
∑

i=1

w′

1(di)

diσ̃2
vec(x⊤i Γ̂

−1xi)(x
⊤

i Γ̂
−1ei)

⊤

)

− U−1

(

n
∑

i=1

w′

1(di)

diσ̃2
(x⊤i Γ̂

−1ỹi)(x
⊤

i Γ̂
−1ei)

⊤

)

,

∂g1

∂Γ̂
= T

(

n
∑

i=1

w1(di)(x
⊤

i ⊗ x⊤i )(Γ̂
−1 ⊗ Γ̂−1) +

w′

1(di)

2diσ̃2
vec(x⊤i Γ̂

−1xi)vec(Γ̂
−1eie

⊤

i Γ̂
−1)⊤

)

− U−1

(

n
∑

i=1

w1(di)(ỹ
⊤

i ⊗ x⊤i )(Γ̂
−1 ⊗ Γ̂−1) +

w′

1(di)

2diσ̃2
(x⊤i Γ̂

−1ỹi)vec(Γ̂
−1eie

⊤

i Γ̂
−1)⊤

)

,

∂g1

∂Σ̃
= T

(

n
∑

i=1

w′

1(di)di
2mσ̃2

vec(x⊤i Γ̂
−1xi)vec(Γ̃

−1)⊤

)

− U−1

(

n
∑

i=1

w1(di)di
2mσ̃2

(x⊤i Γ̂
−1ỹi)vec(Γ̃

−1)⊤

)

,

∂g2

∂β̂
= −S

(

n
∑

i=1

w1(di)
(

xi ⊗ ỹi + ỹi ⊗ xi − (xi ⊗ xi)(Ip ⊗ β̂ + β̂ ⊗ Ip)
)

+
w′

1(di)

diσ̃2
vec(eie

⊤

i )(x
⊤

i Γ̂
−1ei)

⊤

)

,

∂g2

∂Γ̂
= −S

(

n
∑

i=1

w′

1(di)

2diσ̃2
vec(eie

⊤

i )vec(Γ̂
−1eie

⊤

i Γ̂
−1)⊤

)

,

∂g2

∂Σ̃
= −S

(

n
∑

i=1

w′

1(di)di
2mσ̃2

vec(eie
⊤

i )vec(Γ̃
−1)⊤

)

.

Consistency condition of ΛS and ΛMM. Consider the h function of ΛS defined through

equations (10) and (11) (a similar derivation holds for ΛMM). In order for the partial

derivatives of h to vanish it is sufficient to show that the partial derivatives of s̃(b, G)

converge to zero for (β̃, Γ̃). Differentiating (32) with respect to b leads to

1

n

n
∑

i=1

ψ0(di(b, G))

s̃2(b, G)

(

∂

∂b

(

√

e⊤i (b)φ(G
−1)ei(b)

)

s̃(b, G)− di
∂s̃(b, G)

∂b

)

= 0.

Rearranging terms and evaluating the inner derivative we obtain

∂s̃(b, G)

∂b
= −

(

n
∑

i=1

w0(di(b, G))

s̃2(b, G)
X⊤

i φ(G
−1)ei(b)

)(

n
∑

i=1

ψ0(di(b, G))di(b, G)

s̃(b, G)

)−1

,

which is exactly zero for (b, G) = (β̃, Γ̃) due to the estimating equations of β̃.

Differentiating (32) with respect to G leads to

1

n

n
∑

i=1

ψ0(di(b, G))di(b, G)

s̃(b, G)

∂s̃(b, G)

∂G
=

1

n

n
∑

i=1

ψ0(di(b, G))

2s̃2(b, G)di(b, G)

∂

∂G

(

√

e⊤i (b)φ(G
−1)ei(b)

)

.

The right hand-side of this equality can be simplified to

−|G−1|−1/mG−1

(

n
∑

i=1

ψ0(di(b, G))

2s̃2(b, G)di(b, G)
ei(b)e

⊤

i (b)

)

G−1+
1

m
|G−1|−1/mG−1

n
∑

i=1

ψ0(di(b, G))di(b, G)

2
.
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By evaluating the previous line at (b, G) = (β̃, Γ̃) and using the estimating equations for

Σ̃, it can be shown that the right hand-side reduces to zero.

Proof of Theorem 1. Let Z = (X̃⊤, Y ⊤)⊤ have model distribution H = (K,F ) with

K the distribution of X̃ and F := FΣ the elliptically symmetric distribution of Y . Let us

denote Hǫ = Hǫ,∆z
to simplify the notation. The influence function of β̂(H) is obtained

by differentiating the estimating equations for β̂(Hǫ) w.r.t. ǫ and evaluating the result at

ǫ = 0. The derivation of these equations is similar as in the finite-sample case. For a general

distribution function H of Z = (X̃⊤, Y ⊤)⊤, the estimating equations of the MM-functionals

β̂(H) and Σ̂(H) are given by

∫

w1(d(H))x⊤Σ̂−1(H)e(H)dH(z) = 0

Σ̂(H)

∫

ψ1(d(H))d(H)dH(z) = m

∫

w1(d(H))e(H)e(H)⊤dH(z)

where d2(H) = e(H)⊤Σ̂−1(H)e(H) and e(H) = y − xβ̂(H). We thus have

∂

∂ǫ

[
∫

w1(d(Hǫ))x
⊤Σ̂−1(Hǫ)e(Hǫ)dHǫ(z)

]

∣

∣

∣

∣

∣

ǫ=0

= 0,

which can be rewritten as

∂

∂ǫ

[

(1−ǫ)
∫

w1(d(Hǫ))x
⊤Σ̂−1(Hǫ)e(Hǫ)dH(z)+ǫ

∫

w1(d(Hǫ))x
⊤Σ̂−1(Hǫ)e(Hǫ)d∆z(z)

]

∣

∣

∣

∣

∣

ǫ=0

= 0.

Applying the chain rule and using the estimating equation at H yields

∂

∂ǫ

[
∫

w1(d(Hǫ))x
⊤Σ̂−1(Hǫ)e(Hǫ)dH(z)

]

∣

∣

∣

∣

∣

ǫ=0

+

∫

w1(d(H))x⊤Σ̂−1(H)e(H)d∆z(z) = 0.

The second term simplifies to w1(‖y‖Σ)x⊤Σ−1y. Differentiation of the first term and sym-

metry of F yields

∫

∂

∂ǫ
(w1(d(Hǫ)))

∣

∣

∣

ǫ=0
x⊤Σ−1y dH(z) +

∫

w1(‖y‖Σ)x⊤Σ−1 ∂

∂ǫ
(e(Hǫ))

∣

∣

∣

ǫ=0
dH(z).

Computing the inner derivatives and simplifying the result leads to

−
∫

w′

1(‖y‖Σ)
‖y‖Σ

y⊤Σ−1xIF(z; β̂, H)x⊤Σ−1y dH(z)−
∫

w1(‖y‖Σ)x⊤Σ−1xdH(z) IF(z; β̂, H).

(30)
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Splitting the first integral into a x̃ and a y component yields

∫

x⊤Σ−1/2

(
∫

w′

1(‖y‖Σ)
‖y‖Σ

Σ−1/2yy⊤Σ−1/2 dF (y)

)

Σ−1/2xdK(x̃) IF(z; β̂, H).

Using symmetry and results in (Lopuhaä, 1999) this can be rewritten as

∫

x⊤Σ−1/2

(

1

m

∫

w′

1(‖y‖Σ)‖y‖ΣdF (y)Im
)

Σ−1/2xdK(x̃) IF(z; β̂, H).

Combining both integrals in (30) now yields

−EF

[

1

m
w′

1(‖Y ‖Σ)‖Y ‖Σ + w1(‖Y ‖Σ)
]

EK [X
⊤Σ−1X ] IF(z; β̂, H) + w1(‖y‖Σ)x⊤Σ−1y = 0.

Rearranging terms leads to the result in (22).

Proof of Theorem 2. Consider Z = (X̃⊤, Y ⊤)⊤ with model distribution H := H0,Σ. The

asymptotic variance of β̂ is given by

ASV(β̂, H) =

∫

IF(z; β̂, H)IF⊤(z; β̂, H)dH(z).

Using the expression for the influence function in (22), we obtain

∫

1

η21
w2

1(‖y‖Σ)EK [X
⊤Σ−1X ]−1x⊤Σ−1yy⊤Σ−1xEK [X

⊤Σ−1X ]−1 dH(z).

Splitting the remaining integral yields

∫

x⊤Σ−1/2

(
∫

w2
1(‖y‖Σ)Σ−1/2yy⊤Σ−1/2 dF (y)

)

Σ−1/2xdK(x̃),

which by symmetry can be rewritten as

α1

m
EK [X

⊤Σ−1X ].

Combining the results yields (26). For a general distribution Hβ,Σ this result is obtained

by using the affine equivariance property.

To proof Theorem 3, we need the following lemma.

Lemma 1. Under H0 : Rβ = q and the conditions of Theorem 3, it holds that

√
n(β̃ − β̃r) =

√
nEK [X

⊤Σ−1X ]−1R⊤
(

REK [X
⊤Σ−1X ]−1R⊤

)−1
(Rβ̃ − q) + op(1). (31)
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Proof of Lemma 1. We prove the lemma for the simple case H0 : βpmm = 0, that is,

R = (0, . . . , 0, 1) and q = 0. First, application of the delta method yields the following

first-order approximation

√
n(β̃ − β) =

1√
nη0

n
∑

i=1

w(di(β, Σ̃))Ω
−1x⊤i Σ̃

−1ei(β) + op(1),

where d2i (β,Σ) = e⊤i (β)Σ
−1e⊤i (β), e

⊤

i (β) = ỹi−xiβ and Ω = EK [X
⊤Σ−1X ]. If we replace Σ̃

with its true value Σ, we obtain an asymptotic equivalent expression. A similar expression

is true for β̃r. Decompose β = (β(1)t , β(2))⊤ with β(2) = βpmm and similarly for xi and other

variables. Then a first-order approximation for β̃
(1)
r is given by

√
n(β̃(1)

r − β(1)) =
1√
nη0

n
∑

i=1

w(di(β, Σ̃r))(Ω
(1))−1x

(1)t

i Σ̃−1
r ei(β) + op(1),

with Ω(1) = EK [X
(1)tΣ−1X(1)], since under H0 it holds that ei(β) = ỹi − x

(1)
i β(1).

In this simple case it is easy to show that the pth component of the right hand-side of

equation (31) is equal to β̃(2). Therefore, we only need to prove the lemma for the remaining

components. Denote P as the (p − 1) × p elimination matrix, i.e., P = (Ip−1, (0, . . . , 0)).

Then, using the first-order approximations we obtain

√
n(β̃(1) − β̃(1)

r ) =
1√
nη0

n
∑

i=1

w(di(β,Σ))
[

PΩ−1x⊤i − (Ω(1))−1x
(1)t

i

]

Σ−1ei(β) + op(1).

Considering the general expression for the inverse of a block matrix, the terms between

brackets reduce to

PΩ−1R⊤(RΩ−1R⊤)−1RΩ−1x⊤i .

Consequently, we have that

√
n(β̃(1) − β̃(1)

r ) = PΩ−1R⊤(RΩ−1R⊤)−1R
1√
nη0

n
∑

i=1

w(di(β,Σ))Ω
−1x⊤i Σ

−1ei(β) + op(1).

In the last line we recognize the first-order approximation of β̃. Hence,

√
n(β̃(1) − β̃(1)

r ) =
√
nPΩ−1R⊤(RΩ−1R⊤)−1β̃(2) + op(1).

By combining these results the lemma is proven for the case H0 : βpmm = 0. To obtain

the general result, we need to obtain a first-order approximation for β̃r starting from its
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(general) estimating equation and continue as above, but this derivation is quite lengthy

and therefore is omitted.

Proof of Theorem 3. Consider ΛS first. Expectations in the proof are with respect to

K. Write ỹi = A⊤

i y and xi = A⊤

i X as above. Application of the delta method permits us

to rewrite the test statistic as

ΛS = −n ln
(

|Σ̃|
|Σ̃r|

)

= −nm ln

(

σ̃2

σ̃2
r

)

= nm
σ̃2
r − σ̃2

σ̃2
r

+ op(1).

An alternative to (11) is to define s̃(b, G) as the solution of

1

n

n
∑

i=1

ρ0

(

√

ei(b)⊤φ(G−1)ei(b)

s̃(b, G)

)

= δ0, (32)

with φ(A) = |A|−1/mA for a m × m matrix A and where ei(b) = A⊤

i (y − Xb) = ỹi − xib.

Now, G can be any positive definite matrix of size m×m (without imposing the restriction

that |G| = 1). Moreover, it holds that s̃(β̃, Γ̃) = σ̃ and s̃(β̃r, Γ̃r) = σ̃r. Hence,

ΛS = nm
s̃2(β̃r, Γ̃r)− s̃2(β̃, Γ̃)

s̃2(β̃r, Γ̃r)
+ op(1).

A Taylor expansion of s̃2(β̃r, Γ̃r) around (β̃, Γ̃) yields

s̃2(β̃r, Γ̃r)− s̃2(β̃, Γ̃) =
1

2
(β̃r − β̃)⊤

(

∂2s̃2(b, G)

∂b⊤∂b

)

∣

∣

∣

(β̃∗,Γ̃∗)
(β̃r − β̃) + op(1/n), (33)

where β̃∗ is an intermediate point between β̃r and β̃ and Γ̃∗ is an intermediate point between

Γ̃r and Γ̃. Due to the definition of the S-estimator, the first-order derivatives vanish (see also

the consistency condition of ΛS). The second-order derivative of G and the mixed derivative

can be shown to be of order op(1/n). Then we simplify the second-order derivative w.r.t.

b. It can be shown that
(

n
∑

i=1

ψ0(di(b, G))di(b, G)

s̃(b, G)

)

∂s̃(b, G)

∂b
= −

(

n
∑

i=1

w0(di(b, G))

s̃2(b, G)
x⊤i φ(G

−1)ei(b)

)

,

with d2i (b, G) = e⊤i (b)φ(G
−1)ei(b)/s̃

2(b, G). Taking derivatives w.r.t. b, we obtain

(

∂2s̃(b, G)

∂b⊤∂b

)

(

n
∑

i=1

ψ0(di(b, G))di(b, G)

s̃(b, G)

)

+

(

∂s̃(b, G)

∂b

)

(

∂

∂b

n
∑

i=1

ψ0(di(b, G))di(b, G)

s̃(b, G)

)⊤

,
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for the left hand side and

n
∑

i=1

w0(di(b, G))

s̃2(b, G)
x⊤i φ(G

−1)xi +

n
∑

i=1

w′

0(di(b, G))

di(b, G)s̃4(b, G)
x⊤i φ(G

−1)ei(b)e
⊤

i (b)φ(G
−1)xi

+

n
∑

i=1

w0(di(b, G)) + w′

0(di(b, G))di(b, G)/2

s̃4(b, G)
x⊤i φ(G

−1)ei(b)

(

∂s̃2(b, G)

∂b

)⊤

,

for the right hand side. Since β̃ and β̃r are consistent estimators (under H0), also β̃
∗ is

consistent. Similarly for Γ. Therefore, since it is true that

∂s̃(b, G)

∂b

∣

∣

∣

(β̃∗,Γ̃∗)

a.s.−→ 0,

we have
(

∂2s̃(b, G)

∂b⊤∂b

)

∣

∣

∣

(β̃∗,Γ̃∗)

a.s.−→ ση0
γ0

EK [X
⊤Σ−1X ].

Then (33) reduces to

s̃2(β̃r, Γ̃r)− s̃2(β̃, Γ̃) =
σ2η0
γ0

(β̃r − β̃)⊤EK [X
⊤Σ−1X ](β̃r − β̃) + op(1/n), (34)

and the test-statistic can be rewritten as

ΛS =
nmη0
γ0

(β̃r − β̃)⊤EK [X
⊤Σ−1X ](β̃r − β̃) + op(1).

Using the result of lemma 1 this expression for ΛS becomes

ΛS =
nmη0
γ0

(Rβ̃ − q)⊤
(

REK [X
⊤Σ−1X ]−1R⊤

)−1
(Rβ̃ − q) + op(1).

Using the results from Theorem 2, we can rewrite this as

ΛS =
nα0

η0γ0
(Rβ̃ − q)⊤

(

RASV(β̃, Hβ,Σ)R
⊤

)−1

(Rβ̃ − q) + op(1).

Finally, the result follows by applying Slutzky’s theorem.

Now, consider ΛMM. The proof is similar as above, therefore, we only give a sketch of

the proof. Write ΛMM as the difference of σ̂2
r and σ̂

2. Consider these estimates as a function

of β̂, Γ̂ and σ̃2 (and their restricted versions respectively). Then a Taylor expansion leads

to similar expressions as in (33) and (34). Since the result of Lemma 1 can be generalized

to MM-estimators, a similar derivation as above ends the proof.
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Proof of Theorem 4. Let Z = (X̃⊤, Y ⊤)⊤ have model distribution H = (K,FΣ) with K

the distribution of X̃ and FΣ the elliptically symmetric distribution of the error terms. Let

us denote Hǫ = Hǫ,∆z
to simplify the notation. We only derive the second-order influence

function of ΛS and ΛMM (see (8) and (9)) under H0 : βpmm = 0.

First, consider ΛS. We introduce its functional version as

ΛS(H) = −2m ln

(

σ̃(H)

σ̃r(H)

)

,

with σ̃(H) the population version of σ̃. Under the null hypothesis we obtain

IF2(z; ΛS, H) =
2m

σ
(IF2(z; σ̃r, H)− IF2(z; σ̃, H)) ,

by taking the second-order derivative with respect to ǫ. Hence, the proof requires the

second-order influence function of σ̃. For the scale functional, the following equation holds:

∫

ρ0





√

e(H)⊤Γ̂−1(H)e(H)

σ̃(H)



 dH(z) = δ0,

with e(H) = y − xβ̂(H). To find IF2(z; σ̃, H), we consider this equation for H = Hǫ and

differentiate it twice. Since we need the difference of IF2(z; σ̃, H) and IF2(z; σ̃r, H), we

only mind about the terms that are different, i.e., only the terms involving β since these

are different. Performing similar steps as in the proof of Theorem 1 we obtain

IF2(z; σ̃, H) =
η0σ

γ0
IF(z; β̃, H)⊤ΩIF(z; β̃, H) +R(Σ̃),

with Ω = EK [X
⊤Σ−1X ] and where R(Σ̃) contains the remaining terms not involving β.

Remark that R(Σ̃) has an explicit expression, but to save space we do not show it. Likewise,

such an expression can be obtained for σ̃r. Consequently, we have

IF2(z; ΛS, H) = −2mη0
γ0

IF(z; β̃, H)⊤ΩIF(z; β̃, H) +
2mη0
γ0

IF(z; β̃(1)
r , H)⊤Ω(1) IF(z; β̃(1)

r , H),

with Ω(1) = EK [X
(1)tΣ−1X(1)], where X(1) is defined as in Lemma 1. Plugging in the results

of Theorem 1 we get

IF2(z; ΛS, H) = − 2m

η0γ0
w2

0(‖e(H)‖Σ)e(H)⊤Σ−1
[

xΩ−1x⊤ − x(1)(Ω1)−1x(1)
t
]

Σ−1e(H),
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where x(1) is defined similarly as X(1). A comparable reasoning as in Lemma 1 shows that

the previous line reduces to

− 2m

η0γ0
w2

0(‖e(H)‖Σ)e(H)⊤Σ−1xΩ−1R⊤
(

RΩ−1R⊤
)−1

RΩ−1x⊤Σ−1e(H).

Now we recognize the influence function of β̃ and find

IF2(z; ΛS, H) = −2mη0
γ0

IF(z; β̃, H)⊤R⊤
(

RΩ−1R⊤
)−1

R IF(z; β̃, H),

as was to be proven.

Then, consider ΛMM with functional version

ΛMM(H) = −2m ln

(

σ̂(H)

σ̂r(H)

)

,

with σ̂(H) the population version of σ̂. Under the null hypothesis the second-order influence

function of ΛMM is again the difference of the second-order influence functions of σ̂. An

identical derivation verifies the result.

Proof of Theorem 5. We proof the result for LMMM. Consider a SUR model with two

blocks (m = 2) for ease of notation. The results can be generalized to m > 2.

Since the estimating equations of Σ̂r are the diagonal parts of equations (5), LMMM can

be rewritten as

LMMM =
nm2 (

∑n
i=1w1(di)ei1ei2)

2

σ̂r,11σ̂r,22 (
∑n

i=1 ψ1(di)di)
2 ,

with σ̂r,jj the jth diagonal element of Σ̂r. According to the null hypothesis we have

EF [w1(d)e1e2] = 0,

with d2 = e⊤Σ−1e and e = (e1, e2)
⊤ ∼ F = FΣ. Moreover, due to a result of Lopuhaä

(1999), for the variance we obtain

VarF [w1(d)e1e2] =
σ11σ22

m(m+ 2)
EF [ψ

2
1(‖e‖Σ)‖e‖2Σ].

Since w1(di)ei1ei2, i = 1, . . . , n are independent identically distributed random variables,

the central limit theorem gives

√
n

(

1

n

n
∑

i=1

w1(di)ei1ei2

)

d−→ N(0,VarF [w1(d)e1e2]),
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or equivalently

nm(m+ 2)

σ11σ22EF [ψ2
1(‖e‖Σ)‖e‖2Σ]

(

1

n

n
∑

i=1

w1(di)ei1ei2

)2

d−→ χ2
1.

Since for j = 1, 2, σ̂r,jj is a consistent estimator under H0 and

1

n

n
∑

i=1

ψ1(di)di
a.s.−→ γ1,

the result now follows.

Proof of Theorem 6. Let Z = (X̃⊤, Y ⊤)⊤ have model distribution H = (K,FΣ) with K

the distribution of X̃ and FΣ the elliptically symmetric distribution of Y . Let us denote

Hǫ = Hǫ,∆z
to simplify the notation. We derive the second-order influence function of

LMMM. Again we assume m = 2 for simplicity.

We introduce the functional version as

LMMM(H) =

(∫

w1(d(H))e1(H)e2(H)dH(z)
)2

(∫

w1(d(H))e21(H)dH(z)
) (∫

w1(d(H))e22(H)dH(z)
) ,

with d2(H) = e⊤(H)Σ̂−1(H)e(H) and e = (e1, e2)
⊤. Since the first-order influence function

is exactly zero and
∫

w1(d(H))y1y2 dH(z) = 0,

under the null hypothesis, we obtain

IF2(z; LMMM, H) =
2m2

γ21σ11σ22

(

∂

∂ǫ

(
∫

w1(d(Hǫ))e1(Hǫ)e2(Hǫ)dHǫ(z)

)

∣

∣

∣

∣

∣

ǫ=0

)2

.

Following the same steps as in the proof of Theorem 1 the above derivative becomes

∫

w′

1(‖y‖Σ)
2‖y‖Σ

(−2yΣ−1xIF(z; β̂, H)+y⊤IF(z; Σ̂−1, H)y)y1y2 dH(z)−
∫

w1(d(H))y1y2 dH(z)+w1(‖y‖Σ)y1y2.

Due to symmetry and under H0 the integrals vanish. Combining the results, proves the

theorem.
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