
ar
X

iv
:1

81
1.

05
73

6v
1 

 [
m

at
h.

A
C

] 
 1

4 
N

ov
 2

01
8

Standard Bases over Euclidean Domains

Christian Eder∗, Gerhard Pfister†, and Adrian Popescu‡

TU Kaiserslautern

Department of Mathematics

D-67663 Kaiserslautern

November 15, 2018

Abstract

In this paper we state and explain techniques useful for the compu-
tation of strong Gröbner and standard bases over Euclidean domains:
First we investigate several strategies for creating the pair set using an
idea by Lichtblau. Then we explain methods for avoiding coefficient
growth using syzygies. We give an in-depth discussion on normal form
computation resp. a generalized reduction process with many opti-
mizations to further avoid large coefficients. These are combined with
methods to reach GCD-polynomials at an earlier stage of the computa-
tion. Based on various examples we show that our new implementation
in the computer algebra system Singular is, in general, more efficient
than other known implementations.

Keywords— Gröbner bases, Standard Bases, Euclidean Domains, Al-
gorithms

1 Introduction

In 1964 Hironaka already investigated computational approaches towards
singularities and introduced the notion of standard bases for local monomial
orders,1 see, for example, [14, 15, 12]. In [3, 6], Buchberger initiated, in
1965, the theory of Gröbner bases for global monomial orders by which many
fundamental problems in mathematics, science and engineering can be solved
algorithmically. Specifically, he introduced some key structural theory, and
based on this theory, proposed the first algorithm for computing Gröbner
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1See Definition 1.

1

http://arxiv.org/abs/1811.05736v1


bases. Buchberger’s algorithm introduced the concept of critical pairs and
repeatedly carries out a certain polynomial operation (called reduction).

Many of those reductions would be determined as “useless” (i.e. no
contribution to the output of the algorithm), but only a posteriori, that is,
after an (often expensive) reduction process. Thus intensive research was
carried out, starting with Buchberger, to avoid the useless reductions via a
priori criteria, see, for example, [4, 5, 11].

Once the underlying structure is no longer a field, one needs the notion
of strong Gröbner bases resp. strong standard bases. Influential work was
done by [16], introducing the first generalization of Buchberger’s algorithm
over Euclidean domains computing strong Gröbner bases. Since then only
a few optimizations has been introduced, see, for example, [21, 17, 9].

In this paper we introduce several new optimizations to the computa-
tion of strong standard bases over Euclidean domains. In Section 2 we give
the basic notation and introduce the idea of a reduction step, generalized
from the field case. We state Buchberger’s algorithm over Euclidean do-
mains for global and also for local monomial orders. Section 3 discusses
different variants of how to handle S-polynomials and GCD-polynomials,
especially generalized variants of Buchberger’s product and chain criterion.
Over Euclidean domains like the integers, coefficient swell and the missing
normalization of the lead coefficient play an important role when it comes to
practical and efficient computation. Modular computation are not possible
in general, but we give a new attempt for keeping coefficients small in Sec-
tion 4. In Section 5 we finally give an in-depth discussion on the normal form
computation which provides various attempts like lead term reductions and
lead coefficient reductions. This, again, helps to keep coefficients small and
minimizes the number of polynomials in a basis which have the same lead-
ing monomial by applying efficient gcd computation. We have done a new
implementation of Buchberger’s algorithm in the computer algebra system
Singular. In Section 6 we compare our implementation with Macaulay2

and Magma, exploring the impact of the above ideas with some interesting
results.

2 Basic notations

Let R be a Euclidean domain without zero divisors.2 A polynomial in
n variables x1, . . . , xn over R is a finite R-linear combination of terms
av1,...,vn

∏n
i=1 x

vi
i , f =

∑

v avx
v ..=

∑finite
v∈Nn av1,...,vn

∏n
i=1 x

vi
i , such that v ∈ Nn

and av ∈ R. The polynomial ring P ..= R[x] ..= R[x1, . . . , xn] in n variables
over R is the set of all polynomials over R together with the usual addition
and multiplication. For f =

∑

v avx
v 6= 0 ∈ P we define the degree of f by

deg(f) := max {v1 + · · · + vn | av 6= 0}. For f = 0 we set deg(f) := −1.

2The reader can feel fre to think of R = Z.
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Let (f1, . . . , fm) ∈ P be a finite sequence of polynomials. We define a
module homomorphism π : Pm → P by ei 7→ fi for all 1 ≤ i ≤ m. We use
the shorthand notation α ..= π(α) ∈ P for α ∈ Pm. An element α ∈ Pm

with α = 0 is called a syzygy. The module of all syzygies (of 〈f1, . . . , fm〉)
is denoted syz (〈f1, . . . , fm〉).

In the following we discuss computation with respect to different mono-
mial orders:

Definition 1. Let < denote a monomial order on P.
1. < is called global if xα ≥ 1 for all α ∈ Nn.
2. < is called local if xα ≤ 1 for all α ∈ Nn.
3. Moreover, we call < mixed if there exist α, β ∈ Nn such that xα ≤ 1 ≤

xβ.

Given such a monomial order < we can highlight the maximal terms of
elements in P w.r.t. <: For f ∈ P \ {0}, lt (f) is the lead term, lm (f) the
lead monomial, and lc (f) the lead coefficient of f . For any set F ⊂ P we
define the lead ideal L(F ) = 〈lt (f) | f ∈ F 〉; for an ideal I ⊂ P, L(I) is
defined as the ideal of lead terms of all elements of I. Moreover, we define
the ecart of f by ecart (f) := deg(f)− deg (lm (f)).

Working over a field there are many equivalent definitions of how to
obtain a canonical or normal form when reducing a given polynomial by
a Gröbner basis G. Working over more general rings these definitions are
no longer equivalent and over Euclidean domains, like the integers, this,
in particular, results in the term of strongness we give a meaning in the
following:

Assuming that our coefficient ring R is an Euclidean domain we can
define a total order ≺ using the Euclidean norm | · | of its elements: Let
a1, a2 ∈ R, then a1 ≺ a2 if |a1| < |a2|. For example, for the integers we can
use the absolute value and break ties via sign:

0 ≺ −1 ≺ 1 ≺ −2 ≺ 2 ≺ −3 ≺ 3 ≺ . . .

The reduction process of two polynomials f and g in P depends now on
the uniqueness of the minimal remainder in the division algorithm in R:

Definition 2. Let f, g ∈ P and let G = {g1, . . . , gr} ⊂ P be a finite set of
polynomials.

1. We say that g top-reduces f if lm (g) | lm (f) and if there exist a, b ∈ R
such that lc (f) = a lc (g) + b such that a 6= 0, which coincides with
b ≺ lc (f). The top-reduction of f by g is then given by

f − a
lm (f)

lm (g)
g.

So a top-reduction takes place if the reduced polynomial will have either
a smaller lead mononmial or a smaller lead coefficient.
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2. Relaxing the reduction of the lead term to any term of f , we say that
g reduces f . In general, we speak of the reduction of a polynomial f
w.r.t. a finite set F ⊂ P. Let

3. We say that f has a weak standard representation w.r.t. G if f =
∑r

i=1 higi for some hi ∈ P such that lm (f) = lm (hjgj) for some
j ∈ {1, . . . , r}.

4. We say that f has a strong standard representation w.r.t. G if f =
∑r

i=1 higi for some hi ∈ P such that lm (f) = lm (hjgj) for some
j ∈ {1, . . . , r} and lm (f) > lm (hkgk) for all k 6= j.

This kind of reduction is equivalent to CP3 from [16] and generalizes
Buchberger’s attempt from [5].

The result of such a reduction might not be unique. This uniqueness is
exactly the property standard bases give us. Before defining standard bases,
let us give a short note on the naming convention in this paper:

Convention 3. Note that the term Gröbner basis was introduced by Buch-
berger in 1965 for bases w.r.t. a global monomial order ([3, 6]). Indepen-
dently, Hironaka ([14, 15]), and, again independetly, Grauert ([12]), de-
veloped an analgous concept, called standard basis, for multivariate power
series, i.e. for polynomial rings equipped with a local monomial order. For
this paper we decided to use the notion standard basis since it is nowadays
the more general one.

Definition 4. A finite set G ⊂ P is called a standard basis for an ideal I
w.r.t. a monomial order < if G ⊂ I and L(G) = L(I). Furthermore, G is
called a strong standard basis if for any f ∈ I\{0} there exists a g ∈ G such
that lt (g) | lt (f).

Remark 5. Note that G being a strong standard basis is equivalent to all
elements g ∈ G having a strong standard representation w.r.t. G. See, for
example, Theorem 1 in [17] for a proof.

Clearly, assuming the field case, any standard basis is a strong standard
basis. But in our setting with R being an Euclidean ring one has to check
the coefficients, too, as explained in Definition 2.

Example 6. Let R = Z and I = 〈x〉 ∈ R[x]. Clearly, G := {2x, 3x} is a
standard basis for I: L(I) = 〈x〉 and x = 3x − 2x ∈ L(G). But G is not a
strong standard basis for I since 2x ∤ x and 3x ∤ x.

In order to compute strong standard bases we need to consider two
different types of special polynomials:

Definition 7. Let f, g ∈ P. We assume w.l.o.g. that lc (f) ≺ lc (g). Let
t = lcm (lm (f) , lm (g)), tf = t

lm(f) , and.tg = t
lm(g) .

4



1. Let a = lcm (lc (f) , lc (g)), af = a
lc(g) , and ag = a

lc(f) . The S-polyno-
mial of f and g is denoted

spoly (f, g) = af tff − agtgg.

2. Let b = gcd (lc (f) , lc (g)) . Choose bf , bg ∈ R such that b = bf lc (f) +
bglc (g).

3 The GCD-polynomial of f and g is denoted

gpoly (f, g) = bf tff + bgtgg.

Remark 8.

1. In the field case we do not need to consider GCD-polynomials at all
since we can always normalize the polynomials, i.e. ensure that lc (f) =
1.

2. Note that gpoly (f, g) is not uniquely defined: Working over R = Z we
know that we can write 〈lc (f) , lc (g)〉 as a principal ideal, say 〈c〉 =
〈lc (f) , lc (g)〉 for some c ∈ R. Then there exist cf 6= c′f , cg 6= c′g ∈ R
such that

cf lc (f) + cglc (g) = c = c′f lc (f) + c′glc (g) .

Depending on the implementation of the gcd algorithm one specific
choice is made for each GCD-polynomial.

From Example 6 it is clear that the usual Buchberger algorithm as in
the field case will not compute a strong standard basis as we would only
consider spoly (2x, 3x) = 3 · 2x − 2 · 3x = 0. Luckily, we can fix this via
taking care of the corresponding GCD-polynomial:

gpoly (2x, 3x) = (−1) · 2x− (−1) · 3x = x.

It follows that given an ideal I ⊂ P a strong standard basis for I can now be
computed using Buchberger’s algorithm taking care not only of S-polyno-
mials but also of GCD-polynomials. We refer, for example, to [17] for more
details.

In Algorithm 3 we give pseudo code for a generic Buchberger algorithm
over the integers. Here, no criterion for detecting useless elements is applied.
This is the topic of the next section. But what is necessary to discuss be-
forehand is how to get strong standard representations of elements handled
by Algorithm 3. This is the concept of a normal form:

Definition 9. Let < be a monomial order on P. Let G denote the set of all
finite subsets G ⊂ P. We call the map

NF : P × G −→ P

(f,G) 7−→ NF (f,G) ,

3Since R = Z is an Euclidean ring the extended gcd always exists.
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a weak normal form w.r.t. < if for all f ∈ P and all G ∈ G the following
hold:

1. NF (0, G) = 0.
2. If NF (f,G) 6= 0 then lt (NF (f,G)) /∈ L(G).
3. If f 6= 0 then there exists a unit u ∈ P such that either uf = NF (f,G)

or r = uf − NF (f,G) has a strong standard representation w.r.t. G.
A weak normal form NF is called a normal form if we can always choose
u = 1.

Next we give algorithms that compute normal forms. For their correct-
ness we refer to Section 1.6 in [13]. Algorithm 1 presents a normal form
algorithm for computation w.r.t. a global monomial order <:

Algorithm 1 Normal form w.r.t. a global monomial order < (NF)

Input: Polynomial f ∈ P, finite subset G ⊂ P
Output: NF of f w.r.t. G and <
1: h← f
2: while (h 6= 0 and Gh := {g ∈ G | g top-reduces h} 6= ∅) do
3: Choose g ∈ Gh.
4: h← Top-reduction of h by g (see Definition 2)
5: end while

6: return h

Note that Algorithm 1 may enter an infinite while loop if applied to
local monomial orders. Let us illustrate this behaviour with the “standard”
example.

Example 10. Let P = K[x] where K is a field. We equip P with a local
monomial order <, i.e. x < 1. We set G = {g} where g = x − x2 and we
want to compute NF (f,G) where f = x. Using Algorithm 1 we start setting
h := f and find that g top-reduces h:

h := x−
(

x− x2
)

= x2.

Now we can again top-reduce h via subtracting xg:

h := x2 − x
(

x− x2
)

= x3.

This process does not stop, but constructs a power series equation: x −
(
∑∞

i=0 x
i
) (

x− x2
)

= 0. Since x < 1 we know that
∑∞

i=0 x
i = 1

1−x
. We see

that Algorithm 1 computes correctly since (1 − x)x = x− x2, still, it is not
able to find the finite expression of the power series.

In [18] Mora gave the first attempt to achieve a terminating normal form
algorithm also for local monomial orders:

6



Algorithm 2 Mora’s normal form algorithm w.r.t. a local monomial order
< (NF)

Input: Polynomial f ∈ P, finite subset G ⊂ P
Output: NF of f w.r.t. G and <
1: h← f
2: T ← G
3: while (h 6= 0 and Th := {g ∈ G | g top-reduces h} 6= ∅) do
4: Choose g ∈ Th with ecart (g) minimal.
5: if (ecart (g) > ecart (h)) then
6: T ← T ∪ {h}
7: end if

8: h← Top-reduction of h by g (see Definition 2)
9: end while

10: return h

Example 11. Let P = Z[x, y]. A strong standard basis for the ideal I =
〈

6 + y + x2, 4 + x
〉

⊂ P w.r.t. negative degree reverse lexicographical order
< is given by

G =
{

2− x+ y + x2, x− 2y − x2 − xy − x3
}

.

Since 4 + x ∈ I we assume that NF (4 + x,G) = 0. In Table 1 we state
Mora’s normal form computation with notation as in Algorithm 2, i.e. if
we have a choice for the reducer, we take the one of minimal possible ecart.
We start with h = 4 + x and Th = G.

h g h added to Th?

4 + x 2− x+ y + x2 X

3x− 2y − 2x2 4 + x -

−x− 2y − 3x2 x− 2y − x2 − xy − x3 X

−4y − 4x2 − xy − x3 4 + x -

−4x2 − x3 4 + x -

0 - -

Table 1: Local normal form computation due to Mora

Note the importance of 4+x being added to Th. Without 4+x as reducer
the reduction process would not terminate.

Remark 12. Sometimes it can be more efficient to not only add the current
status of h to Th as a new reducer, but also to generate GCD-polynomials
with h. Doing so, several lead coefficient reductions may be done in one
step. See Section 5 for more details.
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Now we are ready to state Buchberger’s algorithm. For the theoretical
background of the algorithm (Buchberger’s criterion) we refer to Theorem 17
in Section 3.

Algorithm 3 Buchberger’s algorithm for computing strong standard bases
(sBBA)

Input: Ideal I = 〈f1, . . . , fm〉 ⊂ P, monomial order <, normal form algo-
rithm NF (depending on <)

Output: Gröbner basis G for I w.r.t. <
1: G← {f1, . . . , fm}
2: P ← {spoly (fi, fj) , gpoly (fi, fj) | 1 ≤ i < j ≤ m}
3: while (P 6= ∅) do
4: Choose h ∈ P , P ← P \ {h}
5: h← NF (h,G)
6: if (h 6= 0) then
7: P ← {spoly (g, h) , gpoly (g, h) | g ∈ G}
8: G← G ∪ {h}
9: end if

10: end while

11: return G

3 How to choose Pairs

Having two classes of polynomials to handle, namely S-polynomials and
GCD-polynomials we also need criteria for deciding when such a polynomial
is useless in the sense of predicting a zero reduction or having already a
strong standard representation. The criteria presented in the following are
then applied to Algorithm 3 in lines 2 and 7 when new elements for the pair
set are generated.

A first criterion takes care of useless GCD-polynomials:

Lemma 13. Let f, g ∈ P such that lc (f) | lc (g). Then gpoly (f, g) reduces
to zero w.r.t. {f, g}.

Proof. Since gcd (lc (f) , lc (g)) = lc (f) we can choose bf = 1 and bg = 0.
Thus gpoly (f, g) = 1 ·tf ·f−0 ·tg ·g = tff for monomial multiples tf , tg such
that tf lm (f) = tg lm (g) = lcm (lm (f) , lm (g)). It follows that gpoly (f, g)
just a multiple of f and thus reduces to zero w.r.t. {f, g}.

As a next step we state well-known criteria by Buchberger, the Product
and the Chain criterion:

Lemma 14 (Buchberger’s Product Criterion). Let
f, g ∈ P be polynomials such that lm (f) and lm (g) are coprime and lc (f)
and lc (g) are coprime. Then spoly (f, g) reduces to zero w.r.t. {f, g}

8



Proof. The proof is the same as in the field case. See Theorem 3 in [17] for
more details.

Note that Lemma 14 does not apply to GCD-polynomials. Take, for
example, G = {f, g} with f = 3x and g = 2y. Then lm (f) = x and
lm (g) = y are coprime and spoly (f, g) = gf − fg = 0, but gpoly (f, g) =
y · 3x− x · 2y = xy. Clearly, we cannot reduce xy any further w.r.t. G.

Lemma 15 (Buchberger’s Chain Criterion). Let G ⊂ P finite and let
f, g, h ∈ G be polynomials such that

1. lm (f) | lcm (lm (g) , lm (h)) and
2. lc (f) | lcm (lc (g) , lc (h)).

If spoly (f, g) and spoly (f, h) have a strong standard representation w.r.t.
G then also spoly (g, h) has a strong standard representation w.r.t. G.

Proof. The lemma is proven as in the field case. We want to have an S-poly-
nomial chain

spoly (g, h) = cf,gmf,gspoly (f, g) + cf,hmf,hspoly (f, h)

for some coefficients cf,g, cf,h and some monomials mf,g,mf,h. Property (1)
ensures proper monomial multiplesmf,g andmf,h. Working over the integers
we have to take care of the coefficients, too. Thus property (2) is needed to
ensure the existence of proper multiples cf,g and cf,h. For more details see,
for example, the proof of Theorem 4 in [17]: There the statement is proven
for a strengthened version of property (2), namely lc (f) | lc (g) | lc (h) resp.
lc (g) | lc (f) | lc (h).

Moreover, we can state a similar criterion for GCD-polynomials:

Lemma 16. Let G ⊂ P finite and let f, g, h ∈ G be polynomials such that
1. lm (f) | lcm (lm (g) , lm (h)) and
2. lc (f) | gcd (lc (g) , lc (h)).

Then gpoly (g, h) has a strong standard representation w.r.t. G.

Proof. See Theorem 10.11 in [2] and Theorem 5 in [17].

Besides these statements one can “decide” for two polynomials f and
g if we need to compute the corresponding GCD-polynomial or the corre-
sponding S-polynomial. This goes back to [16] and can be also found as a
variant of Buchberger’s criterion as Theorem 2 in [17].

Theorem 17 (Variant of Buchberger’s Criterion, Theorem 2 in [17]). Let
G ⊂ P be a finite set of polynomials, let < be a monomial order on P. The
following are equivalent:

1. G is a strong standard basis w.r.t. <.
2. For all f, g ∈ G spoly (f, g) and gpoly (f, g) reduce to zero.

9



3. For all f, g ∈ G the following hold:
(a) If lc (f) | lc (g) or lc (g) | lc (f) then spoly (f, g) reduces to zero.
(b) If lc (f) ∤ lc (g) and lc (g) ∤ lc (f) then gpoly (f, g) reduces to zero.

Clearly, when implementing the above criteria especially the choice be-
tween Condition 2 and Condition 3 in Theorem 17 has a huge influence on
the computation:

1. Depending the choice of the next element in the pair set in Algorithm 3
it is obvious that Condition 3 lies an emphasis on GCD-polynomials.
For a pair of polynomials f, g ∈ G the algorithm tries to keep of
the lead coefficient of the genrated polynomial as small as possible.
This process goes on until at some point eventually this smaller lead
coefficient divides lc (f) lc (g). Then the corresponding S-polynomial
is generated which then removes the whole lead term.

2. If we use Condition 2 then there might be a lead term cancellation, i.e.
S-polynomial, being handled before the complete reduction process of
the lead coefficient, i.e. handling of GCD-polynomials, is finished.

Of course, one can have an influence on the above situation depending on
the choice of the next element from the pair set P in Line 4 of Algorithm 3.
Lichtblau notes in [17] that, until now, there is no real comparison between
the two attempts due to missing implementations.

One statement we can make is the following:

Proposition 18. Theorem 17 already includes Lemma 14.

Proof. By Theorem 17 we do only consider spoly (f, g) if either lc (f) | lc (g)
or lc (g) | lc (f). Lemma 14 applies only in the other situations, but there
no S-polynomial is generated at all.

We have implemented Buchberger’s algorithm with both variants of
Buchberger’s criterion in Singular. In Section 6 we present more detailed
results.

4 Avoiding Coefficient Swell

One main problem when computing over the integers is coefficient growth.
We cannot normalize polynomials as usually done over fields. The only
method to keep at least lead coefficients as small as possible from inside
the algorithm is to efficiently compute GCD-polynomials as discussed in
Section 3.

The first idea to handle coefficient swell might be to use modular methods
as done over fiels, see, for example, [1]. Sadly this concept is not working
over the integers:

Example 19. Let I = 〈6x, 8x〉 ⊂ Z[x]. A strong standard basis w.r.t. a
global monomial order < is G = {2x, 6x, 8x} where 2x = gpoly (8x, 6x).

10



Next we try to compute modular standard bases for 〈6x, 8x〉 ⊂ Fp[x] for
some prime number p > 3.4 The corresponding standard basis is Gp =
{6x, 8x}: Buchberger’s algorithm over Fp only considers spoly (8x, 6x) = 0
and terminates afterwards, thus only the initial generators are added to Gp.
If we ensure that Buchberger’s algorithm computes a reduced5 standard basis
we then get Gp = {x}. The problem is that in no case we would get 2x ∈ Gp

which is the important element for the strongness of the standard basis for
I over Z. Even before applying Hensel lifting or the Chinese remainder
theorem the information needed is lost.

Thus there is no way to compute a strong standard basis over Z via
modular computations over Fp and lifting techniques in general.

One trick we can do is trying to find monomials or constants in the ideal
we want to compute a strong standard basis for. If we can add such elements
to the list of input polynomials of Algorithm 3 this can give a huge speed
up to the overall computation. The following lemma gives us a hint on how
to do so.

Lemma 20. Let < be a monomial order on Z[x] and let I = 〈f1, . . . , fm〉 ⊂
Z[x]. Let Ĩ = 〈f1, . . . , fm〉 ⊂ Q[x]. If the standard basis G = 〈1〉 for Ĩ w.r.t.
< then there exists a constant c ∈ Z such that c ∈ I.

Proof. Let G = 〈1〉 ⊂ Q[X]. Consider J = 〈1, f1, . . . , fm〉 ⊂ Q[x]. Consider
the free module Q[x]m+1 with standard generators e0, . . . , em together with
the map π : Q[x]m+1 → Q[x] defined via e0 7→ 1 and ei 7→ fi for all
1 ≤ i ≤ m. Since 1 ∈ G there must exist a syzygy σ ∈ Q[x]m+1 of the
following structure

σ = e0 +

m
∑

i=1

piei

where pi ∈ Q[x] are polynomials for all 1 ≤ i ≤ m. In other words, we
can represent 1 = π(e0) as a Q[x]-linear combination of the fi = π(ei).
Moreover, we define

c := lcm (all denominators of all coefficients of all terms of all pi) .

Thus we get another syzygy cσ which corresponds to the equation

c = c · 1 = c · π(e0) =
m
∑

i=1

(cpi) · π(ei) =
m
∑

i=1

(cpi) · fi

where cpi ∈ Z[x] for all 1 ≤ i ≤ m. By construction it follows that c ∈ I.

4We choose p > 3 since it should at least not divide the lead coefficients of the input

polynomials.
5A reduced standard basis over a field w.r.t. a global monomial order means that the

lead coefficients of all elements in the basis are 1 and no lead term divides any term of

any other polynomial in the basis.
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Algorithm 4 RationlPreCheck (RPC)

Input: Ideal I = 〈f1, . . . , fm〉 ⊂ P, monomial order <
Output: Ideal J such that J = I
1: G← standard basis for 〈f1, . . . , fm〉 in Q[x] w.r.t. <
2: S ← syz (〈1, f1, . . . , fm〉) ⊂

∑m
i=0Q[x]ei w.r.t. <

3: if 1 ∈ G then

4: Search for σ ∈ S with 0th component of the form ce0, c ∈ Q.
5: Find multiple λ ∈ Z such that λσ ∈

∑m
i=0 Z[x]ei

6: J ← 〈λc, f1, . . . , fm〉
7: end if

8: return J

Example 21. We give two examples, a small one we do by hand and a
bigger one which gives a real benefit for the overall computational time:

1. Let I ⊂ Z[x, y] be given by I = 〈x + 4, xy + 9, x − y + 8〉. We want
to compute a strong standard basis for I w.r.t. the degree reverse-
lexicographical order <. The standard basis for I over Q includes 1,
so we have a constant in the standard basis for I over Z. We compute
syz (〈1, x+ 4, xy + 9, x− y + 8〉) ⊂

∑3
i=0Q[x, y] and get the following

three syzygies:

σ1 = 7e0 − (x+ 4)e1 + e2 + xe3,

σ2 = (y − 4)e0 − e1 + xe3,

σ3 = (x+ 4)e0 − e1.

σ1 is the relation from which we can extract the corresponding constant
for I:

7 = 7π(e0) = (x+ 4)π(e1)− π(e2)− xπ(e3)

= (x+ 4)(x+ 4)− (xy + 9)− x(x− y + 8)

= x2 + 8x+ 16− xy − 9− x2 + xy − 8x.

Thus, we add 7 to the initial generators of I and run Algorithm 3. We
receive a strong standard basis G = {7, x+ 4, y − 4} ⊂ Z[x, y] for I.

2. A bigger example is given as rationalPreCheckExample() in our pub-
licly available benchmark library ([8]): The ideal I we are considering
is generated by 70 polynomials in Z[x, y, z]. We want to compute a
strong standard basis for I w.r.t. the degree reverse-lexicographical or-
der <. In Table 4 give some characteristics of the computation of a
standard basis for I on an Intel Core i7-5557U CPU with 16 GB RAM.
Note that the computation of Algorithm 4 over Q takes < 0.01 seconds
and needs < 0.3 MB of memory, so it is negligible compared to the
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computational cost over Z. The strong standard basis for I computed
by our implementation consists of only 9 elements

G = {18, 6z − 12, 2y − 4, 2z2 + 4z + 8,

yz + z + 3, 3x2z − 15x2, x2y + 3x2z + x2,

x3 + 10z, x2z2 − 4x2z − 11x2}

From Algorithm 4 we do not directly get the constant 18 ∈ G, but we
get a multiple of it: 6, 133, 248. Adding this constant to the generators
of I and applying Algorithm 3 represents the third column of Table 4,
whereas a direct application of Algorithm 3 on I is given in column
two.

Characteristics \ Algorithms sBBA RPC + sBBA

maximal degree 13 13

# zero reductions 1,130 795

# product / chain criteria 1,279 / 2,990 826 / 1,925

memory usage (in MB) 1.51 0.78

Table 2: Characteristics of standard basis computations of Example ??

Remark 22.

1. Clearly, one can generalize Algorithm 4: If we do not have 1 ∈ G
over Q we might still get a short polynomial, even a monomial whose
corresponding Z[x] representation can then be recovered from the cor-
responding syzygy module. Note that in this case the reconstruction is
a bit harder and the precheck might take longer, since we have a more
complex standard basis computation over Q that does not terminate
early.

2. If one has a computer with at least two cores available the usage of
parallel.lib resp. task.lib ([19, 20]) in Singular might be worth-
while: One could start the direct computation of sBBA over Z on one
core plus RPC over Q on the other core. Using the waitfirst com-
mand one could always ensure that the fatest possible running time is
achieved.

5 Normal Form Computations

Let us recall Definition 2 and give the two different types of a reduction step
a name:

Definition 23. Let f ∈ P and let G ⊂ P be a finite subset.

13



1. If there exists g ∈ G such that lm (g) | lm (f) and lc (g) | lc (f) then

f − lc(f)
lc(g)

lm(f)
lm(g)g is a top-lt-reduction of f (w.r.t. g).

2. If there exists g ∈ G such that lm (g) | lm (f), lc (g) ≺ lc (f) and

lc (g) ∤ lc (f) then f − a lm(f)
lm(g)g with lc (f) = a lc (g) + b where a, b ∈ Z,

b 6= 0 amd b ≺ lc (f) is a top-lc-reduction of f (w.r.t. g).

First we can note that it is enough to consider lt-reductions since lc-
reductions are taken care of when generating new pairs:

Lemma 24. Algorithm 3 terminates and computes a correct strong standard
basis for a given set of geneators and a given momonmial order if we change
the corresponding normal form algorithms to consider only lt-reductions.

Proof. We need to show that lc-reductions are considered when adding new
GCD-polynomials to the pair set P . Assume h is the outcome of an lt-
reduction. If there exist possible lc-reductions for h w.r.t. G then there is
a g ∈ G such that lm (g) | lm (h), lc (g) ∤ lc (h) and lc (h) ∤ lc (g). Thus
gpoly (h, g) is generated:

gpoly (h, g) = ah+ btg

where a, b ∈ Z such that gcd (lc (h) , lc (g)) = alc (f) + blc (g) and t = lm(h)
lm(g) .

Now we distinguish two cases:
1. If a = 1 then gpoly (h, g) = h− btg which is exactly the corresponding

lc-reduction of h w.r.t. g.
2. If a 6= 1 then the lc-reduction of h w.r.t. g, h′ = h − ctg for some

c ∈ Z, t ∈ P, coresponds to the first step of the Euclidean algorithm
calculating gcd (lc (h) , lc (g)). If there is no further reduction of h′

then Algorithm 3 generates a corresponding GCD-polynomial between
h′ and g. It follows that

h− ctg + gpoly
(

h′, g
)

= gpoly (h, g) .

If h′ is further reducible by some g′ ∈ G then we note the following:
First of all g′ ∈ G \ {g} since lc (g) ≻ lc (h′) thus there cannot exist a
lt-reduction or lc-reduction of h′ w.r.t. g. Now the reduction of h′ by
g′ is given as

h′ − c′t′g′ = h− ctg − c′t′g′

for some c′ ∈ Z and t′ ∈ P. Since lm (h) = lm (tg) = lm (t′g′) we con-
clude that ctg+c′t′g′ corresponds to a multiple of either spoly (g, g′) or
gpoly (g, g′) depending on divisibility of lc (g) and lc (g′). Nonetheless,
once we have a standard representation for spoly (g, g′) or gpoly (g, g′)
we can reset h by h−ctg−c′t′g′. Either the lead term or the lead coeffi-
cient of h increases in this process. Thus after finitely many steps this
process terminates and we reach either case (1) or there is no further
lc-reduction reduction possible.
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This was the usual way Singular implemented standard basis reduc-
tion over the integers. Clearly, this is due to historical reasons where the
implementation over Z was only thought of as a slight generalization of the
computation over fields.

Example 25. Recall Example 11 from Section 2: If we allow only lt-
reductions when reducing h = 4 + x w.r.t. the strong standard basis G =
{

2− x+ y + x2, x− 2y − x2 − xy − x3
}

then we get the following reduction
table with Th = G at the beginning.

h g h added to Th?

4 + x 2− x+ y + x2 X

3x− 2y − 2x2 x− 2y − x2 − xy − x3 X

4y + x2 + 3xy + 3x3 4 + x -

x2 + 2xy + 3x3 x− 2y − x2 − xy − x3 X

4xy + 4x3 + x2y + x4 4 + x -

4x3 + x4 4 + x -

0 - -

Table 3: Only lt-reductions used in Mora normal form

If we compare it to Table 1 we see one more reduction step introduced
by choosing x − 2y − x2 − xy − x3 as reducer in the second reduction step,
since lc-reductions are not allowed.

Note that Lemma 24 shows that lc-reductions are, from the theoretical
point of view, not needed. A lc-reduction corresponds to a first step in
the Euclidean algorithm when calculating gcd (lc (f) , lc (g)) which will be
done in the algorithm when considering gpoly (f, g). Still, it has a strong
impact on the performance of the algorithm in practice: Cutting the lead
coefficient down as much as possible means that the element might be used
more often for reduction purposes. Moreover, generating new S-polynomials
and GCD-polynomials with it leads to lower lead coefficients there. In some
sense lc-reductions are the bridge between an lt-reduction of f by g and the
gpoly (f, g). In one specific situation we can go directly from one to another,
without the need of a bridge. Lemma 24 also gives a hint to this situation
stated in the following. 6 during the reduction process over the integers.

6This idea is also implemented in the computer algebra system Macaulay2. We have

discovered it independently and since we have not found any proof for the statement we

give one here.
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Lemma 26. Let f ∈ P, G ⊂ P finite and g ∈ G such that lm (g) = lm (f).
Then it holds that

〈f, g〉 = 〈spoly (f, g) , gpoly (f, g)〉 .

Proof. Let u, v, d ∈ Z such that

u lc (f) + v lc (g) = d = gcd (lc (f) , lc (g)) . (1)

We can then write

gpoly (f, g) = u f + v g.

spoly (f, g) = lc(g)
d

f − lc(f)
d

g.

In order to show the statement we have to proof that (f, g) and (gpoly (f, g) , spoly (f, g))
generate the same Z-lattice. So, in the above representation of gpoly (f, g)
and spoly (f, g) in terms of f and g we have to show that the corresponding
coefficient matrix is invertible, i.e. has determinante ±1 ∈ Z: To see this we
set

M :=





u v

lc(g)
d

− lc(f)
d



 .

Finally, we compute

det (M) = −u
lc (f)

d
− v

lc (g)

d
= −

1

d
(u lc (f) + v lc (g))

(1)
= −1.

How to use Lemma 26 in BBA? The idea is that whenever we reduce a
new element f we check if there exists a reducer g ∈ G with lm (f) = lm (g),
but lc (g) ∤ lc (f). In this situation we do a 2-by-2 replacement:

1. Compute gpoly (f, g) and replace g ∈ G by gpoly (f, g) ∈ G. Clearly,
already genrated pairs with g as generator have to adjusted respec-
tively.

2. Compute spoly (f, g) and replace f by spoly (f, g). Note that we have
not changed the degree of f , but probably only multiplied f with some
coefficient. With the newly defined f we again enter the reduction
process and see, if we can further reducer it.

This has two main advantages to the usual reduction process that would
compute only an lc-reduction of f w.r.t. g:

1. We directly compute the GCD-polynomial of f and g whereas the be-
fore mentioned lc-reduction would represent only one step in the Eu-
clidean algorithm for reaching gpoly (f, g). So we can directly replace
g with gpoly (f, g) which leads to smaller coefficients and multiples
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during the pair generation. Furthermore, gpoly (f, g) reduces other
elements at least in all situations g would reduce, but it can possibly
fulfill more lt-reductions due to its smaller lead coefficient.
Furthermore, since lm (gpoly (f, g)) = lm (g) we can replace all S-poly-
nomials already generated with g, again giving smaller coefficients in
upcoming reduction processes. Even more, using gpoly (f, g) we are
possibly able to render more S-polynomials useless applying the chain
criterion, due to the smaller lead coefficient.

2. For f the advantage is that we are not stuck with a lc-reduction only,
but we can go on and perform the lt-reduction spoly (f, g) and thus
directly lower the lead term without the need of adding f to the basis,
which would blowi up pair generation.

Remark 27.

1. Note that lm (f) = lm (g) is an essential condition for the correctness
of Lemma 26. If, for example, only lm (g) | lm (f) holds such that

λ = lm(f)
lm(g) > 1 ∈ P, then we can only recover f and λg via spoly (f, g)

and gpoly (f, g), but we are no longer able to recover g.
2. Overall applying lc-reductions has a huge effect on running time: In

most examples we get a speedup factor of 3. If we even apply coefficient
reductions to the tail terms of the newly added element to the basis,
we get another factor of 3− 5.

When we enter the reduction process of an element f in BBA we search
for reducers in the following order:

1. Is there g ∈ G for a lt-reduction of f? If so we can cut down the lead
term of f without the need of multiplying f with any coefficient 6= 1.

2. Is there are g ∈ G fulfilling Lemma 26? If so we can cut down the lead
term of some coefficient multiple of f and we can further replace g by
gpoly (f, g) leading to a better reducer.

3. Is there g ∈ G for a lc-reduction of f? We cannot cut down the lead
term of f , but at least we can reduce the lead coefficient before adding
f to G and generating new S-polynomials and GCD-polynomials.

6 Computational results

In this section we present the new implementation for standard basis com-
putation over Euclidean domains in Singular 4− 1− 2.7 We compare it to
the current implementations in the computer algebra systems Macaulay2

(version 1.12) andMagma (version 2.23). For the comparison we use bench-
marks with different properties and behaviours. All examples are computed
with respect to the degree reverse lexicographical order. All algorithms run

7In the Singular sources since git commit 7d2091affbf4b4a1a382e5eb0a47f66c0f3c42f7a.
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single threaded, we use an Intel Core i7-6700 CPU with 3.4 GHz and 64GB
RAM. The machine runs Arch Linux with unmodified 4.18.12 kernel. For
the examples we refer to [8].

Examples Singular (Thm. 17) Singular (all pairs) Macaulay2 Magma

Cyclic-6 0.330 0.320 4.708 2.799

Cyclic-7 18, 731.820 5, 636.210 out of memory 366.060

Katsura-7 2.200 2.250 204.928 251.630

Katsura-8 133.390 135.360 64, 555.420 (> 24h)

Katsura-9 13, 366.590 12, 951.160 (> 24h) (> 24h)

Eco-9 3.920 4.050 870.409 22.520

Eco-10 38.760 40.670 (> 24h) 289.540

F-633 0.140 0.120 14.982 12.880

F-744 118.610 117.890 (> 24h) (> 24h)

Noon-7 34.930 32.700 (> 24h) (> 24h)

Noon-8 3, 1390.060 3, 079.370 (> 24h) (> 24h)

Reimer-5 3.620 3.590 out of memory 1, 932.400

Reimer-6 1, 216.960 1, 232.530 out of memory (> 24h)

Lichtblau 1.910 1.830 69.536 2, 242.900

Bayes-148 9.970 9.900 117.635 46.240

Mayr-42 212.320 212.770 218.635 40.270

Yang-1 149.120 147.250 181.210 50.330

Jason-210 47.010 46.780 (> 24h) (> 24h)

Table 4: Benchmark timings given in seconds (“(> 24h)” means that we
have stopped the computation after at least 24 hours.)

We can see that Singular’s new implementation is always faster than
Macaulay2. Comparing it to Magma we see that Magma is way faster
for Cyclic-7. We assume that this is due to Magma using Faugère’s F4 al-
gorithm ([10]): Our implementation considers less S-polynomials and GCD-
polynomials, but the reduction steps in higher degree are way slower than
the linear algebra done in Magma. We believe that there are more classes of
examples where the linear algebra attempt is more efficient than the polyno-
mial arithmetic used in Singular, still, we need to investigate this problem
in more detail. We can see that the F4 algorithm seems to be beneficial
also for Mayr-42 and Yang-1. Nevetheless, for most of the other examples
considered, Singular is by a factor faster than Magma.
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In the above table we list timings for Macaulay2’s Buchberger imple-
mentation using polynomial arithmetic (as for Singular). We also tested
Macaulay2’s F4 implementation, but in most of the above examples it was
slower or just as fast as the polynomial arithmetic implementation. Due to
its much higher memory usage, we could not finish most of the examples on
the given machine. The only example where we have seen a better result
was Mayr-42 where Macaulay2’s F4 algorithm finished in 185 seconds,
still using way more memory than Magma and nearly 10 times as much
as Singular. In the given example Singular’s new algorithm uses, aside
from Cyclic-7, the least memory of all compared implementations.

For Singular we can see that generating all possible S-polynomials and
GCD-polynomials or only the ones needed (recall Theorem 17) does not
have a bigger influence on the computation for most of the examples. Still,
for the bigger examples like Noon-8 or Katsura-9 we see that applying The-
orem 17 leads to slightly slower computation. In Cyclic-7 we can even see
a huge impact, the computation slows down by a factor of more than 3! It
sems that having more pairs available at an earlier stage of the algorithm is
advantageous compared to having less pairs overall. In most of the examples
the algorithm taking care of all possible pairs does not even compute more
reductions, the product and chain criterion removes those pairs which are
really useless at some later stage. All in all it seems that considering all pos-
sible S-polynomials and GCD-polynomials leads to a more stable algorithm.

We found that the application of Lemma 26 becomes sometimes a bottle-
neck. For example, always exchanging f and g by spoly (f, g) and gpoly (f, g)
has a huge drawback in the computation of a basis for Cyclic-7, leading
to a slow down of a factor of more than 3. We found that overall it is a
good heuristic to apply Lemma 26 at most 5 times per a single reduction
process. The Singular timings in the above table correspond exactly this
implementation.

7 Conclusion

We have presented new ideas for computing standard bases over Euclidean
domains without zero divisors. The implementation of the corresponding
algorithms is available in Singular. We have seen that Singular is in
general faster than Macaulay2 and Magma in various examples.

Our next steps include an implementation of the new ideas in the open
source C library GB which implements Faugère’s F4 algorithm ([7]). Doing
so we hope to benefit from the new ideas and the fast linear algebra. Still,
not all ideas presented here are trivial to move to an F4-style algorithm.

Moreover, we still see a lot of zero reductions in higher degree which slow
down the computation. In order to tackle this problem, we work on a more
general chain criterion trying to exploit more of the structure of the input
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system. Even more, a further attempt on signature-based computation over
Euclidean rings, see ([9]), should be possible.

Finding better heuristics for the application of Lemma 26 depending
on the structure of the input systems is also an interesting topic to study
further. If applied in a “good” way it can have a strong impact on the overall
computation.

Another topic we are working on is to improve the implementation in
Singular for Euclidean domains with zero divisors. There, special care
needs to be taken of the annihilator polynomials.
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