
GloBug: Using Global Data in Fault Localization

Nima Miryeganeh, Sepehr Hashtroudi∗, Hadi Hemmati

Department of Electrical and Computer Engineering
Schulich School of Engineering, University of Calgary, Canada

Abstract

Fault Localization (FL) is an important first step in software debugging and

is mostly manual in the current practice. Many methods have been proposed

over years to automate the FL process, including information retrieval (IR)-

based techniques. These methods localize the fault based on the similarity of

the reported bug report and the source code. Newer variations of IR-based FL

(IRFL) techniques also look into the history of bug reports and leverage them

during the localization. However, all existing IRFL techniques limit themselves

to the current project’s data (local data). In this study, we introduce Globug,

which is an IRFL framework consisting of methods that use models pre-trained

on the global data (extracted from open-source benchmark projects). In Globug,

we investigate two heuristics: a) the effect of global data on a state-of-the-art IR-

FL technique, namely BugLocator, and b) the application of a Word Embedding

technique (Doc2Vec) together with global data. Our large scale experiment on

51 software projects shows that using global data improves BugLocator on

average 6.6% and 4.8% in terms of MRR (Mean Reciprocal Rank) and MAP

(Mean Average Precision), with over 14% in a majority (64% and 54% in terms

of MRR and MAP, respectively) of the cases. This amount of improvement is

significant compared to the improvement rates that five other state-of-the-art

IRFL tools provide over BugLocator. In addition, training the models globally
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is a one-time offline task with no overhead on BugLocator’s run-time fault

localization. Our study, however, shows that a Word Embedding-based global

solution did not further improve the results.

Keywords: Automated Fault Localization, Information Retrieval, Word

Embedding, TF.IDF, Doc2Vec, Global training

1. Introduction

Software debugging is one of the most essential but costly activities in soft-

ware development and maintenance [1, 2, 3], which involves locating a bug,

understanding the issue, and fixing it.

Fault Localization (FL) refers to the process of locating the program ele-

ments (functions, classes, files, etc.), which are associated with a fault [4, 5, 6, 7].

Nowadays in practice, most of the software debugging processes is done manu-

ally by the testers/developers who are responsible for finding/fixing the reported

bug. This process, however, is very time-consuming, especially for larger soft-

ware systems.

There has been a great number of studies in the past two decades that have

focused on automating the FL process. The Automated FL techniques use

heuristics to determine which program elements are most suspicious and most

likely to be associated with a fault. Hence, a programmer saves time during

debugging by focusing attention on the most suspicious locations [8].

There are several automated FL techniques in the literature such as Spectrum-

based Fault Localization (SFL), Information Retrieval-based Fault Localization

(IRFL), Mutation-based, and Model-based Diagnosis.

IRFL techniques, which are the context of this study, mostly use the static

information provided in bug reports. For example the title, the full description,

etc. They treat a bug report as a query and rank the source code files by

their relevance to the query. The developers then examine the returned files

and fix the bug. IRFL approaches typically have lower computational cost and

require minimal information (e.g., requiring only source code and bug reports
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to operate) compared to alternatives [9]. However, in general, no one method

outperforms all others in all systems [10, 8].

A typical IRFL technique uses a relevancy function to rank the relevant

program elements. The relevancy functions calculate the textual similarity of

the new bug report to other historical bug reports or source code elements, and

use this information to score most similar program elements to the current bug

report. Therefore in the core of any IRFL technique there should be a textual

similarity function that accepts two documents and returns a similarity value.

In IR, there has been a wide range of textual similarity functions proposed

over the years to rank a corpus of documents based on their relevance to a query.

These techniques usually calculate the frequency (in one way or another) of the

common terms that appear in the query and the document. Most technique,

first represent the documents as a vector of numbers. Then they apply an

standard vector similarity/distance measure (e.g. cosine) on them. In most

IRFL literature the vectorization algorithm is TF.IDF [11]. TF.IDF method

will be explained in details in Section2.2.

To improve the accuracy of the existing IRFL methods, in this paper, we

introduce Globug, an IRFL technique that implements two novel heuristics:

1. Leveraging a global dataset (which is an existing benchmark dataset of

bug reports in several open source projects) as part of the TF.IDF model

training within a given project, to better calculate textual similarities.

• Motivation: To use the freely available knowledge outside of the

current project to better calculate the textual similarities, when the

current project’s training set (historical bug reports) is not rich enough.

Note that in general, building vocabulary mostly benefits from larger

dataset, since tokens that are not relevant to the current project will

be automatically ignored in the process of similarity calculation.

2. Using a word embedding-based language model (Doc2Vec[12]) to make a

better language model out of the global data.

• Motivation: The fact that recent neural embedding techniques such
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as Doc2Vec improve the semantic capturing ability of classic vector-

ization approaches like TF.IDF, in many domains, motivates us to re-

place TF.IDF with Doc2Vec. Also note that the large dataset (global

data) is the key enabler for applying embedding models, which could

not be done if we would only look at one project’s history.

Our main comparison baseline is BugLocator [13], which has served as baseline

TF.IDF-based FL technique in many IRFL literature. However, we also com-

pare our improvements over BugLocator with improvements that other more

recent tools (five recent IRFL tools) provide over BugLocator, and discuss our

advantages over them.

To evaluate the above heuristics, we have designed and reported an empirical

study on 51 software projects from an open source benchmark dataset for IRFL

techniques [10], as follows:

• Heuristic1: How does a global corpus affect BugLocator? Our results

suggest that using global corpus for TF.IDF improves BugLocator with

average rates of 6.6% and 4.8%, in terms of MRR and MAP. The MRR

and MAP improvements were more than 14% in 64% and 54% of the cases,

respectively. Looking at the other more recent IRFL tools that improve

BugLocator shows that our improvement is relatively significant.

• Heuristic2: Can Word Embedding improve TF.IDF? Our key findings for

this heuristic is that an advance Word Embedding technique may not

always result in improvement over TF.IDF, and its application in IRFL

must be accompanied with caution.

In terms of overhead cost of using a global corpus, we also argue that our ap-

proach is quite light-weight, given that the extra calculations (either for TF.IDF

or the Embedding model) over BugLocator is done once, offline, and will be

reused for all new bugs of a project. Note that the Bench4Bl benchmark al-

ready exists and can be used for model training once and reused for any new

project outside of these 51 projects as well (that is no extra effort is needed if
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Globug is applied on a new project). Of course, enriching the benchmark in the

future with more projects may improve the results, but it is not a requirement

for Globug and the reported performance of Globug in this paper is .

In summary, the contributions of this paper are:

• Proposing a new light-weight idea of leveraging freely available benchmark

datasets (global corpus) such as Bench4BL [10] during an offline training

period in TF.IDF-based IRFL techniques.

• Proposing the new idea of replacing TF.IDF with a Word-Embedding

model (such as Doc2Vec) in IRFL techniques and pre-train the embedding

on the global corpus.

• Conducting a large scale empirical study on the effectiveness of TF.IDF

vs. Doc2Vec Embedding-based FL solutions, trained and evaluated on the

global corpus of 51 open source projects (50 projects for training + 1 for

testing, at each run), from Bench4BL [10], including a detail investigation

of the embedding results.

We also provide the replication package as well as all raw results available

online. 1

The rest of this paper is organized as follows: in Section 2 IRFL techniques

in general and BugLocator as our comparison baseline in particular will be

explained. We also briefly explain the basics of the embedding technique used

in this paper. In Section3 we depict the big picture of our proposed framework

and our two heuristics and explain the details of their inner processes. In Section

4, we explain the design and results of our experiments. In Section 5, we discuss

the results and analyze possible threats to their validity by taking a deeper look

at some specific examples. Next, in Section 7, we take a look at the highlights

of related IRFL studies and position this paper among them. In Section 8, we

analyze the possible future paths of using global data and Word Embedding

1https://github.com/miryeganeh/GloBug
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in IRFL and the potential extensions of this study. Finally, in Section 8, we

conclude our study by summarizing the experiments and findings.

2. Background

There has been a wide range of research studies conducted over the past two

decades in FL [14]. There are at least two leading directions of research among

these studies, namely spectrum-based fault localization [15, 16, 17, 18, 19, 20, 21,

22, 23] and IR-based fault localization [24, 13, 25, 26, 27, 28, 29, 30, 31, 32, 33].

In the former, the likely locations of faults are identified by computing some

ranking metrics, generally based on similarity coefficients and statistical tech-

niques, on succeeding and failing test execution traces. The latter approaches,

on the other hand, only leverage static properties of the software (e.g. source

code files and bug reports and no test execution) to identify suspicious files,

using IR techniques. Given that the context of this paper is about IRFL tech-

niques and for the sake of brevity, we skip the background on SFL.

2.1. IR-Based Fault Localization (IRFL)

In IRFL methods bug reports play an essential role in localization, as they

usually contain a detailed description of the failure, and occasionally give valu-

able hints on the location of the fault in the software. In IRFL, the goal is to

bridge from a bug report to buggy elements of the program. Therefore, the prob-

lem can be transformed into an IR problem [34] in which documents (program

elements) are ranked based on their relevancy to a query (bug report).

As depicted in Figure 1, the relevance of program elements to bug reports

can be calculated directly or indirectly using a relevancy function:

• Direct Relevancy Function: A direct relevancy function calculates the rel-

evancy score of program elements and bug reports (query) using different

heuristics, which are mostly based on the direct textual similarity of bug

reports and program elements.
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Query: 
BugReport

Code

Fixed Program Files Per Bug Report

IR-Based
 BugLocalization 

Direct Relevancy

Indirect Relevancy

History
 Bug Reports

History
 Bug Reports

Ranked List of 
Program Files

Figure 1: High-level process of direct and indirect relevancy functions in IRFL.

• Indirect Relevancy Function: An indirect relevancy function calculates

the relevancy score, first by calculating the similarity of the bug report

(query) to historical bug reports in the software project, and then knowing

the buggy elements that have been fixed for each historical bug report,

calculates an indirect relevancy score for each program element.

BugLocator [13] is one of the most well-known IRFL techniques proposed

by Jian Zhou et. al., in 2012. BugLocator incorporates both the direct and

indirect relevance of bug reports to source code files to localize buggy source files

in the system. BugLocator can be considered as a turning point in IRFL studies

as it had a significantly better performance compared to its older competitors,

and it is now often used by other IRFL techniques as a state-of-the-art baseline

method. Therefore, in the following section, we first take a deeper look at the

internal structure of the BugLocator.
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History
 Bug Reports

New 
BugReport

History Bug reports 
TFIDF Vectors

New Bug report
 Vectors

Ranked List of 
Source Code Files

Direct Similarity

Code

Source Code
TFIDF Vectors

Indirect Similarity

Build Vocabulary 
Calculate IDFs

Transform to TF.IDF

Figure 2: Illustration of internal process of BugLocator

2.2. BugLocator - Our Baseline Method

Figure 2 summarizes the internal process of BugLocator. In BugLocator,

first, a shared vocabulary is formed using all the distinct words that appear in all

source code files and bug reports. Then, an IDF (inverse document frequency)

weight is calculated for each word based on the frequency of that word in all

documents. Next, a vector of TF.IDF (term frequency . inverse document

frequency) weights is calculated for each bug report and source code file based

on the product of the frequency of each vocabulary word (TF) in that document

and the IDF of the vocabulary word that denotes the importance of the word
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in the context. Therefore, a common coding term such as println (print line

in Java) that appears in many source code files (high document frequency) will

get a lower IDF (lower importance), which in turn decreases the impact of its

TF.IDF weight while calculating the similarity scores.

BugLocator uses an altered version of the TF.IDF formula (Equation 1)

namely rVSM (revised Vector Space Model) to calculate the similarity score,

which takes the length of the source code file into account too. The authors

claim that it works best in their context compared to other variations.

The rVSM function calculates the relevancy of a source Code file to a bug

report among all other source code files using the cosine similarity of their

TF.IDF vectors.

rV SM(BR,SC) =
1

1 + e−N(#terms)

× 1√∑
t∈BR((log ftBR

+ 1)× log (#docs
nt

))2

× 1√∑
t∈SC((log ftSC

+ 1)× log (#docs
nt

))2

×
∑

t∈BR∩SC

(log (ftBR
+ 1)× (log ftSC

+ 1)

× log (
#docs

nt
)2)

(1)

where N(#terms) refers to the normalized value of the number of terms in

the document, ftBR
refers to the number of occurrences of a term t in the bug

report, ftSC
refers to the number of occurrences of a term t in the source code,

nt refers to the number of documents that contain the term t, #docs represents

the total number of documents in the corpus.

The lexical gap between bug reports and source code, sometimes makes the

direct comparison unreliable. Therefore, in the next step, BugLocator calculates

an “indirect relevancy” score for each source code file.

The indirect relevancy is designed to help the direct relevancy in cases where

the bug report does not contain many source code-related terms. In such cases,

the indirect relevancy help find the relevant program elements using the simi-
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larity of the language used in the new bug report and the history bug reports.

BugLocator linearly combines these two relevancy functions as its final rele-

vancy function.

2.3. Neural Word Embedding

In BugLocator both direct and indirect relevancy functions represent a doc-

ument (bug report or a source code file) as a vector of TF.IDF values assigned to

each word, within the document. Word embedding is an alternative way to vec-

torize the documents. There are many embedding techniques in the literature,

but Word2Vec, introduced by Mikolov et. al. in 2013 at Google [35] attracted

great attention of researchers and companies. Word2Vec trains a shallow (2-

layer) neural network to learn which words are most likely appear together in

a document (i.e., semantic relationship) and represents them as close vectors

in an N-dimensional space. Doc2Vec [12] used in this paper is an extension of

Word2Vec where the vectors represent the entire document rather than indi-

vidual words, which is more efficient given that an FL relevancy function only

cares about distances between documents (bug and code) and not the individual

words. More formally, given a sequence of training words w1, w2, w3, ..., wT , the

objective of the word vector model is to maximize the average log probability.

1

T

T−k∑
t=k

log p(wt|wt−k, ..., wt+k) (2)

The prediction task is typically done via a multiclass classifier, such as softmax.

There, we have

p(wt|wt−k, ..., wt+k) =
eywt∑
i e

yi
(3)

Each of yi is un-normalized log-probability for each output word i, computed

as

y = b+ Uh(wt−k, ..., wt+k;W ) (4)

where U, b are the softmax parameters. h is constructed by a concatenation or

average of word vectors extracted from W .
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3. Globug - Our Proposed IRFL Method

Globug’s main proposal is using a global corpus of benchmark projects during

the training phase of language model building. We explore this idea in two

variations:

3.1. Globug - Variation 1: TF.IDF and Global Data

In the first variation, the aim is reusing as much as possible from BugLocator

and only replace the local training data (current project) to the global corpus.

That means that we still use TF.IDF as the vectorizer, but calculate IDFs over

the global dataset. The motivation behind this idea is that if IDF weights are

calculated over a much bigger corpus of documents, the importance of terms

are more precisely captured.

In Globug (Variation 1), the global corpus is used for both direct and indirect

relevancy functions, as follows:

• Direct Relevancy: As demonstrated in Figure 3, first the vocabulary

with all unique terms of all N projects (global corpus) source code files

is created. Then IDF of all unique terms over the global corpus projects

are calculated. Note that since the dictionary is built only using source

code files of all projects, any terms in bug reports that are not seen in the

dictionary are ignored. Finally, the direct relevancy score of a source code

file to a bug report is calculated based on the cosine similarity of their

globally calculated TF.IDF vectors.

• Indirect Relevancy: Similar to BugLocator, an indirect relevance score

is calculated, first, by relating the history bug reports to the new bug

report and then bridging from history bug reports to source code files.

However, the difference is that in Globug (Variation 1), the dictionary is

built using common source code terms of all projects and their IDF is

calculated globally.

As you see in algorithm 1, first a dictionary is created using unique words

of all projects source codes. Then the TF.IDF vectors are calculated for All
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Project 2

Project X

Project N

Project 1
Code Corpus

Code Corpus

Code Corpus

Figure 3: Illustration of Globug Process - Variation 1: TF.IDF and Global Data

Source Code files(ASC), History of Bug Reports(HBR), and the New Bug Re-

port(NBR). Afterwards, for the direct relevancy, the Cosine Similarity(COSIMDR)

of the TF.IDFNBR and TF.IDFASC is calculated, And for the indirect rele-
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vancy, the Cosine Similarity(COSIMIDR) of the TF.IDFNBR and TF.IDFHBR

is calculated. At the end, for generating the Ranked List of Source Codes(RLSC)

we combine direct and indirect relevancy scores using a weighted average stated

in equation 5. The value of W1 and W2 in our experiments are 0.8 and 0.2,

respectively, which is the same as BugLocator.

SimilarityScore(file) = COSIMDR(file) ∗W1 +COSIMIDR(file) ∗W2 (5)

Algorithm 1: Globug algorithm (Variation 1)

Data: ASC: All projects Source Codes

Data: HBR: History of Bug Reports

Data: NBR: New Bug Report

Result: RLSC: Ranked List of Source Code files

1 for NextNewWord W in ASC do

2 DictSC ←W ; // Make dictionary

3 IDF.Model← IDF (W,ASC); // Calculate IDF of docs

4 for AllDocs D in (ACS,HBR,NBR) do

5 TF.IDFACS ← TF.IDF.Model(D);

6 TF.IDFHBR ← TF.IDF.Model(D);

7 TF.IDFNBR ← TF.IDF.Model(D);

8 COSIMDR ← CosineSimilarity(TF.IDFNBR, TF.IDFACS);

9 COSIMIDR ← CosineSimilarity(TF.IDFNBR, TF.IDFHBR);

10 COSIM = COSIMDR ∗W1 + COSIMIDR ∗W2;

11 RLSC ← ArgMax(COSIM);

3.2. Globug - Variation 2: Word Embedding and Global Data

In the second variation of Globug, the main goal is to replace TF.IDF vec-

torization with a Doc2vec embedding and we still use the global dataset as the

training set. The motivation and expectation from Doc2Vec is to better capture

the semantic relationship between the documents. Figure 4 illustrates the pro-

cess in details. Note that the two variations look exactly the same in terms of
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FL process except that one vectorizes the documents using globally calculated

TF.IDFs and the other using globally calculated Doc2Vec.

As you see in algorithm 2, first a dictionary is created using unique words

of all projects source codes. Then the Doc2V ec model is trained on the dictio-

nary. Then Doc2V ec and TF.IDF vectors are calculated for All Source Code

files(ASC), History of Bug Reports(HBR), and the New Bug Report(NBR).

Afterwards, for the direct relevancy, the Cosine Similarity(COSIMDR) of the

TF.IDFNBR and TF.IDFASC is calculated, And for the indirect relevancy, the

Cosine Similarity(COSIMIDR) of the Doc2V ecNBR and Doc2V ecHBR is cal-

culated.

Algorithm 2: Globug algorithm (Variation 2)

Data: ASC: All projects Source Codes

Data: HBR: History of Bug Reports

Data: NBR: New Bug Report

Result: RLSC: Ranked List of Source Code files

1 for NextNewWord W in ASC do

2 DictSC ←W ; // Make dictionary

3 IDF.Model← IDF (W,ASC); // Calculate IDF of docs

4 Doc2V ec.Model← Doc2V ec(W,ASC); // Train Doc2Vec model

5 for AllDocs D in (ACS,HBR,NBR) do

6 Doc2V ecHBR ← Doc2V ec.Model(D);

7 TF.IDFACS ← TF.IDF.Model(D);

8 Doc2V ecNBR ← Doc2V ec.Model(D);

9 TF.IDFNBR ← TF.IDF.Model(D);

10 COSIMDR ← CosineSimilarity(TF.IDFNBR, TF.IDFACS);

11 COSIMIDR ← CosineSimilarity(Doc2V ecNBR, Doc2V ecHBR);

12 COSIM = COSIMDR ∗W1 + COSIMIDR ∗W2;

13 RLSC ← ArgMax(COSIM);

At the end, for generating the Ranked List of Source Codes(RLSC) we
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combine direct and indirect relevancy scores using a weighted average stated

in equation 5. The value of W1 and W2 in our experiments are 0.8 and 0.2,

respectively (the same as Globug - Variation 1).

In terms of implementation, we reuse TF.IDF implementation from BugLocator

and also reuse a commonly used implementation of Doc2Vec[12].

Note that in our study, the existence of Bench4BL [10] made the experimen-

tation part easier, however, Bench4BL is just one example of global corpus for

FL. In fact, any extension of Bench4BL or any other (larger or more diverse)

benchmark datasets that are created in the future can be used in Globug and

potentially improve its results. However, in practice one does not necessarily

need to come up with new “global corpuses” or improve Bench4Bl to be able to

apply Globug in their project.

4. Empirical Study

In this section, we explain our experiments to evaluate the effectiveness of

Globug.

4.1. Objectives and Research Questions

The objective of this study is to investigate the effect of our two heuristics

a global corpus and Word Embedding on IRFL, to answer the following five

research questions (RQs):

• Heuristic1: How does a global corpus affect BugLocator?

– RQ1. Can a global corpus improve effectiveness of the direct rele-

vancy function in BugLocator?

The RQ1 goal is to see the effect of the global corpus only on the

direct-relevancy function, when there is no indirect-relevancy included.

– RQ2. Is a global BugLocator more effective than local BugLocator?

In RQ2, the global corpus is considered both in the direct and indirect

relevancy functions to further explore the influence of global data.
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Figure 4: Illustration of Globug Process - Variation 2: Word Embedding and Global Data

• Heuristic2: Can Word Embedding improve TF.IDF?

– RQ3. Is a global Doc2Vec better than a global TF.IDF in direct

relevancy function?

Similar to RQ1, to evaluate Word Embedding’s effect, first we only

16



consider the direct relevancy function and compare the results of

Doc2Vec vs. TF.IDF (both are using global data).

– RQ4. Does a global Doc2Vec improve the effectiveness of a global

TF.IDF in indirect relevancy function?

In RQ4, the application of Word Embedding is investigated only in

the indirect relevancy function, while the direct relevancy is calcu-

lated using a global TF.IDF based function.

– RQ5. Does combining global Doc2Vec and global TF.IDF improve

the effectiveness of global BugLocator?

Finally, in RQ5, global Doc2Vec is applied together with global TF.IDF

as a complementary algorithm, in order to help TF.IDF both in direct

and indirect relevancy functions.

The above research questions are designed in a way that let us observe the

influence of each change individually, and enable further analyzes and compar-

isons between these approaches, while answering interesting RQs and not blindly

compare all possible combinations.

4.2. Data Set

In a recent study, Jaekwon Lee et al. introduced Bench4BL [10] where they

collect source code and bug reports of 51 open source projects including the fix

information per bug report, which defines the ground truth for fault localization.

The projects consist of 5 commonly used projects in previous IRFL studies as

well as 46 new projects with a total of 61,431 Java files and 9,459 bug reports.

They report a comprehensive reproduction study of six state-of-the-art IRFL

techniques, including BugLocator, in order to compare their efficiencies in all

51 projects. Bench4BL is openly accessible to the public, and to the best of our

knowledge, is the largest and most up-to-date benchmark data set for IRFL.
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Table 1: Details of 51 open-source projects

Project # of SC

files

# of BR

files

# of

unique

SC words

# of

unique

BR words

# of

missing

BR words

CSV 29 14 987 191 29

MOBILE 64 11 1188 142 27

ELY 68 7 882 349 113

WFMP 80 3 673 193 36

CRYPTO 82 7 956 98 20

WEAVER 113 2 885 34 6

CODEC 115 42 7913 833 255

WFARQ 126 1 1145 53 20

SHL 151 10 1599 178 27

SOCIALTW 153 8 1394 212 40

SOCIALLI 180 4 1415 45 2

SOCIAL 212 13 1598 305 66

IO 227 91 1379 1397 449

BATCHADM 243 20 1841 453 114

ENTESB 252 16 370 863 304

SOCIALFB 253 15 2282 381 105

COMPRESS 263 112 2840 1896 750

ANDROID 305 9 3892 236 55

LANG 305 166 5362 2735 1211

DATAJPA 330 144 2679 2475 1022

ZXing 391 20 4495 776 209

AMQP 408 97 2748 1811 778

DATAREST 414 121 2518 2062 809

CONFIGURATION 447 11 3857 1578 495

SWT 484 98 11418 1730 677
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Table 1: Details of 51 open-source projects

Project # of SC

files

# of BR

files

# of

unique

SC words

# of

unique

BR words

# of

missing

BR words

COLLECTIONS 525 39 3521 893 211

DATAREDIS 551 49 3544 935 295

LDAP 566 52 3937 1156 295

DATACMNS 604 152 3794 2409 863

DATAMONGO 622 264 2839 3301 1481

SGF 695 98 4386 1678 693

SECOAUTH 726 66 4029 1303 407

SWARM 727 54 2841 1212 477

SWF 808 105 4864 1924 713

DATAGRAPH 848 12 4286 625 188

JBMETA 858 20 3524 582 238

SWS 925 159 4410 3065 1337

SHDP 1102 45 4134 653 169

ROO 1109 558 4870 5985 2998

MATH 1617 82 5350 3391 1799

SEC 1618 362 8811 5194 2021

BATCH 1732 354 8046 3296 1163

HBASE 2714 746 31360 9129 4957

WFCORE 3532 360 18939 4224 1883

HIVE 4651 1193 26640 9957 5556

PDE 5411 59 16502 1272 566

AspectJ 6485 122 18630 4522 2068

SPR 6512 123 34141 2431 886

JDT 7105 94 22396 2737 1370

WFLY 8990 821 22955 10110 5659
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Table 1: Details of 51 open-source projects

Project # of SC

files

# of BR

files

# of

unique

SC words

# of

unique

BR words

# of

missing

BR words

CAMEL 14522 1400 40514 10546 5088

Therefore, in our study, we use Bench4BL as our global corpus in Globug.

For each project, we take the latest version of the program as the code corpus

of that project and we exclude the bug reports with no fixed files in the consid-

ered version. Note that to build the vocabulary, we use the entire benchmark,

including the current project, but when we calculate distances the historical

global training set is considered as the benchmark (excluding the project under

study). This is to ensure we don’t have any information leaking in our training

phase.

The detail of the data set is summarized in table 1.

To deal with noises in the dataset, we follow the same procedure that has

been suggested in BugLocator, as follows:

• Bug Report Pre-processing: In order to prune the bug reports to

improve their quality, first, all stop words are eliminated from them, and

then they are all stemmed.

• Source Code Pre-processing: After parsing the Abstract Syntax Tree

(AST) of each Java file, the comments, Java keywords, and stop words

were removed from each file and each code term was transformed to its

stemmed form.

After pre-processing, a dictionary of all source code unique words is created.

There are 263,402 unique words in all 51 project source code files, and 53,812

unique words in all bug reports. Since we make the dictionary based on source

codes, there will be some words in the bug reports that are missing, which we
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dismiss them in the TF.IDF vectors. The number of missing bug report words

in all projects is 32,345. We dismiss them because they have no information

gain for locating related source codes, in an IRFL approach.

4.3. Experiment Design

To answer the RQs, we designed and implemented a set of seven IRFL

methods, which are different variations of BugLocator or GloBug:

• Method 1: This is essentially BugLocator with only the direct relevancy

function (without indirect relevancy function).

• Method 2: This is the same as Method 1, except the direct relevancy

function is calculated using a global TF.IDF.

• Method 3: BugLocator (using local TF.IDF for both direct and indirect

relevancy functions).

• Method 4: GloBug Variation 1 (using global TF.IDF for both direct

and indirect relevancy functions).

• Method 5: This is the same as Method 2, except the direct relevancy

function is calculated using a global Doc2Vec instead of a global TF.IDF.

• Method 6: GloBug Variation 2 (using global TF.IDF for direct relevancy

and global Doc2Vec for indirect relevancy).

• Method 7: This uses both global TF.IDF and global Doc2Vec on both

direct and indirect relevancy functions.

In the following, the experiment design per RQ, is explained:

• RQ1: In RQ1, the objective is to analyze the effect of the global corpus

on the “direct relevancy” function, independently. Therefore, we will be

using Method 1 and Method 2 for comparison.
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• RQ2: After looking into “direct relevancy” function in RQ1, in RQ2, we

add the “indirect relevancy” function into the picture. So the baseline

technique (Method 3) in this RQ is BugLocator, which is then compared

with Method 4, which is Globug.

• RQ3: In RQ3 to RQ5, the goal is to study the performance of our word

embedding technique (Doc2Vec) compared to TF.IDF . We explore this

in three RQs. In RQ3, we only look at the “direct relevancy” function,

similar to RQ1, but since Doc2Vec requires a large corpus to train, we only

consider Method 2 from RQ1 (using global TF.IDF) as a fair baseline. So

we compare Method 2 with Method 5.

• RQ4: In RQ4, we will look at the performance of Doc2vec in the “indirect

relevancy” function. To implement that we take Method 4 from RQ2

(which is GloBug Variation 1) and compare it with Method 6, which is

an implementation of GloBug Variation 2.

• RQ5: Finally, in RQ5 we will look at the performance of a combined tech-

nique (Method 7) were we use both global TF.IDF and Global Doc2Vec in

both relevancy functions. We will be comparing it with Method 4 (which

is GloBug Variation 1).

To combine the scores given by TF.IDF and Doc2Vec per relevancy func-

tion, we first normalize the score to [0:1] the their average is considered

as the final score per relevancy function.

The explained mapping between all seven methods and the RQs they answer

is represented in table 2.

4.4. Doc2Vec Parameters

In general there are several Doc2Vec implementations in the literature. The

major ones are Paragraph Vector, using a distributed memory model (PV-DM),

and Paragraph Vector using Distributed bag of words (PV-DBOW). We have

employed a model that uses combination of the two methods (similar to the
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Table 2: Summary of all seven methods of implementing BugLocator and GloBug

Direct Relevancy Indirect Relevancy

Doc2Vec TF.IDF Doc2Vec TF.IDF

Local Global Local Global Local Global Local Global

Method 1

Local TF.IDF
- - 3 - - - - -

RQ1 Method 2

Global TF.IDF
- - - 3 - - - -

Method 3 -

BugLocator
- - 3 - - - 3 -

RQ2 Method 4 -

GloBug Variation 1
- - - 3 - - - 3

Method 2 -

Global TF.IDF
- - - 3 - - - -

RQ3 Method 5 -

Global Doc2Vec
- 3 - - - - - -

Method 4 -

GloBug Variation 1
- - - 3 - - - 3

RQ4
Method 6 - GloBug Variation 2 - - - 3 - 3 - -

Method 4 -

GloBug Variation 1
- - - 3 - - - 3

RQ5
Method 7 - Combined - 3 - 3 - 3 - 3

Doc2Vec’s original paper). We have used the following default settings in our

experiments. For the PV-DM model: vector-size = 100, alpha = 0.045, window-

size = 5, min-count = 2, and min-alpha = alpha/2. For PV-DBOW model: the

vector-size and alpha are the same as PV-DM, the negative parameter is 5, hs

= 0, min-count = 2, sample = 0, and min-alpha = alpha/3.

4.5. Evaluation Metrics

To analyze the effectiveness of each method, most IRFL studies use Mean

Reciprocal Rank (MRR) and Mean Average Precision (MAP). We also use MRR

and MAP as two main metrics. In addition, we also report the Top N Rank

results.

In each comparison, we run Wilcoxon Signed Rank test[36], which is a non-

parametric paired hypothesis test, and we report the P-value to investigate any

statistically significant difference in the results.
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4.5.1. MRR

MRR is a statistical metric for evaluating an IR method that produces a

list of possible responses to a query. The reciprocal rank of a query is the

multiplicative inverse of the rank of the first correct answer. The mean reciprocal

rank is the average of the reciprocal ranks of results of a set of queries Q, and

is calculated as follows:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(6)

Therefore, MRR indicates the average rank of the first correctly retrieved

buggy file in the predicted list of source code files, when localizing the fault for

a set of query bug reports (Q). Therefore, the higher the MRR value, the better

the bug localization performance.

4.5.2. MAP

MAP is another metric for measuring the quality of an IR method, when a

query may have multiple relevant documents. The Average Precision of a single

query (AvgP) is the average of the precision values obtained for the query, which

is computed as follows:

avgPi =

M∑
1

p(j)× pos(j)
number of positive instances

(7)

In the equation above, j is the rank, M is the number of instances retrieved,

pos(j) indicates whether the instance in the rank j is relevant or not. P(j) is the

precision at the given cut-off rank j, and is defined as follows:

P (j) =
number of possitive instances in top j possitions

j
(8)

Then, the MAP for a set of queries is the mean of the average precision

values for all queries. The higher the MAP value, the better the bug localization

performance.
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4.5.3. Top N Rank

A study by Parnin et. al. [37] shows that FL techniques are helpful only

when the root causes are ranked at a high absolute position. Therefore, we

further use TopNRank to measure the efficiency of an IRFL method.

Top N Rank is the number of bugs whose associated files are ranked in the

top N (e.g. N= 1, 5, 10 in this study) of the returned results. Given a bug

report, if the top N query results contain at least one file at which the bug

should be fixed, we consider the bug as located. The higher the metric value,

the better the bug localization performance.

4.6. Experiment Results

In this section, first, the results of all seven techniques are represented to

answer the five research questions. Next, we further discuss our two heuristics

to see how successful they have been in our studied IRFL techniques.

4.6.1. Answers to RQs

In order to answer each research question, the performance of its two associ-

ated methods (based on Table 2) is visualized and compared against one another

in terms of MAP and MRR as two separate bar-charts. The 51 projects are

sorted based on the size of their source code repository (number of Java files)

and the size of their bug report repository (number of bug reports). Note that

in the comparisons, any difference less than 2% is considered as insignificant

difference.

Answer to RQ1: “Can a global corpus improve effectiveness of the

direct relevancy function in BugLocator?”

Figure 5 represents the performance of Method 1 (Local TF.IDF) and Method

2(Global TF.IDF), where both only use a direct relevancy function. As we see,

using the global corpus in the direct relevancy function, on average, causes 14%

improvement in 30 projects (58% of projects) in terms of MRR, while it im-

proves Local TF.IDF, on average 13% in terms of MAP in 27 projects (52% of

projects).
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Figure 5: RQ1 results in terms of MRR and MAP over 51 projects
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However, in some projects, the global corpus cannot contribute to the accu-

racy of Method 1 (Local TF.IDF). We see that in 21% of projects (11 projects)

with an average loss of 9% in MRR, and in 29% of cases (15 projects) with

an average of 9% loss in MAP, global corpus (Method 2) fails to improve the

Method 1 (Local TF.IDF). There is however, no clear evidence on the correla-

tion between the size of the project or its # of bug reports with the performance

of Method 2 (Global TF.IDF).

To assure that the difference in the results is not due to the chance, we per-

formed Wilcoxon signed rank test with H0=“The median results of two tech-

niques are not statistically different”. The results indicate that with a signif-

icance level of α = 0.05 , we can reject the null hypothesis both in the MRR

(p-value= 0.0027 < 0.05) and MAP (p-value=0.02187 < 0.05).

Based on these results, we answer RQ1 as:

Answer: “Yes, in most cases, global direct relevancy outperforms the local

relevancy, while using TF.IDF.”

Answer to RQ2: “Is a Global BugLocator more effective than local

BugLocator?”

Figure 5 represents the performance of original BugLocator (Method 3) and

a Global BugLocator (Method 4: GloBug-Variation1) in terms of MAP and

MRR as two separate bar-charts.

As we see, Method 4 outperformsBugLocator in 33 projects (64% of projects)

with an average of 14% in terms of MRR, while it improves MAP with an av-

erage of 14% in 28 projects (54% of projects).

On the other hand, in 15% of the cases (8 projects), there is a chance of

8% loss in MRR and 25% (13 projects ) chance of 8% loss in MAP, on average.

We again, do not see any correlation between size of project or number of bug

reports and the performance of the IRFL methods.

The result of Wilcoxon test indicates that with a significance level of α = 0.05

, we can reject the null hypothesis both in the MRR (p-value= 0.0 < 0.05) and

MAP (p-value=0.0062 < 0.05). Meaning that the difference between the results

of the two methods is not statistically insignificant.
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Hence, RQ2 is answered as:

Answer: “Yes, a Global BugLocator (i.e., GloBug-Variation1) outper-

forms the original local BugLocator in most cases and when it does not, the

loss is small.”

Answer to RQ3 “Is global Doc2Vec better than global TF.IDF, in

direct relevancy function?”

The RQ3 results are represented in Figure 7 in terms of MAP and MRR. As

we see, when Global TF.IDF in Method 2 is replaced by a Global Doc2Vec in

direct relevancy function (Method 5), the efficiency of fault localization drops

drastically in 49 projects (96% of the projects) with an average loss of 49% in

MRR and an average loss of 51% in MAP. Only, in a rare case (1 project),

we observe an improvement of 6.5% and 21.2% in terms of MRR and MAP,

respectively.

The Wilcoxon test result also indicates that with a significance level of α =

0.05 , we can strongly reject the null hypothesis and conclude that there is a

statistically significant difference both in the MRR (p-value= 0.0 < 0.05) and

MAP (p-value=0.0 < 0.05) in the performances of the two analyzed techniques.

Therefore, RQ3 is answered as:

Answer: “Having Global Doc2Vec as a stand-alone direct relevancy func-

tion, is not a good choice, and it may cause a drastic efficiency drop in most

cases.”

Answer to RQ4 “Does global Doc2Vec improve the effectiveness

of global TF.IDF in indirect relevancy function?”

Figure 8 represents the comparison between GloBug-Variation 1 (Method

4) and Variation 2 (Method 6), in terms of MRR and MAP. As we see, replacing

global TF.IDF-based indirect relevancy function with a global Doc2Vec results

in an average improvement of 6% in MRR in almost 17% of the projects (9

projects), and an average of 9% improvement in MAP in 15% of the projects (8

projects).

However, in other 27% (14 projects) and 41% (21 projects) of the cases,

with average of 5% and 4% loss in MRR and MAP, GloBug-Variation 2 fails to
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perform as good as GloBug-Variation 1.

Although the Wilcoxon test results indicates significant difference (with sig-

nificance level of α = 0.05), both in terms of MRR (p-value= 0.0467 < 0.05) and

MAP (p-value=0.00208 < 0.05), looking at the actual values, the two techniques

seem to be practically very close in terms of MRR and MAP,

Therefore, the answer to RQ4 is:

Answer: “No, GloBug-Variation 2 indeed performs worse (Avr: 5% and

4% loss in MRR and MAP) than GloBug-Variation 1, in most cases. However,

in cases where it is better, the improvements are higher (Avr: 6% and 9% in

MRR and MAP). Therefore, more careful studies are needed when applying

Doc2Vec in a IRFL.

Answer to RQ5: “Does combining global Doc2Vec and global

TF.IDF improve the effectiveness of global BugLocator?”

As explained in RQ3 and RQ4, a global Doc2Vec model may not always be

a good substitution for the global TF.IDF in the direct or indirect relevancy

functions, and in some cases it may even cause a drastic drop in the FL perfor-

mance. Therefore, in RQ5, the goal is to assess the performance of a combined

method (Method 7) in which both direct and indirect relevancy functions are

implemented using a combination (average score) of global Doc2vec and global

TF.IDF.

Figure 9 represents the performance of “Combined” method (Method 7)

and GloBug-Variation 1 (Method 4), comparing their MRR and MAP, in 51

projects. As we see, in 39%of projects (20 projects) the combined method

outperforms the Method 4, with an average of 10% improvement in terms of

MRR. However, in other 41% of cases (21 projects), it causes an average loss of

10%.

We also see that in terms of MAP, in 35% of projects (18 projects), the

“Combined” method causes an average of 9% improvement, while in other 39%

of studied projects (20 projects), it results in an average loss of 11%. In RQ5,

also we performed Wilcoxon signed rank test. However, this time the results

indicate that we fail to reject the null hypothesis at the significance level of α =
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Figure 9: RQ5 results in terms of MRR and MAP over 51 projects
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Figure 10: RQ5 results in terms of Top N Ranks (N=1,5,10) over 51 projects
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0.05 both in the MRR (p-value= 0.7642 > 0.05) and MAP (p-value=0.55484 >

0.05). This means that there is no statistically significant difference in the

performance of the two analyzed methods. Since the performance results of

combined method and Method 4 are very close in terms of MRR and MAP, we

further analyzed the performance of the two techniques by conducting a deeper

study in which the two methods are monitored in terms of Top N Ranks.

Figure 10, represents the performance of the two methods in retrieving the

first relevant file in the top one, five and ten ranked files, as three figures. We

see that the “Combined” method is performing better than Method 4 in 41%

of cases (21 projects) in ranking the relevant files at the top one with 20%

improvement on average. However, in 19 projects (37% of cases), the number of

first ranked buggy files is less in the “Combined” method by 17%, compared to

Method 4, on average. Therefore, we conclude that the “Combined” method is

better at retrieving the buggy files as its first ranked file compared to Method

4 (GloBug-Variation 1), in the studied 51 projects.

Observing the next two charts, we see that Method 4 is slightly better than

the “Combined” method in ranking the buggy files in the top five ranked files.

However, the “Combined” method is better in retrieving the buggy files in the

top ten ranked files.

Now, considering all the aforementioned analyzes, we summarize RQ5 as:

Answer: Although Global Doc2Vec is contributing in capturing the seman-

tics of documents in direct and indirect relevancy functions, in some projects,

by adding too much complexity to the TF.IDF, it decreases the accuracy of the

FL process. Therefore, application of Doc2Vec as an IRFL method must be

accompanied with cautious.

5. Discussion

This study was formed around two heuristics to analyze the effect of global

data and a complex Word Embedding technique on current IRFL methods. In

the following two subsections, we further explain the findings with respect to
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Figure 11: Performance of our first heuristic methods on the 51 projects

each heuristic.

5.1. Discussion from the perspective of the first heuristic: Global Data

Figure 11 summarizes the performance (in terms of MAP and MRR) distri-

bution of the four methods evaluated in heuristic 1 (RQ1 and RQ2), across the

51 projects. Comparing the mean performance of the first two methods, we see

that global training will cause an average improvement of 4.4% (from 0.402 to

0.42) in terms of MAP. Also, in terms of MRR, we see an average improvement

of 5.5% (from 0.508 to 0.536), over the 51 projects.

Comparing the mean performance of Method 3 and Method 4, we also see

an average improvement of 4.8% (from 0.411 to 0.431), in terms of MAP, and

6.6% (from 0.511 to 0.545), in terms of MRR, in the 51 projects. This amount of

improvement rates are significant compared to the improvement rates of other

IRFL techniques that were proposed after BugLocator.
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releases associated with reports used in previous studies are no
longer available.

3.5 Test File Inclusion
This study uses two di�erent strategies for search space construc-
tion: (1) with test code �les and (2) without test �les. Most IRBL
techniques select the �rst strategy; a bug localization technique
scans all source code �les (e.g., “⇤.java”) in a target project to create
a search space. Among the six techniques adopted in this study,
only Locus [45] does not include test code �les. The technique ex-
cludes test code �les since the authors assumed that test �les are
not the target of bug localization. Speci�cally, the authors stated
that the inclusion of test �les may cause bias or noise since some
test �les contain speci�c bug identi�ers and they are created after
the bug is �xed. Note that this situation happens only when using
single version matching.

To prepare the search space without test code �les, we use the fol-
lowing procedure: (1) �lter out �les if its path contains “. . . /test/. . . ”
or “. . . /tests/. . . ”, and (2) exclude source code �les if its �le name
ends with “. . .Test.java”. Although this procedure may cause false
positives (i.e., non-test �les can be excluded) or false negatives (i.e.,
test �les can remain in the search space), most projects in the sub-
jects listed in Table 1 follow the path and �le naming rules and the
above procedure can be e�ective.

4 ANALYSIS RESULTS
4.1 Baseline Performance
We apply each considered IRBL technique to every subject listed
in Table 1, and check the output ranked list of source code �les
identi�ed as potential bug locations against the collected ground
truth dataset previously collected from the subjects. As described in
Section 3.1, we use the default parameters speci�ed in the original
work of the six IRBL techniques.
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Figure 3: Distribution of MAP/MRR values of subjects for
each technique: All (old/new) subjects listed in Table 1 with
single version matching and test �les included.

Note that the performance values shown in Figure 3 are measured
with the following setting: (1) all subjects (old + new) listed in
Table 1, (2) single version matching strategy, and (3) including test

code �les. This setting is similar to the con�gurations used in the
evaluation of the six techniques described in Section 3.1 (cf., Locus
does not include test �les by default).

We measured the performance (MAP and MRR) by applying
each IRBL technique to each subject. Figure 3 shows the overall
distributions of MAP and MRR for each technique. MAP values of
all techniques are ranged from 0 to 1. While BLUiR and AmaLgam
have higher outliers, BLIA has the best top value (0.774 of the
IO subject). The average values are 0.37, 0.39, 0.37, 0.38, 0.36, and
0.36, respectively (in sequence of BugLocator, BRTracer, BLUiR,
AmaLgam, BLIA, and Locus). MRR (Figure 3b) values are also ranged
from 0 to 1. The average values are 0.50, 0.52, 0.47, 0.48, 0.49, and 0.47,
respectively (with the same sequence of MAP’s average values).

In spite of small di�erences observed above, none of the six
techniques substantially outperforms the others, all presenting a
tight range of MAP and MRR values; the median values of MAP
and MRR are ranged as 0.350 – 0.380 and 0.430 – 0.516, respectively.

From the perspective of practice, users of IRBL techniques can
expect a similar performance by using any of the six techniques. Al-
though each technique yields better performance for some projects
(MAP: 0.6 — 0.75 and MRR: 0.75 – 1.0), it is not feasible to �gure
out whether an IRBL technique works better for a speci�c project
without a prior knowledge. This encourages to characterize project
characteristics and investigate the sensitivity of IRBL techniques
on the characteristics.

In addition, the overall MAP and MRR values suggest that the
�eld of IR-based bug localization still has much room for improve-
ment from the research perspective. Despite recent e�orts in bug
localization, 35 – 50% precision and recall values (even for �le-
level) might not acceptable to practitioners. Further investigation
should include (1) the characteristics of those projects for which the
IRBL techniques ine�ectively perform, (2) the acceptable level of
performance to users, and (3) e�ective granularity of localization.

On the need for a further analysis

There are no signi�cant di�erences, in terms of performance,
among the six investigated IRBL techniques. A thorough anal-
ysis of the limitations can reveal various opportunities for re-
search directions for improving the state-of-the-art.

4.2 RQ1: Subject Groups
To compare the performance of the techniques between old and new
subject groups, we compute MAP and MRR values for each subject.
Our results are summarized in two di�erent ways: (1) Table 2 sum-
marizes the results of each technique assuming all the bug reports
are aggregated into a single (virtual) project and (2) Table 3 shows
individual performance values each pair of project and technique.
In the single virtual evaluation setting, we compute MAP and MRR
values assuming all bug reports are in a single project. In the latter
setting, the values are computed by each project. Therefore, the
average MAP/MRR values in Table 3 are di�erent from the values
in Table 2. In Table 2, we use Mann-Whitney U test [26] to �nd out
whether the di�erences are signi�cant. This statistical test is also
used for comparing the average of the following experiments. In Ta-
ble 3, the highest MAP and MRR values for each subject across the
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Figure 12: Performance of five state-of-the-art IRFL techniques along with BugLocator on

the 51 projects. Data are collected from Lee et at. study [10].

In this section we take five state-of-the-art BugLocator extensions that are

studied in the Bench4Bl paper [10] (BLUiR [28], BRTracer [30], Amalgam [27],

BLIA [29], and Locus [25]) and compare their improvements over BugLocator

to our approaches’ improvements.

Note that these methods do not make any changes to BugLocator’s rel-

evancy functions. They only add new features to BugLocator by exploiting

unused information existing in the software projects (see the related work sec-

tion, Section 7, for more details). In other words, in theory Global data can be

introduced to all these tools as well.

Figure 12 shows the performance distribution of the five recent IRFL tools

along with the BugLocator’s. Comparing the mean performance of the five
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methods with BugLocator2, we see that BLIA and Locus not only fail to con-

tribute to the average performance of BugLocator but also with an average loss

of 2.7% in terms of MAP and average losses of 2% and 6% in terms of MRR,

decrease the efficiency of BugLocator. Although Amalgam improves the mean

performance of BugLocator in terms of MAP, with an average loss of 4% it

reduces the effectiveness of BugLocator in terms of MRR. The mean perfor-

mance of BLUiR is almost identical to the mean performance of BugLocator in

terms of MAP. However, its efficiency is less than BugLocator by a rate of 4%

in terms of MRR.

Among these five IRFL methods, BRTracer is showing the best mean perfor-

mance. BRTracer leverages the stack trace data provided in the bug reports to

improve the effectiveness of the relevancy functions in BugLocator. Applied on

the 51 projects, BRTracer improves the mean performance of the BugLocator

by average rates of 5.4% and 4% in terms of MAP and MRR, respectively. Al-

though the mean improvement of BRTracer is significant compared to the other

methods, this improvement is not reflected in the median values. We see that

in terms of median values, BRTracer improves BugLocator only by small rates

of 0.5% (0.363 to 0.365) and 3.8% (0.497 to 0.516) in terms of MAP and MRR.

GloBug without extracting any new data from the software project (like

stack trace) and only using the available global training data (Bench4Bl) once

offline, not only improves the mean performance of BugLocator significantly

(4.8% and 6.6% in terms of MAP and MRR), but also improves the median

values by rates of 6.8% (0.395 to 0.422) and 7.6% (0.51 to 0.549) in terms of

MAP and MRR when applied to 51 projects.

Note that the the idea of using an offline globally trained model for relevancy

function can be added to all these five tools as well and potentially provide more

2Note that the performance mismatching of the BugLocator between Figure 11 and Figure

12 is due to the versioning differences of the subject projects between our study and Bench4BL

(we used the most up-to-date versions). However, this will not affect our relative comparisons.

We contacted the authors of Bench4BL and confirmed this with them.
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Figure 13: Performance of our second heuristic methods on the 51 projects

total improvements over BugLocator.

5.2. Discussion from the perspective of the second heuristic: Word Embedding

Technique

Figure 13 summarizes the performance result of the next three studied meth-

ods (Method 5, 6, and 7) and compare them with Method 4 (GloBug-Variation

1) in terms of MRR and MAP. As we see, Method 5 (Global Doc2Vec) with the

lowest mean values of MRR and MAP, has the poorest performance among all

four methods. Performance of Method 6 (GloBug-Variation 2) is very similar

to Method 4 (GloBug-Variation 1). However, the mean performance of Method

4 is slightly better with rates of 1.6% and 1.1%, in terms of MAP and MRR.

Comparing performance results of Method 7 (the “Combined” method) and

Method 4 (GloBug-Variation 1), we see that in terms of MAP Method 4 has

a better mean performance with a rate of 0.9% in the studied 51 projects.
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Fixes:  

SimpleJPARepository.java

project: DATAJPA

Indirect Relevancy

GlobalDoc2Vec
Indirect Relevancy

GlobalTFIDF

If you have a repository that extends 
JpaSpecficationExecutor and use the findAll 
method with a Specification, the resulting 
query excludes null matches from the result.  
This may be related to issue DATAJPA-252.
I’ve attached a test case that demonstrates 
how DATAJPA-252 is fixed but this is still an 
issue.

Most Similar History Bug Report Detected by GlobalDoc2Vec

Most Similar History Bug Report Detected by GlobalTFIDF

EclipseLinkNamesPaceUserRepositoryTests.java

SimpleJPARepository.java

Method 2: 
GlobalTFIDF (Direct) + GlobalDoc2Vec (Indirect)
Top Found: 7th rank 

Method 1: 
GlobalTFIDF (Direct) + GlobalTFIDF (Indirect)
Top Found: 1st rank 

Bug Report ID: 277

Bug Report ID: 363

Query Bug Report ID: 517

SimpleJpaRepository.delete(ID id) calls 
exists() to detect whether an entity with the 
given identifier exists. If that’s the case 
it loads the entity and passes it on.
The exists call is superfluous as we can 
simply check the result of findOne() for null 
and thus avoid the additional SQL statement 
to be executed.

DATAJPA-173 introduced a 
CrudMethodMetadata 
abstraction used in 
SimpleJpaRepository. As 
it’s an optional dependency 
(configured through a 
setter) we do guard access 
to it with null checks. 

GloBug - Variation 1

GloBug - Variation2

Figure 14: An example scenario where (GloBug-Variation 1) outperforms (GloBug-Variation

2)

However, the median of Method 7 is 0.7% higher. Also, in terms of MRR,

we see that the two methods have the same mean performance. However, the

median is 1.6% higher in Method 7.

Therefore, the conclusion is that a complex Word Embedding method can

potentially enable better exploitation of global data and as a result, outperform

the global TF.IDF , however, this requires a systematic characterization of IRFL

methods per projects, to understand in which projects such an embedding will

be useful. In the following section, we take a look at one example scenario

where Method 6 (GloBug-Variation 2) fails to improve the Method 4 (GloBug-

Variation 1), and leave the systematic characterization study to future work.
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Doc2vec Noises 

GlobalDoc2vec has detected another bug report (ID:277) as the most similar

The actual similar 
bug report (ID:363)

The query bug report (ID:517)
The actual most relevant history bug report (ID:363)

Figure 15: 2-D Visualization (using TSNE) of Doc2Vec vector space for DATAJPA project

with 144 bug reports

5.2.1. An example scenario where simple is better than complex

Figure 14 represents an FL process where GloBug-Variation 1 (using global

TF.IDF) outperforms GloBug-Variation 2 (using global Doc2Vec). This is a sce-

nario in a software project called DATAJPA with 114 bug reports and a code

repository of 330 Java files. The root cause of the bug is lying in a Java file called

“SimpleJPARepository.java”. Method 4 (GloBug-Variation 1) successfully lo-

cates the relevant file as its first ranked file, while Method 6 (GloBug-Variation

2) ranks the relevant file at its 7th rank.

In this scenario, the global Doc2Vec model not only fails to improve the

performance of the global TF.IDF , but also with adding too much complexity,

it damages the performance of TF.IDF -based relevancy functions. This means

that the semantics of the bug report, which is learned by the global Doc2Vec

model is misleading the FL process.
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As mentioned, in GloBug-Variation 1, an indirect similarity score is calcu-

lated based on the common terms that appear in the two bug reports. As we see

in this example, since the query bug report (ID:517) and its most similar history

bug report (ID:363) both describe the problem with common program-related

terms (highlighted), the Global TF.IDF is able to capture the correct relevance.

However, in GLobal Doc2Vec the scoring process is much more complex than

just looking at the common terms. In Global Doc2Vec, a neural network is

trained using the co-occurrence of terms in all bug reports and source files of

all global projects. Although this complexity enables a higher level of semantic

comparison, in some cases such as this example, with too much noise added, it

becomes misleading.

Although we cannot inspect why Doc2Vec is working this way in this ex-

ample, due to the lack of explainability of neural networks, we visualize the

Doc2Vec vector space of all 144 bug reports in DATAJPA in order to better

understand the way that bug reports are ranked in this particular example.

First, we reduced the Doc2Vec vector space into 2 dimensional space to be able

to visualize the bug reports in 2-D space. Figure 15 depicts the 2-D visual-

ization of Global Doc2Vec vector space for 144 bug reports of DATAJPA that

was reduced from their original vector space into 2-D vector space using t-SNE

[38]. In this figure, the yellow dot denotes the query bug report and its actual

most relevant history bug report is represented as a green dot. In this example,

Global Doc2Vec is detecting 5 other bug reports more relevant to the query bug

report and it has detected another bug report (ID:277) as the most relevant

history bug report. The text of this bug report is represented in Figure 14.

The reason why global Doc2Vec is able to contribute to the performance

of the IRFL in some cases while it fails in some other cases, can be inspected

in several factors. One of the most important factors is the quality of the bug

report. In an IRFL process, bug report plays the most essential role. The effec-

tiveness of the FL process is highly dependant on the quality of information (e.g.

used language, keywords, stack-trace, etc.) that is provided in the bug report.

For example, in this scenario, the person who has reported the problem seems
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to have very good knowledge of the software’s internal structure. Therefore,

he/she is describing the problem very precisely with terms that are specific to

this software project.

Based on the quality of a bug report, a certain IRFL method may be more

suitable among other methods. For example, in this scenario, TF.IDF based so-

lution will find several vocabulary matching between the bug report and the java

file and as a result, ranks the relevant file at a very high position. But, Doc2Vec

with adding too much complexity, disturbs the simple matching mechanism of

the TF.IDF-based solution.

However, there are other factors involved in the determination of an IRFL

performance as well. Size of a software project, size of the bug report reposi-

tory, quality of other bug reports, pre-processing, and many other factors may

influence the performance of an IRFL in a software project.

To summarize our second heuristic’s discussion, we can say that a complex

method is not always contributing to the IRFL performance. As Fu et. al. [39]

also argue in their paper (“Easy over hard: a case study on deep learning”),

sometimes simple algorithms work better than very complex models such as

DNNs and complex algorithms should be applied cautiously in SE problems.

6. Threats to validity

In terms of construct validity, we have used existing benchmarks, tool sets,

and libraries to avoid implementation biases. We have also contacted authors

of Bench4BL and confirmed our replication of their code-base and results.

Regarding internal validity, we have carefully designed multiple controlled

experiments to separate the effects of relevancy function and the data-set, to

avoid confounding factors when drawing conclusions.

With respect to conclusion validity, in each comparison, we run Wilcoxon

Signed Rank test, which is a non-parametric paired hypothesis test, and report

the P-values to make sure the conclusions are statistically valid.

Finally, in terms of external validity, we have used one of the biggest bench-
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mark data-sets in fault localization studies to be able to draw more general-

izeable conclusions. However, as always, it would be nice to be able to apply

the findings on an industrial case study to see if the findings are only valid on

open source systems or can be generalized to industrial cases as well. We also

made sure to not generalize the results to any technique outside of what we have

experimented with (Doc2Vec and TF.IDF).

7. Related works

If we characterize BugLocator as an IRFL technique that uses local TF-IDF

and our study as a global TF.IDF plus a global embedding-based IRFL, we can

classify the related IRFL work as those that use other relevancy functions than

local TF.IDF and those that expand on the local TF.IDF implementation of

BugLocator.

In the first category (non-TF.IDF-based relevancy functions), topic model-

ing is among most common ones. For example, Lukins et. al. [24, 5] presented

an IRFL method based on Latent Dirichlet Allocation (LDA), where the vec-

torization is done using the LDA topic memberships per words. Although the

application of topic modeling in FL was a novel idea at the time, it could never

beat TF.IDF.

In terms of using a neural embedding as the vectorizer, to the best of our

knowledge, there is only one study by Xiao et al. [40] in which they introduce

DeepLoc. DeepLoc is composed of an enhanced CNN that considers bug-fixing

recency and frequency, together with Word Embedding and feature detecting

techniques. However, the results of their baseline (BugLocator) reported in

this paper are not consistent with the original BugLocator paper, which is

what we have reproduced. Therefore, given that this paper’s results were not

reproducible, we could not compare our approach with DeepLoc.

In terms of using Doc2Vec in other applications within software engineer-

ing, Doc2Vec has been successfully applied in the security domain for malware

detection. For example, Ndichu [41] and Mimura [42] have applied Doc2Vec to
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detect malware in Java Script and Visual Basic for Applications (VBA), respec-

tively. Both studies show that regarding accuracy Doc2vec produced the best

performance compared to other conventional language models in their experi-

ment.

We also could not find any study that proposes a global corpus for the

training phase in IRFL literature.

In the second category (those that extend BugLocator’s idea of a TF.IDF

on bug reports and source code), however, there are many recent studies. All

these techniques suggest extracting some extra data to leverage during the FL

process. For example, in 2013, Ripon K. Saha et. al. proposed BLUiR [28],

which is built on top of BugLocator. BLUiR extracts code entities (e.g. classes,

methods, and variable names) from bug reports and leverages them in the FL

process. The authors showed that BLUiR outperforms BugLocator in a set of

4 software projects.

In 2014, Chu-Pan Wong et. al. introduced BRTracer [30], which is also

an extension of BugLocator. In some cases, stack traces are included in bug

reports. So BRTracer analyzes stack traces shown in bug reports to improve

bug localization accuracy. In the same year, Shaowei Wang et. al. introduced

AmaLgam [27], which utilizes revision history in addition to similar reports and

code entities.

In 2015, Klaus Changsun Youm et. al. proposed BLIA [29], which combines

information such as similar reports, revision history, code entities, and stack

trace information all together to improve the performance of BugLocator.

In 2016, Ming Wen et. al. introduced Locus [25], the most recent tech-

nique, that leverages code change information to localize the buggy parts of the

software.

In another work, Xin Ye et. al. [43] introduce an adaptive ranking ap-

proach that leverages domain knowledge through the functional decomposition

of source code files into methods, API descriptions of library components used

in the code, the bug-fixing history, and the code change history. Given a bug

report, the ranking score of each source file is computed as a weighted combina-
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tion of an array of features encoding domain knowledge, where the weights are

trained automatically on previously solved bug reports using a learning-to-rank

technique.

In 2018, M. M. Rahman introduced BLIZZARD [31], which is an IR-based

bug localization technique. In this study they locate buggy entities using appro-

priate query and an effective information retrieval technique. They use different

reformulations for each type of bug report.

In another work [33], C Mills et. al. studied bug reports, to see if they have

enough information for bug localization. In this work they studied the biases

that may occur in the evaluation of IR-based techniques. They claim that the

bug report vocabulary is enough to formulate a query for bug localization.

Recently in 2020, C Mills et. al. proposed an approach [32] that uses genetic

algorithm to extract a near optimal query from bug reports. Their GA select a

subset of words from bug report to get better performance in IR-based methods,

even when there is no localization hint in the bug report.

Also, there are other works like [44], which have used n-gram method to

improve information retrial. We can also mention [45], which has combined

Information retrieval and spectrum based bug localization to get better results.

In addition, there are a few recent studies that use machine learning to train a

supervised model for IRFL. Ngoc Lam et. al. present HyLoc [46], a direct-IRFL

method that uses Deep Neural Network (DNN) in combination with rVSM.

rVSM collects the feature on the textual similarity between bug reports and

source files. Then, DNN is used to learn to relate the terms in bug reports to

potentially different code tokens and terms in source files and documentation if

they appear frequently enough in the pairs of reports and buggy files.

The main difference between our proposed approach (Globug) and these re-

lated work is that Globug can be considered as a complementary approach that

can work along side many other heuristics. It also does not require extracting

or preparing any extra information statically or dynamically. The only extra

information Globug uses is the freely available benchmark dataset (no prepara-

tion is required), which is used to train our language models only once, offline.

46



The trained models (whether it is an embedding or a simple IDF) will then be

reused to localize any new bug report on any project under study, with no extra

overhead compared to basic BugLocator. In other words, unlike some related

work that require information such as stack trace data, revision history, or code

change information, Globug is as light-weight as BugLocator and thus more

applicable in industry were all the other extra requirements may not be always

available.

8. Conclusion and Future Work

This study was formed around two heuristics. First, we investigate the effect

of a global training corpus on the performance of a state-of-the-art IRFL method

in two modes of direct and combined (direct + indirect). Next, we study how a

complex Word Embedding technique can be incorporated into an IRFL solution.

We introduced Globug with two variations to implement these heuristics and

directly compared it with BugLocator as a common baseline in IRFL.

The results showed that global data (heuristic 1) improves BugLocator with

an average rate of 14% in terms of MRR and MAP in 64% and 54% of the cases

respectively. Also, heuristic 1 improved the mean performance of BugLocator

with average rates of 6.6% and 4.8% in terms of MRR and MAP when applied,

on 51 software projects. We also showed that this amount of improvement

is significant compared to the improvements of five other more recent IRFL

methods provide over BugLocator. In addition, we discussed that our method

does not require collecting extra data (such as change history or stack traces) per

new project or new bug and works using a pre-trained model (one-time offline

training) on a benchmark for all new projects and bugs. We also showed that a

complex Word Embedding solution such as Doc2Vec is not always effective and

in some cases not only does not improve the performance of the IRFL method

but also with adding too much noise, disturbs the performance of the simpler

TF.IDF method.

As a future study, we are planning to characterize the behaviour of the IRFL
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techniques, in the 51 software projects, to observe the factors that determine

the performance of the FL methods. The characterization takes place before

applying the IRFL methods and is based on the current associations between

source code files and bug reports, per project. It also leverages well-know static

software metrics to characterize a project. Then predictive models are built

based on this dataset to learn which type of projects require a more advance

IRFL method and which ones are just fine with BugLocator. As explained in

section 5, leveraging global data shows promising results in BugLocator both

in direct and indirect relevancy functions. Therefore, as another future work,

we are planning to investigate global data on more existing IRFL techniques,

specially those that are built on top of BugLocator. Finally, we plan to use more

recent word embedding techniques from NLP to see if the poor performance

of Doc2Vec can be overcome for example with a context-ware model such as

BERT[47].
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