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ABSTRACT Visual-based target tracking is easily influenced by multiple factors, such 

as background clutter, targets’ fast-moving, illumination variation, object shape change, 

occlusion, etc. These factors influence the tracking accuracy of a target tracking task. To 

address this issue, an efficient real-time target tracking method based on a low-dimension 

adaptive feature fusion is proposed to allow us the simultaneous implementation of the 

high-accuracy and real-time target tracking. First, the adaptive fusion of a histogram of 

oriented gradient (HOG) feature and color feature is utilized to improve the tracking 

accuracy. Second, a convolution dimension reduction method applies to the fusion 

between the HOG feature and color feature to reduce the over-fitting caused by their 

high-dimension fusions. Third, an average correlation energy estimation method is used 

to extract the relative confidence adaptive coefficients to ensure tracking accuracy. We 

experimentally confirm the proposed method on an OTB100 data set. Compared with 

nine popular target tracking algorithms, the proposed algorithm gains the highest tracking 

accuracy and success tracking rate. Compared with the traditional Sum of Template and 

Pixel-wise LEarners (STAPLE) algorithm, the proposed algorithm can obtain a higher 

success rate and accuracy, improving by 2.3% and 1.9%, respectively. The experimental 

results also demonstrate that the proposed algorithm can reach the real-time target 

tracking with 50+fps. The proposed method paves a more promising way for real-time 

target tracking tasks under a complex environment, such as appearance deformation, 

illumination change, motion blur, background, similarity, scale change, and occlusion. 

INDEX TERMS Feature fusion, Target Tracking, Real Time

I. INTRODUCTION 

Target tracking using visual information is a very important tool in many fields, such as civil and 

military [1], automatic driving, intelligent monitoring, etc. The accuracy of tracking algorithms can 

directly determine the success of a tracking task. Unfortunately, current tracking algorithms have 

relatively low accuracy in a complex imaging environment because the tracked target’s visual 
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information is easily disturbed by many factors, such as background clutter, targets’ fast-moving, 

illumination variation [2-4], object shape change, occlusion, etc. 

      To address this problem, many target tracking algorithms [5]-[7] have been proposed. Currently, 

target tracking algorithms widely adopt a discriminative model method, such as minimizing the output 

sum of squared error (MOSSE) [8], exploiting the circulant structure of tracking-by-detection with 

Kernels (CSK) [9], Kernelized Correlation Filter (KCF) [10-11], STAPLE, Discriminative Scale Space 

Tracker (DSST) [12]-[13]. Current investigations demonstrated that the histogram of oriented gradient 

(HOG) feature [14, 15] is a valuable parameter in the target tracking process, which was widely used in 

target tracking algorithms. The HOG feature is good for motion blur and light change. Unfortunately, 

the HOG feature is not good for deformation and fast motion. 

To improve the target tracking accuracy, a multiple-feature-based fusion method is the necessary 

step of target tracking algorithms. A kernel-related tracking method based on adaptive feature fusion 

was proposed to reduce illumination sensitivity (IS) [16]. The STAPLE algorithm combines the 

histogram of oriented gradient (HOG) [14] and color statistical features to find the target location. As 

mentioned in HOG, the HOG feature is good for motion blur and light change. The color feature is not 

sensitive to deformation, and it is not good for light changes and background color similarity. The two 

feature fusion can compensate for the corresponding drawbacks. Through these two feature fusions, the 

STAPLE algorithm has a very good tracking accuracy [17-24]. However, the conventional STAPLE 

algorithm couldn’t get the optimal fusion results because it adopts constant coefficients to perform the 

two-feature fusion.  

In this paper, we propose a real-time target tracking method based on a low-dimension adaptive 

feature fusion capable of the simultaneous implementation of high-accuracy and real-time target 

tracking. In the STAPLE algorithm, we found that the updated model includes too many updated 

parameters at every updating operation, which indicates the updated model needs to process the high 

dimension data. The high dimension process results in the slow speed of tracking algorithms and easily 

produces an over-fitting issue. Moreover, the HOG and color feature fusion is based on a constant-

coefficient rule, which limits the tracking accuracy under different circumstances. The proposed method 

adopts a low-dimension adaptive feature fusion algorithm composed of three aspects. First, the adaptive 

fusion of the HOG feature and color feature is performed to improve tracking accuracy. Second, the 

proposed method adopts a convolutional dimension reduction method to the fusion between the HOG 

feature and color feature to reduce the over-fitting problem caused by their high dimensions fusions.  

Third, an average correlation energy estimation method is used to extract the relative confidence 

adaptive coefficients to ensure tracking accuracy. In the average correlation energy estimation method 

the fusion coefficients can determine the best filter from a correlation filter and a Bayes classifier [25]-

[33] to better complete the tracking. Based on these advantages, the proposed algorithm can implement 

an accurate target tracking task at a real-time condition. 

II. PROPOSED ALGORITHM 

A. STAPLE ALGORITHM 

The HOG feature is a gradient feature of cell size. The HOG feature has a good tracking performance 

within an image local area.  However, The HOG feature has an inferior performance within a whole image 

area. The color features are achieved by extracting the color histogram of a global image [34]-[41], which 

has a good tracking performance within a whole image area. The STAPLE algorithm can fully fusion the 

two features to perform the tracking algorithm.  
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The position of an observed target in the t
th

 frame is defined by the maximum response (having the 

highest score) of a rectangular box (denoted by p) in the image xt, in which the maximal rectangular box 

can be expressed as:  

  1arg max , ;
tt p S t tp f T x p    ,                                                                                                                   (1) 

where T (·) expresses an image transform function, θ is a model parameter, St is the rectangular box set 

in the t-th frame. In Eq.1, using different model parameters θ, f (T (xt, p); θt-1) can generate different 

scores of the rectangular box p. To obtain the highest score, the optimum model parameters should 

ensure minimizing a loss function. The loss function is denoted by L(θ; Xt), where Xt is an image set 

consisting of the previous images and the location of the observed target. That is Xt=(xi, pi)i
t
. In Eq.1, 

the t-th frame model parameter θt can be obtained by minimizing a loss function as 

 argmax ( ; ) ( )t Q tL X R      ,                                                                                                                  (2) 

where Q is the model parameter space, R(θ) is a regularization term, and λ is the weight. To efficiently 

and fast solve Eq.1 and Eq.2, f is realized by a linear combination of a template and a histogram as  

   ( ) tmpl tmpl hist histf x f x f x    ,                                                                                                                     (3) 

where γtmpl and γhist are the weight of the template and histogram score allocations, ftmpl is a score 

allocation function of the template, and fhist is a score allocation function of the histogram. ftmpl can be 

defined by a linear combination equation as 

     ;
T

tmpl xT
f x h h


  


  ,                                                                                                                       (4) 

where, ϕx is a featured image obtained from x, h is the weight vector obtained from x, T is a patch set in 

x, and u represents a pixel position of a patch in T. Accordingly, fhist(x) of Eq.3 can be expressed as    

   ; ;hist xf x g                                                                                                                                        (5) 

with  

   
1

; = T

x H
g

H 
    



 
 
 

  ,                                                                                                                       (6) 

where φx is a featured image obtained from x, β is the model parameter, and H is a patch set in a feature 

image φx. Eq.4 is the convolution operation of HOG template h and the patch of HOG features, which is 

equivalent to a CF filter. By calculating the HOG feature, a correlation filtering tracking algorithm is 

performed to obtain the fraction of ftmpl. Through calculating the color features, the fraction of fhist is 

obtained. The combination with two obtained fractions is used to complete the fusion.  

In Eq.2, to accelerate the fusion calculation, the overlapping windows should share a feature 

calculation. The histogram scores can be calculated by an integral image. We define the training loss 

using a weighted linear combination of single image loss as: 

   
1

; , ,
T

T t t t

t

L X w l x p 


  ,                                                                                                                           (7) 

where L(θ, XT) is the training loss function, l(xt, pt, θ) is the frame’s loss function, and wt is coefficient. 

In Eq.7, the loss function of each image is: 

   , , = ,arg max ( ( , ); )p Sl x p d p f T x q 
 ,                                                                                                         (8) 

where d(p, q) defines the cost of choosing rectangle q when the correct rectangle is p.  

In Eq.2, the parameter of the whole model is θ=(h, β). The speed and effectiveness of the 
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correlation filter can be obtained by solving two independent ridge regression problems to learn the 

model as: 

 
21

arg min ;
2

t h tmpl t tmplh L h X h
 

  
 

 ,                                                                                                          (9) 

 
21

arg min ;
2

t hist t histL X   
 

  
 

 ,                                                                                                       (10) 

where ht and βt are two independent ridge regression.  

When L(θ; x) is a convex function of f (θ; x) and f(θ; x) is linear with respect to θ, there are a 

matrix At and a vector bt to meet the following equation as: 

 
2 1

( , )
2

T T

t t tL X A I b const            .                                                                                        (11) 

In the case of least-squares correlation filtering, the loss of each image is expressed as:   

2

1
( , , )

K k k

tmpl k
l x p h h y


     ,                                                                                                                   (12) 

where h is the input image, ϕ is is the filter template, y is the ideal response, ltmpl(x,p,h) is the loss 

function, and h
k
 refers to channel k of multi-channel image h. Therefore the normalized objective 

function is: 

      
1ˆ ˆ ˆh s I r   


    ,                                                                                                                          (13) 

where [̂ ]s  is a K × K matrix with elements and [̂ ]r  is a K-dimensional vector with elements ˆ [ ]ir  . 

Accordingly, the histogram loss of each image is expressed by: 

  
2

( , )( , )
( , , ) T

hist T x qq y H
l x p y


   


  
     .                                                                                            (14) 

The histogram score is obtained by the average vote in the feature RGB color. Here, the target function 

of each image is used for linear regression of each feature pixel as: 

       
2 21 1

, , 1T T

hist B
l x p

O B  
      

 
    ,                                                                                (15) 

where O and B is the pixels of an image. 

B. CONVOLUTION DIMENSION REDUCTION 

In this paper, we adopt an improved scheme on feature fusion, which is convenient for the algorithm to 

track targets better after extracting features from STAPLE. The features are transformed into the 

continuous spatial domain by an interpolation operation when the features are extracted as 

    
1

0

dN
d d

d d

n d

T
J x t x n b t n

N





 
  

 
  .                                                                                                              (16) 

In the continuous formulation, the operator Sf is parameterized by a set of convolution filters 

f=(f
1
,…,f

d
,…, f

D
)∈L

2
(T)

D
. Here, f

d
 ∈L

2
(T) is the continuous filter for the feature channel d. Here, the * 

denotes the convolution operator. J(x) is the extracted feature. The final detection score is calculated as: 



 

 1 

   
1

( )
D

d d

f d

d

S x f J x f J x


        ,                                                                                                             (17) 

where f is the characteristics of each dimension. The objective function of the learning correlation filter 

is converted to the frequency domain as: 

 
22

2 2

1 1

( )
M D

d

j f j j

j d LL

E f S x y f 
 

       ,                                                                                                    (18) 

where yi is the desired output of the convolution operator,  Sf{xi} is applied to the training sample xi, and 

αi controls the impact of each training sample.  

In the feature extraction using Eq.17 and Eq.18, there are D filters corresponding to the extraction of D-

dimensional features, but many of them have a small contribution. We select the C-dimension from the D-

dimensional features.  The new detection function is defined by Spf (x), where p is the matrix of D×C. The 

new detection function can be expressed as: 

     ,,
( ) c d

pf d c dc d
S x pf J x p f J x f J x       ,                                                                                      (19) 

22 2

2 2 2

1

( , )
C

T c

LL L
c

E f p z Pf y w f p


        .                                                                                             (20) 

All C filters are obtained by linear combination to form the features of a dimension to represent each row 

of the matrix. The target video sequence is studied in the first frame, and the subsequent video frame 

remains unchanged during the tracking process. The new objective function of the learning correlation 

filter is z=J{x}, where z
T
Pf is bilinear. A Gauss-newton iterative method and conjugate gradient operation 

are used from the D dimension to the C dimension. This new process can significantly improve the speed 

of the algorithm and prevent the phenomenon of over-fitting. 

C. ADAPTIVE FEATURE FUSION 

In the STAPLE algorithm, the fusion of color features and HOG features is used to improve the tracking 

accuracy of a target task. However, the STAPLE algorithm adopts constant coefficients to achieve the 

fusion of these two features. The constant-coefficient-based fusion rule can be expressed as: 

(1 ) _ _response response cf response p       ,                                                                                           (21) 

where response_cf  is the response of the kernel correlation filters, response_p is the response for a 

Bayesian classifier. The drawback of this processing using Eq.21 is that the target tracking results are 

unstable under different circumstances. 

       To address this issue, we proposed an adaptive feature fusion method. The principle of the proposed 

method is that we introduce an average peak correlation energy ratio (APCE) to the target tracking 

process to improve the target tracking accuracy in different circumstances. The APCE represents the 

fluctuation degree of a response graph and the confidence of the detection target [9, 42]. The APCE can 

be expressed as: 

  

2

max min

2

, minw h

F F
APCE

mean F F





    ,                                                                                                              (22) 

where Fmax is the maximum value of the Fw,h response and Fmin is the minimum value of the Fw,h 

response. When a target (having a sharper peak and less noise) within the detection range is obvious, the 

APCE value becomes larger and the response graph becomes smoother with only one peak.  Conversely, 
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if a target is obscured or lost, the APCE is decreased significantly. Fig.1 shows the APCE value in these 

cases. When the target is severely deformed or blocked, the confidence response graph presents multi-

peak irregularities, and the APCE of the response graph decreases rapidly from 14.9 to 3.6. 

 

 

(a)                                                                                    (b) 

 

(c)                                                                                       (d) 

Fig. 1. Example of severely deformed or blocked target and correlation filter corresponding graph: 

(a) original target; (b) correlation filter of the corresponding graph (a); (c) deformed or blocked 

target; (d) correlation filter of corresponding graph (c). When the target is severely deformed or 
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blocked, the confidence response graph presents multi-peak irregularities, and the APCE of the 

response graph decreases rapidly from 14.9 to 3.6. 

 

In this paper, a concept of relative confidence is utilized for the adaptive adjustment of fusion 

coefficients. When a target is obstructed, the APCE is decreased. The model is only updated when the 

APCE exceeds the corresponding average of historical values. The new concept of relative confidence 

level is used based on APCE to adjust the fusion parameters. The relative confidence is defined as: 

1

t

t t

i

i

APCE
r

APCE





   ,                                                                                                                                        (23) 

where rt is the relative confidence of the detection result at frame t. The fusion coefficient α can be 

adjusted as 

  1

2

1+ t
t r

e






   ,                                                                                                                                        (24) 

where αt is the weighting coefficient of frame t, and ρ is the influencing factor of the relative confidence. 

The smaller the influence factor is ρ, the smaller the influence of relative confidence on the fusion 

coefficient. In this paper, we set ρ=1, α=0.25. When a target is obstructed, both APCE and rt are 

decreased. When the relative confidence level of the correlation filter is higher than 1, it is more inclined 

to the detection result of the correlation filter. Conversely, it is more inclined to the detection result of the 

Bayes classifier. 

D. RECOMMENDATIONS TARGET TRACKING ALGORITHM USING ADAPTIVE FEATURE 

FUSION 

By utilizing the convolution reduction approach (Section C) in conjunction with the adaptive feature 

fusion between the HOG and GRAY features (Section D), we construct a new target tracking method. 

Fig.2 shows the overall structure of the proposed tracking algorithm. The object position is achieved by 

the maximum response value of HOG and GRAY features. Bayesian classifiers’ target position is 

achieved by input target the maximum response value of GRAY features. By adaptive fusion, the target 

position can be estimated and high confidence model updating and detailed measuring methods are used 

to improve the stability and accuracy of the tracking algorithm, to prevent interference of drifting model or 

changing size.  

The complete target tracking algorithm includes initialization and updating steps. The input of the 

proposed target tracking algorithm is the target information of the t frame of a video sequence. The output 

is the target information of the t+1 frame of the video sequence. In the initialization step, the extraction of 

HOG and gray features of a given target is performed. Then, the Kernel correlation filter model is trained 

by HOG and gray level features, and the Bayesian classifier model is trained by gray level features.  The 

updating step performs six sub-steps. First, HOG and gray features are extracted from the input image, 

and the feature image is dimensionally reduced and then input to the kernel correlation filter. Second, gray 

features are extracted from the input image and input to the Bayesian classifier. Third, response diagrams 

of kernel correlation filter and the Bayesian classifier are obtained respectively. Fourth, the adaptive 

fusion response map with relative confidence is performed. Fifth, the estimation of the target location for 

the maximum response value is performed. Sixth, the classifier model with new target information is 

updated.  
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Fig.2 The overall structure of the proposed tracking algorithm shown in Algorithm 1 

III. RESULTS 

A. EXPERIMENTAL SETUP 

To demonstrate the efficiency and performance of our algorithm, an OTB 100 test set [43] is used in the 

following experiments. To compare with the proposed method, the 9 target-tracking algorithms, i.e. 

SRDCF, Staple, fDSST, LCT, DCFNet, KCF, SAMF, DCF, ASLA, are selected. These algorithms are 

implemented using a MATLAB 2016 platform on a high-perform computer with an intel-i5-4590 CPU, 

the main frequency of 3.3 GHz, and memory of 8G. In the following experiments, the correlation filter of 

the proposed method is set as λ=0.001. The learning rate is η=0.01, and the feature used is the HOG and 

gray. For the Bayesian classifier, the learning rate is used as θ=0.04 and the number of histograms is 32. 

        To quantitatively evaluate the performance of the target tracking algorithms used in the following 

experiments, an accuracy curve (AC) and a success-rate factor curve (SRFC) are used as the evaluation 

criteria. The AC is the ratio between the filtered frames’ number and the total frame number. In the AC, 

the center position error (CPE) is the distance between the target position (obtained by the algorithm) 

and the center position of the target manually marked of filtered frames in the training set. The CPE of 

filtered frames should be less than 20 pixels. The SRFC is also the ratio between the filtered frame 

number and the total frame number, where the filtered frames should have an overlap rate of 50%. Here, 

the overlap rate is the ratio of the overlap area (from two boxes obtained by the algorithm and manually 

marked by the user) and the total area. The SRFC uses an area size surrounded by the success-rate 

factor curve to rank the order of nine tracking algorithms.  

B. RESULTS AND DISCUSSION 

First, we use the 99 frames of the OTB100 test set to analyze the overall accuracy and success rate of the 

aforementioned nine algorithms. Figure 2 shows the experimental results. From the experimental results, 

we found that the accuracy of the proposed algorithm is 0.807, which means it can improve by 2.3% 

compared to the original STAPLE algorithm. Accordingly, the success rate of the proposed algorithm is 

0.598, increasing 1.9% compared with the original STAPLE algorithm. Compared with the second-ranked 

SRDCF method, the proposed algorithm can improve by 1.9%. Besides, the processing speed of SRDCF 

is only 8fps, while the proposed algorithm can achieve 50+ FPS, which indicates our method can achieve 

real-time tracking. 
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                                  (a)                                                                             (b) 

Fig. 2. Accuracy and success rate of 10 algorithms under OPE: (a) accuracy (b) success rate. 

 

Second, we also comprehensively analyze the tracking effect of the proposed algorithm under 

different circumstances. The AC and SRFC of the 10 algorithms are tested using 11 different video 

attributes. The 11 video attributes include: illumination variation(IV), out of plane rotation(OPR), scale 

variation(SV), occlusion(OCC), deformation(DEF), motion blur(MB), fast motion(FM), in-plane 

rotation(IPR), out of view(OFV),  background clutter(BC), and low resolution(LR). Figures 3 and 4 

reflect the scores of the different algorithms under different video attributes. To intuitively observe the 

results, the key data from Fig.3 and 4 are demonstrated by Tab.1 and Tab.2. Based on the experimental 

results, we can observe that the accuracy of the algorithm in this paper ranks first under 8 attributes. 

Under the other three attributes, the proposed algorithm also ranks second. These results indicate that 

the algorithm can achieve accurate tracking of the target. In terms of success rate, the algorithm in this 

paper ranks the first among 7 attributes, and the other 4 attributes also rank the second, indicating that 

the algorithm in this paper can well solve the problem of target tracking failure in target occlusion, scale 

change, deformation, and other complex scenarios. 
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                                           k) 

Fig.3. Accuracy diagrams of 10 algorithms on 11 attributes: (a) illumination variation(IV), (b) out 

of plane rotation(OPR), (c) scale variation(SV) ,(d) occlusion(OCC), (e) deformation(DEF), (f) 

motion blur(MB) ,(g) fast motion(FM), (h) in-plane rotation(IPR) ,(i) out of view(OFV), (j) 

background clutter(BC),  (k) low resolution(LR) 
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Fig. 4.  Success rate diagrams of 10 algorithms on 11 attributes: (a) illumination variation(IV), (b) 

out of plane rotation(OPR), (c) scale variation(SV), (d) occlusion(OCC) ,(e) deformation(DEF), (f) 

motion blur(MB) ,(g) fast motion(FM), (h) in-plane rotation(IPR) ,(i) out of view(OFV), (j) 

background clutters (BC) ,(k) low resolution(LR) 

TABLE I 

ACCURACY TABLES OF 10 ALGORITHMS ON 11 ATTRIBUTES (RED IS THE FIRST OF TEN ALGORITHMS 

UNDER A CERTAIN ATTRIBUTE, BLUE IS SECOND, GREEN IS THIRD 

 IV OPR SV OCC DEF MB FM IPR OV BC LR 

OUR 81.9 80.7 79.3 78.9 73.7 74.7 74.7 81.1 77.9 84.1 80.0 

SRDCF 78.6 74.0 74.7 73.2 73.6 76.7 76.9 74.2 60.2 77.5 77.4 

Staple 78.2 73.8 72.7 72.8 75.1 69.9 71.0 76.8 66.8 74.9 69.5 

fDSST 75.1 66.6 66.4 63.6 61.0 69.1 69.8 73.4 57.7 78.0 67.5 

LCT 74.6 74.6 68.1 68.2 68.9 66.9 68.1 78.1 59.2 73.4 69.9 

DCFNet 72.1 71.4 71.0 71.4 64.6 65.7 65.9 71.2 62.9 73.6 71.3 

KCF 71.9 67.6 63.3 63.0 61.7 60.0 62.1 70.1 49.9 71.2 67.1 

SAMF 71.3 73.2 69.3 72.4 70.7 65.8 68.4 70.7 58.4 67.4 63.2 

DCF 69.3 66.5 62.6 61.0 62.1 57.6 60.3 68.6 48.7 68.6 69.4 

ASLA 53.6 51.0 50.2 47.6 46.0 22.1 26.3 52.9 40.9 56.6 70.8 

 

TABLE II 

SUCCESS TABLES OF 10 ALGORITHMS ON 11 ATTRIBUTES (RED IS THE FIRST OF TEN ALGORITHMS UNDER A 

CERTAIN ATTRIBUTE, BLUE IS SECOND, GREEN IS THIRD 

 IV OPR SV OCC DEF MB FM IPR OV BC LR 

OUR 62.2 57.8 57.4 59.1 54.5 57.1 57.2 58.1 58.9 61.5 49.4 

SRDCF 60.9 54.9 56.3 55.7 54.4 59.4 59.4 54.3 46.1 58.3 52.6 

Staple 59.5 53.4 52.0 54.3 55.0 54.0 54.1 54.9 47.6 56.1 39.9 

fDSST 56.8 50.1 50.5 48.4 46.8 54.7 55.4 55.0 45.8 58.6 42.9 

LCT 51.7 50.5 43.0 47.7 48.2 51.6 50.7 52.9 44.6 52.8 33.0 

DCFNet 51.7 51.4 50.6 51.3 45.5 50.6 49.8 50.3 47.6 53.2 43.9 

KCF 47.9 45.3 39.4 44.3 43.6 45.8 45.9 46.9 39.3 49.8 29.0 

SAMF 51.6 51.8 47.1 52.9 51.6 51.1 51.9 49.8 43.8 49.1 34.8 

DCF 46.6 44.8 39.4 43.3 43.9 45.3 45.4 46.4 39.0 48.7 30.4 

ASLA 44.6 40.6 39.8 39.0 37.0 22.3 25.1 41.8 34.0 46.6 47.1 

 

 

Finally, we select four key-frames to demonstrate the tracking results using the STAPLE, KCF, and our 

algorithm. Fig.5 shows the tracking results, where the red box represents the results of our algorithm. The 

green box represents the results of the STAPLE algorithm. The blue box represents the results of the KCF 

algorithm. In Fig.5 (a), the video has plane rotation, motion blur, and fast motion. In Fig.5 (b), the video 

has a dense covering and similar targets. In Fig.5 (c), the video has occlusion, similar targets, and low 

resolution. In Fig.5 (d), the video has illumination variation and occlusion. From the experimental results, 

our algorithm can accurately track the target under Fig.5 (a), (c), and (d). We also found that three 

algorithms have the tracking shift under Fig.5 (b) because the video includes dense covering and similar 

targets.
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                                                                                   (a) 

 
                                                                                   (b) 

 
(c) 

 
                                                                               (d) 

Fig. 5 The algorithm of this paper (red), STAPLE (green), KCF (blue) in the key sequence 

tracking graph: (a)Biker, (b) Jogging, (c) Human3, (d) Coke two methods’ comparison
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This paper proposes an efficient target tracking algorithm, capable of simultaneous implementation of 

yielding high tracking accuracy, improving the speed (i.e., real-time) of the algorithm, and preventing the 

over-fitting issue. The proposed tracking algorithm adopted three advanced methods. First, the adaptive 

feature fusion between the HOG features and color features is able to improve tracking accuracy. Second, 

a convolution dimension reduction approach of extracting features is applied to the adaptive fusion to 

improve the tracking speed. Third, an average correlation energy estimation method is adopted to extract 

the relative confidence adaptive coefficients to guarantee tracking accuracy. The experiment results 

indicated that the accuracy and success rate of the algorithm in this paper are 0.807 and 0.598 respectively, 

which are far higher than the standard data set testing. We provided a more efficient method to capture the 

target smoothly under different complex surroundings. The proposed method can better solve the problem 

of target occlusion and scale variation, meeting the requirements of real-time performance and high 

accuracy. This work has also a potential application to extend the field of 3D holographic video systems 

[44]. 
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