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Chapter 1

Introduction

1.1 Maritime Container Terminals

During the last decades, maritime transportation (liner shippings) is beirggpicr
ingly used to carry products to different countries by companies artihwndorld.
Container terminals generally serve as a transshipment on ships and kacléve
(trains or trucks) for these products. These products are storeddntaiers in
order to facilitate their management (loading, unloading or transhipment).

Containers were standardized by the International Organization fod&tn
ization (ISO) based upon the US Department of Defense standardscioe1®68
and 1970, ensuring interchangeability between different modes of teatpn
worldwide. The standard sizes and fitting and reinforcement norms ttsatnexv
evolved out of a series of compromises among international shipping coespan
European railroads, U.S. railroads, and U.S. trucking companies.

Four important ISO recommendations standardised containerisation globally
[55]:

R-668in January 1968 defined the terminology, dimensions and ratings;

R-790in July 1968 defined the identification markings;

R-1191in January 1970 made recommendations about corner fittings;

R-1897in October 1970 set out the minimum internal dimensions of general-
purpose freight containers.

The termtwenty-feet-equivalent-unfTEU) is used to refer to one container
with a length of twenty feet. Thereby, a container of 40 feet is exprelsgedi
TEU. This measure is also used to identify the capacity of the vessels, e.g. the
vesselEMMA MARSK(built on 2006) is one of the largest vessels which can
carry 14770 TEU.

1Updated on November 2010,
http://ww. maer skl i ne. conilink/?page=brochure&pat h=/ our _servi ces/vessel s
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Henesey shows in [24] how this transshipment market is growing fastrd=igu
1.1 indicates the growth in number of containers handled for Europe adidévie
ranean. The total transshipment has increased more than twofold @&2094
and by 58 per cent over 2000-2004 to 22.5 million TEU.

90

80

70

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004

Figure 1.1: N. Europe/S. Europe/Mediterranean Container Throadhmlion
TEU).

According to review done by Drewry Consultants [10], Global econoraitds
means that container throughput at the world’s port fell for the firs tinee @+ig-
ure 1.2), from 524 million TEU in 2008 to 473 million TEU in 2009 (around 10%).
However, their forecast is that container throughput will increaseadiipby an av-
erage of 7.2% a year between 2009 and 2015, as the economic retakesyold.
During this same six-year period, however, those container terminahsiqre
projects that are considered to be confirmed will increase capacity byrarak
average of just 2.9%. The much slower rate of capacity growth relativedagh-
put will inevitably increase terminal utilisation rates. In 2009 Drewry estimates
that around 62.9% of container terminal capacity was being utilised worldwide
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Figure 1.2: Public/private control of container terminals (million TEU).

Between 2009 and 2015, Drewry’s forecasting indicates that glolahireer
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throughput will rise by a total of 246 million teu, from 473 million to 718 million
teu, an increase of just under 52%. The capacity of the world’s comt@imainals

is forecast to grow by 143 million teu during the same time frame, a rise of just
19%.
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(a) Throughput and Capacity (million TEU) (b) Utilization (%)

Figure 1.3: Forecast supply and demand in the global container poretmaé9-
2015 (source [10]).

In November 2009, IHS Global Insighta recognized global leader in eco-
nomic and financial analysis and forecasting, completed an evaluation e€the
nomic contribution of the liner shipping industry using 2007 as a base yeaong
their conclusions, it can be remarked that:

e Cargo transported by the liner shipping industry represents abouhode-
of the value of total global trade, equating to more than US$ 4.6 trillion worth
of goods;

e Liner shipping companies deployed more than 400 services providing reg-
ularly scheduled service, usually weekly, connecting all countries of the
world.

1.2 Optimization Problems in Container Terminals

Within a Container Terminal there are several handling activities depemden
various related subsystems 1.4. The four main subsystems are [25]:

1. ship-to-shorenovements to unload the containers from ship to berth (or in
reverse order, to load them onto the ship);

2. transferbi-directional movement of containers from berth to stack (storage
area), from one stack to another stack and from the hinterland to a stack;

3. storagestack or area where containers are placed to wait until their next ship,
train or truck; and

2http://www.worldshipping.org/benefits-of-liner-shipping/global-ecoiwangine
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4. delivery/receiptmovement of containers from stack to the hinterland trans-
port, or vice versa.

Quayside Landside

,}‘J\A,‘IJZIP

Stack
with RBMG

| = it —
= 25 5 ;

I = ﬁ —3 =% E e BH B
kgﬁf E LEEQ' Quay Crane  Vehicles Vehicles

Vesse

B |
Ship-to-Shore Transfer Storage Delivery
P 9 Receipt

Figure 1.4: Process of unloading and loading a vessel.

Trucks, Train

Depending on the Container Terminal, these activities will be focused om eithe
transshipment, import or export containers. They are briefly desciib@gll].

With transshipment, containers are unloaded from a ship onto the storedje ya
where they are stored for an amount of time. Then, they are loaded oip a sh
again to continue on their way to their destination. With export, the container is
transported from the hinterland to the terminal, where it is stored for an amoun
of time before being brought to the quay side where it is loaded onto a sbip. F
import, this process is in the reversed order.

In Figure 1.4, these activities are illustrated following the steps one container
does when it is at one of these terminals. The whole process is descrif4].in
Once a vessel arrives at the port, a berth has to be assigned to it agswll
number of Quay Cranes (QCs). The import containers have to be tak&orof
that vessel employing these assigned QCs. They take the containers siffipfs
hold or off the deck. Regarding these QCs, they must be manned sinceatetb
vehicles do not have enough precission, for instance to position thedgm® pick
up one container. QCs leave these containers on vehicles, trailers anatetb
guided vehicles (AGV) to take them to the stack (storage area). Thegdegsdre
responsible for internal transport within a Container Terminal (trarssfiesystem).

This stack allows to store the containers during a certain period. It is cadpos
by a set of block where the containers are distributed in bays, rows asRigure
1.5). These lanes are managed by transfer cranes, straddle cg@@s)sor rail-
mounted container gantry cranes (RMGs). These equipments maintaireitiffer
stacking capacity (see Figure 1.6 [32]). A description and a brief cdsiparof
the mentioned handling equipment is done in [25, 66].

Once the containers must be retrieved from the stack, the same vehicles or
cranes are used to transfer them to other transportation modes. Imptaineos

4



Figure 1.5: Schematic overview of one container block.
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Figure 1.6: Different types of handling equipment and their stackingaigpa

will be transfered to barges, trucks or trains, and transshipment cergammto
deep sea vessels.

In case of export containers, this process is executed in reverse ditreby,
the containers from barges, trucks or trains are loaded onto the vessels

Each of the activities described above results in different subpresds#g-
ure 1.7). Shaded bubbles indicate the different decission problems wiishbe
faced by the Container Terminals. For instance, the Berthing Allocationeoio
decide where and when locate a vessel at the quay or the Routing aeduBich
Problem to manage all the automated guided vehicles (AGVs) within a Container
Terminal. In [66] (an update of [67]) provide a comprehensive suofdhe state
of the art of operations at a container terminal as well as the methods floofhe
timization. More information regarding transshipment operations can beiseen
[45, 69]. They distinguish decisions on container handling accordingetdirtie
horizon involved. A time horizon in decisions for the strategic, tactical, aedasp
tional level covers from one to several years, from a day to monthyrisd day,
respectively.
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Figure 1.7: Optimization Problems in Container Terminals.

Arrival of
the ship

Unloading and
Loading of the ship

1.3 Motivation

Competition between different Container Terminals around the world makes ne
essary to handle more and more containers in short time and at low costfareer
Container Terminals are forcen to enlarge handling capacities and steceitve
gains in productivity. This purpose can be meet by:

1. Designing new terminals with advanced layouts [37], e.g. automatization in
particular regions with high labor cots.

2. The replacement of the older equipment with a more efficient one.

3. With the existing infrastructure and equipment, achieving higher profits by
means of powerful information technologiy and logistics control software
systems including optimization methods.

Another important issue for the success at any container terminal is to fore
cast container throughput accurately [6]. With this data, they couldalewetter
operational strategies and investment plans.

Focusing on using both infrastructure and equipment efficiently, Opagatio
Research (OR) has been usually employed, it means, techniques likednoear
gramming or mixer-integer programming were employed to optimize the decission
problems. However, during the last years, artificial intelligence (Al) negphes
are proved to be efficient to manage these problems [19]. These teebragel
based on planning (e.g., metrickFF [29] or LPG-TD [15] planners usingtiue-
dard encoding languad@DDL[16]), scheduling [2, 49], metaheuristics (simulated
annealing [39], GRASP [13] or tabu search [18]), neural netwftksand so on.

Generating efficient solutions for all these problems is necessary im turde
avoid accidents like the ones in Figure 1.8. In this accident, the containees we
damaged due to the fact that terminal operators did not consider theedifiebe-
tween the heights of the different rows. Deadlocks or idle times are otbblgmns
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Figure 1.8: Unbalanced yard-bay at one vessel.

that arise due to poor coordination between the handling equipment. Fordaesta
Figure 1.9 shows several trucks waiting for containers to be unloadétluay
Cranes.

Figure 1.9: Unproductive times loading/unloading vessels.

The overall goal collaboration between our group at the Technicaldusity
of Valencia (UPV) and the maritime container terminal MSC (Mediterranear Ship
ping Company S.A) is to offer assistance to help in planning and schedulksy tas
such as the allocation of spaces to outbound containers, to identify bokisgnec
to determine the consequences of changes, to provide support in dheioesof
incidents, to provide alternative planning of vessel arrivals, etc.

Given all the decission problem a Container Terminal must face, in this work
we will focus our attention on problems related to the storage of the contamers
the yard (Housekeeping and Container Stacking problem) in Chapter thand
arrival of the vessels (Berthing Allocation and Quay Crane Assignmettiéms)
in Chapter 3. Next, in Chapter 4 we integrate of these two problems. The main

7



conclusions of this work as well as some guidelines for future work asemted
in Chapter 5. In this chapter, the publications that support this work asepted
as well.



Chapter 2

Container Stacking Problem

2.1 Introduction

The container traffic has increased over the last decades. The lippirg/s are
building larger vessels in order to be able to handle the traffic of millions of con
tainers (TEU) around the world. The operating costs for these vesselsgh
and it is very important to shorten their turn-around or berthing time in Comtaine
Terminals.

Reducing the berthing time implies that the other activities in Container Ter-
minals work efficiently. One of these activities where the time might be reduced is
the loading and unloading of containers from/into containers yards.

In Container Terminals, the loading operation for export containers is pre
planned. For load planning, a container-ship agent usually transfeasl grofile
(an outline of a load plan) to a terminal operating company several dagsehef
ship’s arrival. The load profile specifies only the container group ardhalivid-
ual containers. In order to have an efficient load sequence, staame of export
containers must have a good configuration.

Loading and offloading containers on the stacks is performed by crahes f
lowing a ’last-in, first-out’ (LIFO) storage. In order to access a comtaimhich
is not at the top of its pile, those above it must be relocated. It occurs sihee
ships have been unloaded later or containers have been stacked itigeosder
due to lack of accurate information. This reduces the productivity of thees.
Maximizing the efficiency of this process leads to several requirements:

1. Each incoming container should be allocated a place in the stack which
should be free and supported at the time of arrival.

2. Each outgoing container should be easily accessible, and prefetasdyto
its unloading position, at the time of its departure.

In addition, there exist a set of hard/soft constraints regarding thimioen loca-
tions, for example, small differences in height of adjacent yard-bdgsgerous

9



containers must be allocated separately by maintaining a minimum distance and so
on.

Nowadays, the allocation of positions to containers is usually done manually.
Therefore, using appropriate Artificial Intelligent techniques is possibéehieve
significant improvements of lead times, storage utilization and throughput.

Within Container Terminals, the design of the layout of container yards is an
influencial factor in productivity [37]. Figure 2.1 shows a common contayaed.
Usually, a yard consists of several blocks, and each block consig@-8® yard-
bays [38]. Each yard-bay contains several (usually 6) rows. Eagthas a maxi-
mum allowed tier (usually tier 4 or tier 5 for full containers). Figure 2.1 alsmsh
the gantry cranes used to move a container within a stacking area or to ranothe
location on the terminal. For safety reasons, it is usually prohibited to move the
gantry crane while carrying a container [43], therefore these moveroehtsake
place in the same yard-bay.

Figure 2.1: A container yard with gantry cranes (MSC Valencia Port).

The main focus of this chapter is to present a planning system which opti-
mally reallocates outgoing containers for the final storage layout fromhndic
load planner can construct an efficient load sequence list. In this weaghibctive
is therefore to plan the movement of the cranes so as to minimize the number of
unnecessary movements (reshuffles) of containers in a complete gatfus €nd,
the yard is decomposed in yard-bays, so that the problem is distributedsatof
subproblems. Thus, each yard-bay generates a subproblem, laineos of dif-
ferent yard-bays must satisfy a set of constraints among them, so bpmoblems
will be sequentially solved taken into account the set of constraints witlhqorsy
solved subproblems.

10



2.2 Literature Review

Given the Container Stacking Problem, the first issue to tackle is the owméesig
ing of the container layout of the Container Terminal. Thus, there are stde s
ies where some methods are proposed methods for designing layoutdaiheon
yards [37]. For evaluating this design, parameters as orientation of thlkesbio
the quay (either parallel or perpendicular) and the number of laneskae itato
consideration.

The Container Stacking Problem can be managed in two different wagstacc
ing to when it should be done the optimization:

1. minimizing the number of relocations during the pickup (or loading) opera-
tion, and

2. getting a desirable layout for the bay before the pickup operation is don
in order to minimize (or eliminate) the number of relocations during this
processiemarshalling.

Dekker et al. [12] explore different stacking policies for containerauto-
mated terminals during the loading process by means of simulation. They distin-
guish between two strategies. The former one is based on categoriebdeing
the same destination, weight...). Two containers of the same categorgdéan b
terchanged, and can thus be stacked on top of each other without thdaig&ra
container in a stack is needed before the ones on top of it have beenenTde
latter strategy focuses on the departure times of the containers: a comamer
only be stacked on top of containers that all have a latter (planned)tdeptime
than the departure time of the container to be stacked.

In [34], authors propose a methodology to estimate the expected number of
rehandles to pick up an arbitrary container and the total number of rkdsarcd
pick up all the containers in a bay for a given initial stacking configuratiora
similar way, two methods to minimize the number of relocations during the pickup
operation are compared in [36], a branch-and-bound algorithm agaheuristic
rule based on an estimator.

Kim and Bae [35] also propose a methodology to convert the currentifayo
into the desirable layout by moving the fewest possible number of contdireers
marshalling) and in the shortest possible travel distance. Although it takas-a ¢
siderable time since they use mathematical programming techniques. Coaperativ
coevolutionary algorithms have been developed in [47] to obtain a plaefioarr
shalling in automated container terminals.

Within these automated container terminals, a solution based on simulated an-
nealing [8] rearranges all the containers to be loaded onto the vesseaksute &0
reshuffles when pickup operation is performed. This paper uses twanossing
stacking cranes to build a solution for the sequence of movements.

Following the same trend, Lee and Chao [42] consider only one bay in their
model by applying a neighborhood search heuristic. This heuristic is cesdday
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different subroutines, being one of them a binary integer programmingiar ¢o
reduce, when it is possible, the needed movements.

Other techniques have been developed by reinforcement learnindfiGplse
Q-Learning has been employed to achieve a goal layout given by tharstpigrder
[27, 26].

This chapter is focused on the remarshalling process [33]. We pieedentain-
dependent planner to solve the remarshalling problem. In this chapterfzeneis-
tic with a set of optimization criteria is introduced. This heuristic achieves effi-
ciency and takes into account constraints that should be considereal-waed
problems.

The reminder of this chapter is organized as follows: the next sectiormires
the Container Stacking Problem and how is modeled. Section 2.4 describes the
developed planner. Section 2.5 and 2.6 introduce the different optimizatiieria
added to the planner to be adapted to the real-world requirements. Trsentgh
presents the necessary modifications to the planner in order to optimally manage
the container blocks. An analytic formula is given in Section 2.8 to estimate the
number of reshuffles of a container block. Finally, the last sections gievesults
as well as conclusions.

2.3 Problem description

The Container Stacking Problem can be viewed as a modification dBldueks
World planning domain [70], which is a well-known domain in the planning com-
munity. This domain consists of a finite number of blocks stacked into towers on a
table large enough to hold them all. TB&cks Worldplanning problem is to turn
an initial state of the blocks into a goal state, by moving one block at a time from
the top of a tower onto another tower (or on a table). The optBiatks World
planning problem is to do so in a minimal number of moves.

Blocks Worldproblem is closed to the Container Stacking Problem, but there
are some important differences:

e The number of towers is limited to 6 because a yard-bay contains usually 6
rows.

e The height of a tower is also limited to 4 or 5 tiers depending on the em-
ployed cranes.

e There exist a set of constraints that involve different rows such lasded
adjacent rows, dangerous containers located in different rows, etc.

e The main difference is in the problem goal specification. InBleeks World
domain the goal is to get the blocks arranged in a certain layout, specifying
the final position of each block. In the container stacking problem the goal
state is not defined as accurately, so many different layouts can betiaisolu
for a problem. The goal is that the most immediate containers to load are in
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the top of the towers, without indicating which containers must be in each
tower.

We can model our problem by using the standard encoding languadadgsi-c
cal planning tasks calldeDDL (Planning Domain Definition Language) [16]. The
purpose is to express the physical properties of the domain under ecaigid and
it can be graphically represented by means of tools as [23]. A classiGétial
Intelligence planning problem can be defined by a tydlel, G), whereA is a set
of actions with preconditions and effecisis the set of propositions in the initial
state, and is a set of propositions that hold true in any goal state. A solution plan
to a problem in this form is a sequence of actions chosen ffahat when applied
transform the initial staté into a state of whiclts is a subset.

Following thePDDL standard, a planning task is defined by means of two text
files. Thedomain file, which contains the common features for problems of this
domain. Theproblem file describes the particular characteristics of each problem.
These two files will be described in the following subsections.

2.3.1 Domain specification

In this file, we will specify theobjectswhich may appear in the domain as well as
the relations among thenproposition3. Moreover, in order to make changes to
the world stateactionsmust be defined.

e Object types containersandrows, where the rows represent the areas in a
yard-bay in which a tower or stack of containers can be built.

e Types of propositions

— Predicate for indicating that the contairiex is on ?y, which can be
another container or, directly, the floor of a row (stack).

on ?x - container ?y - (either row container)

— Predicate for indicating that the contairix is in the tower built on
the row?r .
at ?x - container ?r - row

— Predicate for stating th&ix, which can be a row or a container, is clear,
if there are no containers stacked on it.
clear ?x - (either row container)

— Predicate for indicating that the crane used to move the containers is
not holding any container.

crane-enpty
— Predicate for stating that te crane is holding the conterer
hol di ng ?x - contai ner

13



— Predicates used to describe the problem goal. The first one specifies
the most immediate containers to load, which must be located on the
top of the towers to facilitate the ship loading operation. The second
one becomes true when this goal is achieved for the given container.

goal - cont ai ner ?x - container and
ready ?x - container
— Numerical predicates. The first one stores the number of containers

stacked on a given row and the second one counts the number of con-
tainer movements carried out in the plan.

height ?s - row and
num noves

e Actions

— The crane picks the contain@r which is in the floor of row?r .
pick (?x - container ?r - row)

— The crane puts the contain@x, which is holding, in the floor of row
?r.
put (?x - container ?r - row)

— The crane unstacks the contairiet, which is in row?r, from the
container?y.
unstack (?x - container ?y - container ?r - row)

— The crane stacks the contairiet, which is currently holding, on con-
tainer?y in the row?r.
stack (?x - container ?y - container ?r - row)

— Finally, we have defined two additional actions that allow to check
whether a given (goal) container is ready, that is, it is in a valid po-
sition. When a container is clear:
fict-checkl (?x - container)

The container is under another (goal) container which is in a valid po-
sition.
fict-check2 (?x - container ?y - container)

As an example oPDDL format, we show in Figure 2.2 the formalization of
the stack operator. Preconditions describe the conditions that must hgiglyo a
the action: crane must be holding contaifi&r;, container?y must be clear and at
row ?r, and the number of containers in that row must be less than 4. With this
constraint we limit the height of the piles. The effects describe the changles
world after the execution of the action: contaifferbecomes clear and stacked on
?y at row?r, and the crane is not holding any container. Contathyebecomes
not clear and the number of movements and the containe?s iis increased in
one unit.
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(:action stack
:paraneters (?x - container ?y - container ?r - row)
:precondition (and
(hol ding ?x) (clear ?y)
(at ?y ?r) (< (height ?r) 4))
ceffect (and
(cl ear ?x) (on ?x ?y)
(at ?x ?r) (crane-empty)
(not (holding ?x))
(not (ready ?y))
(not (clear ?y))
(increase (num noves) 1)
(increase (height ?r) 1)))

Figure 2.2: Formalization of thetackoperator inPDDL.

This domain specification is characterized by not prioritizing any container.
However, the domain can be changed to take into account differenimengaoups
depending on their departure times [64]. In Figure 2.3, the differentagwar
groups are identified by means of different colors: red, light grask deay and
black, respectively. The red ones are the first ones to be loaded imexheessel
and, as it can be observed in the final layout in the figure, they are tboattop
of the stacks to facilitate their loading.

Initial

Figure 2.3: Initial state example (left), and final layout achieved (right).

2.3.2 Problem specification

Once the problem domain has been defined, we can define problem asstanc
These files describe the particular characteristics of each problem:

e Objects the rows available in the yard-bay (usually 6) and the containers
stored in them.

o Initial state the initial layout of the containers in the yard.

e The goal specificatianthe selected containers to be allocated at the top of
the stacks or under other selected containers.
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e The metric functionthe function to optimize. In our case, we want to mini-
mize the number of relocation movements (reshuffles).

Figure 2.4 shows a simple example of a problem instance in PDDL. This prob-
lem describes a scenario with three containers (X1, X2 and X3) in thebayrd
and the crane is not holding any of them. X2 is an export container whichbeus
relocated in order to be easily accessible at loading time of the next vessel.

(define (problem pl) (:domain CStackP)

; ;Domain objects
(:objects X1 X2 X3 - container S1 S2 S3 S4 S5 S6 - slot )

;;Initial state

(:init

clear X1) (clear X3) (clear S1) (clear S4) (clear S5) (clear S6)

on X2 S2) (on X1 X2) (on X3 S3) (at X1 S2) (at X2 S2) (at X3 S3)

= (height S1) 0) (= (height S2) 2) (= (height S3) 1)

= (height S4) 0) (= (height S5) 0) (= (height S6) 0)

= (num-moves) 0) (handempty) 1Y)

goal-container X2)
) %

;;Goal state X1
:goal (and (handempty) (ready X2)) )

;;function to optimize X2 | X3 |
:metric minimize (num-moves))

) S1 S2 S3 S84 S5 S6

Figure 2.4: Example of problem instance in Container Stacking domain.

Since the Container Stacking Problem can be formalized with these two files,
we can use a general domain independent planner to solve our prolasiessic
FF [29]. The plan, which is returned by the planner, is a totally orderedesespu
of actions or movements which must be carried out by the crane to achieve the
objective. Figure 2.5 shows an example of the obtained plan for a giwdreon.
The performance of this general planner will be analyzed in Section highw
will be compared with the domain-oriented planner that will be presented in nex
sections.

fi PlanViewer AEE
ber: !ﬁ

Plan actions:

unstack x5 %14 53 -~
stack x5 x4 s1

unstack x15 x3 s2

stack x15 %12 4

unstack x14 x1 53

stack x14 x15 s4

urstack x7 x2 56

skack x7 x9 55

Plan riumi

Heabaho

Figure 2.5: The obtained plan solution to be carried out by the transfee.cra
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2.4 A Domain-Dependent Heuristically Guided Planner

Metric FF planner might obtain plans, but it is very inefficient. Therefore, we
propose a domain-dependent planner in order to provide more efficiénteans,
at least reducing the number of crane operations required to achiessirahle
layout.

The proposed planner is built on the basis of a local search domaineindept
planner calledsimplannef{65]. This planner has several interesting properties for
the container stacking problem:

e Itis an anytime planning algorithm. This means that the planner can found
a first, probably suboptimal, solution quite rapidly and this solution is being
improved while time is available.

e Itis complete, so it will always find a solution if exists.

e It is optimal, so that it guarantees finding the optimal plan if there is time
enough for computation.

It follows an enforced hill-climbing [28] approach with some modifications:

e It applies a best-first search strategy to escape from plateaux. Enehss
guided by a combination of two heuristic functions and it allows the planner
to escape from a local minima very efficiently.

o If a plateau exit node is found within a search limitimposed, the hill-climbing
search is resumed from the exit node. Otherwise, a new local seaatioiter
is started from the best open node.

The initial approach, based @implannerwas firstly used to solve individual
subproblems (yard-bays) [58, 59]. To improve the solutions obtaineiraplan-
nerwe have further developed a domain-dependent heuristic to guide tioh gea
order to accelerate and guide the search toward a optimal or sub-optiotase

This heuristic (calledi;) was developed to efficiently solve one yard-bay [63].
h1 computes an estimator of the number of container movements that must be car-
ried out to reach a goal state (see Algorithm 1). The essential part @igfugthm
is to count the number of containers located on the selected ones, bueefs® k
track of the containers that are held by the crane distinguishing betweethevh
they are selected containers or not. When the crane is holding a selectatheg
the valueh has a smaller increase since, although this state is not a solution, this
container will be at the top of some row in the next movement.

2.5 Optimization criteria for one-bay yards

Despite we are able to obtain good solutions (layouts) f8implannernhanced
with h1, we also need more realistic solutions for instance taking into account
safety standards.
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Algorithm 1: Pseudo-code of the domain-dependent heuristic

Data: b: state of theyard-bay
Result h: heuristic value ob;
h=0;
Container hold by the crani& 3z—containefHol di ng(z) € bthen
if Goal Cont ai ner (x) then
| h=0.1;
else
| h=0.5;
end

end
/lIncreasing theAh value for r < 1 to nunRows (b) do
Ah =0;
for z—container/ At (z,r) A Goal Cont ai ner (z) € bdo
if y—containefGoal Cont ai ner (y) A On(y,z) € bthen
| Ah = max(Ah,NunCont ai ner sOn(z));
end
end
h+ = Ah;

end

From this heuristid:;, we have developed some optimization criteria each of
them achieving one of the requirements we could face at Container Terminals
These criteria are centered in the next issues:

1. Reducing distance of the goal containers to the cargo 6idg,) [64].

2. Increasing the range of the move actions set for the cranes allowingvi® mo
a container to 5th tier@C1,) [60].

3. Applying different ways of balancing within the same bay in order to avoid
sinks(OCyy) [54].

These criteria have been easily incorporated in our planner by defiming a
heuristic function as a linear combination of two functions:

h(s) = a-hi(s) + B - ha(s) (2.1)

wherehs is a combination of above three criteria:

ha(s) = OC1q + OCit + OChy, (2.2)
Note that although we want to guarantee balancing with this last optimization
criterion, unbalanced states (states vgithkg are allowed during this process of
remarshalling in order to get better solutions according to the number afffiesh
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2.5.1 OC},: Allocating goal containers close to cargo side

Given an initial state, several different layouts can be usually achigyedaking

the same number of reshuffles. However, some of them can be more tinteres
ing than the others according to some important questions. In this casettsince
transfer crane is located at the right side of the yard-bay, we wantéinadblayout
where it is minimized the distance of the goal containers to this side of the yard-
bay. Achieving this we can spend considerably less time during the trucktpad
operations.

]
h:ll ll 15 IJ F A

Iniial Final

Figure 2.6: Obtained plan with the initial domain-dependent heuristic.

Following the heuristic function presented in Equation 2.1:

e hy(s) is the main heuristic function, which estimates the number of move-
ments required to reach the goal layout (outlined in Algorithm 1). Since this
is the main optimization functiomy value should be significantly higher than

8.

e hy(s) is the secondary function we want to optimize. In this case, it is just
OC14. This means the sum of the distances of the selected containers to the
right side of the yard-bay, which can be computed as Algorithm 2 shows.

Algorithm 2 : Pseudo-code to calculate the distance

Data: s: state to evaluate
Result d: distance value of
d=0;
for r + 1 to nunRows (s) do
for z—container/ At (z,r) € s A Goal Cont ai ner (z) do
| d=d+ (nunRows(s) —r);
end
end

The benefits of using this combined heuristic function can be observed-in Fig
ure 2.6 and Figure 2.7. In the first one, we only want to minimize the number
of reshuffles, i.e. h(s) = hi(s). In the second one, we also want to mini-
mize the distance of the selected containers to the forklift truck, so we leve s
h(s) = 9 x h1(s) + ha(s). As a result, none of the selected containers (the red
ones) are placed in the most left rows, reducing the required time to loaditte tr

19



nm Al ] | I
Initial Final

Figure 2.7: Obtained plan with the distance optimization function.

2.5.2 OCy;: Allowing the 5th tier during the remarshalling process

In this optimization criterion as well as the next ones, we will include the new
given heuristic value with the same factor as the initial one. One of the degision
that must be done in Container Terminals is about what type of cranes must b
bought depending on how many tiers cranes work. This topic has besideced
in [59]. But, another approach is to reach the fifth tier only during the rehadling
process. Thereby, there would be 4 tiers at the beginning and at thef ¢he
process keeping the first requirements.

Following this concept, we will use instances of problems, 4 > (wheren
is the number of containers) with a domain whose move actions allow 5 tiers at the
stacks. This function is showed in Algorithm 3 and it follows the same steps than
the original, but increasing the value bfwhen the height of one of the stacks is
higher thart. Thereby, we assure that the final layout will always have 4 tiers.

2.5.3 OC},: Balancing one yard-bay

In this section, we present an extension for the heuristi@lgorithm 1) to include
the balancing of the stacks within one yard-bay as a requirement. It igleoad
that there is ainkwhen the height difference between two adjacent stacks in the
same yard-bay is greater than a maximum number of containers, in our aase tw
containers.

Considering the time when the goal containers are removed from the yard,
we can distinguish three ways to get balanced one yard-bay preseritedriaxt
subsections. The last mode is the consequence of applying the first &80 on

1. Balanced before loading operation.In this case, we consider that ttag/-
out must be balanced before the goal containers are removed fromatuat
bay. This function is showed in Algorithm 4. It compares the height of each
row of the yard-bay with the next one, and if the difference is higher than
the value heuristi@ is increased. As it appears in Figure 2.8, this criterion
avoids thesinksin the final layout while all the containers are still in the
yard-bay.
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Algorithm 3: Pseudo-code of the domain-dependent heuristic function to
allow 5 tiers

Data: s: state to evaluate

Result h: heuristic value ok

h=0;

if 3z—containefHol di ng(z) € s then

if Goal Cont ai ner (x) then

| h=0.1,;

else
| h=0.5;

end

end

for r + 1 to nunRows (s) do

Ah =0;

if Hei ght [r, s] > 4 then

if x—container/ A ear (z,r) € s A Goal Cont ai ner (x) then
| Ah=0.5;

else

Ah =1;

end

end

for z—container/ At (z,r) € s A Goal Cont ai ner (z) do

if fy—containefGoal Cont ai ner (y) A On(y,z) € s then
| Al = max(Ah,NunCont ai ner sOn(z));

end

end
h+ = Ah;

end

However, when these containers are removed, it might cause that the new
layout is unbalanced as it happens in Figure 2.8(c).

Algorithm 4 : Pseudo-code to balance before the goal containers are removed

Data: s: state to evaluatéi: Initial heuristic;
Result h: heuristic value of;
for r < 1to numRows (s) — 1 do
Ah = Abs(Hei ght [r, s] — Hei ght [r + 1, s]);
if Ah > 2then
h=h+Ah—2;

end
end

2. Balanced after loading operation.In contrast to the method seen above, we
can consider that theyout must remain balanced after the goal containers
are removed from the yard-bayrigure 2.9 shows the layouts we get after
execute the plan returned by our planner.

Algorithm 6 shows this function. It uses the FunctidrightsWithoutGoals
(Algorithm 5) in order to calculate for the yard-baythe height for each
stack where the first no-goal container is. These values are emplogedl to
the difference of height between two adjacent stacks once the gdaircon
ers have been removed from the yard. Heights of each row are stered a
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(@) Initial Layout (b) With goal containers  (c) Without goal containers

Figure 2.8: Effects of using function seen in Algorithm 4.

Algorithm 5: FunctionHeightsWithoutGoals to calculate heights of each
row without taking into account the goal containers at the top

Data: b: state of theyard-bay
Result M nHei ght, heights calculated;
for » «— 1 to nunRows (b) do
M nHei ght [r,b] = Hei ght [r, b];
/IDecrease till the first ngoal-container
while M nHei ght [r,b] > 0 A Goal Cont ai ner (M nHei ght [r,b],7) € bdo
| M nHeight[r,b] — —;
end
end

soon as the planner gets the final solution plan for one yard-bay. A&er w
obtain these values, we increase the heuristic valaecording to wether

or not there are goal containers on the floor. Then, we use the vaugss g
by HeightsWithoutGoal$o calculate the difference between two adjacent
stacks, when this difference is higher tHanwe consider that there issink,

Soh is increased again.

However, this process might also cause some unbalanced layouts (Figure
2.9(b)). But in this case, non-desirable layouts will appear while the goal
containers are in the yard-bay. Once they have been removed fromsi, the
layouts will be balanced ones (Figure 2.9(c)).

|h:'- '.|.1 | | | |

(a) Initial Layout (b) With goal containers  (c) Without goal containers

Figure 2.9: Effects of using function seen in Algorithm 6.

3. Balanced before and after loading operation Finally, we present an opti-
mization criterion which obtainslayout where is balanced both before and
after the goal containers are removed from this yard-Ba#th this function
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Algorithm 6 : Pseudo-code to balance after the goal containers are removed

Data: s: state to evaluatéy: Initial heuristic;

Result h: heuristic value of;

Hei ght sW t hout Goal s(s);

Ah = 0;

/INot allow containers on the floor

for r + 1 to nunRows (s) do

if 3x—containefOn(z,r) A Goal Cont ai ner (z) then
| Ah = Ah+ NunCont ai ner sOn(z);

end

end
h =h+ Ah;
for r + 1 to nunRows (s) — 1 do
Ah = Abs(M nHei ght [r, s] — M nHei ght [r + 1, s]);
if Ah > 2then
| h=h+Ah-2;
end

end

we want to solve the problems seen in the last subsections as we can see itin
Figure 2.10.

This function (Algorithm 7) is a mixture of the last two ones. First, we
increaseéh when there are goal containers on the floor. When this is achieved,
we increasér when the difference between the heights values obtained by
the functionHeightsWithoutGoalg¢Algorithm 5) are higher thag for two
contiguos rows. And finally, if. value is low enough (in our case lower than
1), we increasé again if the difference between the actual heights of two
contiguos rows is higher than 2.

I
|“:.l .l‘ l 1I '

(a) Initial Layout (b) With goal containers  (c) Without goal containers

Figure 2.10: Effects of using function seen in Algorithm 7.

2.6 Optimization criteria for one block

This initial heuristic f1) was unable to solve a complete yard or block (in our case,
one block consists of 20 yard-bays) due to the fact that they only saléadaoal
yard-bays. In this section, we have also developed two optimization critetia th
include new constraints that involve several yard-bays [50]. Thesst@ints are:

e Balancing contiguous yard-bays: rows of adjacent yard-bays neubab
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Algorithm 7 : Pseudo-code to balance the yard-bay before and after the goal
containers are removed

Data: s: state to evaluatéy: Initial heuristic;
Result A: heuristic value o¥;

Hei ght sW t hout Goal s(s);

Ah = 0;

/INot allow containers on the floor

for r < 1 to numRows (s) do

end
h =

end

if 3xz—container/ On(z,r) A Goal Cont ai ner (z) then
| Ah = Ah+ NunCont ai ner sOn(z);
end

h + Ah;

f h == 0then

Ah =0;
//Balancing with containers which are not objective
for r + 1 to nunRows(s) — 1 do
Ah = Abs(M nHei ght [r, s] — M nHei ght [r + 1, s]);
if Ah > 2then
| h=h+(Ah—2)/2;
end
end
f h < 1then
/[Balancing with containers which are objective
for r < 1 to nunmRows (s) — 1 do
Ah = Abs(Hei ght [r, s] — Hei ght [r + 1, s]);
if Ah > 2then
| h=h+(AR—-2)/2;
end
end

end

anced, that is, the difference between the number of containers of now
yard-bayi and row; in yard-bay: — 1 must be lower than a maximum (in
our case lower than 3). Figure 2.11 shows which rows must be get ledlanc
when we consider one yard-bay and Figure 2.12 left shows an exarfnple o
non-balanced yard-bays (rows in dotted points).

e Dangerous containers: two dangerous containers must maintain a minimum
security distance. Figure 2.12 right shows an example of two dangerous

c

ontainers that does not satisfy the security distance constraint.

These constraints interrelate the yard-bays so the problem must be aslved
a complete problem. However, it is a combinatorial problem and it is not pos-
sible to find an optimal or sub-optimal solution in a reasonable time. Following
the previous philosophy of solving each subproblem independentiy (gaxcl-

bay separately), we can distribute the problem into subproblems and selve th
sequentially taken into account related yard-bays. Thus a solution toshgefid-

bay is

taken into account to solve the second yard-bay. A solution to thadec

yard-bay is taken into account to solve the third yard-bay. Furthernfategre
exist a dangerous container in a first bay, its location is taken into acttmaalve
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Stacks

Bays

Figure 2.11: Balancing scheme.

a dangerous container located in the third yard-bay (if it exists); anth sdaken
into account this distributed and synchronous model, we present twoetiffep-
timization criteria to manage these type of constraints.

These two criteria are added to the heuristic function presented in Equdtion 2
ashs (Equation 2.3); and Equation 2.4 shows the exact combination of them. This
makes possible to follow a criterion with major priority than the other one.

h=a-hy+ B -hy+v-h3 (2.3)

hs =61 -0OC,B + 62 - OC,p (2.4)

Following the proposed model and depending on the sequence of ggsd-b
to be analyzed, it is possible that no solutions exists. Moreover, as metiione
Section 2.5, although we want to guarantee balancing and/or minimum disence b
tween dangerous containers, during relocation of container progessill allow
the presence of non-desirable sates, e.g. with sinksbetween two contiguous
rows or bays. These intermediate states are allowed because throughetveith
be able to get better solutions taking into account as metric function the nuifnber o
reshuffles done.

2.6.1 OC,p: Balancing contiguous yard-bays

In this section we present an extension for the heurtsti@lgorithm 1) to include
the balancing of continuous yard-bays as a requirement. As we haviegaint
before, it is considered that there isiak when a difference higher than two con-
tainers exists between two adjacent rows in contiguous yard-bays. flieison

is an extension of thbalanced heuristipresented in Algorithm 7, which avoids
sinksin the same yard-bay (horizontal balance) both before and after theumdb
containers have been removed from the yard. However, in this csisd eepre-
sents a constraint between two subproblems. Thus, we also considtretteais
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Figure 2.12: (Left) Non-balanced yard-bays. (Right) Proximity of twogkaous
containers.

a sinkwhen a difference of two exits between the same raw two contiguous
yard-bays (vertical balance).

This process is showed in Algorithm 8. It also uses the FunddieightsWith-
outGoals(Algorithm 5) in order to calculate for the yard-bayhe height for each
stack where the first no-goal container is. Heights of each row aredsés soon
as the planner gets the final solution plan for one yard-bay.

First, we apply the criterion seen in Algorithm 7 on the yard-bay hrough
hei ght's’ calculated by Algorithm 5 and the real heights of the actual yard-bay
we obtain the differences between the roandr — 1 to calculate the value df.
When this value is zero (the yard-b&is horizontally balanced), then we introduce
our function to balance it with respect to the last yard-bayTo do so, we must
also calculate théei ght s’ through the Algorithm 5 oveb; and use the real
heights of itin order to obtain the differences between therrsituated irb andb;.
When these differences are higher than 2 we incréga®portionally. After that
processp will be balanced horizontally with respect to their rows, and vertically
with respect to the last yard-bay. Repeating this process for eactogsiroh the
block, this will be completely balanced.

2.6.2 OC,p: Dangerous containers

Within a block, there are different types of containers depending onabésthey
transport, being some of them dangerous. If they do not satisfy ceefstitictions,
it may become a hazard situation for the yard since e.g. if one of them esplode
and they are not far enough between them, it will set off a chain of expissio

With this added objective, the next optimization criterion (Algorithm 9) ensures
a minimum distancel?,,;,) between every two dangerous containérg)(in the
yard. D,.;» IS set as one parameter for the planner and the distance is calculated

26



Algorithm 8: Pseudo-code to balance two adjacgatd-bays

Data: b: state of the actuaglard-bay h: Initial heuristic;b;: lastyard-bay
Result h: heuristic value ob
/IGetting the balance horizontalljei ght sSW t hout Goal s (b);
h+ = Bal Bef or eAf t er (b);
/[This heuristic will be executed after a partial solution
if h==0Ab%# 1then
Ah =0;
Hei ght sW t hout Goal s(b;);
//Balancing with containers which are not objective
for r < 1 to numRows (b) do
Ah = Abs(M nHei ght [r,b;] — M nHei ght [r,b]);
if Ah > 2then
| h=h+(AR—-2)/2;
end

end
f h < 1then
//Balancing with containers which are objective
for r < 1 to nunRows (b) do
Ah = Abs(Hei ght [r,b;] — Hei ght [r,b]);
if Ah > 2then
| h=h+ (AR —2)/2;
end
end

end
end

as the Euclidean distance, considering each container located in a 3-inans
space (X,Y,Z) where X is the number of yard-bays, Y is the number of eowlsZ
is the tier.

Generally, in container terminals, at most, there is only one dangerous con-
tainer in two contiguous yard-bays, so that we take into account this aisarimp
the development of this function.

This function increases value when a dangerous containgy;, exists in a
yard-bayb and the distance constraints between dangerous containers are not hold
Thereby, for each dangerous contaidgp allocated in the previou®,,;, yard-
bays is calculated by Euclidean distance(g . If this distance is lower than
D,in, for any dangerous contain€ls, thenh value is increased with the number
of containersn on Cy; because it indicates that removing thoseontainers is
necessary to reallocate the contaiogy.

2.7 An Ordered Yard-Based Planner

In this section we improve the above planner to efficiently manage a full centain
yard [61]. A block of containers is decomposed of several yardbsy that the
problem is distributed into a set of subproblems. Thus, each yard-b@yages
a subproblem. The order of execution of yard-bays can be sequeniiadan be
ordered by tightness. Figure 2.13 shows two different ways to managaplete
yard. Figure 2.13 (upper) shows a sequential order of executicardfbays (Plan-
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Algorithm 9 : Pseudo-code to avoid locating two dangerous containers closer

to a distanceéD,,;,,

Data: B: wholeblock b: state of the actualard-bay h: Initial heuristic; D, ;,: Minimum
distance;NC: Number of containers;
Result A: heuristic value ob;
nBay = NunBay (b);
if nBay > 1 Ah < NC A3JC4 € bthen
Ah = 0;
Ly = Location(Cyq1);
foreachb; € Y/NunBay (b;) € {max(nBay — Dyin + 1,1),nBay — 1} do
if 3C42 € by then
Lo, = Locati on(Cy2);
dist = Eucl i deanDi st ance(L1, L2);
if dist < Dpin then
| Ah = Ah+ NunCont ai ner sOn(Cy1);
end
end
end
h+ = Ah;

end

Algorithm 10: Sinks within a whole block

Data: B: wholeblock
Result nSinks: number of Sinks;
nSinks = 0;
for b < 1 to nunar ds(B) do
for r < 1 to nunRows (b) — 1 do
Ah = Abs(Hei ght [r,b] — Hei ght [r + 1,b]);
if Ah > 2then
| nSinks + +;
end

end
if NunBay (b) > 1 then
for r < 1 to numRows (b) do
Ah = Abs(Hei ght [r,b] — Hei ght [r,b — 1]);
if Ah > 2then
| nSinks+ +;
end
end

end
end

ner H1 Sequential). Following the optimization critetiaC,,p (Section 2.6.1).
Thus, the planning of a yard-bay is carried out taken into account théaoob-
tained by the previous yard-bay (see Figure 2.14). Thus a first pldstagned for
the first yard-bay. Then a new plan is carried out for the secondlyaydaken
into account the balance constraints generated with the solution obtaintrk for
first yard-bay, and so on.

Figure 2.13 (lower) shows a different order of execution of yargsi{®lanner
H1 Ordered). The tightest yard-bays (yard-bays with more expotagwers) are
analyzed first. Thus, the number of reshuffles is minimized due to the fact tha
the tightest yard-bays are solved without the need of satisfying the leatame
straints with the contiguous ones, meanwhile their neighbour yard-bayshbmust
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Algorithm 11: Unfeasible relationships between two dangerous containers

within a whole block
Data: B: wholeblock
Result nDang: number of Sinks;
nDang = 0;
for b «+— 1to numyar ds(B) do
nBay = NunBay (b);
if nBay > 1 A 3C4, € bthen
Ly = Location(Cy1);
foreachb; € Y / NunBay (b)) € {max(nBay — Dyin + 1,1),nBay — 1} do
if 3Cy42 € b; then
Lo = Location(Cy2);
dist = Eucl i deanDi st ance(L1, L2);
if dist < Dpin then
| nDang+ +;
end
end
end

end
end

Yard-bays 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Containers

ForVesseIA41051357419612585125

Orderof execution of yard-bays

Yard-bays 11 16 8 1215 7 17 420 9 1 6 14191013 5 18 2 3

Containers
ForVesselA 9 8 7 6 5 5 5 55 4 4 3 22 111 110

Figure 2.13: Order of execution of yard-bays.

committed to these tasks. Thus, following the example of Figure 2.13, the yard-
bay 11 is executed first without balance constraints because it has@gtainers
meanwhile yard-bays 10 and 12 are executed later taken into accouralémed
constraints generated by the solution of yard-bay 11. In the evaluattiorseve

will compare the behavior of two alternatives. In general the order ef@tion of
yard-bays is directly related with the efficiency of our planning tool. Thieong

of yard-bays by tightness improves the efficiency our planning tool.

Furthermore, containers of different yard-bays must satisfy othestcaints
among them such as dangerous containers that must maintain a minimum security
(Euclidian) distance among them (Planner H1DC). In order to insert lamnpr
in the integrated system, we have improved our version to minimize the number of
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Balance
constraint

Solved To be solved

Figure 2.14: The balance constraints for continuous yard-bays.

reshuffles for a set of out containers to be loaded in different isedsdtially our
planner was developed to minimize the number of reshuffles for a vesssglv
A in Figure 2.13). However, the order of the rest of containers in thd-pay
did not matter. Our new planner takes into account these features andleis a
to organize the bay in order to adapt to the berth schedule. Thus, thdflesh
needed to allocate the out containers for a vessel are carried outitéix@ccount
the out containers for the following vessel to berth.

2.8 Analytic Formula to Estimate the number of Reshuf-

fles
As we have pointed out, solving the CStackP is a NP-complete combinatorial opti-
mization problem. Once the BAP returns a possible schedule of vesselsharber
the port, the study of yard reshuffles must be carried out for eadel€eBhis is a
very hard task so that a general formula that estimates the number offiesfar
each vessel remains necessary. Once the best solution is achieysdnthieg tool

is executed to obtain the optimal plan for the yard reshuffles. To this endawes
identified the main parameters that affect the number of reshuffles in doggrd

1. Number of total slots in a yard-bay’(). For instance, a yard-bay with tier
5, the number of slots is 30.

2. Number of containers in the yard-bai]. It is well-known thatP, < P;.
3. Number of goal (out) container$X). It is well-known thatP3 < P2

4. Number of containers on top of goal containdrs)( A lower bound for the
minimal number of reshuffles iBy.

These parameters influence in the number of reshuffles needed Foyaak
bay. The estimator function R is mainly dependedrarand it is bounded by:
R=P+a: a € [0,00) (2.5)
wherea = 0 means that the problem is underconstrained meanwhile co
means that the problem is unsolvable.
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P, =24
P2:19
P3:8
P4:8

N. of Reshuffles=9

Figure 2.15: Example and values of parameters.

Figure 2.15 shows an example of yard-bay with the value of each identified
parameter. The rest of parameters also play an important role but therrehagio
among them is not clear. The simulation of one hundred yard-bays withetitfe
tiers and number of containers and objectives return a strong relaticasitpg
the parameter$,, P, and Ps. If (P, — P,)/Ps is lower than 1.25, one more
reshuffle is neededy; + 1). In the same way ifP; — P»)/Ps is lower than 1, one
more reshuffle is also needéf; + 2); and so on. Finally if P, — P») — 0 the
problem is unsolvable. Thus, we estimate the number of reshuffles bylitheifm
formula:

R=Py+ {PIQPQJ =P+ {P? _P;’D2J (2.6)
P

This estimatoR is accurate enough for us to do not need to execute our planner
for each berthing plan. In the integrated system presented above nveeleat to
run our planner or to use the estimator. In any case, once the best satution
found for the integrated problem, our planner must solve the best solutardeén
to determine the specific plan that the cranes must be carried out to allocate the
containers in the appropriate places.

2.9 Evaluation

In this section, we evaluate the behavior of the heuristic with the set of optimiza-
tion criteria presented. The experiments were performed on randomadastaf
random instance of a yard-bay is characterized by the tupte s >, wheren is
the number of containers in a yard-bay and the number of selected containers in
the yard-bay. Each instance is a random configuration of all contadisgruted
along six stacks with 4 tiers. They were solved on a personal computigpegu
with a Core 2 Quad Q9950 2.84Ghz with 3.25Gb RAM.

First, we present a comparison between our basic domain dependestibeu
hy against a domain independent oméefric FF). Thus, Table 2.1 presents the
average running time (in milliseconds) to achieve a first solution as well disyqua
of the best solution found (humber of reshuffles) in 10 seconds fodomain-
dependent planner. This table also shows the average running time (in millisec
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onds) and the quality of the solution fivtetric FF. Both planners have been tested
in problems< n,4 > evaluating 100 test cases for each one. Thus, we fixed the
number of selected containers to 4 and we increased the number of containe
from 15 to 21.

It can be observed that our new domain-dependent heuristic is abledta fin
solution in a few milliseconds, meanwhile the domain-independent plaktedri¢
FF) needs much more time to find a solution. This solution also needs more moves
to get a goal state. Furthermore, due to the fact that our tool is an anytimeepla
we evaluate the best solution found in a given time (10 seconds).

Table 2.1: Average number of reshuffles and running timiletric FF andh; in
problems< n, 4 >.

Metric FF Heuristic (h1)
Instance Running time  Solution Running time Best Solution
first solution in 10 secs
< 13,4 > 22 3.07 2 3.07
< 15,4 > 3102 4.04 6 3.65
< 17,4 > 4669 5.35 12 4.35
<19,4 > 6504 6.06 24 4.72
< 20,4 > 22622 7.01 36 5.22
<21,4 > 13981 6.82 66 5.08

Now we show the effects of using each one of the criteria described tiroSec
2.5 separately. In Table 2.2, we present the average sum of distastee=eh the
selected containers and the right side of the layout in both our domaindndept
heuristic and our domain-dependent heuristic with distance optimizationdbr pr
lems< n,4 >. As mentioned above, we fixed the number of selected containers
to 4 and we increased the number of containefsom 13 to 21. It can be ob-
served that distance optimization function helps us for finding solutions ke p
the selected containers closer to the cargo side of the yard-bay.

Applying the criterion or function showed in Algorithm 3 we obtain the results
appeared in Table 2.3. These results are the comparison between the fimbe
solved problems over 100 problerasn, 4 > using or not that criterion in just one
second. Through this table we can conclude that:

e The higher number of containers, the lower problems are solved. This is
because as we increase the number of containers there are less paositions
gaps where containers could be remarshalled.

e Allowing movements to thé'" helps us to solve more problems. It is re-
markable with instances 23,4 > with H; only three problems could be
solved, howeve€© (4, solves84 over100 problems.
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Table 2.2: Average distance obtained by considering distance or nat dfomain-
dependent heuristie n,4 > with 4 tiers.

Metric FF 0OC1q4
Instance
Distance Reshuffles Distance Reshuffles
< 13,4 > 11.28 3.07 10.91 3.07
< 15,4 > 10.60 4.04 9.21 3.65
< 17,4 > 10.58 5.35 8.87 4.46
< 19,4 > 12.28 6.06 8.32 4.86
< 20,4 > 12.71 7.01 7.75 5.56
<21,4> 12.20 6.82 8.36 5.34

Table 2.3: Number of solved problems n,4 > with 4 and 5 tiers during the

process.
Instance 4 tiersh, 5 tiers OCq¢
<19,4 > 100 100
< 20,4 > 100 100
<21,4> 95 99
< 23,4 > 3 84

Last criterion for solving problems where we only take into account ong-ya
bay is showed in Section 2.5.3. Since Algorithm 7 presents the best redalts af
the whole process of remarshalling, we do the comparison in Table 2.4 anmeng th
solutions given byMetric FF planner, the initial oné; and OC4; (Both) in 50
test cases. The last two ones look for solutions during 1 second in iestafic
< 15,4 > and 4 seconds in instances«fl7,4 >. These times are used in order
to achieve a solution for all the instances.

Table 2.4: Average number of movements, sinks and time for the first solution in
problems< 15,4 > (1) and< 17,4 > (2) using or not balanced heuristics.

Metric FF hq OC1yp

(1) (2) (1) (2) (1) (2)
Reshuffles 3.72 424 3.42 3.68 5.36 5.30
Sinks 0.62 0.50 0.92 0.66 0 0
Time First Sol. 2621 2961 6 10 16 22

Sinksare calculated by Algorithm 10. As we mentioned above, we consider
that there is a sink where the difference in tiers between two adjacenigigher
than 2. Thereby, in this algorithm we are counting sinks produced bettmeen
contiguos stacks at the same yard-bay as well as between two rows iarchbay
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and the previous one. This process takes into account the goal costaitimal
yard-bays.

From here, we realize an evaluation for the criteria presented in Section 2.6
Table 2.5 shows the performance of the criteria for solving the whole bléck o
yard-bays. These experiments were performed in blocks of 20 yaysldnd each
one of them are instances 15,4 >. This evaluation was carried out in a yard
with 3 blocks of 20 yard-bays. The number of unfeasible relationshipsdaan
dangerous containers is calculated by means of Algorithm 11. Basicallpoke
for those pairs of dangerous containers whose distance between tlsrortier
than minimum distancel{,,,;»).

The results showed in Table 2.5 represent the average number offleshu
the average number of sinks generated along the block and the averagenof
unsatisfied dangerous containers. Results given by these optimizatiocra@are
the average of the best solutions found in 10 seconds. It can bevetisbath
still outperformsMetric FF in the average number of reshuffles. However, due
to the fact that they do not take into account the balancing constrietsic FF
generated an average 21.33 sinks in the block of yard-bay ankl; generated
and average 082.67 sinks. And it occurs the same for the average number of
unfeasible constraints for dangerous containgletric FF gives usl15.33 andhy
obtains7.67.

Taking into account thaDC'y is a junction ofOC,, 5 andOC,,p, bothOC,, g
andOC,,p solved their problems. That i§)C,, g obtained its solutions with no
sinks andOC,,p obtained its solutions by satisfying all dangerous constraints.
Furthermore(OC'y was able to solve its problems by satisfying both types of con-
straints. However we could state that balancing problem is harder tharotblem
related to dangerous containers becallég, g heeds more reshuffles to obtain a
solution plan tha®C,, . Moreover, we observe withC,, 5, OC,,p andOCy en-
sure the established requirements however the average reshufflegé&sewtwith
respect toh; .

Table 2.5: Average results with blocks of 20 yard-bays each one beingsa4 >
problem.

Metric FF hy OC,p OC,p OCnN

Reshuffles 3.98 3.60 5.68 4.30 6.53
Sinks 24.33 32.67 0 33.33 0
Non-Safe Dangerous 15.33 7.67 8.00 0 0

In Table 2.6, we show the performance of our planner H1 SequentiaHand
Ordered (Section 2.7). These experiments were performed on blocka@iners
composed by 10 yard-bays in the forn17,s >. Thereby, each yard-bay has a
different number of goal containers. Furthermore, we have estatllshieneout
of 35 seconds to solve each yard-bay.

The first column in Table 2.6 corresponds to each instance solved bykach
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Table 2.6: Comparison of H1 Sequential and H1 Ordered.
Order (Yard-Bay/N. Goal containers) Number

Instance

12 3 4 5 6 7 8 9 10 Reshuffles
R
s P23 TR TR e
o 25 S LT YE I
25 P23 LSS 7T 00 e
o 3G iRiiiiis
R
o gy iR iiiiicw
R
R
os 12353810 8% meow

ner. Thereby, row 1 corresponds to instance 1 of planner H1 Qi &+®), row 2
corresponds to instance 1 of planner H1 Sequential (1-S), and Sderiollowing

10 columns have two rows for each instance. They show for each iedfaorder
in which the yard-bays are executed (upper row) and the number bégai@iners
that each one of them has (lower row). As example, for the instancelie@ixth
yard-bay is the first one in being executed and it has 9 goal contakiegsly, the

last column presents the number of reshuffles needed to solve the instdmce

Outif a solution is not found.

As it can be observed, there are instances which only can be solvegythro
the H1 Ordered, e.g. instances 1, 2 and 5. Moreover, other instans&ste 3),
through the H1 Ordered planner, give a more efficient plan than thesgglone.
However, there are also other examples in which both planners returraute s
plan (instance 4).
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Thus, we can conclude that H1 Ordered can be considered a betteeipthan
H1 Sequential to solve the complete block of yard-bays.

The actual average number of reshuffles and the average valueestonator
R are presented in Table 2.7. In each row, we present the average mambe
reshuffles from a set of 100 random instances. In all cases, wadevad yard-
bays with tier 4, so that the number of possible containers to be allocatedito eac
yard-bay is set to 24K, = 24). The rest of parameters were increas€gfrom
15 to 19 andPs; from 4 to 8. It can be observed the similitude of the average
number of reshuffles ang® in all cases. It can be observed that the estim&tor
achieved values close to the actual values in all cases. The average®Alin all
instances was very similar to the average value of the actual number offtesh
The standard deviation a8 was even lower than the actual number of reshuffles
due to the fact that it is not dependent on the original allocation of outgwrs.

Table 2.7: Values obtained through estimalior

Ps =15 Py =17 Ps =19
Reshuffles R Reshuffles R Reshuffles R
Py =4 2.8 2.6 3.7 46 46 4.8
P;=6 42 4.8 6.2 5.9 56 6
P3=8 6.2 6 8.6 8 72 8
Avg. values 44 45 6.2 6.2 58 6.3
St. deviation 21 19 31 21 26 19

2.10 Conclusions

This chapter presents a domain-dependent heuristic and a set of optimi@étio
teria for solving the container stacking problem by means of Artificial Intediige
planning techniques. We have developed a domain-dependent planairfgrto
finding optimized plans to obtain an appropriate configuration of containeas in
yard-bay. Thus, given a set of outgoing containers, our planner miagtiie num-
ber of necessary reshuffles of containers in order to allocate altsdleontainers
at the top of the stacks. This proposed planner is able to satisfy both imgjanc
constraints and dangerous container constraints, as well as reduitigtdnce of
the goal containers to the cargo side or allowing a fifth tier during the remiléingh
process.

Additional criteria have been defined for management blocks of yaydibto
consideration. However, as the problems involve a larger number ofraonts,
the solution becomes harder and the number of reshuffles increaset e fact
that a solution of a yard-bay influences on the solution of the following-iasd
the order of solving the yard-bays will determine the minimal number of réskuf
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This proposed planner with a domain-dependent heuristic allows us to obtain
optimized and efficient solutions. This automatic planner can help to take decisio
in the port operations dealing with real problems. Moreover, it can helprto-s
late operations to obtain conclusions about the operation of the terminalatsvalu
alternative configurations, obtain performance measures, etc. Patticing59]
the proposed planner has been applied for obtaining an evaluation oladiter4
or 5 tiers stacks configuration.
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Chapter 3

Berth Allocation and Quay Crane
Assignment Problem

3.1 Introduction to BAP and QCAP

Container terminals are open systems with three distinguishable areas (see Fig
3.1): the berth area, where vessels are berthed for service; thgesi@mal, where
containers are stored as they temporarily wait to be exported or importeédhan
terminal receipt and delivery gate area, which connects the contaimen&to the
hinterland. Each one of them presents different planning and schggubblems

to be optimized. For example, berth allocation, quay crane assignment, stowag
planning and quay crane scheduling must be managed in the berthinglerea;
container stacking problem, yard crane scheduling and horizontaptrarspera-
tions must be carried out in the yard area; and hinterland operations esshed

in landside area. Figure 3.2 shows the main planning and scheduling prabkms
must be managed in the berth area.

We will focus our attention to the Berth Allocation Problem (BAP), a well-
known NP-Hard combinatorial optimization problem, which consists of asgignin
incoming vessels to berthing positions. Once a vessel arrives at thét gorters
in the harbor waiting time to moor at the quay. The quay is a platform protruding
into the water to facilitate the loading and unloading of cargo. The locationsewhe
mooring can take place are called berths. These are equipped with giaescr
called pier or quay cranes (QC), used to load and unload container$ atec
transferred to and from the yard by a fleet of vehicles. In a transshipteeninal
the yard allows temporary storage before containers are transfetaedttoer ship
or to another mode (e.g., rail or road).

Managers at container terminals face two interrelated decisishgre and
whenthe vessels should moor. First, they have to take into account physical re-
strictions as length or draft, but also they must take into account the pricaitiks
other aspects to minimize both port and user costs, which are usually ogposite
Nowadays, this process is usually solved manually with a first come, finstcde
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Figure 3.1: Container Terminal at Valencia

Unloading and Planning and
Loading Scheduling
Operations Problems in Yard

Arrival of

Vessels

Berth Allocation Quay Crane Quay Crane Stowage
Problem Assigment Scheduling Planning

Figure 3.2: Planning and scheduling problems in Container Terminals

policy . Thatis, the order the vessels arrive is the same they are moagede B.3
shows an example of graphical space-time representation of a berthnglavith
6 vessels. Each rectangle represents a vessel with its handling time atid leng

The reminder of this chapter is organized as follows: the next sectiopmiges
a literature review about the BAP and QCAP and different techniques tagean
them. Section 3.3 address the developed modelas as well as their notatiitn Se
3.4 and Section 3.5 describe the notation used and the developed metaheuristic
techniques, respectively. In section 3.6 the computational results aneeg@and
finally, conclusions are presented.
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Figure 3.3: A berth planning

3.2 Literature review

In [68], the authors show a complete comparative study about diffsmations
for the BAP according to their efficiency in addressing key operatiomtactical
questions relating to vessel service. They also study the relevanceglichhility

of the solutions to the different strategies and contractual servicegamants
between terminal operators and shipping lines.

To show similarities and differences in the existing models for berth allocation,
Bierwirth and Meisel [3] developed a classification scheme accordinguioad
tributes (see Figure 3.4). The spatial attribute concerns the berth laydwtater
depth restrictions. The temporal attribute describes the temporal constoaithis
service process of vessels. The handling time attribute determines the sy ve
sel handling times are considered in the problem. The fourth attribute ddimes
performance measure to reflect different service quality criteria. Thet imgor-
tant ones are focused on minimizing the waiting time and the handling time of a
vessel. Both measures aims at providing a competitive service to vessaiarpe
If both objectives are pursued (i.e. wait and hand are set), the pgrtista of
vessels is minimized. Other measures are focused on minimizing the completion
times of vessels among others. Thus, by using the above classificatianesche
a certain type of BAP is described by a selection of values for each otteeof
attributes. For instance, let's be a problem where the quay is assumed to be a
continuous line ¢onf). The arrival times restrict the earliest berthing of vessels
(dyn) and handling times depends on the berthing position of the vessgl The
objective is to minimize the sum of the waiting timasa(t) and handling time
(hand. According to the scheme proposed by [3], this problem is classified by
cont|dyn|posT.(wait+hand)
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Value Description

1. Spatial attribute

disc  The quay is partitioned in discrete berths

cont  The quay is assumed to be a continuous line

hybr  The hybrid quay mixes up properties of discrete and continuous berths

draft  Vessels with a draft exceeding a minimum water depth cannot be berthed arbitrarily

2. Temporal attribute

stat In static problems there are no restrictions on the berthing times
dyn In dynamic problems arrival times restrict the earliest berthing times
due Due dates restrict the latest allowed departure times of vessels

3. Handling time attribute

fix The handling time of a vessel is considered fixed

pos The handling time of a vessel depends on its berthing position
QCAP The handling time of a vessel depends on the assignment of QCs
QCSP The handling time of a vessel depends on a QC operation schedule

4. Performance measure

wait  Waiting time of a vessel

hand Handling time of a vessel

compl Completion time of a vessel

speed Speedup of a vessel to reach the terminal before the expected arrival time
tard  Tardiness of a vessel against the given due date

order Deviation between the arrival order of vessels and the service order
rej Rejection of a vessel

res Resource utilization effected by the service of a vessel

pos Berthing of a vessel apart from its desired berthing position

misc  Miscellaneous

Figure 3.4: A classification scheme for BAP formulation [3].

One of the early works that appeared in the literature was focused orthe d
velopment of a heuristic algorithm which a First-Come-First-Served (FOHS)
was considered [40]. However, the idea that for high port throughgpatimal
vessel-to-berth assignments should be found without considering th® B&ses
was introduced by [31]. Therefore, we will use the FCFS rule in ordget@n up-
per bound. Nevertheless, this approach may result in some vessedgisdagion
regarding the order of service.

In [20], multiple vessel mooring per berth is allowed assuming that vessel ar
rivals can be grouped into batches. They have developed a treé ggaoedure
which provides an exact solution and this is improved by a composite heuristic.

Some metaheuristics have been developed to solve the BAP. In [11] two Tabu
Search heuristics are presented to solve the discrete and continueusesaec-
tively to minimize the weighted sum of the service time for every ship. Both heuris-
tics are inspired by &ulti-Depot Vehicle Routing Problem with Time Windows
algorithm and can handle various features of real-life problems as time wénaio
favorite and acceptable berthing areas. Mauri et al. [44] design ancoyenera-
tion approach for the problem of Cordeau et al. [11] which delivettebsolutions
in shorter runtime than Tabu Search. In the models of Han et al. [21] aod Zh
et al. [71], a Genetic Algorithm (GA) is proposed to solve this problem. Iimbo
models, the draft of vessels restricts the berth assignment decisions.
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An approach based on multi-objective optimization problem using evolutionary
algorithms [7] is followed to minimize the makespan of the port, total waiting
time of the ships, and degree of deviation from a predetermined servia#yprio
schedule.

In [30], Imai et al. provide a solution for the integration of BAP with the Quay
Crane Assignment Problem (QCAP) based on genetic algorithms. It minimizes th
weighted number of vessel rejections. In this sense, an integration thtouag
mixed integer programming formulations including a tabu search method is pre-
sented by Giallombardo et al. [17]. The latter tabu search method is an adaptio
of the one of [11]. However, Giallombardo et al. minimize the yard-relatedé&o
keeping costs generated by the flows of containers exchanged betessss.
These two approximations consider the discrete case of the BAP.

Considering the quay as a continuos line, a non-linear integer programming
model is developed to integrate BAP and QCAP in [48]. They do not conside
restrictions on the berthing times, one vessel could be scheduled earaeror
than the committed or arrival time.

In [3], the authors give a comprehensive survey of berth allocationgamy
crane assignment formulations from the literature. Some authors outlineeaes
more or less informally while others provide precise optimization models. More
than 40 formulations are presented distributed among discrete problentis;- con
uous problems and hybrid problems. Hansen et al. [22] considerecieteis
problem with a tardiness objective which accounts for departure time relastsl
including penalties for tardiness as well as benefits for early deparilinesprob-
lem was solved by a variable neighborhood search which turns out topesicr
to the GA of Nishimura et al. [46].

Taken into account the requirements of container operators of MSCitdvted
ranean Shipping Company S.A), our approach also studies the integrbticase
two problems (BAP and QCAP) through a metaheuristic called Greedy Random-
ized Adaptive Search Procedures (GRASP) [13]. This metaheuristitds@find
feasible solutions within an acceptable computational time. Following the above
classification scheme (see Figure 3.4), our approach is classifehbgyn| QCAPL
wait. Thus, we focused on the following attributes and performance measure:

e Spatial attribute: cont: we assume the quay is a continuous line, so that
there is no partitioning of the quay and vessel can berth at arbitrary pusitio
within the boundaries of the quay. It must be taken into account that for a
continuous layout, berth planning is more complicated than for a discrete
layout at the advantage of better utilizing quay space [3].

e Temporal attribute: dyn: we assume dynamic problems where arrival
times restrict the earliest berthing times. Thus, fixed arrival times are given
for the vessels. Hence, vessels cannot berth before their expecied a
time.
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e Handling time attribute: QCAP : we assume the handling time of a vessel
depends on the assignment of QCs.

e Performance measure: wait Our objective is to minimize the sum of the
waiting time of all scheduled vessels to be served.

3.3 BAP-QCAP models

The objective in BAP is to obtain an optimal distribution of docks and cranes to
vessels. This problem can be considered as a special kind of machidutog
problem, with specific constrains (length and depth of vessels, ensweexic
order for vessels that exchange containers, assuring departing¢itmgsnd opti-
mization criteria (priorities, minimization of waiting and staying times of vessels,
satisfaction on order of berthing, minimizing cranes moves, degree oftibavia
from a pre-determined service priority, etc.).

The First-Come-First-Served (FCFS) rule can be used to obtain an lgpyead
of the function cost in BAP [40]. Several methods have been propirsée
literature for solving BAP. Usually, these methods are mainly based on tieuris
[20] or metaheuristic [11], [7] approaches.

Our approach follows an integration of the Quay Crane Assignment FPnoble
(QCAP) and the BAP through the metaheuristic Greedy Randomized Adaptive
Search Procedure (GRASP) [13] which is able to obtain optimized solutions in
an efficient way.

3.3.1 BAP-gtatic QCAP

In this section we present the notation of the main parameters (Figure 3.8jithat
be used in the proposed metaheuristic techniques. In this first médgl known
asstatic QCAF51, 53], QCs are assigned to one vessel and they can not be moved
to another vessel until the former one leaves the Container Terminal.

Let V; be an incoming vessel. We define:

e a(V;) : Arrival time of the vessel at port.

e m(V;) : Moored time ofV/;.

e pos(V;) : Berthing position wheré; will moor.

e ¢(V;) : Number of required movements to load and unload containérs of
e ¢(V;) : Number of assigned QCs 4.

e d(V;) : Departure time o¥/;, which depends om/(V;), ¢(V;) andq(V;).

e w(V;) : Waiting timeV; arrives at port until it moors:

w(Vi) =m(Vi) — a(V;) 3.1
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1(V;) : Length of V.

pr(V;) : Vessel’s priority.

QC : Available QCs in the Container Terminal.

e [ : Total length of the berth in the Container Terminal.

Berthing position gos(V;)) will be determined according to the length of the
vessels (and their security distances) which have previously plannexdidition,
this position will be as close to the ends of the quay as possible. Therelgiray
one vessel could moor in the middle of the quay gives more continuous length
available to moor the remaining vessels.

L

- w(Vy)

Vi vy

Berth Space

0 aV) mv)  dv)  time
Figure 3.5: Representation of a vessel according its position and times

Basically, our objective is to allocate all vessels according to severatredmts
with the objective of minimizing the total weighted waiting time. To this end, let's
assume a priority of each vessel according to its length and the number ef mov
ments (loading and unloading operations), in order to avoid the vessedatidis
faction mentioned above, as:

pr(Vi) = ax (Vi) + § x ¢(Vi) (3.2)

wherea and 5 are the needed factors to distribute the value§ Bf) and c(V;)
in order to range the priority ifil, 10]. For instance, the vessels with length<
[(V;) < 100 thea x I(V;) = 1; the vessels with the number of containérsc
c(V;) <200 thea x ¢(V;) = 1, therefore, the priority value would be 2.

As we have pointed out, we deal with continuous and dynamic BAP and the
time is discretized into integer unit$,@, ..., 7). Moreover, we consider the fol-
lowing assumptions:

e Number of quay cranes (QC) assigned to a vessel do not vary alotigeall
moored time. Moreover, all QC do the same number of movements by unit

time (movsQC).
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¢ All the information related to the waiting vessels is known in advance.
e Every vessel has a draft lower or equal than the quay.

e Mooring and unmooring are no time consuming.

e Simultaneous berthing is allowed.

Therefore, in order to allocate one vessel at berth, the following @insir
must be accomplished:

e Moored time must be at least the same that its arrival time:

m(V;) = a(Vi)

e There is enough contiguous space at berth to moor the vésgg)(

e There is a security distanceecLength) between two moored ships: let’s
assume 5% of their lengths (the maximum of these two contiguous vessels).

e There must be at least one QC to be assigned to each vessel. The maximum
number of assigned QC by vessel depends on its length. This is due to the
fact that a security distance is required between two contiguousexQe)
and the maximum number of cranes that the Container Terminal allows per
vessel faxQC). Moreover, once a crane starts to work into a vessel, it must
complete it without any pause or shift (jobs non-preemptive). Thus,ghe h
dling time of V; is given by:

c(V3)
4(V;) x movsQcC (3.3)

The goal of the BAP is to allocate each incoming vessel according to the exist-
ing constraints by minimizing the total weighted waiting time of vessels:

Ty =Y _ w(Vi)? x pr(Vi) (3.4

%

wherey : (v > 1) is an adjustment factor to prevent that lower priority vessels
are systematically delayed. Note that this objective function is different to the
tardiness concept in scheduling. The weighted optimization of tardinessséhs
would be:

T, = Zw(v;) x (d(V;) — dueTime(V;)) (3.5)

Thus, the departure time of vessé(¥/;) with respect to their due time&ieTime (Vi)
is optimized.
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3.3.2 BAPidynamic QCAP

In this section, we present a new modef;, which modifies the previous one by
introducing the holdsof the vessels into it. As holds are introduced in the model,
My, is now based oynamic QCARModel [52].

Dynamic QCAP assigns QCs to the holds of the vessels. Thus, once all the
movements of one hold are done, the QC can move to another location (another
hold in the same vessel or to other vessel). The notation, assumptionsrand co
straints mentioned above remain valids, except for obtaining the handling time
corresponding to each vessel. The handling time will be explained lateofhe
mization function is also the same as in Equation 3.4.

Following, we introduce some more notation:

e h(V;) : Number of holds intd/;. All vessels have the same length hold.

e ¢;(V;) : Number of movements to load or unload containers from/into the
hold j, 1 < j < h(V;).

e st;(V;) : Starting time of working the QG, 1 < j < ¢(V;). Just one QC
can be assigned to one hold.

e ht;(V;) : Handling time of the QG, 1 < j < ¢(V;).

e h;(V;) : Set of handling times of each hold assigned to the QC < j <
q(V;).

Within the Container Terminals two other key factors are the ratio of berth
usage 3,,) and the quay cranes throughpiit{). Berth usage is obtained by means
of the Equation 3.9. It reflects the area held by vessels with respect to Ximuma
area. The maximum area depends on the length of the dyags(well as the fisrt
mooring and the last departure of the incoming vessels.

firstArrival < min(m(V;)) (3.6)
lastDeparture < max(m(V;)) (3.7)
B, SU(Vi) x (d(Vi) - m(V7)) (3.8)

B, + Bu (3.9)

" L x (lastDeparture — firstArrival)

T, depends on the model for the QCAP we consider. Static QCAP model
calculatesI;,. by means of Equation 3.10 taking into consideration that one QC
remains at the same vessel until it departs. Thereby, all the QCs aréheusgme
time although they are idle (shaded area in Figure 3.6(a)).

The holds are the spaces of the container vessels where containstarade
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Tpe 3 q(Vi) x (d(Vi) — m(Vi) static (3.10)

Tye Z Z ht;(V;) dynamic (3.11)
i 1<5<q(V;)
However, Dynamic QCAP model, which uses Equation 3.11, considers that
once one QC finishes its job at one hold, it can move to another locatiorefdher
the time for each QC is only its service time (shaded area in Figure 3.6(b)).

(a) Static QCAP (b) Dynamic QCAP
Figure 3.6: Differences to calculag.

The fact of taking into consideration the holds{;)) of each vessel in our
model allows better use of the resources (QCs and berth). Figure 3vé sloth
approximations. In this figure, each bold rectangle represents the timeth@©
is working on a hold.

On the one hand, when one QC is assigned to one vessElgure 3.7(a), this
can not be moved to another vesgeintil i leaves the Container Terminal. On the
other hand, in Figure 3.7(b) the concept of holds is introduced. On¢e fini3hes
its job related to one hold in the vesseit could keep working on another hold of
the same vessel or move to another vegsélhereby, the latter scheduling gets a
departure time of the last vess#&l; () earlier than the former scheduling (from the
unit time 12 to 9); the waiting timel(,) is also reduced (from 26 to 13) and the
berth usage rated,) is increased as well (around 20%). Finally, Dynamic QCAP
gets that more QCs are used per unit time than static QCAP, and the total time that
the QCs are tied to one vessé]() is also reduced.

3.4 Mooring one vessel

Once all the parameters are defined, we present the functomVesse(Algo-
rithm 12) used to get moored one veskgin a given timet (the required data are:
v: Vessel for allocatingy;,,: set of vessels already moored). These algorithms are
written following theM;, model (Section 3.3.2).

In this mooring process, three steps are distinguished (Figure 3.8):
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(a) QCs assigned to one vessel (b) QCs assigned to holds of one vessel

Figure 3.7: Approximation using or not the holds of the vessels

1. Check if there are available QCs during the handling tim&; Algorithm
13).

2. Make sure there is enough continuous length at the berth to déigo-
rithm 15).

3. Assign more cranes when it is possible (Algorithm 16) (only for dynamic
model, Section 3.3).

The main differences between the two models described in previous sections
are:

e how the handling time is calculated. Algorithms for thé, model are de-
scribed in [53]; and

e M, does not carry out the adding cranes phase.

Algorithm 13 presents how to obtain the number of QCs. As we have men-
tioned above, in this chapter we consider that each QC is assigned just holoin
In order to do this, we distribute the holds of one vesaély)) into the different
cranes by the Algorithm 14.

After determining this first number of QCs, we must check if there is enough
continuous length (Algorithm 15). At this moment, the distance security length
between two contiguous vessels is taken into accassdQC). Furthermore, the
given berthing position will be as close to the ends of the berth as possible.

Then, if the vesseV; has available QCs and length to get moored at the time
t, itis tried to assign more QCs. This process is carried out in Algorithm 18. Th
is based on obtaining the period of time in which there is at least one available QC
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moorVessel (Algorithm 1)
Allocating one vessel in the berth

A

insertVessel (Algorithm 2)
Allocating one vessel at time ¢

A

A,
handlingTime (Algorithm 3) ” .
Time spent by V; at berth. Detg?ri’itrllzntﬁznzgﬁ:gﬁrgpe :t) the addingCranes (Algorithm 5)
Distribute the holds among the P ! Insert another QC to V;
- berth
available QC

Figure 3.8: Application order of the algorithms presented

Algorithm 12: Function moorVessel. Allocating exactly one vessel in the
berth.

Data: v vessel to moory;,, elements.
if |Vin| = 0then

cranes < max <1, min (maxQC,f | oor (::QC)));

ty < t+handl i ngTi me(v, nc);

m(v) « t;

d(v) < ty;

q(v) < cranes;

pos(v) < 0;

Vin < Vip Uv;

else

inst < insertVessel(v,a(v), Vip);

if linst then
T sty (vj) + hti(vj) | v; € Vin,1 <k < q(vj) A sti(vj) + htg(vs) > a(v);
while t, € T A linst do

| inst < insertVessel(v,tg, Vin);

end

end

end

from m(V;) until d(V;), and then setting a new QC to the ship if there is any hold
in which there is no QC working yet. Thus, we can reduce the departure fime o
this vessel.

Finally, if the vesselV; can not be moored at this time the whole process

described above is repeated taking into consideration other tighéo(moorV;
(Algorithm 12). Each time;, represents each time one crane has finished working
on the hold of the others vessels.

3.5 A meta-heuristic method for BAP+QCAP

From the methods explained above, we have developed different métnaddy-
ing BAPs. Firstly, we applied the simplest solution for bath, and M;, models,
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Algorithm 13: Function insertVessel. Allocating one vessel in the berth at
timet

Data: V;: Vessel for allocatingt: actual time;V;,,: moored already vessels;
Result V; could moor;
Lavait < L= (£, ev,, 105) [ m(vg) < EAd(;) > ¢);
if Lavail S l(‘/l) then
| return false
end
cranes <+ —1;
cranesy, <+ —1;
repeat
nc < max(1, cranes);
ty + t+handlingTi me(V;, nc);

cranesm, < nc;

cranes <— max (1, min (maxQC,f | oor (l(Vi) )))

secQC

/* Vessel s which coincide with V; */
W v € Vin| d(v) >t Am(v) < ty;
QCy, < cranesWr ki ng(v,t),Vv € W,
cranes < min(cranes, QC — QC4,);
foreachi € W do
if m(¢) > ¢ then
QCy < cranesWor ki ng(v, m(i)),Vv € W,
‘ cranes < min(cranes, QC — QCY,);
end
for j « 1toq(z) do
QCy <+ cranesWor ki ng(v, st;(i) + ht;(i)),Vv € W;
‘ cranes <— min(cranes, QC — QClY,);
end

end
if cranes < 0then
| return false
end
until cranes,, = cranes;

q(V;) + cranesm;

m(V;) < t;

d(Vi) « ty;

insert < Posi tionBerth(V;, Viy);

if insert then
| addi ngCranes(Vi, Vi );

end

return insert;
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Algorithm 14: Function handlingTime. Distribute the holds among the
available QC
Data: V;: Vessel to allocatepQC': number of QC;
T + ¢;(V;)/ movsQC, 1 < j < h(V5);
/+ Sort the values of T fromtop to bottom */
q(Vi) « nQC;
for j < 1to nQC do
st;(Vi) < m(Vi);
ht; (Vi) + ceil (T));
hj(Vi) = {ceil (T})};

end

for j <~ nQC + 1to h(V;) do

/* Choose the QC which ends earlier */
gm <+ ar gm n(st; (Vi) + ht;(Vi), 1 < j < nQC);

P, (Vi) = hap, (Vi) U Ty;

htg,, (Vi) < hiq,, (Vi) + ceil (Tj);

end
return max(st; (V) + ht;(V3)), 1 <5 < q(V3);

following the FCFS criteria¥i, m(V;) < m(V;11). A vessel can be allocated at
time ¢ when there is no vessel moored in the berth or there are available corgiguou
quay length and cranes at tim@Algorithm 17).

Just for theM,, model (Section 3.3), we also have implemented a complete
search algorithm for obtain the best (optimal) mooring order of vessel$owlest
T, (lower bound of the cost function). This algorithm uses the functinoerVes-
sel (Algorithm 12) to allocate one vessel from its arrival time (Section 3.4). The
lowestT,, is obtained by checking each possible order of the incoming vessels.

The next developed method is a meta-heuristic GRASP algorithm for Berth
Allocation and Quay Crane Assignment Problem (Algorithm 18). This methsd h
been developed for both,, and M, models. This is a randomly-biased multistart
method to obtain optimized solutions of hard combinatorial problems in a efficient
way. The parameter (0 < § < 1) allows tuning of search randomization.

This algorithm receives as parameters bothdliactor and the set of vessels
Vour Waiting for mooring at the berth. Firstly, all the waiting vessglg; are
considered as candidatés Each of the candidate vessels is moored within the
current state (being assigned the mooring and departure tim@s )(d(V;)), the
number of QCs((V;)) and the berthing positiorpés(V;))) and they are valued
according to the cost functiofi.. This cost function is the sum @&f, that each
vessel causes to the rest of unmoored vessels.

According to the cost functioff., a restricted candidate lisR(C L) is created.
Then, one vessal is chosen to be definitely moored by following the random
degree indicated by factor. Oncev is determined, this is added to the set of
vesseld/;, and eliminated from the candidate ISt This loop is repeated until'
is empty, that is, all the vessels are moored.

As metaheuristic GRASP indicates, this search is repeated according to the
number of iterations specified by the user. Thus, the best solution acgaodii),
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Algorithm 15: FunctionPositionBerth. Determining the position of the
vessel in the berth

Data: V;: Vessel to allocatel;,,: moored vessels.
Result V; could moor (by length).

W' v € Vip| d(v) < m(V;) Am(v) > d(V;);
W = Vi — W,

sort ByPosi tionBerth (W);

/* Position occupied by the noored vessels */
busy = {0};
lengths = {0};
foreachv € W do
busy = busy U {pos(v)};
lengths = lengths U {l(v)};
end
busy = busy U {L};
lengths = length U {0};

minDistance < +o00;

posBerth < 0;

assigned < false;

/= Exami ning each gap between the vessels */
for i < 1to |busy| —1do

dLeft < lengths[i] X secLength;

dRight < lengths[i 4+ 1] X secLength;

dVessel <+ 1(V;) X secLength;

dLeft < max(dLeft,dVessel);
dRight < max(dRight,dVessel);
free < (busyli + 1] — dRight) — (dLeft + (busy[i] + lengthsli]));

/+ Choose the berthing position closer to the ends of the berth */
if free > 1(V;)then
assigned <— true,
if minDistance > (busy[i] 4+ lengths[i] + dLeft) then
minDistance < busyli] + lengths[i] + dLeft;
‘ posBerth < minDistance;
end
if minDistance > (L — (busy[i + 1] — dRight)) then
minDistance < L — (busy[i + 1] — dRight);
‘ posBerth <— L — (minDistance + [(V;));
end

end
end
if assigned then
‘ pos(V;) <+ posBerth;
return true;
end
return false
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Algorithm 16: Function addingCranes. Insert another Q@to

Data: V;: Vessel to allocatel/;,,: moored vessels;
/1l Set of vessels which are nobored at the sane tine than V;
W v € Vi, | dw) > a(V;) A m(v) < d(V;);

/Il T is the set of berthing and ending tines of each QC from W
T+ m)|veW A m(v) >t
T TU {st;(0) + ht;(v) [0 € W, 1 <5 < (V) A (st;(v) + ht; (v)) < m(V;) A
(st () + hit;(v)) > d(V7)};
/1 The values of T nust be sorted frombottomto top
/] Obtain the tine [start,end] that at least there is 1 available QC
continue < false repeat
start < —1;end < —1;
foreacht € T' do
Qu < cranesWr ki ng(v, t),Vv € W;
if |Qw| > 0then
if start = —1then
| start < t; end < —1,

end
else
if start # —1then
| end <+t
end

end

f start # —1 A end # —1then

/1 Find a hold whose handling work is |ower than end — start
/'l last(h;j(V;)) is the last hold assigned to this QC

// Handling time of the hold

H « max(last(h;(V;))),1 < j < q(Vi) A last(h;(V;)) < (end — start);
/1 QC which carries out this hold

k + argmax(last(h;(V5))),1 < j < q(Vi) A last(h;j(V;)) < (end — start);

/1 QC which finishes at start tine
m<j|1<5<q(Vi) A st;(V;) = start;

if H # @ then

continue < true;

/1l Delete the hold fromthe first QC
hio(Vi) < hi(V;) — H;

ht (V) < hty (Vi) — H;

/1 Add this hold to the new QC

if m # @ then

k < m; /1 Choosing a QC already assigned to V;
hty (Vi) < H;

hip(Vi) + hp(Vi) U {H};

else

if |hy (V)| > 0then
| k<« q(Vi)++; /1 A new Q is noved to V;
end
sty (Vi)  start;
ht(V;) <= htg(V;) + H;
he(Vi)  {HY};

end
end

d(Vi) < max(st; (Vi) + ht;(Vi)),1 < j < q(Vi);
start < —1; end + —1;

end

end
until 'continue ;
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Algorithm 17: Allocating vessels following FCFS policy

Data: V': set of ordered incoming vessels;
Result Sequence fol/;
Vlast — 9,
Vim +— O,
foreachV; € V do
[ max(m(‘/last)v a‘(‘/l))’
inst < insertVessel(V;,t);
if linst then
T « stk(vj) +htk(vj) | vj € Vin, 1 <k < q(vj) N stk(vj) + htk(vj) > t;
while t;, € T'Alinst do
| inst < insertVessel(V;,ty);
end
end
Vlast — Vi;
Vi < Vi UV

end

Algorithm 18: Grasp metaheuristic adapted to BAP

Data: § factor; V,.,+ elementsp: state of the berth
Result Solutions

Vin < {}

C — Vout;

while C # @ do

foreachve € Vout do

fc('Ue) <~ 0;

b b,

moorVessel(ve, Vip);
‘/Zln — Vin U e,
foreachv, € Vout| vo # ve dO
moorVessel(vo, V/, );
J fe(ve) <= fe(ve) + (w(vo) X pr(vo));
en

end

Cing < min{fc(e)| e € C};

Csup — max{fc(e)| e € C};

RCL < {e € C|fe(e) < Cing + d(csup — Cing) }s

v + random(RCL);

moorVessel(v, Vin);

update(b) ; |« state of the berth b with v noored */
‘/7:’” — ‘/i7L U U!

C <+ C—w

end

is returned as the solution for the BAP.

This metaheuristic process does not include a local search technigeeitsinc
would involve testing the possible exchanges between the already ordesssls,
so that the computational cost would be increased considerably.
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3.6 Evaluation

In this section, we evaluate the behavior of the three methods presentedxTh
periments were performed on instances given by the port operatase Titstance
are composed on 20 vessels with an exponential distribution of arrivdlglan
needed factors are fixed (length, draft and moves). Moreoverpperators gave
us instances with two different inter-arrival distributior&parmeans that the ar-
rival among vessels is sparsely distributed meanwibdasmeans that the arrival
among vessels is densely distributed.

As we mentioned above, our goal is to minimize the total waiting time elapsed
to serve the set of vessels. All the experiments carried out were solved on a
personal computer equipped with a Core 2 Quad Q9950 2.84Ghz with 3.25Gb
RAM.

Considering theM,, model, (see table 3.1) the times of employing the complete
search against the GRASP method with 1000 iterations is presented. As it can
be observed, a complete search is impracticable for 13 vessels (appieyima
hours). However, our GRASP method takes around 15 seconds tcessttedule
of 20 vessels.

Table 3.1: Computing time elapsed in milliseconds (ms.)

Number Complete GRASP
5 <1 203
10 38110 1486
11 334441 1734
12 2689831 2234
13 26063570 3219
14 e 3907
15 e 5203
20 e 14954

Table 3.2 shows the avera@g (with v = 1) of 100 instances using FCFS and
complete search methods described above with two different inter{adibtebu-
tions. Through these data, it can be observed that FCFS method restliedale
which is far away from the best one.

Table 3.2:T,, for sparsely/densenly distributed Vessels

Vessels FCFS Complete
5 - Spar 27.67 13.93
10 - Spar 91.06 43.07
5 - Dens 52.79 32.83
10 - Dens 274.00 156.61
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The rest of the experiments will be based/bt), model. The next experiments
compare our GRASP method against the FCFS criteria, using 100 instaithes w
the former inter-arrival distributions. Figure 3.9 and Figure 3.10 shovateeage
values for the metric function for the two methods to allocate 10 vessels. It can
be observed that the solutions given by our GRASP method always fartped
the FCFS solution, mainly fof € [0.3 — 0.5] in densely distributed vessels and
0 € 0.3 — 0.4] for sparsely distributed ones.
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Figure 3.9:T;, for 10 vessels with densely distributed inter-arrival times.
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Figure 3.10:T,, for 10 vessels with sparsely inter-arrival times.

Furthermore, Figure 3.11 shows tfig values for 10 incoming vessels. It
can be observed as the number of iterations increased the quality of ABRBR
method also increased. For instance,ffet 0.4, T,, = 303.03 with 100 iterations
meanwhileT, is decreased t280.8 with 400 iterations.

In Figure 3.12 and Figure 3.13, the same evaluation is carried out fors2@ige
It can be observed the same tendency than in Figure 3.9 and Figure Bi@jwe
[0.1 —0.2] got the lowest values for both inter-arrival time distributions. Moreover,
GRASP reduces arourith — 30% the averages values @f, with respect to the
obtained by the FCFS criteria.
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Figure 3.11:T,, depending on the number of iterations in GRASP
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Figure 3.12:T,, for 20 vessels with densely inter-arrival times.

The last experiments also show how the Dynamic QCAP model always out-
performs the static one. For instance, taking into account 20 incominglyessk
0 = 0.2in Figure 3.13, the value &f,, is 255.43 and374.87 for dynamic and staic
QCAP model respectively.
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Figure 3.13:T,, for 20 vessels with sparsely inter-arrival times.
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Figure 3.14 shows the evolution of FCFS when the number of incoming ves-
sels with the static QCAP (solutions that would be provided by terminal opera-
tors) against GRASP considering Dynamic QCAP solutions. It is remarkige
greater the number of incoming vessels is, the better the GRASP solutions.

2500

2000 /
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/ e FCFS -Static

/1

1000 / Dynamic
500 7

i /

5 10 15 20 Incoming Vessels

Figure 3.14T,, varying the number of incoming vessels.

This metaheuristic search has been also applied to real-data given kypport
erators from MSC. Figure 3.15 shows that our grasp metaheuristic astietter
results than FCFS method as the examples studied above. Faet{r.1 — 0.2]
gets the best;, for 15 incoming vessels, and in the case of 10 vessels the best
factorisd € [0.3 — 0.4].
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(a) Dynamic QCAP model (b) Static QCAP model
Figure 3.15T,, for real-data obtained given by port operators.

Following the same experiments as mentioned before, Figure 3.16 shows the
relationship between berth usage and the weighted waiting Tigneaking into
account 15 incoming vessels. We can directly confirm that the I&yeis, the
greater berth usage.

Finally, Table 3.3 shows that considering holds in the model (Dynamic QCAP),
the throughput of the QCs is improved considerably. In other words, $p€Esd
less time in order to do the same amount of movements. Therefore, Dynamic
QCAP model allows better use of the QC, since they can be used in othefsvess
immediately.
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Table 3.3: Average time of the QC that they are busy (15 vessels with densely
inter-arrival times)

Number of Vessels Static QCAP  Dynamic QCAP

10 233.85 202.02
15 351.15 303.08
20 453.44 406.68

3.7 Conclusions

In this chapter, we present a new process to allocate berth space dantzenof
ships using a GRASP metaheuristic. This process also adds the QuayASrane
signment Problem into a model that takes into account the holds of each irgcomin
vessel. This method has been compared to the actual scheduling methodezimploy
in Container Terminals. It is observed how it can reduce the waiting time, the
berth utilization and throughput of QCs. Thereby, we state that the metteold us
in Container Terminals can be improved by using our different metaheurifstics
instance GRASP.

The above experiments show that:

e the greater the number of vessels to schedule is, the more significant the
difference between GRASP and FCFS criteria, and

¢ the berth usage is directly proportional to total weighted waiting timg.(
It means, the lower th&,, is, the lower the berth usage.

In this chapter, we also present a model where the basic unit to assigis QCs
each one of the holds of the incoming vessels. This model gets better reanlts th
the former model, whose basic unit is the own vessel. The reason is thata@Cs
be employed in an efficient manner, moving each time they finish their job at one
hold.
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Chapter 4

Integration BAP, QCAP and
CStackP

4.1 Introduction

The efficient management of containers in port requires more analysidexel-
opment to ensure reliability, delivery dates or handling times in order to improve
productivity and container throughput from quay to landside and vicsaveEx-
tensive surveys are provided about operations at seaport containgnals and
methods for their optimization [69, 66]. Moreover, other problems aredface
planning the routes for liner shipping services to obtain the maximal profit [9]
Another important issue for the success at any container terminal is tcagire
container throughput accurately [6]. Thus, they could develop beterational
strategies and investment plans.

The main research on optimization methods in container terminals are related
to reduce the berthing time of vessels. This objective generates a setrodlatied
problems such as berth allocation, yard-side operation, storage opexati@gate-
house operation. Usually, each one of these problems is managed iddefign
of others due to their exponential complexity. However, these problentdezndy
interrelated so that an optimized solution of one of them restrings the possilbility o
obtaining a good solution in another.

In this chapter, we focus our attention on three important and interrelatbe pr
lems: the Berth Allocation Problem (BAP), the Quay Crane Assignment Rroble
(QCAP) and the Container Stacking Problem (CStackP) (see FigureBtigjly,
the BAP and QCAP consist on the allocation of docks and quay cranesaiminc
ing vessels under several constraints and priorities (length and deptdssdls,
number of containers, and so on). On the other hand, when a vestts, lexport
containers stacked to be loaded in the vessel should be on top of the atdlcks
container yard. Therefore, the CStackP consists on relocating theremstso that
the yard crane does not need to do re-handling work at the time of loativege
two problems are clearly related: an optimal berth allocation plan may generate a
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large amount of relocations for export containers; meanwhile a suboptiend
allocation plan could require fewer rearrangements.

@
The Berth Allocation
Problem

Quay
Assignment
Problem

/‘—‘ The Container
\y—‘ Stacking Problem

Figure 4.1: Integrated Remarshalling, Berthing and Quay Crane allocatitr p
lems in Maritime Terminals.

In order to provide a computer-based decision support system, wedteaeqr
set of intelligent techniques for solving these problems concurrently ierda
achieve a mixed-solution that combines optimization of BAP, QCAP and CStackP
[57, 56, 61, 62]. To this end, we integrate the solutions obtained by tredajed
methods in previous chapters:

¢ the heuristically-guided planner for generating a rehandling-free btrek
remarshalling plan for container yards (CStackP problem) presentecm Ch
ter 2; and

e the GRASP metaheuristic approach for solving the BAP and QCAP as an
independent problem (Chapter 3).

With this data, terminal operators should ultimately decide in each scenario which
solution is the most appropriate in relation to a multi-objective function: to min-
imize the waiting times of vessels and to minimize the amount of relocations of
containers.

These techniques will be very useful for terminal operators due to bkoita-
tion is especially important in case of ship delays. A new berthing place has to b
allocated to the ship whereas containers are already stacked in the §hathfba
remarshalling plan remains necessary to minimize the berthing time.
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4.2 Integrating BAP, QCAP and CStackP

As we have pointed out, both the CStackP and the BAP+QCAP are well-known
problems and several techniques have been developed to solve theindiejaen-

dent way. However, few systems have been developed to relate and ephiotiz
problems in an integrated way. Some works consider berth and yard pdainnin

a common optimization model [1][5][14], but they are mainly focused on gtora
strategies. Moreover, only some works integrate the BAP with the QCAP. Giallo
bardo et al. [17] try to minimize the yard-related house-keeping costsajeddy

the flows of containers exchanged between vessels. However, therexésts a
relationship between the optimization of maritime and terminal-sides operations
(BAP, QCAP, CStackP, etc.).

Figure 4.2 shows an example of three berth allocation plans with the corre-
sponding quay crane allocations and a block of containers to be loadeé in th
vessels. Containers of type A, B and C must be loaded in vessels A, B ,and C
respectively. In the first berth allocation plan, the order of vessel B@-and
the quay crane allocation is two cranes, three cranes and one crspegtieely.

The second berth allocation plan is C-B-A. In this case the quay cranatdiogs
three, two and one, respectively. Finally, the third berth allocation planGs/A-

and two quay cranes are allocated to all vessels. Each configuratieratgsia dif-
ferent waiting time for berthing and different handling times, and the pataipr
probably selects the best solution to optimize these (BAP and QCAP) problems.
However the best solution of these two problems could generate a largeenumb
of reshuffles in the yard so the question is straightforward: what is arlsethe-

tion? Perhaps a solution that optimizes the BAP+QCAP could not be the more
appropriate for the CStackP (and vice versa).

Figure 4.2: Different alternatives of BAP and QCAP.

Given a waiting queue of vessels to be allocated and a given state of the con
tainers in the container yard, each solution for the BAP+QC#ABA P;: a feasi-
ble sequence of mooring astt)C' A P;: a feasible quay crane allocation), requires
a different number of container’s relocations in the associated CStantifos
(SCStackP;) in order to put on top the containers to be loaded according to the
order of berthing. We can associate a cost to éaBM P, + QC AP; related to
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the total weighted waiting time and handling time of vessels of this berthing or-
der (I’y). Likewise, we can associate a cost to eAchStack P; as the number of
required container relocations. Therefore, we can qualify the optimaliach
global solution §ol;) of BAP+QCAP and CStackP as a lineal combination of the
quality of each partial solution:

Cost(Sol;) = ax Cost(SBAP; + SQCAP;) + B (SCStackP;)  (4.1)

The best decision will depend on the policy of each maritime termimand
B parameters). The data flow diagram of the Integrated System Functicaing c
be seeing in Figure 4.3. Firstly, the BAP, QCAP and the CStackP data aexdload
in the integrated system. Next, the BAP+QCAP is solved to achieve a solution
(SBAP; + QC AP;) based on their constraints and optimization criteria. Then, the
CStackP is estimated by taken into account the berthing order of vesséatseobta
in SBAP, + QCAP;. This estimator returns the number of reshuffles needed
to achieve a solution. After this step, the cost of the global soluttar;) can
be calculated by using the previous expression 4.1. By iterating this intdgrate
process, the operators can obtain a qualification cost of each feésiblas well
as the best global solution, according the giweands parameters. A branch and
bound method has been also applied in the integrated search for the et glo
solution (Sol;), so that the search can be pruned each time the current solution
does not improve the best solution found so far. Finally, once the blegiosnis
obtained, the CStackP planner is carried out to obtain the specific moveroents f
all remarshalling tasks. This plan is sequentially obtained for each vessegtiing
to the solution obtained IfBAP; + QC AP, and the current state of the container
yard. Thus, the optimized remarshalling plan for the berthing order otises$
SBAP, is obtained.

After defining the Container Stacking Problem in Chapter 2 and Berth Alloca-
tion Problem together with Quay Crane Assingment Problem in Chapter 3rwe ca
achieve a global solutiofol; as it appears in Figure 4.3.

4.3 Evaluation

In this section, we evaluate the behavior of the integrated system in random in
stances. We randomly generated scenarios consisting of a set of Sélsviw
berthing. Each vessel must loddcontainers randomly from the container yard.
The yard was composed of 170 containers so that it remained empty onasthe
sels were loaded. For each problem, we generated 10 random instatites
different configuration of containers in the yard.

For this first experiment, we applied the Algorithm 18 to obtain the best 10
schedules for the incoming vessels. To solve the Container Stacking frdhke
domain-dependent planner with the heuristic (Algorithm 1) was employed.
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Figure 4.3: Data flow diagram of the Integrated System Functioning.
Figure 4.4 shows the combined function cost C8sl(), introduced in Equa-
tion 4.1 which relates for ten different scenarios:
e The normalized total weighted waiting time of vessels, COBt4 P;), and

e The number of its required container relocations, C86t§tack P;).

120
BAP+QCAP
115 CStack
m N ... a=0.1, B=0.9
105 A a=0.5, =0.5
100 -—- a=0.9, =0.1
95 a 3
%0 <N A
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70
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Schedules

Figure 4.4: Relating the costs of BAP+QCAP and CStackP.

In each one of this ten cases, the arrival times and data of vessels|l @&s we
the initial state of the container yard, have been randomly generated.eFgur

65



represents the combined function cost, C8st() with three different weights of

the parameters: and 8. We can see that better (or worst) berthing orders can
require larger (or smaller) number of container relocations. For instamite

a = 0.5,8 = 0.5 the best choice is the sixth schedule. It does not get the best
solution for BAP+QCAP, however it corresponds to the schedule withrtfadlest
number of container relocations (CStackP).

4.4 Conclusions

The Container Stacking Problem and the Berth Allocation Problem with the Quay
Crane Assignment Problem are three important and related problems in maritime
container terminals. In this chapter, we have presented an integratethdgste
manage these problems in a coordinated way. To this end, the developéaisolu

in the last chapters for each one of the problems are combined in our betggra
system. Thus, terminal operators can be assisted to decide the mostrigtedop
solution in each particular case. Furthermore, the system presented ihdlbis ¢

ter could assist container terminal’s operators to simulate, evaluate and reompa
different feasible alternatives to the same state of the yard and arfitrad ships.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

The increase in the traffic of containers in the world makes necessargribtruc-
tion of larger vessels by liner shippings. Therefore, Container Ternmmads offer
competitive services to ensure the lowest berthing time for these vessetsidgst
is considered that the time a vessel spends moored at the terminal is nactpred

Thus, in this Master Thesis several artificial intelligence techniques reae b
applied to achieve optimal solutions to different combinatorial problems of Con
tainer Terminals (Figure 1.7). We have presented a domain-dependeistice
planner for the Container Stacking Problem, specifically for the remarshallin
problem. Next, we have developed a new metaheuristic solution for the Bgrthin
Allocation Problem and Quay Crane Allocation Problem. And finally, we pre-
sented how to interrelate these two approximations in order to achieve an optimize
solution for both problems.

Firstly, our domain-dependent planner is able to reduce the number of move
ments needed to put all the outgoing containers at top of the stacks oramudeer
outgoing containers. It is able to handle real-world requirements, fomostaal-
anced stacks or the existence of dangerous containers. And, ittcsolgtgons for
a whole block of containers. Furthermore, since this process needsfaciom-
putation time, an analytical formula was derived from the data in order to estimate
the number of reshuffles for a given state of the yard.

The developed model in order to schedule incoming vessels gets plans which
are near optimal solutions. Our model is based on the metaheuristic Gragp whic
introduces a random factor to get optimized solutions. For this problem, dhere
two remarkable points:

e The greater the number of incoming vessels, the greater the benefits to this
metaheuristic model.

e How the berth usage is directly proportional to the total weighted waiting
time.
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And finally, we pointed out how these three issues (BAP, QCAP and Centain
Stacking Problem) are interrelated and we proposed an architecture ¢ctiseha
in an efficient way. The best solution for berthing the incoming vessels might
not offer an ordering which minimizes the number of reshuffles of the omrta
yards. Therefore, an optimized global solution is a trade-off betweese thi#ferent
problems.

With these provided solutions could assist container terminal’s operators to
simulate, evaluate and compare different feasible alternatives to the samle initia
states. For instance, evaluating the fact of using a different numbearaf Qranes
at the berth, varying the maximum number dedicated by vessel or asseaangl
stacks configurations as allowing stack more containers (4, 5 or more tiers)

Summarizing, the next contributions have been presented in this work:

e A domain-dependent planner guided by a heuristic for the Container-Stack
ing Problem.

In addition, we have added real-world requirements to this planner:

Leave the outgoing containres near truck position.

— Allow different heights.

— Dangerous containers.

— Balance one yard-bay and the whole container blocks.

e A domain-dependent planner to solve container blocks efficiently acgprd
to their number of outgoing containers.

e An analytic formula to estimate the number of reshuffles of one yard-bay.

e Berth Allocation and Quay Crane Allocation Problems have been solved by
a model based on GRASP metaheuristic.

Two approaches are studied depending on how Quay Cranes ardetoca

— To vessels, calledtatic QCAP
— To holds of vesselglynamic QCAP

¢ An efficient system to integrate the problems related to the storage yard (re-
marshalling) and the quay side (loading/unloading containers).

5.2 Future work

Although there have been studied these problems in the literature, theriéllare s
some open problems related to the Container Terminals.

In this work, we addressed the BAP and QCAP problems, but anotherimpor
tant issue where quay cranes are involved is the Quay Crane Schedtdinigm
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(QCSP). QCSP consists on determining the sequence of unloading/loadiag tas
assigned to each Quay Crane so that the completion time of a vessel tasks is mini-
mized.

Related to the Container Stacking Problem, remarshalling problem is an op-
tion when there is enough time in order to prepare the container yard foekte n
vessel. However, when it is not possible, this problem and also ourgriastrould
be adapted to achieve that all the outgoing containers are loaded ontcsted ve
minimizing the number of reshuffles during the pickup operation.

Other problems that have not been studied in this work and could be fezed a
for instance planning the routes for liner shipping services to obtain the miaxima
profit [9], or routing all the manned and automated vehicles of a Contaerer T
minal in a coordinated way, e.g. AGV, Quay Cranes and RMGs in orderdiol av
deadlocks.

This last issue, about the automated vehicles in Container Terminals, cauld als
be studied as a part of a system. A system which involves the problems situdied
this work (BAP, QCAP and CStackP) as well as the routing of these vehicles

5.3 Related publications

In this section, it is shown a list of published publications to conference goam-
nals. For each one of them, JCR ranking (in case of journals) or CSCHCa#k-
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